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Abstract

We prove that there exist infinitely many infinite overlap-free binary partial words
with one hole. Moreover, we show that there exist infinitely many binary partial
words with an infinite number of holes which are 3-overlap-free, i.e., they are
cube-free and they do not contain a factor of the formxyxyx where the length
of x is at least three andy is nonempty.
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1 Introduction

Repetitions, i.e., consecutive occurrences of words within a word and especially
repetition-freeness have been fundamental research subjects in combinatorics on
words since the seminal papers of Thue [13, 14] in the beginning of the 20th
century. Thue showed that there exists an infinite wordw over a 3-letter alpha-
bet, which does not contain any squaresxx, wherex is a nonempty word inw.
Moreover, he constructed an infinite binary wordt which does not contain any
overlapsxyxyx for any nonempty wordsx andy. This celebrated word is nowa-
days called the Thue-Morse word, which has many surprising and remarkable
properties; see [16]. As an example, we mention applyingt for designing an un-
ending play of chess [5, 10] and for solving the Burnside problem for groups [1]
and semigroups [11, 12].

In [9] Manea and Mercaş considered repetition-freeness ofpartial words. Par-
tial words are words with “do not know”-symbols called holesand they were first
introduced by Berstel and Boasson in [2]. Motivation for thestudy of partial
words comes from applications in word algorithms and molecular biology, in par-
ticular; see [3] for using partial words in DNA sequencing and DNA comparison.
The theory of partial words has developed rapidly in the recent years and many
classical topics in combinatorics on words have been revisited. Topics such as pe-
riodicity, primitivity, unbordered word, codes and equations have been considered
in the first book on partial words authored by Blanchet-Sadriin 2007 [4]. See also
related works by Shur and Gamzova [15], Leupold [7] and Lischke [8]. As an-
other approach for modeling missing or uncertain information in words we want
to mention word relations, a generalization of the compatibility of partial words
introduced in [6].

It was shown in [9] that there exist infinitely many cube-freebinary partial
words containing an infinite number of holes. In this paper weshow that this result
can be improved by giving three theorems with short and simple proofs. First, we
prove that there exist infinitely many infinite overlap-freebinary partial words
with one hole. Secondly, we show that an infinite overlap-free binary partial word
cannot contain more than one hole. However, we prove that a binary partial word
with an infinite number of holes can be “almost overlap-free”. More precisely,
there exist infinitely many cube-free binary partial words with an infinite number
of holes which do not contain a factor of the formxyxyx where the length ofx is
at least three andy is nonempty.

2 Preliminaries

Let A be a finite alphabet. The elements ofA are calledletters. A word w =
a1a2 · · ·an of lengthn over the alphabetA is a mappingw : {1, 2, . . . , n} → A
such thatw(i) = ai. The length of a wordw is denoted by|w|, andε is the
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empty word of length zero. By a (right) infinite wordw = a1a2a3 · · · we mean a
mappingw from the positive integersN+ to the alphabetA such thatw(i) = ai.
The set of all finite words is denoted byA∗, infinite words are denoted byAω and
A+ = A∗ \ {ε}. A finite wordv is a factor of w if w = xvy, wherex ∈ A∗ and
y ∈ A∗ ∪ Aω. The set of factors ofw is denoted byF (w). If x = ε, thenv is a
prefixof w. A prefix ofw of lengthn is denoted bypref

n
(w). If v ∈ A∗∪Aω and

w = xv, thenv is called asuffixof w.
A partial word u of length n over the alphabetA is a partial function

u : {1, 2, . . . , n} → A. ThedomainD(u) is the set of positionsi ∈ {1, 2, . . . , n}
whereu(i) is defined. The setH(u) = {1, 2, . . . , n} \ D(u) is called the set of
holes. If H(u) is empty, thenu is a (full) word. As for full words, we use the
notation|u| = n for the length of partial words. Similarly to finite words, we
define that infinite partial words are partial functions fromN+ toA.

Let ⋄ be a symbol that does not belong toA. For a partial wordu, we define
its companionto be the full wordu⋄ over the augmented alphabetA⋄ = A ∪ {⋄}
such thatu⋄(i) = u(i), if i ∈ D(u), andu⋄(i) = ⋄, otherwise. The symbol⋄
represents the holes, and the setsA∗

⋄ andAω

⋄ correspond to the sets of finite and
infinite partial words, respectively.

A partial wordu is said to becontainedin v, denoted byu ⊂ v, if |u| = |v|,
D(u) ⊆ D(v) andu(i) = v(i) for all i ∈ D(u). Two partial wordsu andv are
compatible, denoted byu ↑ v, if there exists a partial wordz such thatu ⊂ z
andv ⊂ z. Using the companions this means thatu⋄(i) = v⋄(i) whenever nei-
theru⋄(i) nor v⋄(i) is a hole⋄. Factors, prefixes and suffixes of partial words are
defined naturally using the one-to-one correspondence between partial words and
their companions.

A morphism onA∗ is a mappingϕ : A∗ → A∗ satisfyingϕ(xy) = ϕ(x)ϕ(y)
for all x, y ∈ A∗. Note thatϕ is completely defined by the valuesϕ(a) for every
lettera onA. A morphism is calledprolongable on a lettera if ϕ(a) = aw for
some wordw ∈ A+ such thatϕn(w) 6= ε for all integersn ≥ 1. By the definition,
ϕn(a) is a prefix ofϕn+1(a) for all integersn ≥ 0 and the sequence(ϕn(a))n≥0

converges to the unique infinite word

ϕω(a) := lim
n→∞

ϕn(a) = awϕ(w)ϕ2(w) · · · ,

which is a fixed point ofϕ.
As an example, consider the morphismτ : {0, 1}∗ → {0, 1}∗, whereτ(0) =

01 andτ(1) = 10. The word

t := lim
n→∞

τn(0) = 011010011001011010 · · ·

obtained by iterating the morphismτ is called theThue-Morse word. Note that,
by the construction, the Thue-Morse word has a unique decomposition into blocks
τ(0) = 01 andτ(1) = 10. In a blockab the lettera is calledon-beatand the
letterb is calledoff-beat. For other definitions and properties of the famous wordt,
see [16].
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3 Overlap-free infinite partial words

A kth powerof a wordu 6= ε is a worduk = pref
k·|u|(u

ω), whereuω denotes the
infinite catenation of the wordu, k is a rational number andk · |u| is an integer.
A word w is calledk-free if there does not exist a wordx such thatxk is a factor
of w. If k = 2 or k = 3, then we talk about square-free or cube-free words,
respectively. Anoverlapis a word of the formxyxyx wherex, y ∈ A+. A word
is calledoverlap-freeor 2+-free if it does not containkth powers for anyk > 2.
Hence, it can contain squares but it cannot contain any longer repetitions such as
overlaps or cubes.

It is easy to verify that there does not exist a square-free infinite word over a
binary alphabet. On the other hand, Thue proved the following theorem.

Theorem 1 ([13, 14]).The Thue-Morse word is overlap-free.

A partial wordu is k-free if, for any nonempty factorv of u, there does not
exists a wordx such thatv is contained in thekth power ofx, i.e., v ⊂ xk.
Similarly, a partial wordu is overlap-freeif it is k-free for everyk > 2. Thus, an
overlap-free partial wordu cannot contain anoverlapv such thatv ⊂ xyxyx for
any nonempty wordsx andy.

In [9] Manea and Mercaş proved that there exist infinitely many cube-free
binary partial words containing exactly one hole. We give a short proof of an
improvement of this result.

Theorem 2. There exist infinitely many overlap-free binary partial words con-
taining exactly one hole.

Proof. Consider a suffixt′ of the Thue-Morse wordt such thatt′ begins with the
factor010011 of τ 4(0). We claim that the infinite partial wordw = ⋄t′ is overlap-
free. By Theorem 1, the wordt′ is overlap-free. Hence, if there is an overlap inw,
it must be a prefix ofw. Without loss of generality, we may assume thatw =
uu′a · · · , whereu ↑ u′ anda = pref1(u

′). Since small prefixes ofw do not contain
overlaps, we must have|u| = |u′| ≥ 7 and, consequently,u = ⋄010011 · · · and
u′ = a010011 · · · . Here the factor11 is synchronizing, i.e., the first1 is off-beat
and the second1 is on-beat. This implies thatu′ begins on-beat and so|u| = |u′|
is even. Hence,a = 1 and the letter inw after the prefixuu′a must be an off-
beat0. In other words, we havew = ⋄010011x1010011x10 for somex ∈ A+.
Thus, it follows thatt′ contains an overlap0y0y0, wherey = 10011x1. This is a
contradiction. Since the Thue-Morse word is clearly recurrent, i.e., every factor
occurs infinitely many times, there exist infinitely many different suffixest′ of the
word t such that⋄t′ is overlap-free.

However, we cannot avoid overlaps if a binary infinite partial word contains
several holes.
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Theorem 3. If an infinite binary partial word contains more than one hole, it is
not overlap-free.

Proof. Assume that an infinite binary overlap-free wordw contains at least two
holes. Then the gap between any two holes must be at least two.Otherwise, there
is a cube of the form⋄⋄a or ⋄a⋄ in the word. Hence, there exists a positioni ≥ 3
such thatwi−2wi−1wi = ab⋄. Sincew is cube-free, the lettersa andb must be
different. For the same reason,wi+1wi+2 = ab, butwi+3 is eithera or b. However,
the wordsab⋄abaa, ab⋄abab, ab⋄abba andab⋄abbb contain overlaps or cubes. At
least one of them must be a factor ofw, which is a contradiction.

4 Partial words and 3-overlap-freeness

By the above considerations, it is clear that there are no overlap-free binary partial
words containing infinitely many holes. On the other hand, itwas proved in [9]
that there exist infinitely many binary cube-free words withinfinitely many holes.
This result is improved in the following theorem which also has a shorter proof.
For the result we need a definition ofk-overlap-freeness.

Definition 1. A partial wordw is k-overlap-freeif it is cube-free and, for any
factorv of w, there is no overlapxyxyx such thatv ⊂ xyxyx and|x| ≥ k.

Note that this means that ak-overlap-free partial word does not contain rep-
etitions of the formxyx′y′x′′ such thatx, x′, x′′, and respectivelyy, y′, are pair-
wise compatible nonempty partial words and|x| ≥ k. For example, the word
01⋄0100110 is 3-overlap-free but not2-overlap-free since it contains the factor
01⋄01001, wherex = x′ = x′′ = 01 andy = ⋄ ↑ 0 = y′. By the definition, it is
evident that anyk-overlap-free word is alsok′-overlap-free fork′ ≥ k. Note that
a word is1-overlap-free if and only if it is overlap-free. Now we may state the
following theorem.

Theorem 4. There exist infinitely many3-overlap-free binary partial words con-
taining infinitely many holes.

Proof. Let T be an infinite partial word obtained from the Thue-Morse wordt by
replacing every occurrence of01011010011 by 0101⋄010011. By the recurrence
of t, the wordT has an infinite number of holes. Note also that

01010, 00100 6∈ F (t), (1)

sincet is overlap-free and has a decomposition into blocks01 and10.
Assume now thatT is not 3-overlap-free. By Theorem 1, it is evident that

the wordT cannot contain cubesw3, where the length ofw is one, two or three.
Hence,T must have a factorw = xyx′y′x′′ such thatx, x′, x′′, and respectivelyy, y′,
are pairwise compatible nonempty partial words and|x| = |x′| = |x′′| ≥ 3. Since
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t is overlap-free, there must be at least one hole inw such that replacing the hole
by the letter1 the wordw would not be an overlap. Such a hole is here called
necessaryand denoted bŷ⋄. In other words, there must be a positioni either inx
or in y such that one of the lettersx(i), x′(i), x′′(i) or, respectivelyy(i), y′(i), is
a necessary holê⋄ and another one is a zero, denoted by0̂, corresponding to the
hole.

Assume that|xy| ≥ 8. We divide our considerations into cases:
(i) Assume that there is a necessary hole⋄̂ in y. Then the zerô0 corresponding

to that hole is iny′. Since|xy| = |x′y′| = |y′x′′| ≥ 8, there is either0101⋄̂ ∈
F (xy) and01010̂ ∈ F (x′y′) or ⋄̂0100 ∈ F (yx′) and 0̂0100 ∈ F (y′x′′). Hence,
either01010 or 00100 occurs int contradicting (1).

(ii) Assume that a necessary hole⋄̂ occurs inx′. By the assumption on the
length ofxy, this means that0101⋄̂0100 is a factor ofyx′y′. If 0̂ is in x, then
0̂0100 ∈ F (xy). Otherwise,̂0 is in x′′ and01010̂ ∈ F (y′x′′). Both cases contra-
dict (1).

(iii) Assume thatx(i) = ⋄̂. If 0101⋄̂ is a factor ofx, then01010 is a factor of
eitherx′ or x′′. This is a contradiction. Hence,⋄̂0100 must occur inxy. By (1), the
factor 0̂0100 cannot occur inx′y′, and thereforex′(i) = ⋄ andx′′(i) = 0̂. Hence,
also the holex′(i) is necessary and a contradiction follows from Case (ii).

The case where a necessary hole occurs iny′ is symmetric to Case (i) and the
case wherex′′(i) = ⋄̂ is symmetric to Case (iii). Thus, we may conclude thatT
does not contain any3-overlaps of the formxyx′y′x′′ where|xy| ≥ 8.

Hence, it suffices to consider overlaps of the formxyx′y′x′′ where|xy| ≤ 7
and the overlap contains at least one hole. By the overlap-freeness and{01, 10}-
decomposition oft, it is easy to show that every⋄ in T occurs in a factor corre-
sponding toτ 5(1) of t and every such factor contains exactly one hole. Hence,
every hole inT occurs in

v = 100101100110100101⋄0100110010110.

Consider repetitions ofu in T such that|u| ≤ 7 andu contains a hole. By the
structure ofv ∈ F (T ), we may easily verify that the greatestkth power ofu
occurring inT hask = 2 + 2/|u|. Namely, the words(10100)(101⋄0)10 and
(01⋄)(010)01 are factors ofv. However, we have shown thatT is 3-overlap-free.
Since every suffix ofT is also3-overlap-free, the statement is proved.

It remains an open question whether there exist2-overlap-free infinite binary
partial words. As a final remark, we mention that such words cannot be obtained
by “punching” the Thue-Morse word. More precisely, if an infinite wordw has
a decomposition into blocks01 and10, then by replacing letters with holes we
cannot obtain a2-overlap-free wordw′. Suppose that in such wordw a letter1
is replaced by a hole. This hole must occur either in a factor01⋄01 or in a factor
10⋄10 of w′. Otherwise, the modified wordw′ contains a cube. Assume that the
hole occurs in01⋄01. The other case is symmetric. By the block decomposition
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of the originalw we know that⋄ must be in on-beat position. Hence,01⋄010 is
a factor of the modified word. However, the next block cannot be 10, since then
the cube(⋄0)(10)(10) occurs. On the other hand, it cannot be01 either. In this
case, the modified word has a2-overlap(01⋄)(010)01. The case where a letter0
is replaced by a hole is symmetric.
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[14] A. Thue,Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen,
Norske Vid. Skrifter I Mat.-Nat. Kl., Christiania 1 (1912) 1–67.

[15] A.M. Shur, Yu.V. Gamzova, Partial words and the interaction property of
periods, Izv. Math. 68 (2004) 405–428.

[16] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in:
C. Ding. T. Helleseth, H. Niederreiter (Eds.), Sequences and Their Applica-
tions: Proceedings of SETA ’98, Springer-Verlag, 1999, pp.1–16.

7
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