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Abstract

The theorem of Fraenkel and Simpson states that the maximum number of distinct
squares that a wordw of lengthn can contain is less than2n. This is based on
the fact that no more than two squares can have their last occurrences starting at
the same position. In this paper we show that the maximum number of the last
occurrences of squares per position in a partial word containing one hole is2k,
wherek is the size of the alphabet. Moreover, we prove that the number of distinct
squares in a partial word with one hole and of lengthn is less than4n, regardless
of the size of the alphabet. For binary partial words, this upper bound can be
reduced to3n.
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1 Introduction

In combinatorics on words, factors of the formww, i.e., squares can be studied
from two perspectives. On one hand, one may try to avoid squares by constructing
square-free words. A classical example of an infinite square-free word over a3-
letter alphabet is obtained from the famous Thue-Morse word[1] using a certain
mapping; see [14, 15]. On the other hand, one may try to maximize the number
of square factors in a word. The theorem of Fraenkel and Simpson states that a
word of lengthn contains always less than2n distinct squares [6]. A very short
proof for this and an improved upper bound2n−Θ(log n) was given by Ilie in [9]
and [10]. However, based on the numerical evidence, the conjectured bound isn.

In this paper we consider squares in partial words, which arewords with “do
not know”-symbols⋄ called holes. Here a square is a factor of the formww′,
wherew and w′ are compatible. Compatibility means that words of the same
length agree on each position which does not contain a hole. Partial words were
first introduced by Berstel and Boasson in [2]. The theory of partial words has
developed rapidly in recent years and many classical topicsin combinatorics on
words have been revisited for this generalization; see [3].For example, the present
authors proved in [8] that there exist uncountably many infinite square-free partial
words over a3-letter alphabet containing infinitely many holes. Note that for
square-freeness, we must allow unavoidable squaresa⋄ and⋄a for (some) letters
a. For other results on repetition-freeness in partial words, see [7] and [13].

In this paper our aim is to generalize the theorem of Fraenkeland Simpson
for partial words containing one hole. This problem was already investigated by
Blanchet-Sadriet al. in [4]. They proved that the number of distinct full wordsu2

compatible with factors in a partial word withh holes and of lengthn increases
polynomially with respect tok, wherek ≥ 2 is the size of the alphabet. Moreover,
they showed that, for partial words with one hole, there may be more than two
squares that have their last compatible occurrences starting at the same position.
They also gave an intricate proof for the statement that in the above described case
the hole must be in the shortest square.

A partial word containing one hole andk + 1 squares whose last compatible
occurrences start at the first position was given in [4]. In Section 3 we improve this
example by constructing a word with2k last compatible occurrences of squares
starting at position one. We also show that this bound2k is maximal. In Section 4
we prove that if a position contains three last occurrences of squares, then the
longest square must be twice as long as the shortest square. As a corollary, we get
a short proof for the result of Blanchet-Sadriet al. stating that the hole must be in
the shortest square. In addition, our proof gives a new prooffor the original result
of Fraenkel and Simpson. Finally, our result implies that the maximum number of
squares in a word with one hole is4n, regardless of the size of the alphabet. For
binary partial words with one hole, we can decrease this bound to3n.
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2 Preliminaries

We recall some notions and notation mainly from [2]. A wordw = a1a2 · · ·an

of lengthn over an alphabetA is a mappingw : {1, 2, . . . , n} → A such that
w(i) = ai. The elements ofA are calledletters. The length of a wordw is
denoted by|w|, and the length of the empty wordε is zero. The set of all finite
words including the empty word is denoted byA∗. Let alsoA+ = A∗ \ {ε}. A
wordv is afactor of a wordw (resp. aprefix, asuffix), if there existx andy in A∗

such thatw = xvy (resp.w = vy, w = xv). The prefix (resp. a suffix) ofw of
lengthn is denoted byprefn(w) (resp.sufn(w)). Thekth powerof a wordu 6= ε
is the worduk = prefk·|u|(u

ω), whereuω denotes the infinite catenation of the
wordu with itself andk is a positive rational number such thatk · |u| is an integer.
If k is an integer, then the power is called aninteger power. A primitiveword is a
word that is not an integer power of any other word. Ifw = uv, thenu−1w = v
is the left quotientof w by u. If u is not a prefix ofw, thenu−1w is undefined.
Analogously, we define theright quotientwu−1.

A partial word u of length n over the alphabetA is a partial function
u : {1, 2, . . . , n} → A. The domainD(u) is the set of positionsi ∈ {1, 2, . . . , n}
such thatu(i) is defined. The setH(u) = {1, 2, . . . , n} \ D(u) is called the set
of holes. If H(u) is empty, thenu is a full word. As for full words, we denote by
|u| = n the length of a partial wordu. Let ⋄ be a symbol that does not belong
to A. For a partial wordu, we define itscompanionto be the full wordu⋄ over
the augmented alphabetA⋄ = A ∪ {⋄} such thatu⋄(i) = u(i), if i ∈ D(u), and
u⋄(i) = ⋄, otherwise. The setA∗

⋄ corresponds to the set of finite partial words.
A partial wordu is said to becontainedin v (denoted byu ⊂ v) if |u| = |v|,
D(u) ⊆ D(v) andu(i) = v(i) for all i ∈ D(u). Two partial wordsu andv are
compatible(denoted byu ↑ v) if there exists a (partial) wordz such thatu ⊂ z
andv ⊂ z. In terms of companion words,u ↑ v if and only if u⋄(i) = v⋄(i)
wheneveru⋄(i) 6= ⋄ andv⋄(i) 6= ⋄.

For partial wordsv andw, write lastw(v) = i if w = u1v1u2, where|u1| =
i − 1, v ↑ v1 andv is not compatible with a factor inv1u2 except the prefix. (If
no suchv1 exists, then letlastw(v) be undefined.) If defined, thenv1 is the last
compatible occurrenceof v in w.

A squarein a partial word is a non-empty factor of the formww′ such that
w ↑ w′. If such a square is a full word, then it is called afull square. The number
of distinct full squares compatible with the factors of a partial wordw is denoted
by Sq(w):

Sq(w) = card{u2 ∈ A+ | u2 ↑ v, v is a factor ofw}.

For each full squareu2 taking part inSq(w), it suffices to consider the rightmost
occurrence of a factorv that is compatible withu2. Moreover, let

sw(i) = card{u2 ∈ A+ | lastw(u2) = i}.
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As an example, consider the partial wordw = aba⋄babaab with one hole,
H(w) = {4}. Herelastw((aba)2) = 1 = lastw((abaab)2). Also, (ab)2 begins at
position 1, but(ab)2 ↑ ⋄bab, and thereforelastw((ab)2) = 4. Hencesw(1) = 2.
Continuing we see that(sw(1), sw(2), . . . , sw(|w|)) = (2, 1, 0, 2, 1, 0, 0, 1, 0, 0)

and therefore we haveSq(w) =
∑|w|

i=1
sw(i) = 7.

Using the above notation we may state the theorem of Fraenkeland Simpson
as follows.

Theorem 1 ([6]). For any full wordw ∈ A∗, we haveSq(w) < 2|w|.

SinceSq(w) =
∑|w|

i=1
sw(i) and no square can start from the last position, i.e.,

sw(|w|) = 0, the theorem is a direct consequence of the following lemma,which
was already proved in a slightly different form in [5]. See also Section 8.1.5
in [12].

Lemma 1. For any wordw ∈ A∗, we havesw(i) ≤ 2 for i = 1, 2, . . . , |w|.

We finish this section by stating three lemmata which will be needed later in
this article. We begin with a characterization for two commuting words. For the
proof, see, for example, [11].

Lemma 2. If xy = yx for full words x and y, then there exists a wordz and
integerss andt such thatx = zs andy = zt.

The second lemma, which was proved by Berstel and Boasson in [2], reduces
the considerations of partial words to full words as in Lemma2.

Lemma 3 ([2]). Letx be a partial word with at most one hole, and letu andv be
two (full) words. Ifx ⊂ uv andx ⊂ vu, thenuv = vu.

Full wordsu andv areconjugateif there exist wordsx andy such thatu = xy
andv = yx. The third lemma gives a characterization to conjugates using a word
equation. For the proof, see, for example, [11].

Lemma 4. Two wordsu andv are conjugate if and only if there exists a wordz
such thatuz = zv. Moreover, in this case there exist wordsx and y such that
u = xy, v = yx andz = (xy)nx for some integern ≥ 0.

3 Maximum number of last occurrences of squares

Let card(A) = k. In this section we show that, for partial words with one hole,
the maximum number of last occurrences of squares starting at the same position
is 2k. For a partial wordw and a lettera ∈ A, we denote byw(a) the full word
where the holes are replaced bya. Most certainlyw ⊂ w(a).

Theorem 2. Let w be a partial word overA such thatw contains only one hole.
Thensw(i) ≤ 2k, wherek = |A|.
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Proof. Suppose thatsw(i) > 2k. Each square factorv with card(H(v)) = 1, say
v ↑ u2, satisfiesv(a) = u2 for a unique lettera filling the single hole. By the
pigeon hole principle, there exists a lettera ∈ A such thatw(a) contains more
than two last occurrences of squares starting at the position i. This contradicts
with Lemma 1.

Next we construct recursively a partial wordw such thatsw(1) = 2k. Let
A = {a1, . . . , ak}. Let w0 = ⋄akak−1 · · ·a1 and, forj = 1, 2, . . . , k, set

w2j−1 = w2j−2 · w2j−2(aj),

w2j = w2j−1 · (⋄
−1w2j−1)a

−1

j ,

where the dots emphasize that the substitution is done only in the suffix part. For
instance, fork = 3, we havew0 = ⋄a3a2a1, w1 = ⋄a3a2a1a1a3a2a1, w2 =
⋄a3a2a1a1a3a2a1a3a2a1a1a3a2.

One easily shows by induction thatakak−1 · · ·aj is a suffix ofw2j−1. Also,
sincew2j−1 begins with a hole, the recursive rule with quotients forw2j is well-
defined. Notice that

w2j−1(aj) = (w2j−2(aj))
2 and w2j(aj) = (w2j−1(aj)a

−1

j )2.

It is clear thatw = w2k has a prefix compatible withw2j−1(aj) = (w2j−2(aj))
2,

and a prefix compatible withw2j(aj) = (w2j−1(aj)a
−1

j )2. Therefore we have

Lemma 5. Let w = w2k. Then, for eachj = 1, 2, . . . , k, the squaresw2j−1(aj)
andw2j(aj) are prefixes ofw(aj).

The next lemma shows that the above2k squares do not occur later inw.

Lemma 6. The full squarew2j−1(aj) is not a factor ofw for anyj = 1, 2, . . . , k.

Proof. By the definition, we have

w2j = w2j−2(w2j−2(aj))(⋄
−1w2j−2)(w2j−2(aj)a

−1

j ).

By induction, the set of letters occurring one position before any occurrence ofak

in w2j or in w2j−1 is {⋄, a1, a2, . . . , aj}. Hence,ajak does not occur inw2j−2.
Sincew2j−1(aj) = ajak · · · , the only possible beginning positions for the factor
w2j−1(aj) in w2j arel + 1, 2l and3l, wherel = |w2j−2|. However, the factor of
length|w2j−1| = 2l at positionl+1 begins withw2j−2(aj)ak, which is not a prefix
of w2j−1(aj). Consequently,w2j−2(aj) does not occur anywhere inw2j , since the
positions2l and3l are two close to the end ofw2j .

Moreover,w2j−1(aj) does not occur inw2j+1 = w2jw2j(aj). Namely, the fac-
tor of length2l starting at the position2l begins withw2j−2(aj)(w2j−2(aj)a

−1

j )aj+1

and the factor of length2l starting at the position3l begins with(w2j−2(aj)a
−1

j )aj+1.
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Neither of those are prefixes ofw2j−1(aj). Again, the other possible positions are
too close to the end of the word.

By the construction, we conclude inductively that every factor of length2l
in w = w2k beginning with ajak has a prefix of the formw2j−2(aj)ak,
w2j−2(aj)(w2j−2(aj)a

−1

j )b or (w2j−2(aj)a
−1

j )b, whereb ∈ {aj+1, aj+2, . . . ak}.
None of these is a prefix ofw2j−1(aj). Hence,w2j−1(aj) cannot be a factor of
w.

Sincew2j−1(aj) is a prefix ofw2j(aj), we obtain the following corollary.

Corollary 1. The full squarew2j(aj) is not a factor ofw for anyj = 1, 2, . . . , k.

Thus, the previous lemma and the corollary together imply the desired result.

Theorem 3. For w = w2k, we havesw(1) = 2k.

Note that the above construction forw gives an improvement of the example
in [4] containingk+1 last compatible occurrences of squares as prefixes. Ifk = 2,
our construction gives the binary word of length38:

w = ⋄baababaabbbaababaabbaababaabbbaababaa.

The full squares compatible with the prefixes ofw are

w1(a) = (aba)2,

w2(a) = (abaab)2,

w3(b) = (bbaababaab)2,

w4(b) = (bbaababaabbbaababaa)2 .

These squares do not occur later inw. Hence,sw(1) = 4 = 2k. Note that here the
hole is in the first position. In general, by a result in [4], the hole must be in the
shortest last compatible occurrence of a square starting ati wheneversw(i) > 2.
As another example, consider the word of length46:

w′ = abaab⋄baabbaabaabbbaabbabaabbbaabbaabaabbbaabb

Again sw(1) = 4 and the full squares compatible with the prefixes ofw′ are
(aba)2, (abaab)2, (abaabbbaabba)2 and (abaabbbaabbaabaabbbaabb)2 . Now the
hole is in the last possible position, namely in the end of theshortest last compat-
ible occurrence of a square starting at position one.

4 Distinct squares in a partial word with one hole

In this section our goal is to estimate how many distinct squares can occur in a
partial word with one hole. We start by proving the followingtechnical lemma. In
the sequel, we denote

w[i, j] = w(i)w(i + 1) · · ·w(j)
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for a wordw and integersi andj with i < j. The integer part of a real numberx
is denoted by⌊x⌋.

Lemma 7. Let vv′ be a prefix ofww′, wherev ↑ v′, w ↑ w′ such that|w| < 2|v|,
sayl = |w| − |v| < |v|. Assume thatww′ contains at most one hole and denote
byV the full word compatible with bothv andv′. Then there are wordsZ andẐ
of lengthl such that

V =






Zm+1ẐnẐ1 if v(h) = ⋄ with 1 ≤ h ≤ l
⌊
|v|/l

⌋
,

ZmẐnẐ1 if v′(h) = ⋄ with l + 1 ≤ h ≤ |v|,

ẐnẐ1 otherwise,

(1)

wherem = ⌊(h− 1)/l⌋, n is a non-negative integer,̂Z1 is a prefix ofẐ, and there
exists a partial wordz containing at most one hole and satisfyingz ⊂ Z and
z ⊂ Ẑ.

Proof. Let us first consider the case wherev(h) = ⋄ and 1 ≤ h ≤ l⌊|v|/l⌋.
Consider a non-negative integerk such that(k + 1)l ≤ |v|. Sincev ↑ v′, we have

v[kl + 1, (k + 1)l] ⊂ v′[kl + 1, (k + 1)l]. (2)

Moreover, sincel < |v|, the wordw′ begins insidev′ at the positionl + 1 and,
therefore,w′[kl +1, (k +1)l] = v′[(k +1)l +1, (k +2)l], if (k +2)l ≤ |v′| = |v|.
Sincew ↑ w′, we havev[kl+1, (k+1)l] = w[kl+1, (k+1)l] ⊂ w′[kl+1, (k+1)l].
Hence, combining these facts, we obtain

v[kl + 1, (k + 1)l] ⊂ v′[(k + 1)l + 1, (k + 2)l]. (3)

If (k + 1)l < |v| < (k + 2)l, it is clear that (3) holds for prefixes of length
|v| − (k + 1)l of the considered words. Note that the relation⊂ occurring in both
equations can be replaced by the identity relation wheneverv[kl + 1, (k + 1)l] is
a full word. Hence, applying (2) and (3) for different valuesof k, we conclude
thatV = v′ = Zm+1ẐnẐ1, wherem = ⌊(h − 1)/l⌋, Z = v′[ml + 1, (m + 1)l],
z = v[ml + 1, (m + 1)l] and, we may choose

Ẑ =

{
v′[(m + 1)l + 1, (m + 2)l] if (m + 2)l ≤ |v′|,
(v′[(m + 1)l + 1, |v′|])(v′[|v′| − l + 1, (m + 1)l]) otherwise.

In the case wherev′(h) = ⋄ and l ≤ h ≤ |v′|, we notice that instead of (2)
and (3) the following equations hold:

v′[(k + 1)l + 1, (k + 2)l] ⊂ v[(k + 1)l + 1, (k + 2)l] (4)

and
v′[(k + 1)l + 1, (k + 2)l] ⊂ v[kl + 1, (k + 1)l]. (5)
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Similarly to the first case, we conclude using (4) and (5) thatV = v = ZmẐnẐ1,
wherem = ⌊(h − 1)/l⌋ ≥ 1, Z = v[(m − 1)l + 1, ml],

z =

{
v′[ml + 1, (m + 1)l] if (m + 1)l ≤ |v′|,
(v′[ml + 1, |v′|])(v′[|v′| − l + 1, ml]) otherwise.

and

Ẑ =

{
v[ml + 1, (m + 1)l] if (m + 1)l ≤ |v|,
(v[ml + 1, |v|])(v[|v| − l + 1, ml]) otherwise.

If the hole occurs inv[l⌊|v|/l⌋+1, |v|], then set̂Z = v′[1, l] and use (2) and (3)
with identity relation instead of⊂ to obtainV = v′ = ẐnẐ1. If the hole occurs in
v′[1, l], then set̂Z = v[1, l] and apply (4) and (5). If the wordvv′ is full, the result
is obvious.

Our next result concerns the lengths of squares starting at the same position.
This theorem has a crucial role in the sequel. Namely, ifsw(i) > 2 for some
positioni in w, then the theorem says that the suffix ofw starting ati must be
quite long. Hence, the maximum value ofsw(i) is dependent on how far the
positioni is from the end of the wordw. This restricts the total number of distinct
squares compatible with the factors of a partial word.

Theorem 4. If three distinct full squares have their last compatible occurrences in
a partial word with one hole starting at the same position, then the longest square
is at least twice as long as the shortest square.

Proof. Consider a partial word with one hole. Assume that three partial words
uu′, vv′ andww′, whereu ↑ u′, v ↑ v′, w ↑ w′, and|u| = p < |v| = q < |w| = r,
start at the same position in the word. Denote byU2 (resp.V 2, W 2) the full word
that containsuu′ (resp. vv′, ww′). Assume also thatU2 (resp. V 2, W 2) is not
compatible with any factor occurring later in the word. Moreover, assume that
r < 2p, i.e.,r − p < p. Denote the position of the hole inww′ by h. We divide
the proof into three cases:

A. h 6∈ [1, r − p], B. h ∈ [1, q − p], C. h ∈ [q − p + 1, r − p].

Case A. Assume thath 6∈ [1, r − p]. Sincer − p < p < q, there exist words
U [1, r − p], V [1, r − p] andW [1, r − p] and, by the assumption, these words are
equal tou[1, r−p]. LetX = U [1, r−p] = X1X2, whereX1 = U [1, q−p]. Since
v′[1, r − p] ⊂ V [1, r − p] = U [1, r − p], we havev′[1, r − p] ⊂ X1X2. Similarly,
we also haveu′[1, r − p] ⊂ X1X2 andw′[1, r − p] ⊂ X1X2. Hence,v′[1, r − p]
is contained both inX1X2 and inX2X1; see Figure 1. By Lemma 3, we have
X1X2 = X2X1 and, by Lemma 2, there exists a full wordY such that bothX1

andX2 are integer powers ofY .
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u u
′

v v
′

w w
′

X1 X1

X1

X2 X2

X2

Figure 1: Illustrations of three partial squaresuu′, vv′ andww′ starting at the same
position and satisfying|u| = |u′| < |v| = |v′| < |w| = |w′| < |u2|.

Sincew′ starts insidev′ at the position|X2| + 1, we may use Lemma 7 and
we notice that in all cases of (1) the full wordV can be written in the form
(X2)

m(X̂2)
nX̂ ′

2, wherem andn are suitably chosen integers,̂X2 = X̂ ′
2X̂

′′
2 and

there exists a partial word with one hole contained in bothX2 andX̂2. Hence,
there is at most one position whereX2 andX̂2 may differ. Moreover, sinceX2

is an integer power ofY , it follows that X2 = Y k and X̂2 = Y iŶ Y j , where
i+ j +1 = k and there exists a partial wordy with one hole compatible with both
Y andŶ .

Now consider the wordz = suf |Y |(v). Let us denoteY = Y1Y2, Ŷ = Ŷ1Ŷ2

andy = y1y2, where|Y1| = |Ŷ1| = |y1| = q − ⌊q/|Y |⌋|Y |. Since a partial word
y with only one hole satisfiesy ⊂ Y1Y2 andy ⊂ Ŷ1Ŷ2, we conclude that either
Ŷ1 = Y1 and the wordy2 with one hole satisfiesy2 ⊂ Y2 andy2 ⊂ Ŷ2 or Ŷ2 = Y2

and the wordy1 with one hole satisfiesy1 ⊂ Y1 andy1 ⊂ Ŷ1. Hence, by the form
of V , we have three possibilities: (a)z ⊂ Ŷ2Y1, (b) z ⊂ Y2Ŷ1, and (c)z ⊂ Y2Y1.
On the other hand, sinceu′[1, |X1|] ⊂ X1 andX1 is an integer power ofY , we
havez ⊂ Y = Y1Y2.

Suppose first thatz is a full word and consider the case (a); see Figure 2. Now
the full word z is equal toŶ2Y1 = Y1Y2 and we may use Lemma 4 to conclude
that Ŷ2 = Z1Z2, Y1 = (Z1Z2)

rZ1 for some integerr, andY2 = Z2Z1. However,
we know that there exists the wordy2 which is contained in botĥY2 = Z1Z2 and
Y2 = Z2Z1. By Lemma 3, this means thatZ1Z2 = Z2Z1 and, by Lemma 2, there
exists a wordα such that bothZ1 andZ2 are integer powers ofα. Moreover, it
follows thatY1, Y2 = Ŷ2, and consequently,Y = Ŷ are integer powers ofα.
Hence, also the wordsV , X1 andU are integer powers of this word. This means
that the wordvv′[1 + |α|, 2p + |α|] ⊂ V V [1, 2p] = U2. Thus,uu′ is not the last
compatible occurrence ofU2, which is a contradiction.

If z is a full word, case (b) is symmetric to case (a). In case (c), we immediately
haveY1Y2 = Y2Y1 and, by Lemma 2, bothY1 andY2 are powers of the same word.
This gives a contradiction the same way as above.

Suppose next that there is a hole inz, i.e., v(h) = ⋄ for some positionh.
Denotel = ⌊|v|/|X2|⌋ and z = z2z1, where |z1| = |Y1|. Recall thatV =

(X2)
m(X̂2)

nX̂ ′
2, whereX2 = Y k andX̂2 = Y iŶ Y j .
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Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2 Y1 Y2

X1 X2

· · · · · ·

z

v v
′

· · ·

Y1 Ŷ2 Y1 Y2 Y1 Ŷ2 Y1

V

Figure 2: Illustration of case (a), whereX1 = (Y1Y2)
3, X2 = (Y1Y2)

2, X̂2 =

(Y1Ŷ2)(Y1Y2) andX̂ ′
2 = (Y1Ŷ2)Y1.

Assume first that the hole occurs in a non-empty partial wordz1. Since|X2|
and |v[1, q − |Y1|]| are multiples of|Y |, this means thath > l|X2| and, by
Lemma 7, we obtainV = X̂n′

2 X̂ ′
2, wheren′ = m + n. Thus, this means that

X2 = X̂2, Y = Ŷ and, consequently,z ⊂ Y2Y1. Since we have shown above that
alsoz ⊂ Y1Y2, we may use Lemma 3 and Lemma 2 to conclude thatY1, Y2 are
powers of some wordα. Consequently, the wordsY , X2 andX1 are non-empty
powers ofα. Since the prefixX̂ ′

2 of X2 = X̂2 must be of the form(Y1Y2)
iY1,

we conclude that alsoV is a power ofα. Thus,U = V X−1

1 is a power ofα and
there is a word compatible withU2 beginning at positionα + 1 in vv′. This is a
contradiction.

Finally, assume that the hole occurs inz2. If h > l|X2|, we get a contradiction
as above. However, it is now possible thath ∈ [(l − 1)|X2| + 1, l|X2|]. By
Lemma 7, this means thatV = Xm′

2 X̂ ′
2, wherem′ = m + n. Moreover,z2 must

be a suffix ofv[(l − 1)|X2| + 1, l|X2|] andX̂ ′
2 is the full wordz1. By the form

of V , we conclude that

v[(l − 1)|X2| + 1, l|X2|] ⊂ X2 = Y k. (6)

Hence, it follows thatz2 ⊂ Y2. On the other hand, the proof of Lemma 7 gives

v[(l − 1)|X2| + 1, l|X2|] ⊂ X̂2 = X̂ ′
2X̂

′′
2 . (7)

Let us denoteX2 = X ′
2X

′′
2 , where |X ′

2| = |X̂ ′
2|. Recall thatX̂ ′

2 = z1 and
|z1| = |Y1|. Since the length ofv[(l − 1)|X2| + 1, l|X2|] is a multiple of|Y |, the
hole occurring in the suffixz2 cannot occur inpref |Y1|(v[(l − 1)|X2| + 1, l|X2|]).

Therefore, it follows by (6) and (7) thatz1 = X̂ ′
2 = X ′

2 = Y1. Hence, we have
shown thatz = z2z1 ⊂ Y2Y1. Since alsoz ⊂ Y1Y2, we use Lemma 3 and
Lemma 2 to conclude thatY1, Y2 and, consequently,Y , X2 andX1 are powers of
some wordα. Thus, the prefixV [1, q − |Y1|] = Xm′

2 must be a power ofα. Since
q − |Y1| ≥ p, it follows thatU = V [1, p] = αt for some positive integert. Recall
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that v[p + 1, q] ⊂ X1, whereX1 = αs for some positive integers. Hence, the
partial wordv[1, p]v[p + 1, q]v′[1, p] is contained inUX1U = αt+s+t. Thus, there
is a factor ofvv′ compatible withU2 = α2t starting at positionα + 1. Once again
we end up in a contradiction.

Case B. Assume that the hole occurs inu[1, q − p]. Hence, we may denote
U [1, r − p] = X1X2, V [1, r − p] = X̃1X2 andW [1, r − p] = X̂1X2, where
u[1, q − p] is contained inX1, X̃1 andX̂1. Sinceu′[q + p + 1, r − p] = X2 and
w′[1, q − p] = X̂1, it follows thatv′[1, r − p] = X̃1X2 = X2X̂1. By Lemma 4,
there existZ1 andZ2 such thatX̃1 = Z1Z2, X̂1 = Z2Z1 andX2 = (Z1Z2)

rZ1

for some integerr. Sinceu[1, q − p] ⊂ X̃1 andu[1, q − p] ⊂ X̂1, it follows that
Z1Z2 = Z2Z1 by Lemma 3. Hence, by Lemma 2, there exists a wordY such that
X̃1 = X̂1 = Y k andX2 = Y l. Since there is only one hole inu[1, q − p] and
u[1, q − p] is contained in bothX1 andX̃1, we may writeX1 = Y iŶ Y j, where
i + j + 1 = k and there is a wordy with one hole compatible with bothY andŶ .

Using the proof of Lemma 7, we conclude thatV = Xm+1

2 X̂n
2 X̂ ′

2, whereX2

andX̂2 are compatible,m andn are integers, and the hole occurs inv[m|X2| +
1, (m + 1)|X2|]. Since the position of the hole inv is at mostq − p = |X1|, it
follows thatm|X2| < |X1|. Since|X1| = |X̂1| = k|Y | and|X2| = |X̂2| = l|Y |,
we have|Xm+1

2 X̂2| = (m + 2)l|Y | < (2l + k)|Y | = |X2X̂1X2|. Hence, the word
Xm+1

2 X̂2 is a prefix ofv′[1, 2r − q − p] = u′[q − p + 1, r − p]w′[1, r − p] =

X2X̂1X2 = Y 2l+k. Since|X2| = |X̂2| = l|Y |, it follows thatX2 = X̂2 = Y l and
V = Y n′

Y1, wheren′ is an integer andY = Y1Y2.
As in the previous case, consider the wordz = suf |Y |(v) and denotêY = Ŷ1Ŷ2

andy = y1y2, where|Y1| = |Ŷ1| = |y1|. Recall thaty is a word with one hole
contained in bothY andŶ . Hence, the hole is either iny1 or y2, and consequently,
we have either̂Y = Ŷ1Y2 or Ŷ = Y1Ŷ2. Sinceu′[1, q − p] = X1 = Y iŶ Y j is a
suffix of V , there are three possibilities: (a)z = Ŷ1Y2 (b) z = Y1Ŷ2 (c) z = Y1Y2.
On the other hand, the structure ofV implies thatz = Y2Y1 and, as in Case A, all
the subcases (a)–(c) lead to a contradiction.

Case C. Assume that the hole occurs inu[q − p + 1, r − p]. Now we have
U [1, r − p] = X1X2, V [1, r − p] = X1X̃2 andW [1, r − p] = X1X̂2, where
u[q− p+1, r− p] is contained inX2, X̃2 andX̂2. Sinceu′[q + p+1, r− p] = X2

andw′[1, q−p] = X1, it follows thatv′[1, r−p] = X1X̃2 = X2X1. By Lemma 4,
there existsZ1 andZ2 such thatX2 = Z1Z2, X̃2 = Z2Z1 andX1 = (Z1Z2)

rZ1

for some integerr. Sinceu[q − p + 1, r − p] is contained inX2 = Z1Z2 and
X̃2 = Z2Z1, we conclude by Lemma 3 and Lemma 2 thatX2 andX1 are integer
powers of some full wordY . We get a contradiction exactly the same way as in
Case A.

As a corollary, we get the following result.
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Corollary 2 ([4]). If three distinct squares have their last compatible occurrences
in a partial word with one hole starting at the same position,then the hole must
be in the shortest square.

Proof. Let z be a partial word with one hole. Assume thatuu′, vv′ andww′, where
u ↑ u′, v ↑ v′ andw ↑ w′, begin at the same position inz. Let these partial words
be the last compatible occurrences of three distinct full squares inz. Assume also
thatuu′ is a full word, i.e.,u = u′. This implies that|w| < |u2| as otherwise a
word compatible withu2 would appear later in the word. By Theorem 4, this is
impossible. Hence, the hole must be in the shortest square.

Moreover, our proof for Theorem 4 gives a new proof for the original theorem
of Fraenkel and Simpson (Theorem 1). Note that the proof can be considerably
shortened and simplified if the words do not contain any holes.

Next we use Theorem 4 to show that the number of distinct squares in a partial
word with one hole does not depend on the size of the alphabet.This may be
surprising since the maximum ofsw(i) is dependent on the alphabet size as was
shown in the previous section.

Theorem 5. For any partial wordw with one hole, we haveSq(w) < 4|w|.

Proof. Suppose thatw(j) = ⋄ and denoten = |w|. If sw(i) = 3, theni < j
and the last compatible occurrence of the shortest square must contain a hole by
Corollary 2. Hence, the length of the shortest square is at leastj − i + 1. By
Theorem 4, the suffix ofw beginning after the hole must be at least as long as the
shortest square. Thus, we must haven − j > j − 1 + i. If sw(i) = 4, Theorem 4
does not give much information as already the second largestsquare is twice as
long as the second shortest. However, ifsw(i) = 5, we may consider only the three
largest squares, where the shortest one is of size2(j − 1 + i). Hence, the longest
square must be twice as long as the shortest and, therefore,n − j > 3(j − 1 + i).
By induction, we conclude thatn−j > (2k−1−1)(j−i+1) wheneversw(i) = 2k.
In other words, we have an estimatesw(i) ≤ 2k, where

k = 1 + log2

(
n − i + 1

j − i + 1

)
. (8)

Note that here we assume that the size of the alphabet is largeenough. Hence, (8)
gives us an upper bound on the number of distinct squares inw.

Sq(w) ≤ 2

j∑

i=1

(
1 + log2

(
n − i + 1

j − i + 1

))
+ 2(n − j − 1).

Here the last term2(n− j − 1) corresponds to the positions after the hole. There,
we havesw(i) ≤ 2 for i = j, j + 1, . . . , n− 1 by Theorem 1, and the last position
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cannot contain any squares. Using the natural logarithmln, we may write

Sq(w) ≤
2

ln 2

(
j∑

i=1

ln(n − i + 1) −

j∑

i=1

ln(j − i + 1)

)
+ 2n − 2.

Sinceln(n− i + 1) andln(j − i + 1) are strictly decreasing ini, we may estimate
thatSq(w) ≤ f(j), where

f(j) = 2

(
ln n +

∫ j

1

ln(n − x + 1) dx −

∫ j−1

0

ln(j − x) dx

)
+ 2n − 2.

By integrating, we obtain

f(j) = 2(lnn − (n − j + 1) ln(n − j + 1) + n ln n − j ln j) + 2n − 2.

The maximum value off(j) in the interval[1, n − 2] is obtained at the critical
point j = (n + 1)/2, where

f(j) = 4n +
1 + n

ln 2
ln

(
n

1 + n

)
≤ 4n −

2

ln 2
.

Note that ifj > n−2, thenSq(w) = 2n. Hence, we have proved thatSq(w) < 4n
regardless of the size of the alphabet.

Of course, we get better estimates if the size of the alphabetis restricted. As a
final theorem, let us consider binary words.

Theorem 6. For any binary partial wordw containing one hole, we haveSq(w) ≤
3n.

Proof. Suppose thatw(j) = ⋄. Sincew is a binary partial word, Theorem 2
implies thatsw(i) ≤ 4 for every positioni. On the other hand, Theorem 4 restricts
the number of position, wheresw(i) > 2. If j ≥ n/2, then these positions are in
the interval[2j − n + 1, j]. Hence,(n − j) positions may havesw(j) = 4. This
gives us

Sq(w) ≤ 4(n − j) + 2j = 4n − 2j ≤ 3n, (9)

sincej ∈ [n/2, n]. Similarly, if j < n/2, thensw(i) = 4 is possible only for
positioni in the interval[1, j]. Thus, forj ∈ [1, n/2), we obtain

Sq(w) ≤ 4j + 2(n − j) = 2n + 2j < 3n. (10)

Hence, by inequalities (9) and (10), the claim follows.
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