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Abstract

The theorem of Fraenkel and Simpson states that the maximmorber of distinct
squares that a word of lengthn can contain is less tham. This is based on
the fact that no more than two squares can have their lastrecmes starting at
the same position. In this paper we show that the maximum eumibthe last
occurrences of squares per position in a partial word coimgione hole ik,
wherek is the size of the alphabet. Moreover, we prove that the nuwitsistinct
squares in a partial word with one hole and of lengtis less thanin, regardless
of the size of the alphabet. For binary partial words, thiparpound can be
reduced t®3n.
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1 Introduction

In combinatorics on words, factors of the formu, i.e., squares can be studied
from two perspectives. On one hand, one may try to avoid gguay constructing
square-free words. A classical example of an infinite sgfraeeword over &-
letter alphabet is obtained from the famous Thue-Morse Whrdsing a certain
mapping; see [14, 15]. On the other hand, one may try to maeinhie number
of square factors in a word. The theorem of Fraenkel and Simptates that a
word of lengthn contains always less tham distinct squares [6]. A very short
proof for this and an improved upper bouvd— ©(log n) was given by llie in [9]
and [10]. However, based on the numerical evidence, theecamed bound is.

In this paper we consider squares in partial words, whichwanels with “do
not know”-symbolsc called holes. Here a square is a factor of the farm’,
wherew andw’ are compatible. Compatibility means that words of the same
length agree on each position which does not contain a haldiaPwords were
first introduced by Berstel and Boasson in [2]. The theory atipl words has
developed rapidly in recent years and many classical topicembinatorics on
words have been revisited for this generalization; seeq8{.example, the present
authors proved in [8] that there exist uncountably many itdisquare-free partial
words over a3-letter alphabet containing infinitely many holes. Notet tfta
square-freeness, we must allow unavoidable squarendoa for (some) letters
a. For other results on repetition-freeness in partial wosds [7] and [13].

In this paper our aim is to generalize the theorem of Fraeakdl Simpson
for partial words containing one hole. This problem wasadseinvestigated by
Blanchet-Sadrét al.in [4]. They proved that the number of distinct full word$
compatible with factors in a partial word with holes and of length increases
polynomially with respect té, wherek > 2 is the size of the alphabet. Moreover,
they showed that, for partial words with one hole, there mayrore than two
squares that have their last compatible occurrencesrgjatithe same position.
They also gave an intricate proof for the statement thataratiove described case
the hole must be in the shortest square.

A partial word containing one hole arid+ 1 squares whose last compatible
occurrences start at the first position was given in [4]. lct®a 3 we improve this
example by constructing a word wittk last compatible occurrences of squares
starting at position one. We also show that this bo2id maximal. In Section 4
we prove that if a position contains three last occurrendesjoares, then the
longest square must be twice as long as the shortest squaeecakollary, we get
a short proof for the result of Blanchet-Sadtial. stating that the hole must be in
the shortest square. In addition, our proof gives a new gaydhe original result
of Fraenkel and Simpson. Finally, our result implies thatrtiaximum number of
squares in a word with one hole4s, regardless of the size of the alphabet. For
binary partial words with one hole, we can decrease this #ooifn.
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2 Prdiminaries

We recall some notions and notation mainly from [2]. A ward= a a5 - - - a,
of lengthn over an alphabe# is a mappingw: {1,2,...,n} — A such that
w(i) = a;. The elements of4 are calledletters The length of a wordv is
denoted byw|, and the length of the empty woedis zero. The set of all finite
words including the empty word is denoted dy. Let alsoAt = A*\ {¢}. A
word v is afactor of a wordw (resp. gorefix asuffiy, if there existc andy in .A*
such thatw = zvy (resp.w = vy, w = zv). The prefix (resp. a suffix) ob of
lengthn is denoted byref, (w) (resp.suf, (w)). Thekth powerof a wordu # ¢
is the wordu* = pref,., (u”), whereu® denotes the infinite catenation of the
wordu with itself andk is a positive rational number such that|u| is an integer.
If £ is an integer, then the power is callediateger power A primitive word is a
word that is not an integer power of any other wordwlf= uv, thenu='w = v
is theleft quotientof w by w. If u is not a prefix ofw, thenu~'w is undefined.
Analogously, we define theght quotientwu—*.

A partial word v of length n over the alphabetd is a partial function
u: {1,2,...,n} — A. The domainD(u) is the set of positions€ {1,2,...,n}
such that(i) is defined. The set/ (u) = {1,2,...,n} \ D(u) is called the set
of holes If H(u) is empty, then is afull word. As for full words, we denote by
|lu| = n the length of a partial word. Let< be a symbol that does not belong
to A. For a partial word:, we define itscompanionto be the full wordu,, over
the augmented alphabét, = A U {¢} such thatu,(i) = u(i), if i € D(u), and
us(i) = o, otherwise. The se#l} corresponds to the set of finite partial words.
A partial wordu is said to becontainedin v (denoted byu C v) if |u| = |v],
D(u) € D(v) andu(i) = v(i) for all i € D(u). Two partial wordsu andv are
compatible(denoted byu T v) if there exists a (partial) word such that: C =
andv C z. In terms of companion words;, T v if and only if u.(i) = v,(7)
whenever, (i) # o andu, (i) # .

For partial wordsy andw, write last,,(v) = i if w = wjviug, Where|u,| =
1 — 1, v T v; andw is not compatible with a factor in,u, except the prefix. (If
no suchwv; exists, then letast,, (v) be undefined.) If defined, then is the last
compatible occurrencef v in w.

A squarein a partial word is a non-empty factor of the formuv” such that
w T w'. If such a square is a full word, then it is callefudl square The number
of distinct full squares compatible with the factors of at@mword w is denoted
by Sq(w):

Sq(w) = card{u* € A" | v* T v, v is a factor ofw}.

For each full square? taking part inSq(w), it suffices to consider the rightmost
occurrence of a factar that is compatible withi?. Moreover, let

sw(i) = card{u® € A" | last,(u®) = i}.
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As an example, consider the partial ward = abacbabaab with one hole,
H(w) = {4}. Herelast,,((aba)?) = 1 = last,((abaab)?). Also, (ab)? begins at
position 1, but(ab)? 1 obab, and therefordast,,((ab)?) = 4. Hences, (1) = 2.
Continuing we see thats, (1), s,(2),...,s.(jw|)) = (2,1,0,2,1,0,0,1,0,0)
and therefore we havgg(w) = Zyﬂl su(i) =T7.

Using the above notation we may state the theorem of FraamkeSimpson
as follows.

Theorem 1 ([6]). For any full wordw € A*, we haveSq(w) < 2|w)|.

Since Sq(w) = Z‘jﬂl sy (1) and no square can start from the last position, i.e.,
su(lw]) = 0, the theorem is a direct consequence of the following lenwanéch
was already proved in a slightly different form in [5]. SesalSection 8.1.5

in [12].

Lemma 1. For any wordw € A*, we haves,, (i) < 2fori=1,2,...,|w|.

We finish this section by stating three lemmata which will leeded later in
this article. We begin with a characterization for two contimg words. For the
proof, see, for example, [11].

Lemma 2. If zy = yx for full words = and y, then there exists a word and
integerss andt such thatr = 2* andy = 2'.

The second lemma, which was proved by Berstel and Boass@i, irefluces
the considerations of partial words to full words as in Lenitna

Lemma 3 ([2]). Letx be a partial word with at most one hole, and leaindv be
two (full) words. Ifz C uv andz C vu, thenuv = vu.

Full wordsu andwv areconjugatef there exist words: andy such that, = xy
andv = yx. The third lemma gives a characterization to conjugatesgusiword
equation. For the proof, see, for example, [11].

Lemma 4. Two wordsu andv are conjugate if and only if there exists a word
such thatuz = zv. Moreover, in this case there exist wordsand y such that
u=xy,v =yxandz = (zy)"z for some integen > 0.

3 Maximum number of last occurrences of squares

Let card(A) = k. In this section we show that, for partial words with one hole
the maximum number of last occurrences of squares staititng &ame position
is 2k. For a partial wordv and a letter: € .4, we denote byw(a) the full word
where the holes are replaced dayMost certainlyw C w(a).

Theorem 2. Letw be a partial word over4 such thatw contains only one hole.
Thens, (i) < 2k, wherek = |A|.



Proof. Suppose that,, (i) > 2k. Each square factarwith card(H (v)) = 1, say
v T u?, satisfiesv(a) = u? for a unique lette filling the single hole. By the
pigeon hole principle, there exists a lettek= A such thatw(a) contains more
than two last occurrences of squares starting at the positidhis contradicts
with Lemma 1. 0J

Next we construct recursively a partial woudsuch thats,, (1) = 2k. Let

A={ay,...,ax}. Letwy = oaga_1---a; and, forj =1,2,... k, set
Waj—1 = Wzj—2° w2j72(@j)7
-1 -1
Woj = Waj-1- (o UJijl)@j )

where the dots emphasize that the substitution is done prihei suffix part. For
instance, fork = 3, we havewo = <dasasal, W1 = <A30201010302071, Wy =
CA3090101A30201030201A10302.

One easily shows by induction thafay_; - - - a; is a suffix ofws;_,. Also,
sincew,;_; begins with a hole, the recursive rule with quotientsdgy is well-
defined. Notice that

waj—1(a;) = (waj—a(a;))® and  wy;(a;) = (wy_1(a;)a;*)*.
It is clear thatw = wyy, has a prefix compatible withyy; 1 (a;) = (w2;—2(a;))?,
and a prefix compatible withy,;(a;) = (ng_l(aj)aj‘l)? Therefore we have

Lemmab. Letw = wy,. Then, for eacly = 1,2,..., k, the squaresvy;_;(a;)
andwy;(a;) are prefixes ofv(a;).

The next lemma shows that the ab@kesquares do not occur laterin
Lemma 6. The full squarewv,;_;(a;) is not a factor ofw foranyj = 1,2,..., k.

Proof. By the definition, we have
Waj = Waj—o(Wa;—o(ay)) (0™ wa; o) (wa;—2(a;)a; ).

By induction, the set of letters occurring one position lpefany occurrence afy
iN wy; OF iNwq;_q is {0,ay,as,...,a;}. Hence,a;a; does not occur invg,;_o.
Sincewsy;_1(a;) = ajay - - -, the only possible beginning positions for the factor
waj_1(aj) Inwy; arel + 1, 20 and3l, wherel = |w,y;_»|. However, the factor of
length|w,;_1| = 2 at position] + 1 begins withws;_»(a;)ax, which is not a prefix
of wy;_1(a;). Consequentlyw,;_»(a;) does not occur anywhere in;, since the
positions2/ and3/ are two close to the end af;;.

Moreover,ws;_1(a;) does not occur iy, = wq;wsj(a;). Namely, the fac-
tor of length2/ starting at the positio?/ begins Withng_g(aj)(ng_Q(aj)aj‘l)ajH
and the factor of lengti/ starting at the positiol begins with(wzj,Q(aj)aj‘l)ajH.
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Neither of those are prefixes of,;_;(a;). Again, the other possible positions are
too close to the end of the word.

By the construction, we conclude inductively that everytda®f length 2/
in w = wy beginning with a;a;, has a prefix of the formws;_s(a;)ay,
Waj—z(a;)(waj—s(az)a; )b of (wy;_s(aj)a; )b, whereb € {aji1,aj40,. .. ar}.
None of these is a prefix ab,;_;(a;). Hence,w,;_1(a;) cannot be a factor of
w. [

Sincews,;_1(a;) is a prefix ofw,;(a;), we obtain the following corollary.
Corollary 1. The full squarew,;(a,) is not a factor ofw foranyj = 1,2, ... k.

Thus, the previous lemma and the corollary together impydisired result.
Theorem 3. For w = woy, We haves,, (1) = 2k.

Note that the above construction forgives an improvement of the example
in [4] containingk+1 last compatible occurrences of squares as prefixés=I2,
our construction gives the binary word of lengih

w = obaababaabbbaababaabbaababaabbbaababaa.
The full squares compatible with the prefixesuofre
wi(a) = (aba)’,
wo(a) = (abaab)?,
ws(b) = (bbaababaab)?,
wy(b) = (bbaababaabbbaababaa)?.

These squares do not occur laterinHences,,(1) = 4 = 2k. Note that here the
hole is in the first position. In general, by a result in [4] thole must be in the
shortest last compatible occurrence of a square starting/aénevers,, (i) > 2.
As another example, consider the word of lengfih

w' = abaabobaabbaabaabbbaabbabaabbbaabbaabaabbbaabb

Again s,,(1) = 4 and the full squares compatible with the prefixesudfare
(aba)?, (abaab)?, (abaabbbaabba)? and (abaabbbaabbaabaabbbaabb)®*. Now the
hole is in the last possible position, namely in the end ofsthartest last compat-
ible occurrence of a square starting at position one.

4 Distinct squaresin a partial word with one hole

In this section our goal is to estimate how many distinct sggi@an occur in a
partial word with one hole. We start by proving the followitgghnical lemma. In
the sequel, we denote

wi, j] = w(iw(i +1) - --w(j)
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for a wordw and integers and; with ¢ < j. The integer part of a real number
is denoted by z].

Lemma 7. Letvv’ be a prefix ofww’, wherev T v/, w T w’ such thajw| < 2|v|,
sayl = |w| — |v| < |v]. Assume thatw’ contains at most one hole and denote
by V' the full word compatible with both and«’. Then there are word& andZ

of lengthl such that

Zm 707y ifu(h) = owith1 < h < 1| |v|/1],
V=4 zmZ"Z  ifv'(h)=owithi+1<h<|v (1)
YA otherwise

wherem = |(h — 1)/l|, n is a non-negative integet; is a prefix ofZ, and there
exists a partial word> containing at most one hole and satisfying— Z and
2z C Z.

Proof. Let us first consider the case whergh) = o and1l < h < [[|v|/l].
Consider a non-negative integesuch thaik + 1)l < |v|. Sincev 1 v/, we have

o[kl + 1, (k+ 1)I] C [kl + 1, (k+ 1)1]. (2)

Moreover, sincé < |v|, the wordw’ begins inside/’ at the positior! + 1 and,
thereforew’'[kl+ 1, (k+ 1)} = v'[(k+ 1)l + 1, (k+2)I], if (k+2)l < |v| = |v].
Sincew T w', we havev[kl+1, (k+1)l] = wlkl+1, (k+1)]] C w'[kl+1, (k+1)I].
Hence, combining these facts, we obtain

vkl + 1, (k+ 1)) C V' [(k+ 1)+ 1, (k+2)I]. (3)

If (k+ 1) < |v| < (k+ 2)l, it is clear that (3) holds for prefixes of length
|v| — (k + 1)l of the considered words. Note that the relatooccurring in both
equations can be replaced by the identity relation wheng¥ér+ 1, (k + 1)I] is

a full word. Hence, applying (2) and (3) for different valugfsk, we conclude
thatV = o = Zm*1znZ,, wherem = [(h — 1)/1|, Z = v'[ml + 1, (m + 1)I],

z =wv[ml + 1, (m + 1){] and, we may choose

2_{ V[(m+ 1)+ 1, (m + 2)]] if (m+2)l < [v'],
S W4+ DI+ 1L )@ =1+ 1, (m+1)]]) otherwise

In the case where’(h) = ¢ andl < h < |v/|, we notice that instead of (2)
and (3) the following equations hold:

VIk+ DI+ 1, (k+2) Col(k+ 1)+ 1, (k+2)] 4)

and
V[(k+ 1)+ 1, (k+2)] Colkl+ 1, (k+ 1)I]. (5)
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Similarly to the first case, we conclude using (4) and (5) that v = ZmZ"Z,,
wherem = |(h—1)/l] > 1, Z =v[(m — 1)l + 1, ml],

Y [ml+ 1, (m+1)]] if (m+ 1)1 <[,
- (W [ml+ 1, W))W [|v/| = I+ 1,mi]) otherwise

and

5 { vfml + 1, (m + 1) if (m+ 1)l < vl
(v[ml + 1, |v|])(v]|v]| = 1+ 1,ml]) otherwise

If the hole occurs in[l||v] /1] +1, |v]], then seZ = v'[1,] and use (2) and (3)
with identity relation instead of to obtainl’ =" = 2"21. If the hole occurs in
v'[1,1], then set/ = v[1,1] and apply (4) and (5). If the woray’ is full, the result
is obvious. ]

Our next result concerns the lengths of squares startingeagdme position.
This theorem has a crucial role in the sequel. Namely,,ifi) > 2 for some
position: in w, then the theorem says that the suffixwofstarting at;i must be
quite long. Hence, the maximum value ©f(7) is dependent on how far the
position: is from the end of the word. This restricts the total number of distinct
squares compatible with the factors of a partial word.

Theorem 4. If three distinct full squares have their last compatiblewcences in
a partial word with one hole starting at the same positiomrtithe longest square
is at least twice as long as the shortest square.

Proof. Consider a partial word with one hole. Assume that threeglasords
wu', v’ andww’, whereu T o/, v T o', w T w',andfu| =p < |v| = ¢ < |w| =,
start at the same position in the word. Denotd By(resp.V'2, 1W?) the full word
that containsuu’ (resp. vv’, ww'). Assume also that/? (resp. V2, W?) is not
compatible with any factor occurring later in the word. Mawver, assume that
r < 2p, i.e.,r — p < p. Denote the position of the hole imv’ by h. We divide
the proof into three cases:

A.h¢g[l,r—p|, B.he[l,g—p|, C.helg—p+1,r—0pl.

Case A. Assume that ¢ [1,r — p|. Sincer — p < p < ¢, there exist words
Ull,r —p], V[1,r — p] andW[1,r — p|] and, by the assumption, these words are
equal tou[l,r —p]. Let X = U[1,r —p| = X; X5, whereX; = U[1, ¢ — p|. Since
V[1,r—p] C V[1,r—p] =U[l,r — p|], we have'[1,r — p| C X;X,. Similarly,
we also have/[1,r — p] C X; X, andw’'[1,r — p] C X;X,. Hencep'[1,r — p]
is contained both inX; X, and in X, .X;; see Figure 1. By Lemma 3, we have
XX, = X5X, and, by Lemma 2, there exists a full wordsuch that both¥;
and X, are integer powers df .



Figure 1: lllustrations of three partial squates, vv’ andww’ starting at the same
position and satisfyingu| = |v/| < |v] = |V/| < |w| = |w'] < |u?|.

Sincew’ starts inside’ at the position X,| + 1, we may use Lemma 7 and
we notice that in all cases of (1) the full wofid can be written in the form
(Xo)™ (XQ)”Xé, wherem andn are suitably chosen integet¥, = X X” and
there exists a partial word with one hole Eontalned in h&thand X2. Hence,
there is at most one position whel& and X, may differA. Moreover, Since&s
is an integer power of’, it follows that X, = Y* and X, = Y'YY/, where
i+j+1 =k and there exists a partial wogdvith one hole compatible with both
Y andY.

Now consider the word = suf}y(v). Let us denotd” = Y;Y,, Y = Y, Y,
andy = vy, Where|Y;| = |171\ = [yl = ¢ = [¢/|[Y|J]Y]. Since a partial word
y with only one hole satisfieg C Y;Y; andy C Y1Y2, we conclude that either
Y1 Y1 and the wordy, with one hole satisfieg, C Y, andy, C YQ orY2 Y,
and the wordy; with one hole satisfieg, cY andy; C YlA Hence, by the form
of V, we have three possibilities: (a)C Y2Y3, (b) z C Y2Y3, and (¢)z C Y5Y;.
On the other hand, sine€|[1,|X;|] C X; and X, is an integer power of’, we
havez C Y =Y Y5.

Suppose first that is a full word and consider the case (a); see Figure 2. Now
the fHII word z is equal toY,Y; = Y;Y, and we may use Lemma 4 to conclude
thatY, = 7,75, Y1 = (Z1Z,)" Z, for some integer, andY, = Z,Z,. However,
we know that there exists the woyd which is contained in botl??z 7175 and
Y, = Z,7Z;. By Lemma 3, this means that 7, = 7,7, and, by Lemma 2, there
exists a worcdy such that botl?, and Z, are mteger powers af. Moreover, it
follows thatY;, Y, = Ys, and consequentlyy” = Y are integer powers af.
Hence, also the wordg, X; andU are integer powers of this word. This means
that the wordvo'[1 + ||, 2p + |a|] € VV]1,2p] = U2 Thus,uv’ is not the last
compatible occurrence &f?, which is a contradiction.

If zisafullword, case (b) is symmetric to case (a). In case (e)mmediately
haveY;Y,; = Y3Y; and, by Lemma 2, both; andY; are powers of the same word.
This gives a contradiction the same way as above.

Suppose next that there is a holezni.e., v(h) = < for some positior.
Denotel = |[|v|/|X2|| andz = 23z, where|z;| = |Y;]|. Recall thatV =
(X5)™(X5)" X}, whereX, = Y andX, = YiVY7,
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Y, Yo Yy Y Yy Yy Yi

Figure 2: lllustration of case (a), wher¢, = (Y1Y5)3, Xy = (Y Y3)?, X, =
(V1Y2)(Y1Y2) and Xy = (Y1Y2)Y).

Assume first that the hole occurs in a non-empty partial werdSince| .X,|
and |v[l,q — |Y1]]| are multlples of|Y|, this means that > [|X,| and, by
Lemma 7, we obtaif/” = X” X;, wheren’ = m + n. Thus, this means that
Xy = Xg, Y=Y and, consequently, C Y5Y;. Since we have shown above that
alsoz C Y7Y,, we may use Lemma 3 and Lemma 2 to conclude Yhat, are
powers of some word. Consequently, the words, X, and X, are non- empty
powers ofa. Since the preflxX’ of Xy, = X2 must be of the form(Y,Y5)'Ys,
we conclude that als¥ is a power ofo. Thus,U = VX, ! is a power ofa and
there is a word compatible with? beginning at positiom + linwvd'. Thisis a
contradiction.

Finally, assume that the hole occurs:in If h > [| X,|, we get a contradiction
as above. However, it is now possible thate [(I — 1)|X3| + 1,1|X5]]. By
Lemma 7, this means th&t = sz')?;, wherem’ = m + n. Moreover,z;, must
be a suffix ofv[(I — 1)|X,| + 1,1|X5|] and X}, is the full wordz,. By the form
of V, we conclude that

v[(1 = 1)| X + 1,1 X)) € Xy = Y5, (6)
Hence, it follows that, C Y5. On the other hand, the proof of Lemma 7 gives
o[(L=1)|Xa| + 1,11 Xa|] € X = XLXV. 7)

Let us denoteX, = X,X/, where|X}| = |X}|. Recall thatX}, = z and
21| = |Y3]. Since the length of[(I — 1)|X,| + 1,1/ X5|] is a multiple of|Y|, the
hole occurring in the suffix, cannot occur irpreflyl‘(v[(l — 1| Xs| 4+ 1,1 Xs]])-
Therefore, it follows by (6) and (7) that = )?g = X} =Y. Hence, we have
shown thatz: = z,z; C Y5Y;. Since alsoz C Y;Y,, we use Lemma 3 and
Lemma 2 to conclude thaf;, Y5 and, consequently;, X, and .X; are powers of
some worch. Thus, the prefiX/[1, ¢ — |Y1|] = X3 must be a power af. Since
q — |Y1| > p, itfollows thatU = V[1, p] = o for some positive integet Recall
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thatv[p + 1,¢q] C X;, whereX; = «* for some positive integes. Hence, the
partial wordv|[1, plu[p + 1, q]v'[1, p] is contained i/ X, U = o'+, Thus, there
is a factor ofvv’ compatible withU/? = o2 starting at positioar + 1. Once again
we end up in a contradiction.

Case B. Assume that the hole occursirl, ¢ — p|]. Hence, we may denote
Ull,r — pl = X1Xp, V[I,r — p] = XX, and W17 — p] = X, X,, where

u[l, ¢ — p| is contained inX}, Xl andX1 Sinceu'[¢ + p+ 1,7 — p] = X, and

w'[l,q — p|] = X, it follows thatv’ [1,r—p| = X1 Xy = XoX,. By Lemma 4,
there existZ, and Z, such thatX, = lez, X1 = Iy andX2 = (Z1Zy)" 74
for some integer. Sinceu[l,q — p| C X; andu[l,q — p] C X1, it follows that
7 Zy = Zy 7, by Lemma 3. Hence, by Lemma 2, there exists a wiorslich that
X, = X, = Y*and X, = Y. Since there is only one hole m{l q— p| and
u[l,q — p| is contained in bothX; and X, we may writeX; = YiYYJ, where
1+ j+ 1 = k and there is a worg with one hole compatible with bott and?.

Using the proof of Lemma 7, we conclude that= X;”“)?g)?;, whereX,
and.X, are compatiblep: andn are integers, and the hole occursvim| Xs| +
1, (m + 1)[X5|]. Since the position of the hole inis at mosty — p = |X1], it
follows thatm|X| < |Xi[. Since|lX;| = 1X| = K|Y] and|X;| = 1X,| = 1|Y],
we have|Xm“X2| = (m+2)|Y| < (2l + k)|Y| = | XX, X,]|. Hence, the word
XX, is a prefix of![1,2r — g —p] = w[g —p+ 1,7 — plw/[l,r — p|] =
X, X, X, = Y2k, Since| X, | = |)A(2| = [|Y], it follows that X, = X, =Y'and
V = Y™Y;, wherer/ is an integer and” = Y1 Y.

As in the previous case, consider the woré sufy|(v) and denotd” = }71)72
andy = yyyo, where|Y1\ = \}71\ = |y1]. Recall thaty is a word with one hole
contained in both” andY Hence, the hole is either i ory,, and consequently,
we have eithet’ — Y1Y2 oy = Y1Y2 Sinceu’ [1 qg—pl=X; = YiYYiis a
suffix of V, there are three possibilities: (a)= V1Yo (b) z = V1 Ys (c)z =Y1Ys.
On the other hand, the structurelofimplies that: = Y5Y; and, as in Case A, all
the subcases (a)—(c) lead to a contradiction.

Case C. Assume that the hole occursing — p + 1, — p]. Now we have
Ull,r —p] = X1Xo, V[Lr — p] = X1.X, andW[l r—pl = X1 X,, where
ulg—p+1,r—plis contained inXs, X, andX,. Sinceu/ [q+p+1,r—p] =X,
andw'[1, ¢ —p] = X3, it follows thatv'[1, r — p] XX, = X, X, By Lemma 4,
there existsZ; and Z, such thatX, = 7, 7,, Xg = ZyZyand X, = (Z12,)" 7,
for some integer. Sinceu[g — p + 1,7 — p] is contained inX, = Z;Z, and
X, = Z,7,, we conclude by Lemma 3 and Lemma 2 tigtand X, are integer
powers of some full word”. We get a contradiction exactly the same way as in

Case A.
O

As a corollary, we get the following result.
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Corollary 2 ([4]). If three distinct squares have their last compatible ocenoes
in a partial word with one hole starting at the same posititren the hole must
be in the shortest square.

Proof. Let z be a partial word with one hole. Assume that, vv" andww’, where
uTu',v 1o andw T w', begin at the same position in Let these partial words
be the last compatible occurrences of three distinct fulbsgs inz. Assume also
thatuu’ is a full word, i.e.,u = «’. This implies thajw| < |u?| as otherwise a
word compatible withu? would appear later in the word. By Theorem 4, this is
impossible. Hence, the hole must be in the shortest square. O

Moreover, our proof for Theorem 4 gives a new proof for thgioal theorem
of Fraenkel and Simpson (Theorem 1). Note that the proof eacoimsiderably
shortened and simplified if the words do not contain any holes

Next we use Theorem 4 to show that the number of distinct eguara partial
word with one hole does not depend on the size of the alphali@s may be
surprising since the maximum ef,(¢) is dependent on the alphabet size as was
shown in the previous section.

Theorem 5. For any partial wordw with one hole, we havgq(w) < 4|w|.

Proof. Suppose thatv(j) = ¢ and denotex = |w|. If s,(i) = 3, theni < j
and the last compatible occurrence of the shortest squaséaontain a hole by
Corollary 2. Hence, the length of the shortest square isest je— i + 1. By
Theorem 4, the suffix oy beginning after the hole must be at least as long as the
shortest square. Thus, we must have j > j — 1 + 4. If s,(i) = 4, Theorem 4
does not give much information as already the second lasggstre is twice as
long as the second shortest. Howevey, ifi) = 5, we may consider only the three
largest squares, where the shortest one is ofXize- 1 + 7). Hence, the longest
square must be twice as long as the shortest and, thereferg,> 3(; — 1 + ).
By induction, we conclude that—; > (2*~!—1)(j—i+1) wheneves,, (i) = 2k.

In other words, we have an estimatg(i) < 2k, where

n—1t+1
k=1+1 — . 8
+Og2<j—i+1) (8)

Note that here we assume that the size of the alphabet isdamegh. Hence, (8)
gives us an upper bound on the number of distinct squares in

J i
Sq(w) < 22 <1 + log, <7;_+++1)) +2(n—j—1).
i=1

Here the last terr2(n — j — 1) corresponds to the positions after the hole. There,
we haves,, (i) < 2fori=j,j+1,...,n—1by Theorem 1, and the last position
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cannot contain any squares. Using the natural logarithmve may write

J
)< (Zlnn—z+ —Zln(j—i+1)> +2n —2.
n
=1

Sinceln(n — i+ 1) andln(j — i + 1) are strictly decreasing iy we may estimate
thatSq(w) < f(j), where

J Jj—1
f(j):2(1nn+/ln(n—x+1)dx—/ ln(j—x)dx)+2n—2.
1 0
By integrating, we obtain
fG)=2mn—(m—-—j+1)Inn—j+1)+nlnn—jlnj)+2n—2.

The maximum value of () in the interval[1,n — 2] is obtained at the critical
pointj = (n +1)/2, where

I+n n 2
f(5) =4n+ 3 In < ) <4n 5

Note that ifj > n—2, thenSq(w) = 2n. Hence, we have proved thég(w) < 4n
regardless of the size of the alphabet. O

Of course, we get better estimates if the size of the alphabestricted. As a
final theorem, let us consider binary words.

Theorem 6. For any binary partial wordw containing one hole, we hag(w) <
3n.

Proof. Suppose thatv(j) = ¢. Sincew is a binary partial word, Theorem 2
implies thats,, (i) < 4 for every position. On the other hand, Theorem 4 restricts
the number of position, wherg, (i) > 2. If j > n/2, then these positions are in
the interval2j — n + 1, j]. Hence,(n — j) positions may have,,(j) = 4. This
gives us

Sq(w) < 4(n— j) +2j = 4n— 2j < 3n, )

sincej € [n/2,n]. Similarly, if j < n/2, thens, (i) = 4 is possible only for
position: in the interval[1, j]. Thus, forj € [1,n/2), we obtain

Sq(w) <4j+2(n—7) =2n+2j < 3n. (10)
Hence, by inequalities (9) and (10), the claim follows. O
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