

Vesa Halava | Tero Harju | Tomi Kärki

Square-free partial words

TUCS Technical Report
No 893, May 2008

Square-free partial words

Vesa Halava
Department of Mathematics and
TUCS - Turku Centre for Computer Science
University of Turku, FI-20014 Turku, Finland
vehalava@utu.fi
Tero Harju
Department of Mathematics and
TUCS - Turku Centre for Computer Science
University of Turku, FI-20014 Turku, Finland harju@utu.fi
Tomi Kärki
Department of Mathematics and
TUCS - Turku Centre for Computer Science
University of Turku, FI-20014 Turku, Finland
topeka@utu.fi

TUCS Technical Report
No 893, May 2008

Abstract

We say that a partial word w over an alphabet \mathcal{A} is square-free if every factor $x x^{\prime}$ of w such that x and x^{\prime} are compatible is either of the form $\diamond a$ or $a \diamond$ where \diamond is a hole and $a \in \mathcal{A}$. We prove that there exist uncountably many square-free partial words over a ternary alphabet with an infinite number of holes.

Keywords: Repetitions, square-freeness, partial words, Thue-Morse word, Leech word, infinite words

TUCS Laboratory

Discrete Mathematics for Information Technology

1 Introduction

Repetitions and repetition-freeness have been intensively studied in combinatorics on words during the last three decades. The seminal papers in this research are those by Thue [7, 8]. In addition to the celebrated binary Thue-Morse sequence [9], Thue showed that there exists an infinite word w over a 3-letter alphabet that does not contain any squares $x x$, where x is a nonempty word in w. In this paper we generalize this result for partial words.

Partial words are words with "do not know"-symbols \diamond called holes. They were first introduced by Berstel and Boasson in [1]. The theory of partial words has developed rapidly in recent years and many classical topics in combinatorics on words have been revisited; see [2]. In [6] Manea and Mercaş considered repetition-freeness of partial words. They showed that there exist infinitely many cube-free binary partial words containing an infinite number of holes. Moreover, they constructed an infinite word over a 4 -letter alphabet such that substituting randomly any letter with a hole the word stays cube-free. Furthermore, if arbitrarily many letters with a distance at least two are replaced by holes, the word is still cube-free.

The study of repetitions in partial words was continued in [4], where the present authors proved that there exist infinitely many infinite overlap-free binary partial words with one hole. Secondly, they showed that an infinite overlap-free binary partial word cannot contain more than one hole. However, a binary partial word with an infinite number of holes can be "almost overlap-free". More precisely, it was shown in [4] that there exist infinitely many cube-free binary partial words with an infinite number of holes which do not contain a factor of the form $x y x^{\prime} y^{\prime} x^{\prime \prime}$ where $x, x^{\prime}, x^{\prime \prime}$ and, respectively y, y^{\prime}, are pairwise compatible, the length of x is at least three and y is nonempty. It remained an open question, whether the length of x can be reduced to two. Moreover, the question about the existence of "square-free" partial words was not considered. For square-freeness we must allow at least squares of the form $\diamond a$ and $a \diamond$ where a is a letter, since repetitions of this form are unavoidable. In this paper we tackle this problem by constructing with the help of a 13 -uniform morphism an infinite square-free partial word over a ternary alphabet with an infinite number of holes.

2 Preliminaries

We recall some notions and notation mainly from [1]. A word $w=a_{1} a_{2} \cdots a_{n}$ of length n over an alphabet \mathcal{A} is a mapping $w:\{1,2, \ldots, n\} \rightarrow \mathcal{A}$ such that $w(i)=a_{i}$. The elements of \mathcal{A} are called letters. The length of a word w is denoted by $|w|$, and the length of the empty word ε is zero. An infinite word $w=a_{1} a_{2} a_{3} \cdots$ is a mapping w from the positive integers \mathbb{N}_{+}to the alphabet \mathcal{A} such that $w(i)=a_{i}$. The set of all finite words is denoted by \mathcal{A}^{*} and the set of
the infinite words is denoted by \mathcal{A}^{ω}. A finite word v is a factor of w if $w=x v y$, where x is finite word and y is either a finite or an infinite word. The set of factors of w is denoted by $F(w)$. The word v is called a prefix of w, if in the above $x=\varepsilon$. A prefix of w of length n is denoted by $\operatorname{pref}_{n}(w)$. If $w=x v$, then v is called a suffix of w.

A partial word u of length n over the alphabet \mathcal{A} is a partial function $u:\{1,2, \ldots, n\} \rightarrow \mathcal{A}$. The domain $D(u)$ is the set of positions $i \in\{1,2, \ldots, n\}$ such that $u(i)$ is defined. The set $H(u)=\{1,2, \ldots, n\} \backslash D(u)$ is called the set of holes. If $H(u)$ is empty, then u is a (full) word. As for full words, we denote by $|u|=n$ the length of a partial word u. Similarly to finite words, we define infinite partial words as partial functions from \mathbb{N}_{+}to \mathcal{A}.

Let \diamond be a symbol that does not belong to \mathcal{A}. For a partial word u, we define its companion to be the full word u_{\diamond} over the augmented alphabet $\mathcal{A}_{\diamond}=\mathcal{A} \cup\{\diamond\}$ such that $u_{\diamond}(i)=u(i)$, if $i \in D(u)$, and $u_{\diamond}(i)=\diamond$, otherwise. The sets $\mathcal{A}_{\diamond}^{*}$ and $\mathcal{A}_{\diamond}^{\omega}$ correspond to the sets of finite and infinite partial words, respectively. A partial word u is said to be contained in v (denoted by $u \subset v$) if $|u|=|v|$, $D(u) \subseteq D(v)$ and $u(i)=v(i)$ for all $i \in D(u)$. Two partial words u and v are compatible (denoted by $u \uparrow v$) if there exists a (partial) word z such that $u \subset z$ and $v \subset z$. Using the companions this means that we must have $u_{\diamond}(i)=v_{\diamond}(i)$ whenever neither $u_{\diamond}(i)$ nor $v_{\diamond}(i)$ is a hole \diamond.

A morphism on \mathcal{A}^{*} is a mapping $h: \mathcal{A}^{*} \rightarrow \mathcal{A}^{*}$ satisfying $h(x y)=h(x) h(y)$ for all $x, y \in \mathcal{A}^{*}$. Note that h is completely defined by the values $h(a)$ for every letter a on \mathcal{A}^{*}. A morphism is called prolongable on a letter a if $h(a)=a w$ for some word $w \in \mathcal{A}^{+}$such that $h^{n}(w) \neq \varepsilon$ for all integers $n \geq 1$. By the definition, if h is prolongable on $a, h^{n}(a)$ is a prefix of $h^{n+1}(a)$ for all integers $n \geq 0$ and the sequence $\left(h^{n}(a)\right)_{n \geq 0}$ converges to the unique infinite word

$$
h^{\omega}(a):=\lim _{n \rightarrow \infty} h^{n}(a)=a w h(w) h^{2}(w) \cdots,
$$

which is a fixed point of h. A morphism h is called k-uniform if $|h(a)|=k$ for all $a \in \mathcal{A}$. As an example, consider the morphism $\varphi:\{0,1,2\}^{*} \rightarrow\{0,1,2\}^{*}$ defined by

$$
\begin{align*}
& 0 \mapsto \\
& 1 \mapsto 121021201210, \tag{1}\\
& 2 \mapsto \\
& 20102102012021, \\
& 2
\end{align*}
$$

This morphism is 13 -uniform. The word

$$
\Lambda:=\varphi^{\omega}(0)=012102120121012021020120212010210120102120 \cdots
$$

obtained by iterating the morphism φ turns out to be very useful when considering square-freeness of partial words. We call this word the Leech word; see [5].

3 Square-free infinite partial words

The k th power of a word $u \neq \varepsilon$ is the word $u^{k}=\operatorname{pref}_{k \cdot|u|}\left(u^{\omega}\right)$, where u^{ω} denotes the infinite catenation of the word u with itself and k is a rational number such that $k \cdot|u|$ is an integer. A partial word u is called k-free if, for any nonempty factor v of u, there does not exists a full word x such that v is contained in the k th power of x, i.e., $v \subset x^{k}$. Note that, for full words, this means that $v=x^{k}$. If $k=2$ or $k=3$, then we talk about square-free or cube-free words, respectively. Moreover, a word is called overlap-free if it is k-free for any $k>2$.

It is easy to verify that there does not exist square-free infinite words over a binary alphabet. However, the classical results by Thue state the following:

Theorem 1 ([7, 8]). There exist a binary infinite overlap-free word and an infinite square-free word over a ternary alphabet.

The infinite overlap-free word constructed by Thue is nowadays called the Thue-Morse word and it is obtained as a fixed point $t=\tau^{\omega}(0)$ of the morphism $\tau:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$, where $\tau(0)=01$ and $\tau(1)=10$. A square-free word T is derived from t by using the inverse of the morphism σ for which $\sigma(a)=011$, $\sigma(b)=01$ and $\sigma(c)=0$. Square-free words can also be generated by iterating uniform morphisms as was proved by Leech.

Theorem 2 ([5]). The word $\Lambda=\varphi^{\omega}(0)$, where φ is defined by (1), is square-free.
We will use this result in order to prove that there exists infinitely many almost square-free ternary partial words with an infinite number of holes. As was mentioned above, we cannot avoid short squares. Namely, any word containing a hole contains also a square of the form $\diamond a$ or $a \diamond$ for some $a \in \mathcal{A}$. Hence, we modify the definition of square-freeness as follows.

Definition 1. A word of the form $x x^{\prime}$ where x and x^{\prime} are compatible and either $|x|>1$ or $x=x^{\prime}$ is called a partial square. A partial word is called square-free if it does not contain any partial squares.

The above definition means that a square-free partial word cannot contain any full squares or squares of the form $\diamond \diamond$. Only the unavoidable squares $\diamond a$ or $a \diamond$ are allowed.

Let us now consider the Leech word $\Lambda=\varphi^{\omega}(0)$. Since Λ is a fixed point of φ, i.e., $\varphi(\Lambda)=\Lambda$, the word can be decomposed into blocks $\varphi(0), \varphi(1)$ and $\varphi(2)$ of length 13. Now define the partial Leech word $\hat{\Lambda}$ by replacing each block $\varphi(0)$ of Λ by

$$
\alpha=012 \diamond 021201210 .
$$

Next we prove that $\hat{\Lambda}$ is square-free. The result means that in every block $\varphi(0)$ of Λ the 4 th letter can be replaced by 0 or 2 , and still the infinite word remains square-free. Hence, this construction gives an uncountable set of ternary infinite full words where the only square factors are 00 and 22 .

Theorem 3. There exist uncountably many words over a ternary alphabet containing infinitely many holes.

Proof. If the partial Leech word is not square-free, then in $\hat{\Lambda}$ there is a partial square of the form $x x^{\prime}$ or $x^{\prime} x$ such that, for some position i, we have

$$
\begin{equation*}
x(i)=\diamond \text { and either } x^{\prime}(i)=0 \text { or } x^{\prime}(i)=2 \tag{2}
\end{equation*}
$$

Namely, if this is not the case, then we could replace all the holes of x and x^{\prime} by 1 and obtain a square in the original full word Λ, which contradicts with Theorem 2. Note also that $|x|>1$, since by the construction there are no full squares and no factors $\diamond \diamond$ in $\hat{\Lambda}$.

Hence, let us now assume that there exists a position i satisfying (2). Assume first that the position is neither the first nor the last position of the word x. If $x^{\prime}(i)=0$, then $x^{\prime}(i+1)$ can not be a hole. Thus, we must have $x^{\prime}(i) x^{\prime}(i+1)=$ $x^{\prime}(i) x(i+1)=00$, which contradicts with Theorem 2. Similarly, if $x^{\prime}(i)=2$, then $x^{\prime}(i-1) \neq \diamond$ and 22 occurs in $\hat{\Lambda}$. Again, by Theorem 2, this is not possible.

Let us then consider the case where $i=1$, i.e., the first letter of x in the partial square $x x^{\prime}$ or $x^{\prime} x$ is a hole satisfying (2). Since $|x|>1$ and 00 does not occur in $\hat{\Lambda}$, the word x^{\prime} must begin with 20. Moreover, it follows that a prefix of x^{\prime} must be contained in $z=20212012$. Namely, for the partial square $x x^{\prime}$, there is no suitable position such that x^{\prime} could begin inside $\varphi(0)$. On the other hand, in the case of the partial square $x^{\prime} x$ we know that x^{\prime} ends with 012 . However, the word z is not a factor of Λ, since it does not occur in any of the blocks $\varphi(0), \varphi(1), \varphi(2)$ and in any pairwise catenation of these block. Consequently, no factor of $\hat{\Lambda}$ is contained in z, which gives a contradiction.

Finally, let us assume that $i=|x|$, i.e., the last position of x in the partial square $x x^{\prime}$ or $x^{\prime} x$ is a hole satisfying (2). Using similar reasoning as above, we conclude that the suffix of x^{\prime} must be contained in 0120 . Now we have two possibilities. Either i is a position in $\varphi(20)$ or in $\varphi(10)$. In the former case the only position where x^{\prime} can end is the 11th letter of $\varphi(1)$. Hence, x^{\prime} ends with 21020120 whereas x ends with 01020120 , which is a contradiction. In the latter case the last letter of x^{\prime} is either the third letter of $\varphi(1)$ or the 10th letter of $\varphi(2)$. Now the suffix of x must be 20210120 and the suffix of x^{\prime} is either 01210120 or 10210120. Once more we have a contradiction. Thus, we have proved that the partial word $\hat{\Lambda}$ is square-free. Finally, there are uncountably many required words, since any hole in $\hat{\Lambda}$ can be replaced by 1 and we obtain a square-free word.

References

[1] J. Berstel, L. Boasson, Partial words and a theorem of Fine and Wilf, Theoret. Comput. Sci. 218 (1999) 135-141.
[2] F. Blanchet-Sadri, Algorithmic Combinatorics on Partial Words, Chapman \& Hall/CRC Press, Boca Raton, FL, 2007.
[3] V. Halava, T. Harju, T. Kärki, Relational codes of words, Theoret. Comput. Sci. 389(1-2) (2007) 237-249.
[4] V. Halava, T. Harju, T. Kärki, Overlap-freeness in infinite partial words, submitted to Theoret. Comput. Sci.
[5] J. Leech, A problem on strings of beads, Math. Gazette 41 (1957) 277-278.
[6] F. Manea, R. Mercaş, Freeness of partial words, Theoret. Comput. Sci. 389(1-2) (2007) 265-277.
[7] A. Thue, Über unendliche Zeichenreihen, Norske Vid. Skrifter I Mat.-Nat. K1., Christiania 7 (1906) 1-22.
[8] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Skrifter I Mat.-Nat. Kl., Christiania 1 (1912) 1-67.
[9] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 1999, 1-16.

University of Turku

- Department of Information Technology
- Department of Mathematics

Åbo Akademi University

- Department of Computer Science
- Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

- Institute of Information Systems Sciences

