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Abstract

We prove that there exist infinitely many infinite overlapdiinary partial words
with one hole. Moreover, we show that there exist infinitelgny binary partial
words with an infinite number of holes which are 3-overlagefri.e., they are
cube-free and they do not contain a factor of the fanmyx where the length
of z is at least three anglis nonempty.
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1 Introduction

Repetitions, i.e., consecutive occurrences of words wighword and especially
repetition-freeness have been fundamental researchcssiimjecombinatorics on
words since the seminal papers of Thue [13, 14] in the beggof the 20th
century. Thue showed that there exists an infinite wordver a 3-letter alpha-
bet, which does not contain any squaxes wherex is a nonempty word inw.
Moreover, he constructed an infinite binary wdrdvhich does not contain any
overlapscyxyx for any nonempty words andy. This celebrated word is nowa-
days called the Thue-Morse word, which has many surprisimdyramarkable
properties; see [16]. As an example, we mention applyifay designing an un-
ending play of chess [5, 10] and for solving the Burnside f@wbfor groups [1]
and semigroups [11, 12].

In [9] Manea and Mercas considered repetition-freenegaudfal words. Par-
tial words are words with “do not know”-symbols called hotewl they were first
introduced by Berstel and Boasson in [2]. Motivation for 8tady of partial
words comes from applications in word algorithms and mdkduiology, in par-
ticular; see [3] for using partial words in DNA sequencingl&NA comparison.
The theory of partial words has developed rapidly in the megears and many
classical topics in combinatorics on words have been tedsilopics such as pe-
riodicity, primitivity, unbordered word, codes and eqoas have been considered
in the first book on partial words authored by Blanchet-Saxd2007 [4]. See also
related works by Shur and Gamzova [15], Leupold [7] and Lksc8]. As an-
other approach for modeling missing or uncertain infororatn words we want
to mention word relations, a generalization of the complégitof partial words
introduced in [6].

It was shown in [9] that there exist infinitely many cube-fi@aary partial
words containing an infinite number of holes. In this papesh@w that this result
can be improved by giving three theorems with short and smppbofs. First, we
prove that there exist infinitely many infinite overlap-friemary partial words
with one hole. Secondly, we show that an infinite overlag-fsaary partial word
cannot contain more than one hole. However, we prove thataypartial word
with an infinite number of holes can be “almost overlap-fre&fore precisely,
there exist infinitely many cube-free binary partial wordgwan infinite number
of holes which do not contain a factor of the formxyx where the length of is
at least three anglis nonempty.

2 Preliminaries

Let A be a finite alphabet. The elements.fare calledetters A word w =
ajas - - - a, Of lengthn over the alphabet! is a mappingo: {1,2,...,n} — A
such thatw(i) = a;. The length of a wordv is denoted byw|, ande is the
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empty word of length zero. By a (right) infinite wotd = a,asa3 - - - we mean a
mappingw from the positive integerdl, to the alphabe#d such thatu(i) = a;.
The set of all finite words is denoted by, infinite words are denoted by~ and
AT = A*\ {e}. Afinite word v is afactor of w if w = xvy, wherex € A* and
y € A*U A“. The set of factors ofv is denoted byF'(w). If x = ¢, thenv is a
prefixof w. A prefix of w of lengthn is denoted byref , (w). If v € A*U.A¥ and
w = xv, thenv is called asuffixof w.

A partial word u of length n over the alphabetd is a partial function
u: {1,2,...,n} — A. ThedomainD(u) is the set of positions € {1,2,...,n}
whereuw(i) is defined. The set/ (u) = {1,2,...,n} \ D(u) is called the set of
holes If H(u) is empty, theru is a (full) word. As for full words, we use the
notation|u| = n for the length of partial words. Similarly to finite words, we
define that infinite partial words are partial functions frdim to .A.

Let © be a symbol that does not belongAo For a partial word:, we define
its companiorto be the full wordu,, over the augmented alphabét = AU {o}
such thatu, (i) = (i), if ¢ € D(u), andu,(i) = ©, otherwise. The symbai
represents the holes, and the sdtsand.4¥ correspond to the sets of finite and
infinite partial words, respectively.

A partial wordw is said to becontainedin v, denoted byu C v, if |u| = |v],
D(u) € D(v) andu(i) = v(i) for all © € D(u). Two partial wordsu andv are
compatible denoted byu T v, if there exists a partial word such thatu C z
andv C z. Using the companions this means thati) = v.(i) whenever nei-
theru, (i) noru,(i) is a holec. Factors, prefixes and suffixes of partial words are
defined naturally using the one-to-one correspondencegaetwartial words and
their companions.

A morphism on4* is a mappinge: A* — A* satisfyingp(zy) = ¢(z)p(y)
for all z,y € A*. Note thaty is completely defined by the valuega) for every
lettera on . A. A morphism is callegrolongable on a letter if p(a) = aw for
some wordv € A* such thaty"(w) # ¢ for all integersn > 1. By the definition,
©"(a) is a prefix ofp"*!(a) for all integersn > 0 and the sequende”(a)).,>o
converges to the unique infinite word

*(a) == lim ¢"(a) = awp(w)e*(w) -,

which is a fixed point ofp.
As an example, consider the morphism{0,1}* — {0, 1}*, wherer(0) =
01 and7(1) = 10. The word

t:= lim 7"(0) = 011010011001011010- - -

n—oo

obtained by iterating the morphismis called theThue-Morse word Note that,
by the construction, the Thue-Morse word has a unique deositign into blocks
7(0) = 01 and7(1) = 10. In a blockab the lettera is calledon-beatand the
letterd is calledoff-beat For other definitions and properties of the famous word
see [16].



3 Overlap-free infinite partial words

A kth powerof a wordu # ¢ is a wordu* = pref; |, (u), whereu® denotes the
infinite catenation of the word, & is a rational number ank - || is an integer.
A word w is calledk-freeif there does not exist a wordsuch that:* is a factor
of w. If £ = 2 ork = 3, then we talk about square-free or cube-free words,
respectively. Aroverlapis a word of the formeyzyx wherez,y € A™. A word
is calledoverlap-freeor 2" -freeif it does not contairkth powers for any: > 2.
Hence, it can contain squares but it cannot contain any lomgetitions such as
overlaps or cubes.

It is easy to verify that there does not exist a square-fréeiie word over a
binary alphabet. On the other hand, Thue proved the follgwheorem.

Theorem 1 ([13, 14]). The Thue-Morse word is overlap-free.

A partial wordw is k-freeif, for any nonempty factop of «, there does not
exists a wordr such thatv is contained in theith power ofz, i.e.,v C z*.
Similarly, a partial word: is overlap-freef it is k-free for everyk > 2. Thus, an
overlap-free partial word cannot contain anverlapv such thaty C xyxyz for
any nonempty words andy.

In [9] Manea and Mercas proved that there exist infinitelyngnaube-free
binary partial words containing exactly one hole. We givehars proof of an
improvement of this result.

Theorem 2. There exist infinitely many overlap-free binary partial @srcon-
taining exactly one hole.

Proof. Consider a suffix’ of the Thue-Morse word such that’ begins with the
factor010011 of 7*(0). We claim that the infinite partial word = ot is overlap-
free. By Theorem 1, the wordis overlap-free. Hence, if there is an overlapin
it must be a prefix ofw. Without loss of generality, we may assume that=
uu'a-- -, whereu T v anda = pref, (u’). Since small prefixes af do not contain
overlaps, we must have| = |«/| > 7 and, consequently, = 010011 --- and
u’ = a010011 - - -. Here the factoi 1 is synchronizing, i.e., the firdgtis off-beat
and the secontl is on-beat. This implies that begins on-beat and 30| = |v/|
is even. Henceg = 1 and the letter inv after the prefixuu’a must be an off-
beat0. In other words, we haver = ¢01001121010011210 for somex € A*.
Thus, it follows that’ contains an overlafy0y0, wherey = 10011x1. Thisis a
contradiction. Since the Thue-Morse word is clearly reentyi.e., every factor
occurs infinitely many times, there exist infinitely manyfelient suffixes’ of the
wordt¢ such thatt’ is overlap-free. O

However, we cannot avoid overlaps if a binary infinite pasrard contains
several holes.



Theorem 3. If an infinite binary partial word contains more than one haleis
not overlap-free.

Proof. Assume that an infinite binary overlap-free wardcontains at least two
holes. Then the gap between any two holes must be at leasOterwise, there
is a cube of the forreoa or cao in the word. Hence, there exists a positior 3
such thatw,_>w;_;w; = abo. Sincew is cube-free, the letters andb must be
different. For the same reasan,, ;w;,» = ab, butw; 3 is eithera or b. However,
the wordsaboabaa, aboabab, aboabba andaboabbb contain overlaps or cubes. At
least one of them must be a factorwfwhich is a contradiction. O

4 Partial words and 3-overlap-freeness

By the above considerations, it is clear that there are ndagwéree binary partial
words containing infinitely many holes. On the other haneyats proved in [9]
that there exist infinitely many binary cube-free words visittinitely many holes.
This result is improved in the following theorem which alsasha shorter proof.
For the result we need a definition bfoverlap-freeness.

Definition 1. A partial wordw is k-overlap-freeif it is cube-free and, for any
factorv of w, there is no overlapyzyx such that C zyzyx and|z| > k.

Note that this means thatfaoverlap-free partial word does not contain rep-
etitions of the formeyx’y/2” such thatr, 2/, 2", and respectively, 3/, are pair-
wise compatible nonempty partial words apd > k. For example, the word
0100100110 is 3-overlap-free but no2-overlap-free since it contains the factor
01001001, wherex = 2’ = 2 = 01 andy = o 7 0 = /. By the definition, it is
evident that any:-overlap-free word is alst’-overlap-free fort’ > k. Note that
a word is1-overlap-free if and only if it is overlap-free. Now we mayt the
following theorem.

Theorem 4. There exist infinitely many-overlap-free binary partial words con-
taining infinitely many holes.

Proof. Let T be an infinite partial word obtained from the Thue-Morse wolngt
replacing every occurrence 01011010011 by 0101¢010011. By the recurrence
of ¢, the wordT" has an infinite number of holes. Note also that

01010,00100 & F(t), (1)

sincet is overlap-free and has a decomposition into bldtkand10.

Assume now thaf’ is not 3-overlap-free. By Theorem 1, it is evident that
the wordT" cannot contain cubes?, where the length ofy is one, two or three.
Hence,I' must have a factar = xy2'y’2” such that:, 2/, 2", and respectively, v/,
are pairwise compatible nonempty partial words arjd= |z’| = |z”| > 3. Since
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t is overlap-free, there must be at least one hole such that replacing the hole
by the letterl the wordw would not be an overlap. Such a hole is here called
necessanand denoted by. In other words, there must be a positiogither inx

or in y such that one of the lettersi), «'(i), 2" (i) or, respectivelyy (i), y'(i), is

a necessary hokeand another one is a zero, denoteddpgorresponding to the
hole.

Assume thatry| > 8. We divide our considerations into cases:

(i) Assume that there is a necessary hiie y. Then the zerd corresponding
to that hole is iny’. Since|zy| = |2'y/| = |y'2"| > 8, there is eithen101é €
F(zy) and01010 € F(z'y/) or 30100 € F(yz') and00100 € F(y'z"). Hence,
either01010 or 00100 occurs int contradicting (1).

(i) Assume that a necessary haleoccurs inz’. By the assumption on the
length of zy, this means that10160100 is a factor ofyz’y’. If 0 is in z, then
00100 € F(zy). Otherwise) is in z” and01010 € F(y'z"). Both cases contra-
dict (2).

(iii) Assume thatz(:) = ¢. If 01014 is a factor ofz, then01010 is a factor of
eitherz’ orz”. This is a contradiction. Henc&)100 must occur incy. By (1), the
factor00100 cannot occur in’y’, and therefore’(i) = ¢ andz" (i) = 0. Hence,
also the hole’/(i) is necessary and a contradiction follows from Case (ii).

The case where a necessary hole occutg is symmetric to Case (i) and the
case where”’(i) = & is symmetric to Case (iii). Thus, we may conclude that
does not contain an~overlaps of the formry'y'z"” where|xy| > 8.

Hence, it suffices to consider overlaps of the forgx’y'z” where|zy| < 7
and the overlap contains at least one hole. By the overkgn@ss and01, 10}-
decomposition ot, it is easy to show that everyin T" occurs in a factor corre-
sponding tor®(1) of ¢ and every such factor contains exactly one hole. Hence,
every hole inI" occurs in

v = 100101100110100101<0100110010110.

Consider repetitions of in 7" such thaju| < 7 andu contains a hole. By the
structure ofv € F(T'), we may easily verify that the greategh power ofu
occurring inT hask = 2 + 2/|ul. Namely, the wordg$10100)(101¢0)10 and
(01¢)(010)01 are factors ob. However, we have shown thétis 3-overlap-free.
Since every suffix of " is also3-overlap-free, the statement is proved. O

It remains an open question whether there exgverlap-free infinite binary
partial words. As a final remark, we mention that such worasoabe obtained
by “punching” the Thue-Morse word. More precisely, if an mie wordw has
a decomposition into blocksl and 10, then by replacing letters with holes we
cannot obtain &-overlap-free wordv’. Suppose that in such word a letter1
is replaced by a hole. This hole must occur either in a fattof1 or in a factor
10010 of w’. Otherwise, the modified word’ contains a cube. Assume that the
hole occurs iM1¢01. The other case is symmetric. By the block decomposition
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of the originalw we know thato must be in on-beat position. Hendg,c010 is

a factor of the modified word. However, the next block canret since then
the cube(<0)(10)(10) occurs. On the other hand, it cannot(eeither. In this
case, the modified word ha2eoverlap(01¢)(010)01. The case where a letter
is replaced by a hole is symmetric.
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