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Abstract

We say that a partial word over an alphabetl is square-free if every factar:’

of w such thatr andx’ are compatible is either of the foroa or a¢ whereo is a
hole anda € A. We prove that there exist uncountably many square-freapar
words over a ternary alphabet with an infinite number of holes
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1 Introduction

Repetitions and repetition-freeness have been inteystuadiied in combinatorics
on words during the last three decades. The seminal papénssiresearch are
those by Thue [7, 8]. In addition to the celebrated binaryéFMoprse sequence
[9], Thue showed that there exists an infinite waradver a 3-letter alphabet that
does not contain any squares, wherex is a nonempty word imw. In this paper
we generalize this result for partial words.

Partial words are words with “do not know”-symbaiscalled holes. They
were first introduced by Berstel and Boasson in [1]. The thedpartial words
has developed rapidly in recent years and many classicalstopcombinatorics
on words have been revisited; see [2]. In [6] Manea and Mecoasidered
repetition-freeness of partial words. They showed thaetlegist infinitely many
cube-free binary partial words containing an infinite numifeholes. Moreover,
they constructed an infinite word overddetter alphabet such that substituting
randomly any letter with a hole the word stays cube-freetifeumore, if arbitrar-
ily many letters with a distance at least two are replaceddigs) the word is still
cube-free.

The study of repetitions in partial words was continued ih [#here the
present authors proved that there exist infinitely many it&fioverlap-free binary
partial words with one hole. Secondly, they showed that &niia overlap-free
binary partial word cannot contain more than one hole. H@wnea binary par-
tial word with an infinite number of holes can be “almost oaprfree”. More
precisely, it was shown in [4] that there exist infinitely ngacube-free binary
partial words with an infinite number of holes which do not tzam a factor of
the formzyx’y' 2" wherex, ', 2" and, respectively, ¢/, are pairwise compatible,
the length ofz is at least three anglis nonempty. It remained an open question,
whether the length of can be reduced to two. Moreover, the question about the
existence of “square-free” partial words was not considleF®r square-freeness
we must allow at least squares of the fosmandac wherea is a letter, since
repetitions of this form are unavoidable. In this paper wekle this problem
by constructing with the help of &3-uniform morphism an infinite square-free
partial word over a ternary alphabet with an infinite numiddrales.

2 Preliminaries

We recall some notions and notation mainly from [1]. A ward= a a5 - - - a,
of lengthn over an alphabe# is a mappingw: {1,2,...,n} — A such that
w(i) = a;. The elements ofd are called letters. The length of a woudis
denoted bylw|, and the length of the empty woedis zero. An infinite word
w = ayagaz - - - 1S @ mappinge from the positive integer®, to the alphabe#d
such thatw(i) = a;. The set of all finite words is denoted by* and the set of
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the infinite words is denoted by. A finite word v is afactor of w if w = zvy,
wherez is finite word andy is either a finite or an infinite word. The set of factors
of w is denoted by'(w). The wordv is called aprefixof w, if in the abover = «.

A prefix of w of lengthn is denoted bypref, (w). If w = xv, thenv is called a
suffixof w.

A partial word u of length n over the alphabetd is a partial function
u: {1,2,...,n} — A. The domainD(u) is the set of positions € {1,2,...,n}
such thatu(7) is defined. The self (u) = {1,2,...,n}\ D(u) is called the set of
holes If H(u) is empty, then: is a (full) word. As for full words, we denote by
|u| = n the length of a partial word. Similarly to finite words, we define infinite
partial words as partial functions froh, to A.

Let ¢ be a symbol that does not belongAo For a partial word:, we define
its companiorto be the full wordu,, over the augmented alphabét = AU {o}
such thatu,(i) = wu(7), if i € D(u), andu,(i) = ¢, otherwise. The setgl}
and .4¢ correspond to the sets of finite and infinite partial wordspeetively.
A partial wordu is said to becontainedin v (denoted byu C v) if |u| = |v],
D(u) € D(v)andu(i) = v(¢) for all i € D(u). Two partial wordsu andv are
compatible(denoted byu T v) if there exists a (partial) word such that: C =
andv C z. Using the companions this means that we must hayg = v, ()
whenever neithet, (i) noruv, (i) is a holeo.

A morphism onA* is a mappingh: A* — A* satisfyingh(zy) = h(x)h(y)
for all x,y € A*. Note thath is completely defined by the valuésa) for every
lettera on A*. A morphism is callegrolongable on a lettet if h(a) = aw for
some wordv € A" such that,"(w) # ¢ for all integersn > 1. By the definition,
if 1 is prolongable om, h™(a) is a prefix ofh"*1(a) for all integersn > 0 and the
sequenceéh”(a)),>o converges to the unique infinite word

h“(a) := lim h"(a) = awh(w)h*(w)---,

n—oo

which is a fixed point ofv. A morphism# is calledk-uniformif |h(a)| = & for all
a € A. As an example, consider the morphigm{0, 1,2}* — {0, 1, 2}* defined
by

0 ~ 0121021201210,
1 — 1202102012021, (2)
2 +— 2010210120102.

This morphism isl 3-uniform. The word
A = ¢”(0) = 012102120121012021020120212010210120102120 - - -

obtained by iterating the morphispturns out to be very useful when considering
square-freeness of partial words. We call this wordlibech word see [5].
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3 Square-free infinite partial words

The kth powerof a wordu # ¢ is the wordu* = pref, |, (u*), whereu* denotes
the infinite catenation of the word with itself andk is a rational number such
thatk - |u| is an integer. A partial word is calledk-freeif, for any nonempty
factorv of u, there does not exists a full wordsuch that is contained in the
kth power ofz, i.e,, v C z*. Note that, for full words, this means that= z*. If
k = 2 or k = 3, then we talk aboutquare-freeor cube-freewords, respectively.
Moreover, a word is calledverlap-freeif it is k-free for anyk > 2.

It is easy to verify that there does not exist square-freaitefiwords over a
binary alphabet. However, the classical results by Thue ste following:

Theorem 1([7, 8]). There exist a binary infinite overlap-free word and an inénit
square-free word over a ternary alphabet.

The infinite overlap-free word constructed by Thue is nowadealled the
Thue-Morse wordand it is obtained as a fixed poiht= 7¢(0) of the morphism
7:{0,1}* — {0,1}*, wherer(0) = 01 and7(1) = 10. A square-free word”
is derived from¢ by using the inverse of the morphismfor which o(a) = 011,

o(b) = 01 ando(c) = 0. Square-free words can also be generated by iterating
uniform morphisms as was proved by Leech.

Theorem 2([5]). The wordA = ¢¥(0), whereyp is defined by1), is square-free.

We will use this result in order to prove that there existsitély many almost
square-free ternary partial words with an infinite numbehas. As was men-
tioned above, we cannot avoid short squares. Namely, any eantaining a hole
contains also a square of the forma or a¢ for somea € A. Hence, we modify
the definition of square-freeness as follows.

Definition 1. A word of the formzz’ wherex andz’ are compatible and either
|z| > 1 orz = 2’ is called gpartial square A partial word is calledquare-fredf
it does not contain any partial squares.

The above definition means that a square-free partial wordatacontain any
full squares or squares of the form. Only the unavoidable squares or a¢ are
allowed.

Let us now consider the Leech watd= ¢ (0). SinceA is a fixed point ofp,
i.e, ¢(A) = A, the word can be decomposed into blogK9), ¢(1) andy(2) of
length13. Now define thepartial Leech wordA by replacing each blocle(0)
of A by

a = 0120021201210.

Next we prove that\ is square-free. The result means that in every blok)
of A the4th letter can be replaced lyor 2, and still the infinite word remains
square-free. Hence, this construction gives an uncoumntadilof ternary infinite
full words where the only square factors afeand22 .
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Theorem 3. There exist uncountably many words over a ternary alphabet c
taining infinitely many holes.

Proof. If the partial Leech word is not square-free, thenAirthere is a partial
square of the formez’ or 2’2 such that, for some positionwe have

z(i) = ¢ and either’(i) = 0 or 2/(i) = 2. (2)

Namely, if this is not the case, then we could replace all ledofx andz’ by 1
and obtain a square in the original full wa#d which contradicts with Theorem 2.
Note also thatz| > 1, since by the construction there are no full squares and no
factorsoo in A.

Hence, let us now assume that there exists a posisaisfying (2). Assume
first that the position is neither the first nor the last positof the wordz. If
2'(i) = 0, thenz/(i 4+ 1) can not be a hole. Thus, we must have)z'(i + 1) =
2'(i)x(i + 1) = 00, which contradicts with Theorem 2. Similarly, if(i) = 2,
thenz'(i — 1) # ¢ and22 occurs inA. Again, by Theorem 2, this is not possible.

Let us then consider the case whéte 1, i.e,, the first letter ofr in the partial
squarerz’ or 'z is a hole satisfying (2). Since:| > 1 and00 does not occur
in A, the wordz’ must begin witt20. Moreover, it follows that a prefix of’ must
be contained i = 20212012. Namely, for the partial squarer’, there is no
suitable position such that could begin insidex(0). On the other hand, in the
case of the partial squarér we know thatr’ ends with012. However, the word
z is not a factor of\, since it does not occur in any of the block&)), (1), ¢(2)
and in any pairwise catenation of these block. Consequemtlfactor ofA is
contained inz, which gives a contradiction.

Finally, let us assume that= |z|, i.e, the last position of: in the partial
squarerz’ or 2’z is a hole satisfying (2). Using similar reasoning as abowe, w
conclude that the suffix of’ must be contained ii120. Now we have two pos-
sibilities. Eitheri is a position inp(20) or in ¢(10). In the former case the only
position where:’ can end is thé 1th letter of(1). Hencez” ends with21020120
wherease ends with01020120, which is a contradiction. In the latter case the last
letter of 2’ is either the third letter of(1) or the 10th letter of ©(2). Now the
suffix of x must be20210120 and the suffix oft” is either01210120 or 10210120.
Once more we have a contradiction. Thus, we have provediteatrtial word\
is square-free. Finally, there are uncountably many reguirords, since any hole
in A can be replaced byyand we obtain a square-free word. O
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