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Abstract

We say that a partial wordw over an alphabetA is square-free if every factorxx′

of w such thatx andx′ are compatible is either of the form⋄a or a⋄ where⋄ is a
hole anda ∈ A. We prove that there exist uncountably many square-free partial
words over a ternary alphabet with an infinite number of holes.
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1 Introduction

Repetitions and repetition-freeness have been intensively studied in combinatorics
on words during the last three decades. The seminal papers inthis research are
those by Thue [7, 8]. In addition to the celebrated binary Thue-Morse sequence
[9], Thue showed that there exists an infinite wordw over a 3-letter alphabet that
does not contain any squaresxx, wherex is a nonempty word inw. In this paper
we generalize this result for partial words.

Partial words are words with “do not know”-symbols⋄ called holes. They
were first introduced by Berstel and Boasson in [1]. The theory of partial words
has developed rapidly in recent years and many classical topics in combinatorics
on words have been revisited; see [2]. In [6] Manea and Mercas¸ considered
repetition-freeness of partial words. They showed that there exist infinitely many
cube-free binary partial words containing an infinite number of holes. Moreover,
they constructed an infinite word over a4-letter alphabet such that substituting
randomly any letter with a hole the word stays cube-free. Furthermore, if arbitrar-
ily many letters with a distance at least two are replaced by holes, the word is still
cube-free.

The study of repetitions in partial words was continued in [4], where the
present authors proved that there exist infinitely many infinite overlap-free binary
partial words with one hole. Secondly, they showed that an infinite overlap-free
binary partial word cannot contain more than one hole. However, a binary par-
tial word with an infinite number of holes can be “almost overlap-free”. More
precisely, it was shown in [4] that there exist infinitely many cube-free binary
partial words with an infinite number of holes which do not contain a factor of
the formxyx′y′x′′ wherex, x′, x′′ and, respectivelyy, y′, are pairwise compatible,
the length ofx is at least three andy is nonempty. It remained an open question,
whether the length ofx can be reduced to two. Moreover, the question about the
existence of “square-free” partial words was not considered. For square-freeness
we must allow at least squares of the form⋄a anda⋄ wherea is a letter, since
repetitions of this form are unavoidable. In this paper we tackle this problem
by constructing with the help of a13-uniform morphism an infinite square-free
partial word over a ternary alphabet with an infinite number of holes.

2 Preliminaries

We recall some notions and notation mainly from [1]. A wordw = a1a2 · · ·an

of lengthn over an alphabetA is a mappingw : {1, 2, . . . , n} → A such that
w(i) = ai. The elements ofA are called letters. The length of a wordw is
denoted by|w|, and the length of the empty wordε is zero. An infinite word
w = a1a2a3 · · · is a mappingw from the positive integersN+ to the alphabetA
such thatw(i) = ai. The set of all finite words is denoted byA∗ and the set of
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the infinite words is denoted byAω. A finite wordv is a factor of w if w = xvy,
wherex is finite word andy is either a finite or an infinite word. The set of factors
of w is denoted byF (w). The wordv is called aprefixof w, if in the abovex = ε.
A prefix of w of lengthn is denoted byprefn(w). If w = xv, thenv is called a
suffixof w.

A partial word u of length n over the alphabetA is a partial function
u : {1, 2, . . . , n} → A. The domainD(u) is the set of positionsi ∈ {1, 2, . . . , n}
such thatu(i) is defined. The setH(u) = {1, 2, . . . , n} \D(u) is called the set of
holes. If H(u) is empty, thenu is a (full) word. As for full words, we denote by
|u| = n the length of a partial wordu. Similarly to finite words, we define infinite
partial words as partial functions fromN+ to A.

Let ⋄ be a symbol that does not belong toA. For a partial wordu, we define
its companionto be the full wordu⋄ over the augmented alphabetA⋄ = A ∪ {⋄}
such thatu⋄(i) = u(i), if i ∈ D(u), andu⋄(i) = ⋄, otherwise. The setsA∗

⋄

andAω

⋄ correspond to the sets of finite and infinite partial words, respectively.
A partial wordu is said to becontainedin v (denoted byu ⊂ v) if |u| = |v|,
D(u) ⊆ D(v) andu(i) = v(i) for all i ∈ D(u). Two partial wordsu andv are
compatible(denoted byu ↑ v) if there exists a (partial) wordz such thatu ⊂ z

andv ⊂ z. Using the companions this means that we must haveu⋄(i) = v⋄(i)
whenever neitheru⋄(i) norv⋄(i) is a hole⋄.

A morphism onA∗ is a mappingh : A∗ → A∗ satisfyingh(xy) = h(x)h(y)
for all x, y ∈ A∗. Note thath is completely defined by the valuesh(a) for every
lettera onA∗. A morphism is calledprolongable on a lettera if h(a) = aw for
some wordw ∈ A+ such thathn(w) 6= ε for all integersn ≥ 1. By the definition,
if h is prolongable ona, hn(a) is a prefix ofhn+1(a) for all integersn ≥ 0 and the
sequence(hn(a))n≥0 converges to the unique infinite word

hω(a) := lim
n→∞

hn(a) = awh(w)h2(w) · · · ,

which is a fixed point ofh. A morphismh is calledk-uniformif |h(a)| = k for all
a ∈ A. As an example, consider the morphismϕ : {0, 1, 2}∗ → {0, 1, 2}∗ defined
by

0 7→ 0121021201210,

1 7→ 1202102012021, (1)

2 7→ 2010210120102.

This morphism is13-uniform. The word

Λ := ϕω(0) = 012102120121012021020120212010210120102120 · · ·

obtained by iterating the morphismϕ turns out to be very useful when considering
square-freeness of partial words. We call this word theLeech word; see [5].
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3 Square-free infinite partial words

Thekth powerof a wordu 6= ε is the worduk = prefk·|u|(u
ω), whereuω denotes

the infinite catenation of the wordu with itself andk is a rational number such
that k · |u| is an integer. A partial wordu is calledk-free if, for any nonempty
factor v of u, there does not exists a full wordx such thatv is contained in the
kth power ofx, i.e., v ⊂ xk. Note that, for full words, this means thatv = xk. If
k = 2 or k = 3, then we talk aboutsquare-freeor cube-freewords, respectively.
Moreover, a word is calledoverlap-freeif it is k-free for anyk > 2.

It is easy to verify that there does not exist square-free infinite words over a
binary alphabet. However, the classical results by Thue state the following:

Theorem 1([7, 8]). There exist a binary infinite overlap-free word and an infinite
square-free word over a ternary alphabet.

The infinite overlap-free word constructed by Thue is nowadays called the
Thue-Morse wordand it is obtained as a fixed pointt = τω(0) of the morphism
τ : {0, 1}∗ → {0, 1}∗, whereτ(0) = 01 andτ(1) = 10. A square-free wordT
is derived fromt by using the inverse of the morphismσ for which σ(a) = 011,
σ(b) = 01 andσ(c) = 0. Square-free words can also be generated by iterating
uniform morphisms as was proved by Leech.

Theorem 2([5]). The wordΛ = ϕω(0), whereϕ is defined by(1), is square-free.

We will use this result in order to prove that there exists infinitely many almost
square-free ternary partial words with an infinite number ofholes. As was men-
tioned above, we cannot avoid short squares. Namely, any word containing a hole
contains also a square of the form⋄a or a⋄ for somea ∈ A. Hence, we modify
the definition of square-freeness as follows.

Definition 1. A word of the formxx′ wherex andx′ are compatible and either
|x| > 1 or x = x′ is called apartial square. A partial word is calledsquare-freeif
it does not contain any partial squares.

The above definition means that a square-free partial word cannot contain any
full squares or squares of the form⋄⋄. Only the unavoidable squares⋄a or a⋄ are
allowed.

Let us now consider the Leech wordΛ = ϕω(0). SinceΛ is a fixed point ofϕ,
i.e., ϕ(Λ) = Λ, the word can be decomposed into blocksϕ(0), ϕ(1) andϕ(2) of
length13. Now define thepartial Leech wordΛ̂ by replacing each blockϕ(0)
of Λ by

α = 012⋄021201210.

Next we prove that̂Λ is square-free. The result means that in every blockϕ(0)
of Λ the 4th letter can be replaced by0 or 2, and still the infinite word remains
square-free. Hence, this construction gives an uncountable set of ternary infinite
full words where the only square factors are00 and22 .
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Theorem 3. There exist uncountably many words over a ternary alphabet con-
taining infinitely many holes.

Proof. If the partial Leech word is not square-free, then inΛ̂ there is a partial
square of the formxx′ or x′x such that, for some positioni, we have

x(i) = ⋄ and eitherx′(i) = 0 or x′(i) = 2. (2)

Namely, if this is not the case, then we could replace all the holes ofx andx′ by 1
and obtain a square in the original full wordΛ, which contradicts with Theorem 2.
Note also that|x| > 1, since by the construction there are no full squares and no
factors⋄⋄ in Λ̂.

Hence, let us now assume that there exists a positioni satisfying (2). Assume
first that the position is neither the first nor the last position of the wordx. If
x′(i) = 0, thenx′(i + 1) can not be a hole. Thus, we must havex′(i)x′(i + 1) =
x′(i)x(i + 1) = 00, which contradicts with Theorem 2. Similarly, ifx′(i) = 2,
thenx′(i − 1) 6= ⋄ and22 occurs inΛ̂. Again, by Theorem 2, this is not possible.

Let us then consider the case wherei = 1, i.e., the first letter ofx in the partial
squarexx′ or x′x is a hole satisfying (2). Since|x| > 1 and00 does not occur
in Λ̂, the wordx′ must begin with20. Moreover, it follows that a prefix ofx′ must
be contained inz = 20212012. Namely, for the partial squarexx′, there is no
suitable position such thatx′ could begin insideϕ(0). On the other hand, in the
case of the partial squarex′x we know thatx′ ends with012. However, the word
z is not a factor ofΛ, since it does not occur in any of the blocksϕ(0), ϕ(1), ϕ(2)
and in any pairwise catenation of these block. Consequently, no factor ofΛ̂ is
contained inz, which gives a contradiction.

Finally, let us assume thati = |x|, i.e., the last position ofx in the partial
squarexx′ or x′x is a hole satisfying (2). Using similar reasoning as above, we
conclude that the suffix ofx′ must be contained in0120. Now we have two pos-
sibilities. Eitheri is a position inϕ(20) or in ϕ(10). In the former case the only
position wherex′ can end is the11th letter ofϕ(1). Hence,x′ ends with21020120
whereasx ends with01020120, which is a contradiction. In the latter case the last
letter of x′ is either the third letter ofϕ(1) or the10th letter ofϕ(2). Now the
suffix of x must be20210120 and the suffix ofx′ is either01210120 or 10210120.
Once more we have a contradiction. Thus, we have proved that the partial word̂Λ
is square-free. Finally, there are uncountably many required words, since any hole
in Λ̂ can be replaced by1 and we obtain a square-free word.
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