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Abstract

In this paper, we present an extension of our model-based testing approach that is
based on formal models and user-provided testing scenarios. In this approach,
the user provides a testing scenario on the level of an abstract model. When
the abstract model is refined to add or modify features, the corresponding test-
ing scenarios are automatically refined to incorporate these changes. Often, due
to the abstraction gap between a formal model and the implementation, it is not
always feasible to generate implementation code from the formal models. As
a result, the implementation is not demonstrated to be correct by its construc-
tion but instead it is hand-coded by programmer(s). To validate the correctness
of the implementation, testing is performed while using user-provided scenarios.
The testing scenarios are unfolded into test cases containing the required inputs
and expected outputs. To automate this test-case generation process, we provide
guidelines for the formal development of system models. We use Event-B as our
formal framework. We also propose a methodology for automatic generation of
an implementation template in Java and its corresponding JUnit test cases from
Event-B specifications and testing scenarios respectively.

Keywords: Scenario-based, Testing, Model-based Testing, Event-B, Formal Meth-
ods
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1 Introduction
Testing is an important but expensive activity in the software development life
cycle. With advancements in the model-based approaches forsoftware develop-
ment, new ways have been explored to generate test-cases from existing software
models of the system, while cutting the cost of testing at thesame time. These new
approaches are usually referred to asmodel-based testing. A software model is a
specification of the system which is developed from the givenrequirements early
in the development cycle [12]. In model-based development (MBD), this model
is then refined until the required abstraction level is reached, from which the im-
plementation code can be generated, or written by hand. The same idea is advo-
cated by formal methods (FM), e.g., refinement calculus [9],B [4], Event-B [7].
The principal difference between MBD and FM is the fact that aformal method
has a mathematically defined semantics and the refinement steps can beproven
correct. Application of formal methods result in the systemthat are “correct-by-
construction” thus mitigating the need for testing. However, as we will discuss
later, there still remains a gap in the formal development ofsystems that needs to
be bridged by tests.

Model-based testing (MBT) is an approach for deriving testsfrom software
models using automated techniques. The intended cost reductions arise because

1. the tests are generated by tools, without hand coding,

2. the model changes do not imply extensive re-writing of test-code, and

3. test coverability is improved because we measure the coverability from the
model.

However, MBT can be seen as a “dumb” testing method, in the sense that it does
not address the problem ofwhatneeds to be tested, e.g., what theimportantparts
of the system are. This problem, calledtest selectionis an active research area
where both formal and informal approaches exist. In [15], weproposed a solution
to this problem using user-provided testing scenarios. In this approach, the testing
scenarios are derived from the initial requirements provided by the user and are
thus intended to describe the important features of the system. Since they are
constructed at the initial level of the development they aredefined in relation to
the initial abstract model that is the starting point of the development process. As
the model is further developed in the refinement process, thetesting scenarios are
also refined to be in sync with the correct model. In Section 2,we will explain
how the test scenarios are kept in sync with the model development by refinement.

At the end of the development process the final model is obtained. The as-
sumption is that this model has most of the implementation details incorporated.
The goal of formal methods as well as model-based design approaches is that one
should then be able to generate the final implementation automatically. If the sys-
tem has been developed using a formal method, then under the assumption that
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the code-generator is proven correct, the final implementation is provably correct
too.

However, in practice often quite a lot of implementation details are left open
and the implementation has to be still written by hand. Thus there remains the
problem of how to test the implementation against user requirements. take our
scenarios and transform them into concrete test cases, thatcan be used to validate
and verify the implementation.

A number of tools exist that address this problem in the context of formal
methods (e.g., see [10, 19]). But they are based on the coverage graph, which
is obtained from symbolic execution of the model. Thus, theysuffer from the
same problem as traditional model-based test generators, namely, the generated
tests have do not distinguish between different parts of thesystem that might be
more or less important for the overall correctness. The whole process is based
on the coverage criterias, such as transition coverage, state coverage or any other
combinations of these. The problem of these approaches is that they can lead
to long test cycles where the test-generator is not distinguishing between different
parts of the system, that might be more or less important for the overall correctness
of the system (the system might e.g. have been partially generated automatically,
and the tester is wasting efforts while testing the “correct-by-construction” part
of the system). Our scenario based approach can be seen as an attempt to bring
guidance to this process, by explicitly describing important behavior of the system
that we want to make sure is tested.

In our previous work [20, 15], we have explored the idea of scenario based
testing combined with formal model development. We have shown how we can
refine the scenarios based on a model-refinement either automatically [20] or by
assuming that the refinement has a structure [15]. In this paper we extend our
approach to cover the concrete test generation from the finaltest scenario to a set
of test cases.

The main contributions of the paper are:

• We provide guidelines for stepwise development oftestableEvent-B mod-
els,

• We show how requirements (scenarios) are transformed into test-cases and
how these test-cases are represented,

• We show how the inputs and expected outputs for a test-case are derived
from an Event-B model,

• We outline a methodology showing how an implementation template can be
generated from a sufficiently refined specification.

The organisation of the paper is as follows. In Section 2, we give an overview
of our scenario-based testing methodology. In Section 3, weprovide basic math-
ematical preliminaries for testing process, while Section4 covers introduction to
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modeling with the Event-B formalism. In Section 5, we describe modeling and
refinement of scenarios. In Section 6, we illustrate automatic generation of imple-
mentation template for Java. In Section 7, automatic test case generation process
for JUnit 4 is described. Finally, Section 8 contains some discussion and conclud-
ing remarks.

2 Scenario Based Testing

Our model-based testing approach [20, 15] is based on stepwise system develop-
ment [9] using behavioral models of the system. By a behavioral model, we mean
that the system behavior is modelled as a state transition system with operations
(events) used to describe transitions. In the stepwise development process, an ab-
stract model is first constructed and then further refined to include more details
(e.g., functionalities) of the system. Generally, these models can be either formal,
informal, or both. In this work we only consider formal models.

In the development process, we start with an abstract modelMA and gradually,
by a number of refinement steps, obtain a sufficiently detailed concrete modelMC .
The final system, the system under test (SUT), is an implementation of this de-
tailed model. Ideally, the implementation should be automatically generated from
this model, which would make itcorrect by constructionunder the assumption
that the code generator is correct. However, in practice, the models do not take
into account the low-level implementation details. Due to this abstraction gap
between formal models and executable implementations, automatic generation of
implementation code is not always possible. As a result, an implementation is
often hand-coded, while consulting the formal models. The left hand-side of the
Figure 1 graphically presents this process.

Since the implementation is no longercorrect-by-construction, there is a need
to testthe implementation. Such tests could be done by hand or generated through
automatic test generation. In this paper, we use scenario-based testing [15] to
generate tests. We start from the requirements and gradually construct testing
scenarios. The right hand side of the Figure 1 depicts this process. In the litera-
ture, one can find several definitions of the termscenario. In the field of software
engineering, scenarios have been used to represent variousconcepts like system
requirements, analysis, user-component interactions, test cases etc. [16]. We use
the definition from [1], which defines a scenario as a description of possible ac-
tions and events in the future. It can also be thought of as oneof the expected
functionalities of the system. The abstract scenarios are further refined until a suf-
ficiently refined scenario is obtained. Then, in the final step, tests are generated
from these scenarios.

The tests can usually be divided into at least 3 different major kinds:

1. Unit testsare the tests that check the functionality of a simple program
component, e.g., a function or a class. In our case, a unit test would test the
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Figure 1: Overview of our Model-based testing approach

correct implementation of an Event-B event.

2. Integration testsare the tests that test the combined behavior of several
units.

3. Acceptance testsare used to validate the system against the requirements.

Basically, integration and acceptance tests are very similar since both types of
tests can be thought of asscenarios. We use the termtest scenarioto emphasize
the intended use of these scenarios.

The challenge is now how to refine the test scenarioSA, along the refinement
path from the abstract model to the concrete model, into a concrete test scenario
SC such thatSC covers the same behavior asSA does. The general structure of the
problem is given in the figure 2. In this process, an abstract modelMA is refined
by Mi (denoted byMA ⊑ Mi). This refinement (⊑) is so called a controlled
refinement, as will be discussed in section 4.1. ScenarioSA is an abstract scenario,
formally satisfiable(|=) by specification modelMA, is provided by the user. In the
next refinement step, scenarioSi is constructed automatically fromMA, Mi and
SA in such a way thatSi is formally satisfied or conformed by the modelMi. The
automatically generated scenarioSi represents functionalities, in part or whole, of
the modelMi.

In some cases, the modelMi may contain some extra functionalities or fea-
tures, such as incorporated fault-tolerance mechanisms, which were omitted or
out of scope of scenarioSA. Theseextra features, denoted bySEF , can be added
in the scenarioSi manually. The modified scenarioSi ∪ SEF must be checked
(by means of available tools) to be satisfied/conformed by the modelMi. We can
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Figure 2: Refinement of Models and Scenarios

follow the same refinement process, now starting withSi ∪ SEF , until we get a
sufficiently refined scenario at levelMC . In [20], we showed how to derive theSC

given a refinementMA ⊑ MC and the scenarioSA. This approach works for any
refinement but is exponential in nature. In [15], we proposeda more efficient ap-
proach that usescontrolledrefinement. In this case, the scenarioSi can be easily
generated by a transformation that mirrors the refinement step. In section 4.1, we
will describe this approach more in detail. After the final refinement, the system
is implemented while consulting the modelMC . This implementation is called
system under test (SUT). Since this implementation is hand-coded, there is no
guarantee for its correctness. Going from the scenarioSC to concrete test cases
poses a similar problem. We would like to generate test casesautomatically from
the concrete scenario. In the later sections we will discusshow we can approach
this task. First, in the next Section, we present some mathematical preliminaries
needed for our model-based testing approach.

3 Mathematical Preliminaries
The formal models that we use in this work arelabelled transition systems. These
are formally defined in the following:

Definition 1

A labelled transition system(LTS) is a 4-tuple〈S, L, T, s0〉 where

• S is countable, non-empty set ofstates;

• L is a countable set oflabels;

• T ⊆ S × L × S is thetransition relation

• s0 ∈ S is theinitial state.
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The labels inL represent the events in the system. Letl = 〈S, L, T, s0〉 be an
LTS with s, s

′

in S and letµ(i) ∈ L.

s
µ
−→ s′ =def (s, µ, s′) ∈ T

s
µ1...µn

−−−−→ s′ =def ∃s0, . . . , sn : s = s0
µ1

−→ s1
µ2

−→ . . .
µn

−→ sn = s′

s
µ1...µn

−−−−→ =def ∃s′ : s
µ1...µn

−−−−→ s′

The behavior of an LTS is defined in terms oftraceswhere atrace is a finite
sequence of events in the system. The set of all traces overL is denoted byL∗.
For an LTSl = 〈S, L, T, s0〉, the behavior function, denoted bybeh(LTS), is defined
as

beh(l) =def {σ ∈ L∗ | s0
σ
−→ }

2

Definition 2

1. A test sequence, denoted byt, is a finite sequence of events,µ1, µ2, . . . µn,
in the system defined as

s0
µ1

−→ s1
µ2

−→ . . .
µn

−→ sn

wheren ∈ N andsi are system states.

2. A test scenario, denoted byts, is collection oftest sequencespresent in the
behaviorof the LTSl,

ts ⊆ beh(l)

2

In the context of Figure 2 and any modelMi as well as the SUT generate an
LTS. We can then define

Definition 3

1. TheSystem Under Test(SUT) is an executable implementation of the mod-
els. Abstractly, an SUT can be viewed as a Labelled Transition System
(LTS) having states and events.

2. A test casedenoted astc, is a finite test sequenceto be tested on SUT.
Moreover, each test case also includes the expected result(s) of the test case
execution. This result is used to compute theverdict function.
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3. A verdict functionν is defined, in terms ofLabelled Transition System (LTS)
with test sequence(ts), as

ν(LTS, ts) = Passed iff ts ∈ beh(LTS)

Similarly, in the context ofSystem Under Test(SUT), the verdict function
is used to check if the test case execution has given expectedresults or not.

ν(SUT, tc) = Passed iff tc ∈ beh(SUT )
Failed otherwise

2

4 Modeling in Event-B

The Event-B [6, 5] is a recent extension of the classical B-method [4] formalism.
Event-B is particularly well-suited for modeling event-based systems. The com-
mon examples of event-based systems are reactive systems, embedded systems,
network protocols, web-applications and graphical user interfaces.

In Event-B, the specifications are written in Abstract Machine Notation (AMN).
An abstract machine encapsulates state (variables) of the machine and describes
operations (events) on the state. A simple abstract machinehas following general
form

MACHINE AM

VARIABLES v

INVARIANT I

EVENTS
INITIALISATION = . . .

E1 = . . .

. . .

EN = . . .

END

A machine is uniquely defined by its name in theMACHINE clause. TheVARIABLE
clause defines state variables, which are then initialized in theINITIALISATION
event. The variables are strongly typed by constraining predicates of the machine
invariantI given in theINVARIANT clause. The invariant defines essential sys-
tem properties that should be preserved during system execution. The operations
of event based systems are atomic and are defined in theEVENT clause. An event
is defined in one of two possible ways

E = WHEN g THEN S END
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E = ANY i WHERE C(i) THEN S END

whereg is a predicate over the state variablesv, and the bodyS is an Event-B
statement specifying how the variablesv are affected by execution of the event.
The second form, with theANY construct, represents a parameterized event where
i is the parameter andC(i) contains condition(s) overi. The occurrence of the
events represents the observable behavior of the system. The event guard (g or
C(i)) defines the condition under which event is enabled.

Event-B statements are formally defined using the weakest precondition se-
mantics [11]. The defined semantics is used to demonstrate correctness of the
system. To show correctness of an event-based system it is necessary to formally
prove that the invariant is true in initial state and every event preserves the invari-
ant:

wp(INITIALISATION, I) = true, and
gi ∧ I ⇒ wp(Ei, I)

In the following, we will see how Event-B specifications are developed in ourscenario-based testing methodology.

4.1 Controlled Refinement

In our approach, we use Event-B formalism to model the behaviour of the system.
Referring back to Figure 2, in order to automatically refine ascenario from its
previous level, we need to identify each and every refinementstep taken for the
refinement of the corresponding models. This identificationis only possible if we
follow a controlled and structured approach for the refinement of models. In our
earlier work [15], we presented the supported refinement types, for the Event-B,
for our testing approach. These types are

• Atomicity Refinement
Where one event operation is replaced by several operations, describing the
system reactions in different circumstances the event occurs. Intuitively, it
corresponds to a branching in the control flow of the system asshown in
Figure 3(a).

• Superposition Refinement
Where new implementation details are introduced into the system in the the
form of new events that were invisible in the previous specification. These
new events can be non-looping or looping as depicted in Figure 3(b) and (c)
respectively.

4.2 Classification of Events
In order to identify the inputs and the outputs of the system,we classify the events
of our Event-B models as ofinput, outputandinternal types. In the following is
given the details of these typing.
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Definition 4

The Events
Set of all events in the system, denoted byΣ, is divided into following subsets of:

• Input events denoted byεI

• Outputevents denoted byεO

• Internalevents denoted byετ

2

The input events, εI , accepts inputs from user or environment. Apart from their
input behavior, these events may take part in the normal processing of the system.
However, the input events do not produce externally visibleoutput. Theoutput
eventsεO produce externally visible output. Theinternal eventsdo not take part
in any input/output activity. These may produce intermediate results used by other
events inεI and εO. The motivation of this classification is explained in next
section where we divide our system into logical functional units.

4.3 Logical Units

As we develop our system in a stepwise manner, the main functional units of a
system are identified on abstract level. Each of these abstract functional units are
modelled as a separate logical unit, calledIOUnit, in our Event-B model.

Definition 5

An IOUnit U consists of a finite sequence of events and has the following form.

U =< εI , ετ +, εO >

HereεI andεO denote the input and output events respectively andετ + represents
one or more occurrences ofinternalevents.

2
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It can be observed from the above definition thatIOUnit consists of the se-
quence of events occurring in such an order that the first event in the unit is always
an input event and the last event is always anoutputevent with one or morein-
ternal events in between them. Moreover,IOUnit can not contain more than one
input or output events.

IOUnit takes input and produces output, as the presence of input andoutput
events indicates. The classification of events, from the previous section, helps us
in identifying inputs and outputs of each unit, and when combined, of the whole
system. The motivation for this approach is the following. The developer(s) of
the system under test (SUT) may decide to implement the system independently
of the structure of the Event-B model. Indeed, it is sometimes hard to follow the
strict one to one mapping between the events of the model and corresponding pro-
gramming language units. For example, two events in a model can be merged to
form one programming-language operation or the functionality of an event in the
model may get divided across multiple operations or classesin the implementa-
tion. However, for successful execution of the system, the interface of the model
and implementation, i.e., the sequence of inputs and the outputs, should remain
the same.

4.4 Example

We illustrate our approach by a small example ofhotel reservation system. Re-
serving a room in such a system consists of a sequence of events that occur in
a particular order. On the abstract level, we may have only a few events which
represent some particular functionality of the system. Forexample, in theBook-
ingSystem, the room reservation functionality can be divided into three functional
units, namely,Finding a room,ReservingandPayingfor it. As we structure our
model according to the guidelines described in Section 4.2,the resulting events
and their sequence of execution can be seen in Figure 4(a). Itcan be observed
that the main functional events are wrapped with the input and output events. For
example, theFind event is wrapped around withInputForFindandOutputForFind
events where the eventsInputForFindandOutputForFindare the input and output
events respectively.
It is also possible to introduce new IOUnits in the model. Thenew IOUnit must
also strictly follow the input-output strcuture and controlled refinement constraints
discussed in the previous sections. In the refined model, as shown in Figure 4(b),
the new cancellation functionality is introduced as a new IOUnit. Within an input-
output unit, we treat our main functional event as aninternal event(e.g.,Find, Re-
serve and Pay). Such events can be further refined and this may add moreinternal
events within the input-output unit. This is shown in the refined model where
Find event is refined into four events. Graphically, these newinternal events are
shown with dashed arrows in Figure 4(c). The full Event-B specifications for both
abstract and refined models are given in the Appendix.
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Figure 4: (a) Abstract System (b) First Refinement (c) SecondRefinement

5 Modelling and Refinement of Scenarios

In the field of software engineering, scenarios could be represented in several
formal, semi formal and informal ways. Some of common representations are
tables, scripts, prototypes, structured texts and state charts.

In this paper, we need a simple approach to represent a scenario as sequence
of model events. We use Communicating Sequential Process (CSP) [13] for this
purpose. The advantage of using CSP is twofold. First, a CSP expression is a
convenient way to express several scenarios in a compact form. Second, since
we develop our system in a controlled way, i.e. using the basic refinement trans-
formations described in Section 4.1, we can associate theseEvent-B refinements
with syntactic transformations of the corresponding CSP expressions. Therefore,
knowing the way modelMi was refined byMi+1, we can automatically refine sce-
narioSi into Si+1. To check whether a scenarioSi is a valid scenario of its model
Mi, i.e., modelMi satisfies(|=) scenarioSi, we use the ProB [14] model checker.
ProB supports execution (animation) of Event-B specifications, guided by CSP
expressions. In fact, the available tool support is anothermotivating reason for
representing scenarios as CSP expressions. The satisfiability check is performed
at each refinement level as shown in the Figure 2. The refinement of scenarioSi

is the CSP trace-refinement [17] denoted by⊑T . The details and examples for
scenario refinements can be found in our earlier work [15].

As described earlier, a scenario is a finite sequence of events occurring in some
particular order. Since we have grouped the events in the form of logical IOUnits,
our scenarios will also include a finite sequence of IOUnits on the logical level.
It means that scenarios will include the same events as thereare in the Event-
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B model. However, the scenarios must follow the same rules that were set for
constructing IOUnits in previous section, i.e.,

1. The first event in the scenario is always aninput event.

2. The last event in the scenario is always anoutputevent.

3. There can not be two input-type events in sequence withoutany output event
in between them, i.e. the following sequence in a CSP expression is not
allowed.

< · · · → εI
k → εI

k+1 → · · · >

4. There can not be two output-type events in sequence without any input event
in between them i.e. the following sequence is also not allowed.

< · · · → εO
k → εO

k+1 → · · · >

We will see the scenario examples later in this section.

5.1 Input and Output

Since the scenarios are defined on abstract level, they lack details about inputs
and outputs. Therefore, to construct concrete test cases weneed to identify details
about inputs for the test cases. These input details are identified from the input
event(s) of each IOUnit. For example, if an input event readsthree input variables
then these three variables become the inputs for the unit that the input event be-
longs to. The details about inputs can be retrieved from an Event-B model as the
model specifies the type, initial value and invariant properties for all variables.

The expected outputs can be generated after the model is animated using ProB
model checker. For a given input of a test case, the ProB can animate the model
and return the result, which is then saved as theexpectedoutput of the test case.
This expected output can be used to compare the values while testing the real
implementation. The ProB model checker can only provide output values based
on the available abstract values. For example, to test whether a room is available
in theHotel Booking System, ProB can check the expected result for a pre-defined
set of inputs, while in the actual implementation this result might be retrieved
from the database. Therefore, it is the responsibility of the user to setup the test
case accordingly.

5.2 Examples

In the case of the previously discussedHotel Reservation Systemexample, there
can be many possible testing scenarios. For example, if we want to test theroom
finding functionality, the scenario in the form of CSP expression, with inputs and
outputs, would be as follows.
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S0 = inputForFind?roomType → connectDB →
(FetchRecords ⊓ ConnectionFailure) → retrieve →

outputForFind!(roomId, ifException)

where⊓ is an internal choice operator in CSP. The variableroomType is the input
for this IOUnit androomId, ifException are the possible outputs. The variable
ifException specifies if there was any exception, e.g., a connection failure. To
test thereservation, the corresponding CSP expression would be

S1 = inputForReserve?roomId → reserve → outputForReserve!reserveId

Often, the subsequent scenario step depends on the results of the previous ones.
Therefore, to test finding and reservation IOUnits in a sequence, a scenario would
be

S3 = S0; S1

In Section 7, we will see how a scenario is used to generate a template for JUnit
test-cases.

6 Java implementation template for Event-B
models

Event-B specifications, developed, as described in previous sections, can be used
to generate Java implementation template. We start by translating a (sufficiently
refined) Event-B model into Java class. Similarly, the Event-B events are trans-
lated as the Java methods. For ourHotel Booking Systemexample, the excerpts of
Event-B machine and its implementation template are shown in the following and
in the Listing 1 respectively. For the complete listing of the specifications, please
refer to the Appendix.

MACHINE BookingSystemRef1

REFINES BookingSystem

SEES BookingContext

VARIABLES

roomType

. . .

INVARIANTS

. . .
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EVENTS

Initialisation

act5 : roomType := Null roomType

. . .

Event InputForFind=̂

Refines InputForFind

any

tt

where

grd1 : tt ∈ RTY PES

grd2 : connection = No connection

then

act1 : roomType := tt

act2 : inputForF indCompleted := TRUE

end

. . .

END

An event in the Event-B specification consists of two parts. The first part contains
the pre-condition(s) for the event to be enabled, while the second part consists of
the actions that event performs. For every event in Event-B model, we create two
separate methods in the Java implementation, to represent the pre-conditions and
actions respectively. The first method, which contains the pre-conditions/guards
of an event, returns the evaluation result in the form ofbooleanvalue. The name
of this method is pre-fixed with the string “guard”. The second method encap-
sulates the actions of the event. Since the actions update the class-level/global
variables, this method returnsvoid. For example, for theInputForFindevent from
our Hotel Booking Systemexample, the Java implementation methods are given
in the Listing 1.

Listing 1: Implementation template for HotelBookingSystem
pub l i c c l a s s Hote lBook ingSys tem{

/ / c lass− l e v e l v a r i a b l e s
pub l i c S t r i n g roomType ;
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pub l i c Hote lBook ingSys tem ( ){
/ / i n i t i a l i z a t i o n . . .

}

/∗ P reCond i t i on s / Guards f o r Inpu tF o rF ind e v e n t∗ /
p r i v a t e boolean g u a r d i n p u t F o r F i n d ( ){

re tu rn ( roomType != n u l l ) ;
}

/∗ Imp lemen ta t i on method f o r Inpu tF o rF ind e v e n t∗ /
pub l i c vo id i n p u t F o r F i n d ( ) throws P r e C o n d i t i o n V i o l a t e d E x c e p t i o n
{

i f ( g u a r d i n p u t F o r F i n d ( ) ){
/ / a c t i o n s . . .

}
e l s e{

throw new P r e C o n d i t i o n V i o l a t e d E x c e p t i o n ( ” For i n p u t F o r F i n d ” ) ;
}

}

/ / more Imp lemen ta t i o n methods f o r e v e n t s
. . .
. . .

}
c l a s s P r e C o n d i t i o n V i o l a t e d E x c e p t i o nextends E xcep t ion
{

pub l i c P r e C o n d i t i o n V i o l a t e d E x c e p t i o n ( S t r i n g mesg ){
super ( mesg ) ;

}
}

Each implementation method, representing an event, first evaluates its pre condi-
tion(s) by calling its “guard” method. If the pre-conditions are evaluated tofalse
then an exception,PreConditionViolatedException, is raised, other-
wise the actions of the corresponding event are executed. The variables of a ma-
chine are translated into the class variables in Java. The type information for vari-
ables can be retrieved from theInvariant clause of the machine. By default, the
primitive types, e.g., BOOL, numerics etc., are translatedinto the corresponding
Java types. For composite or user-defined types, the user canprovide a translation
mapping of types, from Event-B to Java separately. In the next Section, we will
discuss how scenarios are translated into executable test cases.

7 JUnit Test case generation
In previous section, we have seen the guidelines for generating an implementation
template for Java. Once such template is generated, we can generate the corre-
sponding executable test cases from the scenarios, using JUnit [2] - Java Unit
Testing framework.

Since, our events are sequenced in terms ofIOUnits, we can write JUnit test
cases to test theseIOUnits. For example, on the basis of branching, there are two
possible test-cases in the following scenario.

S0 = inputForFind?roomType → connectDB →
(FetchRecords ⊓ ConnectionFailure) → retrieve →

outputForFind!(roomId, ifException)
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These test casesT0 andT1 are

T0 = inputForFind?roomType → connectDB → FetchRecords →
retrieve → outputForFind!(roomId, ifException)

T1 = inputForFind?roomType → connectDB → ConnectionFailure →
retrieve → outputForFind!(roomId, ifException)

For each of the test casesT0 andT1, a separate JUnit test method is implemented.
The JUnit test method forT0 is shown in the Listing 2.

Listing 2: JUnit Test method forT0
pub l i c c l a s s Hote lBook ingSys temTest{

Hote lBook ingSys tem bSys ;
. . .

@Before
pub l i c vo id setUp ( ) throws E xcep t ion {

bSys = new Hote lBook ingSys tem ( ) ;
}

@Test
pub l i c f i n a l vo id T0 ( ){

t r y {
/ / s e t t i n g i n p u t f o r IOUnit
bSys . roomType = ” S i n g l e ” ;

/ / c a l l i n g methods o f IOUnit
bSys . i n p u t F o r F i n d ( ) ;
bSys . connectDB ( ) ;
bSys . f e t c h R e c o r d s ( ) ;
bSys . r e t r i e v e ( ) ;
bSys . o u t p u t F o r F i n d ( ) ;

/ / a s s e r t s t a t e m e n t s ( v e r d i c t )
a s s e r t T r u e ( ” non−Empty r e s u l t S e t ” , bSys . r e s u l t S e t . s i z e ( )> 1 ) ;
a s s e r t T r u e ( bSys . noE xcep t ion ==t rue ) ;

}
catch ( P r e C o n d i t i o n V i o l a t e d E x c e p t i o n e ){

f a i l ( e . getMessage ( ) ) ;
}

}

In similar way, the templates for JUnit test-methods can be generated for each test-
case in the scenarios. The above example showed the test cases based on data-flow
branching. However, it is possible to generate test cases based on different class
of input values. If a scenario involves multipleIOUnits in a sequence then JUnit
test would involve calls to the relevant test methods. For example as shown in the
Listing 3, a JUnit test method tests twoIOUnits.

Listing 3: Testing multiple IOUnits
@Test

pub l i c f i n a l vo id T3 ( ){

/ / t e s t method from f i r s t IOUnit
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T0 ( ) ;

/ / t e s t method from second IOUnit
T2 ( ) ;
}

Hence, it is possible to generate different combinations oftest cases, for a sce-
nario, which might be laborious and error-prone if done by hand.

8 Conclusions and Future work
In this paper, we presented a model-based testing approach using user-provided
testing scenarios. These scenarios are first validated using a model checker and
then used to generate test cases. Additionally, we have provided the guidelines for
stepwise development of formal models and automatic refinement of testing sce-
narios. We also proposed an approach to generate Java language implementation
templates from Event-B models. The abstract testing scenarios can then be used
to generate templates for JUnit test cases.

Although, we do not provide complete translation of model and testing sce-
narios. However, we provide guidelines describing how usercan benefit from our
approach. The presented work is in progress and will be extended in future to fully
automate the development and testing process. In particular, we plan to develop a
tool that can do most of the translations automatically. This tool will be available
as a plug-in for RODIN [3] platform which is a formal development platform for
Event-B specifications.

At the moment, we do not support translation of some complex pre-condition
and invariant expressions into Java. Namely, the existential and universal quanti-
fiers are not covered. However, in future, we plan to support for full translation.
We also intend to use a graphical notation for representing testing scenarios. A
more challenging task is to automatically generate the range of data values for
the inputs of the test cases. There exist various sophisticated approaches, for ex-
ample, input-space-partitioning [8], boundary-value-testing [18] etc., that can be
used to generate input values for the test cases. However, a mapping between
abstract data and concrete data types needs to be provided bythe user. On the
other hand, for similar reasons, there is also a need for finding a mapping relation
between the outputs generated from the models and actual outputs observed from
the implementation.
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APPENDIX

An Event-B Specification of HotelBookingSystem. Developedand proved
using RODIN Platform

CONTEXT BookingContext

SETS

ROOMS

RTY PES

REQUESTS

CONNECTIONS

CONSTANTS

Reservation

Payment

No room

rtypes

Null roomType

db

No connection

Connection success

Connection failure

Cancellation

AXIOMS

axm1 : REQUESTS = {Reservation, Payment, Cancellation}

axm2 : Reservation 6= Payment

axm13 : Reservation 6= Cancellation

axm12 : Cancellation 6= Payment

axm3 : No room ∈ ROOMS

axm4 : rtypes ∈ RTY PES → P(ROOMS)

axm5 : Null roomType ∈ RTY PES

axm6 : db ∈ RTY PES → P(ROOMS \ {No room})

axm7 : db = rtypes
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axm8 : CONNECTIONS = {No connection, Connection success, Connection failure}

axm9 : No connection 6= Connection success

axm10 : No connection 6= Connection failure

axm11 : Connection success 6= Connection failure

END
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MACHINE BookingSystemAbstract

SEES BookingContext

VARIABLES

bookedRoom

searchResult

reservedRoom

roomType

inputForF indCompleted

inputForReserveCompleted

reservationCompleted

paymentCompleted

inputForPayCompleted

roomID

reservationID

sessionCompleted

findCompleted

INVARIANTS

inv1 : roomType ∈ RTY PES

inv3 : inputForF indCompleted ∈ BOOL

inv4 : inputForReserveCompleted ∈ BOOL

inv5 : inputForPayCompleted ∈ BOOL

inv6 : reservationCompleted ∈ BOOL

inv7 : inputForReserveCompleted ∈ BOOL

inv9 : paymentCompleted ∈ BOOL

inv8 : searchResult ∈ ROOMS

inv10 : bookedRoom ⊆ ROOMS

inv13 : reservedRoom ∈ ROOMS

inv11 : roomID ∈ ROOMS

inv14 : reservationID ∈ ROOMS

inv12 : sessionCompleted ∈ BOOL

inv15 : findCompleted ∈ BOOL
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EVENTS

Initialisation

begin

act1 : bookedRoom := ∅

act3 : searchResult := No room

act4 : reservedRoom := No room

act5 : roomType := Null roomType

act7 : inputForF indCompleted := FALSE

act8 : reservationCompleted := FALSE

act9 : inputForReserveCompleted := FALSE

act11 : paymentCompleted := FALSE

act12 : inputForPayCompleted := FALSE

act10 : roomID := No room

act13 : reservationID := No room

act2 : sessionCompleted := FALSE

act14 : findCompleted := FALSE

end

Event InputForFind=̂

any

tt

where

grd1 : tt ∈ RTY PES

then

act1 : roomType := tt

act2 : inputForF indCompleted := TRUE

end

Event Find =̂

any

rr

where

grd1 : rr ⊆ ROOMS

grd3 : rr ∩ bookedRoom = ∅

grd4 : rr ⊆ rtypes(roomType)
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grd2 : inputForF indCompleted = TRUE

grd5 : No room /∈ rr

then

act1 : searchResult : |(rr = ∅ ⇒ searchResult′ = No room)
∧ (rr 6= ∅ ⇒ searchResult′ ∈ rr)

act2 : findCompleted := TRUE

end

Event OutputForFind̂=

when

grd1 : findCompleted = TRUE

then

act2 : roomID := searchResult

end

Event InputForReservê=

any

req

where

grd3 : req ∈ REQUESTS

grd4 : req = Reservation

grd2 : roomID 6= No room

then

act1 : inputForReserveCompleted := TRUE

end

Event Reservê=

any

req

where

grd5 : roomID 6= No room

grd2 : req ∈ REQUESTS

grd1 : req = Reservation

grd4 : inputForReserveCompleted = TRUE

then
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act1 : reservedRoom := roomID

end

Event OutputForReservê=

when

grd1 : reservedRoom 6= No room

then

act1 : reservationCompleted := TRUE

act2 : reservationID := roomID

end

Event InputForPaŷ=

any

req

where

grd5 : req ∈ REQUESTS

grd4 : req = Payment

grd1 : reservationCompleted = TRUE

grd2 : reservationID 6= No room

then

act1 : inputForPayCompleted := TRUE

end

Event Pay=̂

any

reservedRooms

where

grd1 : inputForPayCompleted = TRUE

grd3 : reservedRoom 6= No room

grd2 : reservedRooms ⊆ {reservedRoom}

then

act2 : bookedRoom := bookedRoom ∪ reservedRooms

act3 : reservedRoom := No room

act1 : paymentCompleted := TRUE

end
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Event OutputForPaŷ=

when

grd1 : paymentCompleted = TRUE

then

act1 : sessionCompleted := TRUE

end

END
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MACHINE BookingSystemRefined1

REFINES BookingSystemAbstract

SEES BookingContext

VARIABLES

bookedRoom

searchResult

paidRoom

reservedRoom

roomType

inputForF indCompleted

inputForReserveCompleted

reservationCompleted

paymentCompleted

inputForPayCompleted

roomID

reservationID

inputForCancellationCompleted

cancellationCompleted

roomCancelled

sessionCompleted

findCompleted

INVARIANTS

inv1 : inputForCancellationCompleted ∈ BOOL

inv2 : cancellationCompleted ∈ BOOL

inv3 : roomCancelled ∈ BOOL

inv4 : paidRoom ⊆ ROOMS

inv5 : paidRoom ⊆ bookedRoom

inv6 : sessionCompleted ∈ BOOL

inv7 : findCompleted ∈ BOOL

EVENTS
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Initialisation

begin

act1 : bookedRoom := ∅

act2 : paidRoom := ∅

act3 : searchResult := No room

act4 : reservedRoom := No room

act5 : roomType := Null roomType

act7 : inputForF indCompleted := FALSE

act8 : reservationCompleted := FALSE

act9 : inputForReserveCompleted := FALSE

act11 : paymentCompleted := FALSE

act12 : inputForPayCompleted := FALSE

act10 : roomID := No room

act13 : reservationID := No room

act14 : inputForCancellationCompleted := FALSE

act15 : cancellationCompleted := FALSE

act16 : roomCancelled := FALSE

act17 : sessionCompleted := FALSE

act18 : findCompleted := FALSE

end

Event InputForFind=̂

Refines InputForFind

any

tt

where

grd1 : tt ∈ RTY PES

then

act1 : roomType := tt

act2 : inputForF indCompleted := TRUE

end

Event Find =̂

Refines Find

any
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rr

where

grd1 : rr ⊆ ROOMS

grd3 : rr ∩ bookedRoom = ∅

grd4 : rr ⊆ rtypes(roomType)

grd2 : inputForF indCompleted = TRUE

grd5 : No room /∈ rr

then

act1 : searchResult : |(rr = ∅ ⇒ searchResult′ = No room)
∧ (rr 6= ∅ ⇒ searchResult′ ∈ rr)

act2 : findCompleted := TRUE

end

Event OutputForFind̂=

Refines OutputForFind

when

grd1 : findCompleted = TRUE

then

act2 : roomID := searchResult

end

Event InputForReservê=

Refines InputForReserve

any

req

where

grd3 : req ∈ REQUESTS

grd4 : req = Reservation

grd2 : roomID 6= No room

then

act1 : inputForReserveCompleted := TRUE

end

Event Reservê=

Refines Reserve
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any

req

where

grd5 : roomID 6= No room

grd2 : req ∈ REQUESTS

grd1 : req = Reservation

grd4 : inputForReserveCompleted = TRUE

then

act1 : reservedRoom := roomID

end

Event OutputForReservê=

Refines OutputForReserve

when

grd1 : reservedRoom 6= No room

then

act1 : reservationCompleted := TRUE

act2 : reservationID := roomID

end

Event InputForCancellation̂=

any

req

where

grd1 : req = Cancellation

grd2 : req ∈ REQUESTS

grd3 : reservationID 6= No room

grd4 : reservationCompleted = TRUE

then

act1 : inputForCancellationCompleted := TRUE

end

Event Cancel=̂

when

grd1 : inputForCancellationCompleted = TRUE
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grd2 : reservationID 6= No room

then

act2 : roomCancelled := TRUE

end

Event OutputForCancellation̂=

when

grd1 : roomCancelled = TRUE

then

act1 : cancellationCompleted := TRUE

end

Event InputForPaŷ=

Refines InputForPay

any

req

where

grd5 : req ∈ REQUESTS

grd4 : req = Payment

grd1 : reservationCompleted = TRUE

grd2 : reservationID 6= No room

then

act1 : inputForPayCompleted := TRUE

end

Event NoPayment̂=

Refines Pay

when

grd1 : inputForPayCompleted = TRUE

grd3 : reservedRoom 6= No room

grd2 : cancellationCompleted = TRUE

with

reservedRooms : reservedRooms = ∅

then
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act2 : paymentCompleted := TRUE

act1 : reservedRoom := No room

end

Event Pay=̂

Refines Pay

when

grd1 : inputForPayCompleted = TRUE

grd3 : reservedRoom 6= No room

grd2 : cancellationCompleted = FALSE

with

reservedRooms : reservedRooms = {reservedRoom}

then

act1 : paidRoom := paidRoom ∪ {reservedRoom}

act2 : bookedRoom := bookedRoom ∪ {reservedRoom}

act3 : reservedRoom := No room

act4 : paymentCompleted := TRUE

end

Event OutputForPaŷ=

Refines OutputForPay

when

grd1 : paymentCompleted = TRUE

then

act1 : sessionCompleted := TRUE

end

END
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MACHINE BookingSystemRefined2

REFINES BookingSystemRefined1

SEES BookingContext

VARIABLES

bookedRoom

searchResult

paidRoom

reservedRoom

roomType

inputForF indCompleted

inputForReserveCompleted

reservationCompleted

paymentCompleted

inputForPayCompleted

roomID

reservationID

inputForCancellationCompleted

cancellationCompleted

roomCancelled

sessionCompleted

connection

result

fetchCompleted

retrieveCompleted

connectionException

ifAnyException

findCompleted

INVARIANTS

inv1 : connection ∈ CONNECTIONS

inv2 : result ⊆ ROOMS

inv3 : fetchCompleted ∈ BOOL
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inv4 : retrieveCompleted ∈ BOOL

inv6 : (fetchCompleted = TRUE) ⇒ result ⊆ rtypes(roomType)

inv7 : (fetchCompleted = TRUE)⇒connection = Connection success

inv8 : (connection = No connection)⇒(fetchCompleted = FALSE)

inv9 : connection ∈ {Connection success, Connection failure}⇒inputForF indCompleted
TRUE

inv10 : connectionException ∈ BOOL

inv11 : ifAnyException ∈ BOOL

inv12 : findCompleted ∈ BOOL

inv13 : (connection = Connection failure) ⇒ (result = ∅)

inv14 : ((connectionException = TRUE)⇒(connection = Connection failure))

inv5 : (fetchCompleted = TRUE∨connectionException = TRUE)⇒
result ∩ bookedRoom = ∅

inv16 : (connectionException = TRUE)⇒connection = Connection failure

inv17 : result ⊆ ROOMS \ {No room}

EVENTS

Initialisation

begin

act1 : bookedRoom := ∅

act2 : paidRoom := ∅

act3 : searchResult := No room

act4 : reservedRoom := No room

act5 : roomType := Null roomType

act7 : inputForF indCompleted := FALSE

act8 : reservationCompleted := FALSE

act9 : inputForReserveCompleted := FALSE

act11 : paymentCompleted := FALSE

act12 : inputForPayCompleted := FALSE

act10 : roomID := No room

act13 : reservationID := No room

act14 : inputForCancellationCompleted := FALSE

act15 : cancellationCompleted := FALSE

act16 : roomCancelled := FALSE

act17 : sessionCompleted := FALSE
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act18 : connection := No connection

act19 : result := ∅

act20 : fetchCompleted := FALSE

act21 : retrieveCompleted := FALSE

act22 : connectionException := FALSE

act23 : ifAnyException := FALSE

act24 : findCompleted := FALSE

end

Event InputForFind=̂

Refines InputForFind

any

tt

where

grd1 : tt ∈ RTY PES

grd2 : connection = No connection

then

act1 : roomType := tt

act2 : inputForF indCompleted := TRUE

end

Event ConnectDB=̂

when

grd1 : inputForF indCompleted = TRUE

grd2 : result = ∅

grd3 : connectionException = FALSE

grd4 : fetchCompleted = FALSE

then

act1 : connection :∈ {Connection success, Connection failure}

end

Event FetchRecordŝ=

when

grd1 : connection = Connection success

grd2 : fetchCompleted = FALSE
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then

act1 : result := db(roomType) \ bookedRoom

act2 : fetchCompleted := TRUE

end

Event ConnectionFailed̂=

when

grd1 : connection = Connection failure

grd2 : fetchCompleted = FALSE

then

act1 : result := ∅

act3 : connectionException := TRUE

end

Event Retrieve=̂

Refines Find

when

grd1 : fetchCompleted = TRUE∨connectionException = TRUE

with

rr : rr = result

then

act1 : searchResult : |((result = ∅ ∨ connectionException =
TRUE) ⇒ searchResult′ = No room)

∧ (result 6= ∅ ⇒ searchResult′ ∈ result)

act2 : findCompleted := TRUE

end

Event OutputForFind̂=

Refines OutputForFind

when

grd1 : findCompleted = TRUE

then

act2 : roomID := searchResult

act3 : ifAnyException := connectionException

end
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Event InputForReservê=

Refines InputForReserve

any

req

where

grd3 : req ∈ REQUESTS

grd4 : req = Reservation

grd2 : roomID 6= No room

then

act1 : inputForReserveCompleted := TRUE

end

Event Reservê=

Refines Reserve

any

req

where

grd5 : roomID 6= No room

grd2 : req ∈ REQUESTS

grd1 : req = Reservation

grd4 : inputForReserveCompleted = TRUE

then

act1 : reservedRoom := roomID

end

Event OutputForReservê=

Refines OutputForReserve

when

grd1 : reservedRoom 6= No room

then

act1 : reservationCompleted := TRUE

act2 : reservationID := roomID

end
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Event InputForCancellation̂=

Refines InputForCancellation

any

req

where

grd1 : req = Cancellation

grd2 : req ∈ REQUESTS

grd3 : reservationID 6= No room

grd4 : reservationCompleted = TRUE

then

act1 : inputForCancellationCompleted := TRUE

end

Event Cancel=̂

Refines Cancel

when

grd1 : inputForCancellationCompleted = TRUE

grd2 : reservationID 6= No room

then

act2 : roomCancelled := TRUE

end

Event OutputForCancellation̂=

Refines OutputForCancellation

when

grd1 : roomCancelled = TRUE

then

act1 : cancellationCompleted := TRUE

end

Event InputForPaŷ=

Refines InputForPay

any

38



req

where

grd5 : req ∈ REQUESTS

grd4 : req = Payment

grd1 : reservationCompleted = TRUE

grd2 : reservationID 6= No room

then

act1 : inputForPayCompleted := TRUE

end

Event NoPayment̂=

Refines NoPayment

when

grd1 : inputForPayCompleted = TRUE

grd3 : reservedRoom 6= No room

grd2 : cancellationCompleted = TRUE

then

act2 : paymentCompleted := TRUE

act1 : reservedRoom := No room

end

Event Pay=̂

Refines Pay

when

grd1 : inputForPayCompleted = TRUE

grd3 : reservedRoom 6= No room

grd2 : cancellationCompleted = FALSE

then

act1 : paidRoom := paidRoom ∪ {reservedRoom}

act2 : bookedRoom := bookedRoom ∪ {reservedRoom}

act3 : reservedRoom := No room

act4 : paymentCompleted := TRUE

act5 : result := result \ {reservedRoom}

end
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Event OutputForPaŷ=

Refines OutputForPay

when

grd1 : paymentCompleted = TRUE

then

act1 : sessionCompleted := TRUE

end

END
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