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Abstract

In this paper, we present an extension of our model-basaddepproach that is
based on formal models and user-provided testing scenaliothis approach,
the user provides a testing scenario on the level of an abstradel. When
the abstract model is refined to add or modify features, tmeesponding test-
ing scenarios are automatically refined to incorporategtivhainges. Often, due
to the abstraction gap between a formal model and the impitrhen, it is not
always feasible to generate implementation code from themdbmodels. As
a result, the implementation is not demonstrated to be cbh its construc-
tion but instead it is hand-coded by programmer(s). To wadidhe correctness
of the implementation, testing is performed while usingrysevided scenarios.
The testing scenarios are unfolded into test cases comggihe required inputs
and expected outputs. To automate this test-case gemepstioess, we provide
guidelines for the formal development of system models. ¥éekvent-B as our
formal framework. We also propose a methodology for autangeneration of
an implementation template in Java and its correspondimgt Jekt cases from
Event-B specifications and testing scenarios respectively

Keywords: Scenario-based, Testing, Model-based Testing, EvenbiB)& Meth-
ods
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1 Introduction

Testing is an important but expensive activity in the sofavdevelopment life
cycle. With advancements in the model-based approachesftware develop-
ment, new ways have been explored to generate test-cagegfisting software
models of the system, while cutting the cost of testing astme time. These new
approaches are usually referred ta@sdel-based testingd software model is a
specification of the system which is developed from the greguirements early
in the development cycle [12]. In model-based developm&i), this model
is then refined until the required abstraction level is redglirom which the im-
plementation code can be generated, or written by hand. dime &dea is advo-
cated by formal methods (FM), e.g., refinement calculusB9#], Event-B [7].
The principal difference between MBD and FM is the fact th&édranal method
has a mathematically defined semantics and the refinemerst ci& beproven
correct. Application of formal methods result in the systiiat are “correct-by-
construction” thus mitigating the need for testing. Howewas we will discuss
later, there still remains a gap in the formal developmerstystems that needs to
be bridged by tests.

Model-based testing (MBT) is an approach for deriving tésimn software
models using automated techniques. The intended costtredsiarise because

1. the tests are generated by tools, without hand coding,
2. the model changes do not imply extensive re-writing aftesle, and

3. test coverability is improved because we measure therabiigy from the
model.

However, MBT can be seen as a “dumb” testing method, in theestrat it does
not address the problem whatneeds to be tested, e.g., what thgortantparts
of the system are. This problem, callegbt selections an active research area
where both formal and informal approaches exist. In [15]pn@osed a solution
to this problem using user-provided testing scenarioshigdpproach, the testing
scenarios are derived from the initial requirements predity the user and are
thus intended to describe the important features of theesystSince they are
constructed at the initial level of the development theydegned in relation to
the initial abstract model that is the starting point of teeelopment process. As
the model is further developed in the refinement procesgetimg scenarios are
also refined to be in sync with the correct model. In Sectiow will explain
how the test scenarios are kept in sync with the model dereopby refinement.
At the end of the development process the final model is obthimhe as-
sumption is that this model has most of the implementatidaildeancorporated.
The goal of formal methods as well as model-based desigmappes is that one
should then be able to generate the final implementatiomaattoally. If the sys-
tem has been developed using a formal method, then undesshenation that
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the code-generator is proven correct, the final implemiemtas provably correct
too.

However, in practice often quite a lot of implementationadletare left open
and the implementation has to be still written by hand. Tlnese remains the
problem of how to test the implementation against user requents. take our
scenarios and transform them into concrete test casegahdie used to validate
and verify the implementation.

A number of tools exist that address this problem in the cdné formal
methods (e.g., see [10, 19]). But they are based on the gwepaph, which
is obtained from symbolic execution of the model. Thus, theffer from the
same problem as traditional model-based test generatansely, the generated
tests have do not distinguish between different parts osyls¢em that might be
more or less important for the overall correctness. The a/ipobcess is based
on the coverage criterias, such as transition coverage, &aerage or any other
combinations of these. The problem of these approachesighby can lead
to long test cycles where the test-generator is not distsgug between different
parts of the system, that might be more or less importanhfooverall correctness
of the system (the system might e.g. have been partiallyrgeggeautomatically,
and the tester is wasting efforts while testing the “cormetonstruction” part
of the system). Our scenario based approach can be seen #israptdo bring
guidance to this process, by explicitly describing impottaehavior of the system
that we want to make sure is tested.

In our previous work [20, 15], we have explored the idea ohac® based
testing combined with formal model development. We havevshloow we can
refine the scenarios based on a model-refinement either atitatty [20] or by
assuming that the refinement has a structure [15]. In thiempae extend our
approach to cover the concrete test generation from thetéstscenario to a set
of test cases.

The main contributions of the paper are:

¢ We provide guidelines for stepwise developmentestableEvent-B mod-
els,

e We show how requirements (scenarios) are transformedestechses and
how these test-cases are represented,

e We show how the inputs and expected outputs for a test-casdeaived
from an Event-B model,

¢ We outline a methodology showing how an implementation tatean be
generated from a sufficiently refined specification.

The organisation of the paper is as follows. In Section 2, we gn overview
of our scenario-based testing methodology. In Section neeide basic math-
ematical preliminaries for testing process, while Sectiaovers introduction to
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modeling with the Event-B formalism. In Section 5, we deésermodeling and
refinement of scenarios. In Section 6, we illustrate autanga&neration of imple-
mentation template for Java. In Section 7, automatic test ganeration process
for JUnit 4 is described. Finally, Section 8 contains sonseussion and conclud-
ing remarks.

2 Scenario Based Testing

Our model-based testing approach [20, 15] is based on stemystem develop-
ment [9] using behavioral models of the system. By a behal/ioodel, we mean

that the system behavior is modelled as a state transitistersywith operations

(events) used to describe transitions. In the stepwisda@vent process, an ab-
stract model is first constructed and then further refinech¢tutde more details

(e.g., functionalities) of the system. Generally, theselei®can be either formal,
informal, or both. In this work we only consider formal moslel

In the development process, we start with an abstract madednd gradually,
by a number of refinement steps, obtain a sufficiently deta@ibecrete model/.
The final system, the system under test (SUT), is an impleatientof this de-
tailed model. Ideally, the implementation should be autiically generated from
this model, which would make ttorrect by constructiorunder the assumption
that the code generator is correct. However, in practicembdels do not take
into account the low-level implementation details. Duehis tibstraction gap
between formal models and executable implementationsiraatic generation of
implementation code is not always possible. As a resultngridmentation is
often hand-coded, while consulting the formal models. HfeHand-side of the
Figure 1 graphically presents this process.

Since the implementation is no longmrrect-by-constructiorthere is a need
to testthe implementation. Such tests could be done by hand or getkthrough
automatic test generation. In this paper, we use scenaseebtesting [15] to
generate tests. We start from the requirements and grgduatistruct testing
scenarios. The right hand side of the Figure 1 depicts tluegss. In the litera-
ture, one can find several definitions of the tesoenario In the field of software
engineering, scenarios have been used to represent vaoauspts like system
requirements, analysis, user-component interactioescteses etc. [16]. We use
the definition from [1], which defines a scenario as a dedonpdf possible ac-
tions and events in the future. It can also be thought of asobriee expected
functionalities of the system. The abstract scenariosuatbdr refined until a suf-
ficiently refined scenario is obtained. Then, in the final stepts are generated
from these scenarios.

The tests can usually be divided into at least 3 differenomiands:

1. Unit testsare the tests that check the functionality of a simple pnogra
component, e.g., a function or a class. In our case, a univadd test the
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Figure 1: Overview of our Model-based testing approach

correct implementation of an Event-B event.

2. Integration testsare the tests that test the combined behavior of several
units.

3. Acceptance testme used to validate the system against the requirements.

Basically, integration and acceptance tests are very aimihce both types of
tests can be thought of asenarios We use the terntest scenarido emphasize
the intended use of these scenarios.

The challenge is now how to refine the test scenéripalong the refinement
path from the abstract model to the concrete model, into arets test scenario
Sc such thatS- covers the same behavior &g does. The general structure of the
problem is given in the figure 2. In this process, an abstraxeh\/, is refined
by M; (denoted byM, = M;). This refinement) is so called a controlled
refinement, as will be discussed in section 4.1. Scertaris an abstract scenario,
formally satisfiabld =) by specification model/,, is provided by the user. In the
next refinement step, scena$pis constructed automatically frod/ 4, M; and
S 4 Insuch a way thas; is formally satisfied or conformed by the mode}. The
automatically generated scenafiprepresents functionalities, in part or whole, of
the model)/;.

In some cases, the mod&l; may contain some extra functionalities or fea-
tures, such as incorporated fault-tolerance mechanisiighwvere omitted or
out of scope of scenarif,. Theseextra featuresdenoted byS:, can be added
in the scenarid®; manually. The modified scenari®y U Srr must be checked
(by means of available tools) to be satisfied/conformed bynidel)/;. We can
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follow the same refinement process, now starting ithu Sz, until we get a
sufficiently refined scenario at levél-. In [20], we showed how to derive thig,
given a refinemend/, C M and the scenari§ 4. This approach works for any
refinement but is exponential in nature. In [15], we propaseabre efficient ap-
proach that usesontrolledrefinement. In this case, the scenasiacan be easily
generated by a transformation that mirrors the refinemept $h section 4.1, we
will describe this approach more in detail. After the findimement, the system
is implemented while consulting the mod&l-. This implementation is called
system under test (SUTSince this implementation is hand-coded, there is no
guarantee for its correctness. Going from the scengido concrete test cases
poses a similar problem. We would like to generate test caswesnatically from
the concrete scenario. In the later sections we will disbosgwe can approach
this task. First, in the next Section, we present some madtieah preliminaries
needed for our model-based testing approach.

3 Mathematical Preliminaries

The formal models that we use in this work #abelled transition system3hese
are formally defined in the following:

Definition 1

A labelled transition systerfL TS) is a 4-tuple(S, L, T', so) where
e Sis countable, non-empty set stiates
e L is acountable set dhbels
e T'C S x L x S'is thetransition relation

e 5o € Sis theinitial state



The labels irL represent the events in the system. ILet(S, L, T s,) be an
LTS with s, " in S and lety; € L.

o
s— s =gf (s,p1,8) €T

H1---fin / M1 H2 Hn /
§ ——= 8 =gef IS0,...,8,185=8) > S — ...~ 5, =5

M1 n /. M1 hn /
§ —— =def 8’15 ——5

The behavior of an LTS is defined in terms tohceswhere atrace is a finite
sequence of events in the system. The set of all traceslLoiedenoted byL*.

ForanLTS = (S, L, T, sq), the behavior function, denoted bgh(LTS)is defined
as

beh(l) =4y {o€Ll*|s9 S }

Definition 2

1. Atest sequencalenoted by, is a finite sequence of evenis,, us, . . . fin,
in the system defined as

M1 2 fn
So —S1 — ... —> S

wheren € N ands; are system states.

2. Atest scenariq denoted bys, is collection oftest sequencgwesent in the
behaviorof the LTSI,

ts C beh(l)
O
In the context of Figure 2 and any mod#l; as well as the SUT generate an
LTS. We can then define

Definition 3

1. TheSystem Under Te$BUT) is an executable implementation of the mod-
els. Abstractly, an SUT can be viewed as a Labelled TramstHgstem
(LTS) having states and events.

2. A test casedenoted adc, is a finitetest sequence be tested on SUT.
Moreover, each test case also includes the expected sflthe test case
execution. This result is used to compute vieedict function
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3. Averdict functiorv is defined, in terms dfabelled Transition System (LTS)
with test sequencgs), as

v(LTS,ts) = Passed iff ts € beh(LTS)

Similarly, in the context oSystem Under Te$8UT), the verdict function
is used to check if the test case execution has given expexgatis or not.

v(SUT,tc) = Passed iff tc € beh(SUT)
Failed otherwise

4 Modeling in Event-B

The Event-B [6, 5] is a recent extension of the classical Bhoe [4] formalism.
Event-B is particularly well-suited for modeling eventsea systems. The com-
mon examples of event-based systems are reactive systerthedded systems,
network protocols, web-applications and graphical useriaces.

In Event-B, the specifications are written in Abstract MaehNotation (AMN).
An abstract machine encapsulates state (variables) of dohime and describes
operations (events) on the state. A simple abstract matiaséollowing general
form

MACHINE AM
VARIABLES v
INVARIANT 1
EVENTS
INITIALISATION =
E1 =
EN ==
END
A machine is uniquely defined by its name in MACHINE clause. Th&ARIABLE
clause defines state variables, which are then initializélagaINITIALISATION
event. The variables are strongly typed by constrainindipages of the machine
invariantl given in theINVARIANT clause. The invariant defines essential sys-
tem properties that should be preserved during system gaacd he operations
of event based systems are atomic and are defined EMB&T clause. An event
is defined in one of two possible ways

EF = WHEN g THEN S END



E = ANY ¢ WHERE C(i) THEN S END

whereg is a predicate over the state variablesand the bodysis an Event-B
statement specifying how the variablesre affected by execution of the event.
The second form, with th&NY construct, represents a parameterized event where
i is the parameter an@(i) contains condition(s) ovar The occurrence of the
events represents the observable behavior of the systemeviént guardg or

C(i)) defines the condition under which event is enabled.

Event-B statements are formally defined using the weakestopdition se-
mantics [11]. The defined semantics is used to demonstratectoess of the
system. To show correctness of an event-based system itessery to formally
prove that the invariant is true in initial state and evergre\preserves the invari-
ant:

wp(INITIALISATION,I) = true, and
gi NI = wp(E;, I)

seeigifnlpwiicstnyitheafobewdyvent-B specifications amveloped in our

4.1 Controlled Refinement

In our approach, we use Event-B formalism to model the behawaf the system.
Referring back to Figure 2, in order to automatically refingcanario from its
previous level, we need to identify each and every refinerstap taken for the
refinement of the corresponding models. This identificaganly possible if we
follow a controlled and structured approach for the refinetnoé models. In our
earlier work [15], we presented the supported refinemerdgyfor the Event-B,
for our testing approach. These types are

e Atomicity Refinement
Where one event operation is replaced by several operatessribing the
system reactions in different circumstances the eventrecdatuitively, it
corresponds to a branching in the control flow of the systershasvn in
Figure 3(a).

e Superposition Refinement
Where new implementation details are introduced into tiséesy in the the
form of new events that were invisible in the previous speaifon. These
new events can be non-looping or looping as depicted in Eig(lv) and (c)
respectively.

4.2 Classification of Events

In order to identify the inputs and the outputs of the systemg¢lassify the events
of our Event-B models as afiput, outputandinternal types. In the following is
given the details of these typing.
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Definition 4

The Events

Set of all events in the system, denoted®hys divided into following subsets of:
e Inputevents denoted by

¢ Outputevents denoted by”

¢ Internal events denoted by

O

Theinput eventse!, accepts inputs from user or environment. Apart from their
input behavior, these events may take part in the normakgsicg of the system.
However, the input events do not produce externally visthlgout. Theoutput
events=® produce externally visible output. Theternal eventslo not take part

in any input/output activity. These may produce intermeiasults used by other
events ins! and<®. The motivation of this classification is explained in next
section where we divide our system into logical functionats!

4.3 Logical Units

As we develop our system in a stepwise manner, the main amaitunits of a
system are identified on abstract level. Each of these abs$tractional units are
modelled as a separate logical unit, callédnit, in our Event-B model.

Definition 5

An [OUnit U consists of a finite sequence of events and has the follovimyg. f
U=<el et 0>

Heres! ands? denote the input and output events respectively=aridepresents
one or more occurrences ioternal events.



It can be observed from the above definition tHAUnit consists of the se-
guence of events occurring in such an order that the first@véme unit is always
aninput event and the last event is always @tputevent with one or moren-
ternal events in between them. MoreovEDUnit can not contain more than one
input or output events.

IOUnit takes input and produces output, as the presence of inputpdt
events indicates. The classification of events, from theipus section, helps us
in identifying inputs and outputs of each unit, and when corad, of the whole
system. The motivation for this approach is the followindheTdeveloper(s) of
the system under test (SUT) may decide to implement the mmyistéependently
of the structure of the Event-B model. Indeed, it is somesitmard to follow the
strict one to one mapping between the events of the model@nelsponding pro-
gramming language units. For example, two events in a madebe merged to
form one programming-language operation or the functignaf an event in the
model may get divided across multiple operations or clagsé®e implementa-
tion. However, for successful execution of the system, miberface of the model
and implementation, i.e., the sequence of inputs and theutsjtshould remain
the same.

4.4 Example

We illustrate our approach by a small exampléehofel reservation systenRe-
serving a room in such a system consists of a sequence ofsefattoccur in
a particular order. On the abstract level, we may have ongwadvents which
represent some particular functionality of the system. éxample, in thdBook-
ingSystemthe room reservation functionality can be divided intethfunctional
units, namelyFinding a room,Reservingand Payingfor it. As we structure our
model according to the guidelines described in Sectionthe resulting events
and their sequence of execution can be seen in Figure 4(aanlbe observed
that the main functional events are wrapped with the inpdtartput events. For
example, thé&ind event is wrapped around withputForFindandOutputForFind
events where the eventgputForFindandOutputForFindare the input and output
events respectively.

It is also possible to introduce new IOUnits in the model. Tiee IOUnit must
also strictly follow the input-output strcuture and cotigd refinement constraints
discussed in the previous sections. In the refined modeh@arsin Figure 4(b),
the new cancellation functionality is introduced as a neWm@. Within an input-
output unit, we treat our main functional event asrgernal even{e.g.,Find, Re-
serve and Pay Such events can be further refined and this may add mtzenal
events within the input-output unit. This is shown in themefl model where
Find event is refined into four events. Graphically, these meernal events are
shown with dashed arrows in Figure 4(c). The full Event-Bcsipsations for both
abstract and refined models are given in the Appendix.
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Figure 4: (a) Abstract System (b) First Refinement (c) Sedoefthement

5 Modelling and Refinement of Scenarios

In the field of software engineering, scenarios could beesgmted in several
formal, semi formal and informal ways. Some of common regméstions are
tables, scripts, prototypes, structured texts and stagsch

In this paper, we need a simple approach to represent a sc@sasequence
of model events. We use Communicating Sequential Proce3B)(T13] for this
purpose. The advantage of using CSP is twofold. First, a G@Ression is a
convenient way to express several scenarios in a compaut f&econd, since
we develop our system in a controlled way, i.e. using thedoadinement trans-
formations described in Section 4.1, we can associate thesat-B refinements
with syntactic transformations of the corresponding CSptressions. Therefore,
knowing the way model/; was refined by\/; , , we can automatically refine sce-
nario.S; into S; ;. To check whether a scenaiifis a valid scenario of its model
M;, i.e., modell; satisfieq |=) scenariaS;, we use the ProB [14] model checker.
ProB supports execution (animation) of Event-B specificetj guided by CSP
expressions. In fact, the available tool support is anothetivating reason for
representing scenarios as CSP expressions. The satigfiabéck is performed
at each refinement level as shown in the Figure 2. The refineafiescenarioS;
is the CSP trace-refinement [17] denoteddy. The details and examples for
scenario refinements can be found in our earlier work [15].

As described earlier, a scenario is a finite sequence ofgweentirring in some
particular order. Since we have grouped the events in tme édiogical IOUnits,
our scenarios will also include a finite sequence of IOUnrtglee logical level.
It means that scenarios will include the same events as #reren the Event-
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B model. However, the scenarios must follow the same rulaswlere set for
constructing IOUnits in previous section, i.e.,

1. The first event in the scenario is alwaysiaput event.
2. The last event in the scenario is alwayartputevent.

3. There can not be two input-type events in sequence witdmubutput event
in between them, i.e. the following sequence in a CSP exjoress not
allowed.

4. There can not be two output-type events in sequence widmyunput event
in between them i.e. the following sequence is also not atbw

<..._>€g_>5k(:)+1_>...>
We will see the scenario examples later in this section.

5.1 Input and Output

Since the scenarios are defined on abstract level, they kigklslabout inputs
and outputs. Therefore, to construct concrete test cases&kto identify details
about inputs for the test cases. These input details aréifiddnfrom the input
event(s) of each IOUnit. For example, if an input event reéhd=e input variables
then these three variables become the inputs for the uritlieanput event be-
longs to. The details about inputs can be retrieved from an&EB model as the
model specifies the type, initial value and invariant prépsifor all variables.

The expected outputs can be generated after the model isgtmsing ProB
model checker. For a given input of a test case, the ProB camassthe model
and return the result, which is then saved asekgectedutput of the test case.
This expected output can be used to compare the values velsiieg the real
implementation. The ProB model checker can only providguaiuvalues based
on the available abstract values. For example, to test whethoom is available
in theHotel Booking Systen®ProB can check the expected result for a pre-defined
set of inputs, while in the actual implementation this resuight be retrieved
from the database. Therefore, it is the responsibility efuker to setup the test
case accordingly.

5.2 Examples

In the case of the previously discusdddtel Reservation Systeexample, there
can be many possible testing scenarios. For example, if vin¢ todest thaoom
findingfunctionality, the scenario in the form of CSP expressioith wputs and
outputs, would be as follows.
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So = inputForFind?roomType — connectDB —
(FetchRecords I ConnectionFailure) — retrieve —
outputForFind!(roomId, ifException)

wherer is an internal choice operator in CSP. The varialelenType is the input
for this IOUnit androomId, ifException are the possible outputs. The variable
ifException specifies if there was any exception, e.g., a connectiour&ilTo
test thereservation the corresponding CSP expression would be

S; = inputForReserve’roomId — reserve — outputForReserve!reserveld

Often, the subsequent scenario step depends on the rektiits grevious ones.
Therefore, to test finding and reservation IOUnits in a sagega scenario would
be

Sz = S8o; 54

In Section 7, we will see how a scenario is used to generatmplége for JUnit
test-cases.

6 Javaimplementation template for Event-B
models

Event-B specifications, developed, as described in prewseations, can be used
to generate Java implementation template. We start bylatamg a (sufficiently
refined) Event-B model into Java class. Similarly, the EARm@vents are trans-
lated as the Java methods. For blatel Booking Systemxample, the excerpts of
Event-B machine and its implementation template are shawima following and
in the Listing 1 respectively. For the complete listing of gpecifications, please
refer to the Appendix.

MACHINE BookingSystemRefl
REFINES BookingSystem
SEES BookingContext
VARIABLES

room1'ype

INVARIANTS

13



EVENTS
Initialisation

acth : roomType := Null_roomType

Event InputForFind=
Refines InputForFind

any
tt

where

grdl : tt € RTYPES

grd2 : connection = No_connection
then

actl : roomType := tt
act?2 : input For FindCompleted := TRUE

end

END

An event in the Event-B specification consists of two partse first part contains
the pre-condition(s) for the event to be enabled, while #wrd part consists of
the actions that event performs. For every event in EventBeh we create two
separate methods in the Java implementation, to reprdsepté-conditions and
actions respectively. The first method, which contains tteegonditions/guards
of an event, returns the evaluation result in the fornb@bleanvalue. The name
of this method is pre-fixed with the string “guatd The second method encap-
sulates the actions of the event. Since the actions updateldlss-level/global
variables, this method returnsid. For example, for thénputForFindevent from
our Hotel Booking Systermxample, the Java implementation methods are given
in the Listing 1.

Listing 1: Implementation template for HotelBookingSymste

public class HotelBookingSystem{

Il class—level variables
public String roomType;

14



public HotelBookingSystem ()
/l'initialization

}

/x PreConditions /Guards for InputForFind event
private boolean guardiinputForFind (X
return (roomType != null) ;

}

/x Implementation method for InputForFind event/
public void inputForFind () throws PreConditionViolatedException
{
if (guardiinputForFind ()X
/l actions

else{
throw new PreConditionViolatedException ("For inputForFind”);

}
}

/I'more Implementation methods for events

class PreConditionViolatedExceptionextends Exception

public PreConditionViolatedException (String mesg)
super(mesg);

}

}

Each implementation method, representing an event, fiedtiates its pre condi-
tion(s) by calling its “guard’ method. If the pre-conditions are evaluateddtse
then an exceptionPr eCondi ti onVi ol at edExcepti on, is raised, other-
wise the actions of the corresponding event are executegl vaiiables of a ma-
chine are translated into the class variables in Java. Tgeeibformation for vari-
ables can be retrieved from thavariant clause of the machine. By default, the
primitive types, e.g., BOOL, numerics etc., are translatéal the corresponding
Java types. For composite or user-defined types, the useroaide a translation
mapping of types, from Event-B to Java separately. In the Sextion, we will
discuss how scenarios are translated into executablestsss c

7 JUnit Test case generation

In previous section, we have seen the guidelines for gangrah implementation
template for Java. Once such template is generated, we ceamage the corre-
sponding executable test cases from the scenarios, usimg [2J - Java Unit
Testing framework.

Since, our events are sequenced in termkOafnits, we can write JUnit test
cases to test thes®Units. For example, on the basis of branching, there are two
possible test-cases in the following scenatrio.

So = inputForFind?roomType — connectDB —
(FetchRecords 1 ConnectionFailure) — retrieve —
outputForFind!(roomId, ifException)
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These test casdg andT; are

To = inputForFind?roomType — connectDB — FetchRecords —
retrieve — outputForFind!(roomId, ifException)

Ty, = inputForFind’roomType — connectDB — ConnectionFailure —
retrieve — outputForFind!(roomId, ifException)

For each of the test casgésandT,, a separate JUnit test method is implemented.

The JUnit test method far, is shown in the Listing 2.

Listing 2: JUnit Test method for,

public class HotelBookingSystemTest{

HotelBookingSystem bSys;

@Before

public void setUp () throws Exception {

bSys =new HotelBookingSystem ();

}

@Test

public final void TO(){

try {

/l'setting input for 1OUnit

bSys.

roomType = "Single”;

// calling methods of IOUnit

bSys.
bSys.
bSys.
bSys.
bSys.

inputForFind ();
connectDB ();
fetchRecords ();
retrieve ();
outputForFind ();

/l assert statements (verdict)

assertTrue ("norEmpty resultSet”,

bSys.resultSet.size 1);

assertTrue (bSys.noException =true);

catch(PreConditionViolatedException €)
fail (e.getMessage ());

}
}

In similar way, the templates for JUnit test-methods candreegated for each test-
case inthe scenarios. The above example showed the testesssl on data-flow
branching. However, it is possible to generate test cassstdban different class
of input values. If a scenario involves multigl@Units in a sequence then JUnit
test would involve calls to the relevant test methods. Fangxe as shown in the

Listing 3, a JUnit test method tests tWoUnits.

Listing 3: Testing multiple IOUnits

@Test

public final void T3(){

/l test method from first IOUnit
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TO();

/ltest method from second I0Unit
T2();

Hence, it is possible to generate different combinationtestf cases, for a sce-
nario, which might be laborious and error-prone if done bycha

8 Conclusions and Future work

In this paper, we presented a model-based testing appraiot) user-provided
testing scenarios. These scenarios are first validated asmodel checker and
then used to generate test cases. Additionally, we havedadthe guidelines for
stepwise development of formal models and automatic reemeiof testing sce-
narios. We also proposed an approach to generate Java tgngoplementation
templates from Event-B models. The abstract testing stenean then be used
to generate templates for JUnit test cases.

Although, we do not provide complete translation of moded &sting sce-
narios. However, we provide guidelines describing how aaerbenefit from our
approach. The presented work is in progress and will be drtim future to fully
automate the development and testing process. In partiguggplan to develop a
tool that can do most of the translations automaticallysTool will be available
as a plug-in for RODIN [3] platform which is a formal developnt platform for
Event-B specifications.

At the moment, we do not support translation of some compiexcpndition
and invariant expressions into Java. Namely, the existeaaid universal quanti-
fiers are not covered. However, in future, we plan to supporfull translation.
We also intend to use a graphical notation for represenéating scenarios. A
more challenging task is to automatically generate theeafglata values for
the inputs of the test cases. There exist various sophistiegproaches, for ex-
ample, input-space-partitioning [8], boundary-valustiteg [18] etc., that can be
used to generate input values for the test cases. Howeveapaing between
abstract data and concrete data types needs to be providibe lwger. On the
other hand, for similar reasons, there is also a need fomfgn@imapping relation
between the outputs generated from the models and actymitewtbserved from
the implementation.
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APPENDIX

An Event-B Specification of HotelBookingSystem. Develo@ed! proved
using RODIN Platform

CONTEXT BookingContext
SETS

ROOMS

RTY PES
REQUESTS
CONNECTIONS

CONSTANTS

Reservation
Payment

No_room

rtypes
Null_roomType

db

No_connection
Connection_success
Connection_failure

Cancellation
AXIOMS
axml : REQUESTS = {Reservation, Payment, Cancellation}

arm?2 : Reservation # Payment

arml3 : Reservation # Cancellation

arml2 : Cancellation # Payment

arm3 : No_room € ROOMS

axmd : rtypes € RTY PES — P(ROOMYS)

axmb : Null_-roomType € RTY PES

axmb : db € RTY PES — P(ROOMS \ {No-room})
axmT : db = rtypes
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axm8: CONNECTIONS = {No_connection, Connection_success, Connection_failure}
axm9 : No_connection # Connection_success
axm10 : No_connection # Connection_failure

armll : Connection_success # Connection_failure

END
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MACHINE BookingSystemAbstract
SEES BookingContext
VARIABLES

booked Room

searchResult
reservedRoom
roomI'ype

input For FindCompleted
input For ReserveCompleted
reservationCompleted
paymentCompleted
input For PayCompleted
rooml D

reservationl D
sessionCompleted

findCompleted
INVARIANTS

vl @ roomType € RT'Y PES

w3 : input For FindCompleted € BOOL
mnvd . inputFor ReserveCompleted € BOOL
b @ inputFor PayCompleted € BOOL
w6 : reservationCompleted € BOOL

mo7 . inputFor ReserveCompleted € BOOL
9 : paymentCompleted € BOOL

8 @ searchResult € ROOMS

invl0 : booked Room C ROOMS

mvl3 : reservedRoom € ROOMS

mvll . roomID € ROOMS

mvld : reservationl D € ROOMS

mwvl2 : sessionCompleted € BOOL

mvlb: findCompleted € BOOL
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EVENTS
Initialisation

begin

actl :
act3 :
act4 :

actb
act? :
act8 :
act9 :
actll
act12
act10
act13
act?2 :
actl4

end

booked Room = &
searchResult .= No_room

reservedRoom = No_room

. roomType := Null_roomType

input For FindCompleted := FALSE
reservationCompleted .= FALSE
input Flor ReserveCompleted := FALSE
paymentCompleted := FALSE
nput For PayCompleted := FALSE
roomlID := No_room

reservationl D := No_room
sessionCompleted .= FALSE

. findCompleted := FALSE

Event InputForFind=

any
tt
where

grdl :

then

actl :
act?2

end
Event Find=

any
rr

where

grdl :
grd3 :
grd4 :

tt e RT'YPES

roomT'ype := tt

:anput For FindCompleted := TRUFE

rr C ROOMS
rr N booked Room = &
rr C rtypes(roomType)
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grd2 : inputFor FindCompleted = T RUFE
grd5: No_room & rr

then

actl : searchResult : |(rr = @ = searchResult’ = No_room)
A (rr # & = searchResult’ € rr)

act2 . findCompleted := TRUFE
end

Event OutputForFind=

when

grdl : findCompleted = TRUE
then

act2 : roomlD := searchResult

end
Event InputForReserve

any
T@q
where

grd3: req € REQUESTS
grd4 : req = Reservation
grd2 : roomID # No_room

then
actl : input For ReserveC'ompleted := TRUE
end

Event Reserve=

any
T@q
where

grd5 : roomID # No_room

grd2: req € REQUESTS

grdl : req = Reservation

grd4 : inputFor ReserveCompleted = TRUFE

then
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actl : reservedRoom := roomlID

end
Event OutputForReserve

when
grdl : reservedRoom # No_room
then
actl : reservationCompleted := TRUFE

act2 : reservationID = roomID

end

Event InputForPay=

any
req
where
grdb: req € REQUESTS
grd4 : req = Payment
grdl : reservationCompleted = TRUFE
grd2 : reservationl D # No_room
then
actl : input For PayCompleted := TRUFE
end
Event Pay=
any
reserved Rooms
where
grdl : inputFor PayCompleted = TRUE
grd3 : reservedRoom # No_room
grd2 : reservedRooms C {reservedRoom}
then
act2 : booked Room := booked Room U reserved Rooms
act3 : reservedRoom := No_room
actl : paymentCompleted := TRUFE
end
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Event OutputForPay=

when

grdl : paymentCompleted = TRUFE
then

actl : sessionCompleted .= TRUFE
end

END
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MACHINE BookingSystemRefinedl
REFINES BookingSystemAbstract
SEES BookingContext

VARIABLES

booked Room

searchResult

paid Room

reserved Room

room1'ype

input For FindCompleted
input For ReserveCompleted
reservationCompleted
paymentCompleted

input For PayCompleted
rooml D

reservationl D

mnput ForCancellationCompleted
cancellationCompleted
roomCancelled
sesstonCompleted

findCompleted
INVARIANTS

ol @ input ForCancellationCompleted € BOOL
w2 : cancellationCompleted € BOOL

w3 . roomCancelled € BOOL

mvd : paidRoom C ROOMS

nwd : paidRoom C booked Room

w6 : sessionCompleted € BOOL

T findCompleted € BOOL

EVENTS
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Initialisation

begin
actl : booked Room := &
act2 : paidRoom = &
act3 : searchResult := No_room
actd : reservedRoom := No_room
actb : roomType := Null_roomType
act? : input For FindCompleted := FALSE
act8 : reservationCompleted := FALSE
act9 : input For ReserveCompleted :== FALSE
actll : paymentCompleted .= FALSE
act12 : inputFor PayCompleted := FALSE
actl0 : roomID := No_room
actl3 : reservationl D := No_room
actl4 . inputForCancellationCompleted .= FALSE
actlh : cancellationCompleted := FALSE
actl6 : roomCancelled == FALSE
actl? . sessionCompleted .= FALSE
actl8 : findCompleted :== FALSE

end
Event InputForFind=
Refines InputForFind

any

tt
where

grdl : tt € RTYPES
then

actl : roomType = tt
act2 : input For FindCompleted == TRUE

end
Event Find=
Refines Find

any
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rr
where

grdl : rr C ROOMS

grd3 : rr N booked Room = &

grdd . rr C rtypes(roomType)

grd2 : inputFor FindCompleted = T RUFE

grd5: No_room & rr
then

actl : searchResult : |(rr = @ = searchResult’ = No_room)
A (rr # @ = searchResult' € rr)

act2 . findCompleted := TRUFE
end

Event OutputForFind=

Refines OutputForFind
when
grdl : findCompleted = TRUFE
then

act2 : roomlID = searchResult

end
Event InputForReserve
Refines InputForReserve
any
req

where

grd3 : req € REQUESTS
grd4 : req = Reservation
grd2 : roomlID # No_room

then
actl : input For ReserveC'ompleted := TRUE
end

Event Reserve=

Refines Reserve
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any
req
where

grd5 : roomID # No_room

grd2: req € REQUESTS

grdl : req = Reservation

grd4 : inputFor ReserveCompleted = TRUFE

then
actl : reservedRoom := roomlID

end
Event OutputForReservé
Refines OutputForReserve

when
grdl : reservedRoom # No_room
then

actl : reservationCompleted := TRUFE
act2 : reservationl D := roomlI D

end
Event InputForCancellatios=

any
T@q
where

grdl : req = Cancellation

grd2: req € REQUESTS

grd3 : reservationl D # No_room
grdd : reservationCompleted = TRUFE

then
actl : input ForCancellationCompleted == TRUE
end

Event Cancel=
when

grdl : inputForCancellationCompleted =T RUFE
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grd2 : reservationl D # No_room
then

act2 : roomCancelled .= TRUFE
end

Event OutputForCancellatiog

when

grdl : roomCancelled = TRUE
then

actl : cancellationCompleted .= TRUFE
end

Event InputForPay=
Refines InputForPay

any
T@q
where

grdb: req € REQUESTS
grd4 : req = Payment
grdl : reservationCompleted = TRUFE

grd2 : reservationl D # No_room
then

actl : input For PayCompleted := TRUFE
end

Event NoPaymen&
Refines Pay

when
grdl : inputFor PayCompleted = TRUE

grd3 : reservedRoom # No_room
grd2 : cancellationCompleted = TRUE

with
reservedRooms : reservedRooms = &

then
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act2 : paymentCompleted :== TRUFE
actl : reserved Room := No_room

end
Event Pay=
Refines Pay
when
grdl : inputFor PayCompleted = TRUE
grd3 : reservedRoom # No_room
grd2 : cancellationCompleted = FALSE
with
reservedRooms : reservedRooms = {reserved Room}
then
actl : paidRoom := paidRoom U {reserved Room}
act2 : bookedRoom := booked Room U {reserved Room}
act3 : reservedRoom := No_room
actd : paymentCompleted := TRUFE
end

Event OutputForPay=
Refines OutputForPay

when

grdl : paymentCompleted = TRUE
then

actl : sessionCompleted == TRUE
end

END
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MACHINE BookingSystemRefined2
REFINES BookingSystemRefinedl
SEES BookingContext
VARIABLES

booked Room

searchResult

paid Room

reserved Room
room1'ype

input For FindCompleted
input For ReserveCompleted
reservationCompleted
paymentCompleted
input For PayCompleted
rooml D

reservationl D
inputForCancellationCompleted
cancellationCompleted
roomClancelled
sesstonCompleted
connection

result

fetchCompleted
retrieveCompleted
connection Exception

1f AnyException
findCompleted

INVARIANTS

invl : connection € CONNECTIONS
nv2 : result C ROOMS
mwvd : fetchCompleted € BOOL
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mvd : retrieveCompleted € BOOL

inv6 : (fetchCompleted = TRUFE) = result C rtypes(roomType)

invT : (fetchCompleted = T RU E)=-connection = Connection_success

inv8 : (connection = No_connection)=-(fetchCompleted = FALSE)

inv9 : connection € {Connection_success, Connection_failure}=-inputFor FindComplet
TRUE

mwl0 : connectionException € BOOL

mvll . if AnyException € BOOL

mvl2: findCompleted € BOOL

invl3 : (connection = Connection_failure) = (result = &)

invld : ((connectionException = T RU E)=-(connection = Connection_failure))

invb 1 (fetchCompleted = T RU EN connectionException = TRUE)=
result N booked Room = &

invl6 : (connectionException = T RU E)=-connection = Connection_failure
invlT: result C ROOMS \ {No_room}

EVENTS
Initialisation

begin
actl : booked Room := &
act2 : pardRoom := &
act3 : searchResult := No_room
actd : reservedRoom := No_room
actb : roomType := Null_-roomType
act7 : input For FindCompleted := FALSE
act8 : reservationCompleted := FALSE
act9 : input For ReserveCompleted :== FALSE
actll : paymentCompleted .= FALSE
act12 : inputFor PayCompleted := FALSE
actl0 : roomID := No_room
actl3 : reservationl D := No_room
actl4 : input ForCancellationCompleted :== FALSE
actlh : cancellationCompleted == FALSE
actl6 : roomCancelled == FALSE
actl? . sessionCompleted .= FALSE
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actl8 : connection := No_connection
actl9 : result == &

act20 : fetchCompleted == FALSE
act21 : retrieveCompleted == FALSE
act22 . connectionException .= FALSE
act23 : if AnyEzception := FALSE
act24 . findCompleted := FALSE

end
Event InputForFind=
Refines InputForFind

any
tt
where

grdl : tt € RTYPES
grd2 : connection = No_connection

then

actl : roomType = tt
act2 : input For FindCompleted := TRUFE

end
Event ConnectDB=

when

grdl : inputFor FindCompleted = T RUFE
grd2 : result = &

grd3 : connectionFException = FALSE
grdd : fetchCompleted = FALSE

then
actl : connection :€ {Connection_success, Connection_failure}

end
Event FetchRecords

when

grdl : connection = Connection_success

grd2 : fetchCompleted = FALSE
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then

actl : result := db(roomType) \ booked Room
act2 . fetchCompleted := TRUFE

end
Event ConnectionFailec:

when

grdl : connection = Connection_failure
grd2 : fetchCompleted = FALSFE

then

actl : result .= &
act3 : connectionFException .= TRUFE

end
Event Retrieve=
Refines Find

when

grdl : fetchCompleted = T RU ENconnection Exception =T RUE
with

rr o rr = result
then

actl : searchResult : |((result = @ V connectionException =
TRUEFE) = searchResult' = No_room)
A (result # @ = searchResult’ € result)

act2 : findCompleted := T RUFE
end

Event OutputForFind=

Refines OutputForFind
when
grdl : findCompleted = TRUE
then

act2 : roomlID = searchResult

act3 : i f AnyFException := connection Exception

end
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Event InputForReserve
Refines InputForReserve

any
req

where
grd3: req € REQUESTS

grd4 : req = Reservation

grd2 : roomID # No_room
then

actl : input For ReserveCompleted := TRUE
end

Event Reserve=
Refines Reserve

any
req
where

grd5 : roomID # No_room

grd2: req € REQUESTS

grdl : req = Reservation

grdd : inputFor ReserveCompleted = TRUFE

then
actl : reservedRoom := roomlID

end
Event OutputForReserve
Refines OutputForReserve

when
grdl : reservedRoom # No_room
then

actl : reservationCompleted := TRUFE
act2 : reservationl D := roomlI D

end
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Event InputForCancellatios

Refines InputForCancellation

any

req

where

then

end

grdl : req = Cancellation

grd2: req € REQUESTS

grd3 : reservationl D # No_room

grd4 : reservationCompleted = TRUFE

actl : input ForCancellationCompleted := TRUE

Event Cancel=

Refines Cancel

when

then

end

grdl : inputForCancellationCompleted = T RUFE

grd2 : reservationl D # No_room

act2 : roomCancelled .= TRUE

Event OutputForCancellatiof

Refines OutputForCancellation

when

then

end

grdl : roomCancelled = TRUFE

actl : cancellationCompleted := TRUFE

Event InputForPay=

Refines InputForPay

any
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req
where
grdb

then
actl :

end

:req € REQUESTS
grd4 :
grdl :
grd2 :

req = Payment
reservationCompleted = TRUE
reservationl D # No_room

input For PayCompleted := TRUFE

Event NoPaymen&

Refines NoPayment

when

grdl :
grd3 :
grd2 :

then

act? :
actl :

end
Event Pay=
Refines Pay

when

grdl :
grd3 :
grd2 :
then
actl
act?2 :
act3 :
act4 :
actd

end

input For PayCompleted = TRUFE
reservedRoom # No_room
cancellationCompleted = TRUFE

paymentCompleted := T RUFE

reservedRoom = No_room

nput For PayCompleted = TRUFE
reserved Room # No_room
cancellationCompleted = FALSE

. paidRoom := paidRoom U {reserved Room}

booked Room := booked Room U {reserved Room}
reserved Room := No_room
paymentCompleted := T RUFE

. result 1= result \ {reserved Room}
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Event OutputForPay=
Refines OutputForPay

when

grdl : paymentCompleted = TRUE
then

actl : sessionCompleted == TRUE
end

END
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