Ralph-Johan Back | Viorel Preoteasa

Semantics and Proof Rules of Invariant
Based Programs

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 903, June 2008

1

Semantics and Proof Rules of Invariant
Based Programs

Ralph-Johan Back
Abo Akademi University
Department of Information Technologies
Joukahaisenkatu 3-5 B, 20520 Turku, Finland

Viorel Preoteasa
Abo Akademi University

Department of Information Technologies
Joukahaisenkatu 3-5 B, 20520 Turku, Finland

TUCS Technical Report
No 903, June 2008

Abstract

Invariant based programming an approach where we start to construct a pro-
gram by first identifying the basic situations (pre- and postlitions as well as
invariants) that could arise during the execution of th@atgm. These situations
are identified before any code is written. After that, we itfgrthe transitions
between the situations, which will give us the flow of controlhe program. The
transitions are verified at the time when they are constduciée correctness of
the program is thus established as part of constructingrihgram. The program
structure in invariant based programs is determined byrttoernation content of
the situations, usingested invariant diagramd.he control structure is secondary
to the situation structure, and will usually not be wellistured in the classical
sense, i.e., it is not necessarily built out of single-esingle-exit program con-
structs.

The execution of an invariant diagram may start in any dSiomaand will
choose one of the enabled transitions in this situationptaicue to the next sit-
uation. In this way, the execution proceeds from situatosituation. Execution
terminates when a situation is reached from which there@emabled transitions.
Because the execution could start and terminate in anytisilyanvariant-based
programs can be thought of as multiple entry, multiple exiigpams. The tran-
sitions may have statements with unbounded nondetermitieoause we allow
specification statements in transitions. Invariant bagedrams are thus a con-
siderable generalization of ordinary structured progréatements, and defining
their semantics and proof theory provides a challenge thally does not arise
for more traditional programming languages

We study in this paper the semantics and proof rules for iam&based pro-
grams. The total correctness of an invariant diagram isbskeed by proving
that each transition preserves the invariants and deaeagbal variant. The
proof rules for invariant-based programs are shown to beecband complete
with respect to an operational semantics. The proof of ctmess and complete-
ness introduces the weakest precondition semantics fariant diagrams, and
uses a special construction, based on well-ordered setise déast fixpoint of a
monotonic function on a complete lattice. The results presein this paper have
been mechanically verified in the PVS theorem prover.

TUCS Laboratory
Software Construction Laboratory

1 Introduction

Invariant based programminig an approach where we start to construct a pro-
gram by first identifying the basic situations (pre- and postlitions as well as
invariants) that could arise during the execution of th@atgm. These situations
are identified before any code is written. After that, we itfgrthe transitions
between the situations, which will give us the flow of controlhe program. The
transitions are verified at the time when they are constducide correctness of
the program is thus established as part of constructingritgram. The program
structure in invariant based programs is determined byrtfoernation content of
the situations, usingested invariant diagram3d.he control structure is secondary
to the situation structure, and will usually not be wellistured in the classical
sense, i.e., it is not necessarily built out of single- esingle-exit program con-
structs. We refer to a program constructed in this mannenagvariant based
program.

The execution of an invariant based program may start ini&ngton and will
choose one of the enabled transitions in this situationoptdigue to the next sit-
uation. In this way, the execution proceeds from situatmsituation. Execution
terminates when a situation is reached from which there@emabled transitions.
Because the execution could start and terminate in anytisityanvariant-based
programs can be thought of as multiple entry, multiple exiigpams. Termina-
tion of a program may also happen anywhere, not just at soespecified exit
points. The transitions may have statements with unboundedeterminism, be-
cause we allow specification statements in transitionsarlaiat based programs
are thus a considerable generalization of ordinary stradtprogram statements,
and defining their semantics and proof theory provides aexge that usually
does not arise for more traditional programming languages

We study here the semantics and proof theory of invarianedasograms
[3, 4, 5]. The idea of invariant based programming is not reemjlar ideas were
proposed in the 70’s by John Reynolds [16], Martin van EmdE], [and Ralph-
Johan Back [3, 4], in different forms and variations. Dijls$ later work on
program construction also points in this direction [9], wehbe emphasizes the
formulation of a loop invariant as a central step in derivihg program code.
However, Dijkstra insists on building the program in terniswell-structured
(single-entry single-exit) control structures, wherdaeré¢ are no restrictions on
the control structure in invariant based programming. 8&msi these approaches
is that the loop invariants are formulated before the pnogeade is written. Eric
Hehner [10] was working along similar lines, but chose refet rather than pred-
icates as the basic construct.

Invariant based programs are intended to be correct by remtisin, so proof
of correctness is part of the programming process. For thigtgse, we need to
define the semantics of invariant based programs, give prde$ for showing
that the program is correct, and we need to show that thesé uies are sound

1

(and preferably complete). But we cannot use existing teedtirectly, as they
are typically based on well-structured control construd®ur purpose here is
therefore to define the semantics and proof theory of inmaibased programs
from scratch, and to show that the proof rules we give are $mtind and complete
with respect to the semantics we give for invariant basedraruos.

We will proceed in the following way. We first describe imvant based pro-
grams in an intuitive way, to give a feel for the basic idedsife this approach,
and for the constraints and generalizations inherent smdpproach. We begin
the theoretical study of invariant based programs by defitheir operational se-
mantics. We will in fact define two different operational sertics. The first one
is a small-step operational semantics that describes thienwahich an invariant
based program is executed by a computer. In essence, thestepatemantics
describes an interpreter for the programming language.s€hend one is a big
step operational semantics that describes the overalVlod an invariant based
program, essentially as a mapping from input states to plessutput states. This
semantics is only concerned with the input output behavidhe program. It
allows us to define basic properties of program executi&a,dartial correctness
and termination. We show that the small step semantics atiglstep semantics
are equivalent. In other words, any correctness propeatynblds for the big step
semantics of an invariant based program will also hold ferstmall step execution
of the program, and vice versa.

We then define a weakest precondition semantics for invidvased programs.
The weakest precondition semantics is compositional, dod/sus to directly
compute the basic correctness properties of an invariaacbarogram. We show
that the weakest precondition semantics is equivalentadity step operational
semantics.

The weakest precondition semantics does not, however, ugive practical
method for proving program correctness, because it usesfigpoints to deter-
mine the semantics of loops. We get around this obstacle\bggya collection
of Hoare-like [11] total correctness proof rules for ineani based program. We
show that the proof rules are sound with respect to the wegkesondition se-
mantics. This means that if we prove, using these proof rtihed our invariant
based program is correct, then it will also be correct adogrtb the weakest
precondition semantics.

Because we have shown that the weakest precondition sesanéquivalent
to the big step semantics, which in turn is equivalent to thalkstep semantics,
we get the following basic property: If we have proved thatrarariant based
program is correct using the given proof rules, then any@xae of the invariant
based program that respects the small step semantics vatiroect. This means
that our proof system isound

We also study the converse problem: Assume that we have ectamvariant
based program that is executed according to the small steprdies. Can we
then prove that the program is correct using the given prolafsrfor invariant

2

based programs? The answer to this question is positivepue proof system
is alsocomplete In the end, this means that our proof system is both sound and
complete for invariant based programs.

The theory of invariant based programs has been completethamized in
the PVS interactive proof system [15]. This gives a verydstwundation for our
results. This PVS formalization depends on the well-ordgtheorem which says
that any set can be well-ordered.

Both the soundness and completeness results we have faamvaased pro-
grams are consequences of more general results for moodtorgtions on a
complete lattice. We give a special construction, basedwelbordered set, of
the least fixpoint of a monotonic function on a completedattiThe completeness
theorem is a consequence of this construction. We allowifsgegeon statements
in our programs, so our semantics may have unbounded nomdeiem. This
means that we need to go beyond natural numbers and use weledrrela-
tions [13] or ordinals [1] when proving completeness. TBiglue to the fact
that unbounded non-deterministic statements are notragmis. Nipkow [13]
presents an Isabelle [14] formalization of complete Hoao®prules for recur-
sive parameterless procedures in the context of unbounatgeterminism. Our
programming language is, however, more general than thestugged in [13],
because it features multiple-entry, multiple-exit stadets, and a more general
recursion mechanism. Our proof of completeness is also gemeral and sim-
pler than the one in [13], and we believe that it could be a&gplinmodified
to richer programming constructs, such as procedures \aitanpeters and local
variables.

The framework that we build allows us to study terminatioogfs for invari-
ant based programs in more detail, and to justify specifioforales for termi-
nation. Proving termination of invariant based programm@e difficult than
usually, because the control structure is unconstrainki. Means that our loops
need not be nested, we can have intersecting loops, loob®xmiis in the middle
(multiple exit loops) and loops that can be entered in thedieidmultiple entry
loops). Nevertheless, the framework that we have builvalos to formulate
new proof techniques for termination, that are more gertbet existing ones,
but which we still can prove to be sound.

2 Syntax of invariant diagrams

Let State be an unspecified type aftatesand Var be the type of all program
variables. For € Var, the type of the variables denotedr .z, contains all values
that can be assigned to Intuitively a states from State gives the values to the
program variables. Formally, we access and update progaaiables using two
functions.val.z : State — T.z andset.z : T.x — State — State. Forxz € Var,
s € State, anda € T.z, valz.s is the value ofr in states, andsetz.a.s is the

3

state obtained from by setting the value of locatianto a. The behavior of these
functions is described using a set of axioms [6]. For the psepof this paper we
do not need to consider in greater details the treatmentogfrpm variables.

Let Bool be the set of Boolean values. Predicates, dentedi are the func-
tions fromState — Bool. Relations, denoted biyel, are functions fronbtate to
Pred. We denote byC, U, andn the predicate inclusion, union, and intersection
respectively. The typ®red together with inclusion forms a complete Boolean
algebra.

We use higher-order logic [7] as the underlying logic.fIt A — Bis a
function andr € A, then the function application is denoted fy: (f dotx).

An invariant diagramis a directed graph where nodes are labeled mithri-
ants(predicates) and edges are labeled wimsitions(program statemen}sThe
transitions are non-iterative programs built from aseegj assumptions, demonic
updates, demonic choices, and sequential compositions.abstract syntax of
transitions is defined by the following recursive data type:

Trs = Assert(Pred)
| Assume(Pred)
| Update(Rel)
| Choice(Trs, Trs)
| Comp(Trs, Trs)

If pis a predicateR is a relation, and, T are transitions, then we use the nota-
tions{p}, [p], [R], S M T, S; T for the constructsissert, Assume, Update,
Choice, andComp, respectively. Intuitively the execution of thesertstatement
{p} and theassumestatementip| starting in a state in whichp is true behave as
skip. If p is false ins, then{p} fails and[p] is notenabled Thedemonic update
[R], when starting in a state terminates in a nondeterministically chosen state
s’ such thatR.s.s'. If there is no state’ such thatR.s.s’, then[R] is not enabled.
The execution of thedemonic choicé& M 7" nondeterministically choosesor 7.
The transitionS ; 7' is thesequential compositioof the transitionss andT'.

We model bothassignmentand nondeterministic assignmenising the de-
monic update:

(x :=¢e) = [As, s’ @ s =set.x.(e.).5]

[z:=aeba] = [Xs,s'e(Jaes =set.x.a.s\b.a.s)]

A transitionS'is enabledwhen starting from a statg if it is possible to avoid
any assume or demonic choice statements which are not en&geexample the
transitionS = ([x < 4];2 := z + 1;[x > 1]) N ([x > 10];z := 3) is enabled
for all states where is 1, 2, 3 or greater thari0. If = is 1 in the initial states,
then we chose the first part of the choiceSipand all assume statements in this
part are enabled. Thguard of a transitionS is a predicate which is true for all
states from whictt is enabled. We will define formally later the notions enabled

4

and guard, but we have introduced them here informally tda@xphe intuition
behind invariant based programs.

Let / be a nonempty set of indexes. Formally iamariant diagramID is
a tuple(P, D) whereP : I — Pred are theinvariantsand D : I x [— Trs
are thetransitions D is called atransition diagramand the elements aof are
calledsituations. The invariant diagrams are represented as special graptes. T
nodes are represented by rectangles. Inside the rectamglesite the invariants.
The transitions are represented by directed edges in thpdh giabeled with the
transition statements.

Figure 1 represents an invariant diagram. The program septed in this
figure searches if an element is member in an array of numbers.

1
n,z €natAa:q{0,1,...,n— 1} — nat

2
0<i<nANVje0<j<i=a.j#u)

3] 4|)
1="n 1<nANail=<x

T[z:n] T[i<n/\a.i:x]

|

In Figure 1 the situations are 1, 2, 3, 4. In practice, it isyvaten the case
that the invariant of a situationis stronger than the invariant of another situation
j (P = P; A g). Inthis case we draw the situatiérinside situationj, and we
label: only with the predicate. The invariant of situatiomis the conjunction of
g and the labels of all situations containing the situatiofor example in (1), the
invariant of situation 4 is the conjunction of the predidateels of situations 1, 2,
and 4:

(1)

[i <nAai#a];
1:=1+1

(n,z €natAa:{0,1,...,n— 1} — nat)
ANO<i<nANje0<j<i=aj+#ux))

A <nAai=x)

Intuitively the execution of an invariant diagram startsnfr an initial situa-
tion and follows the transitions which aemabled At each step the invariant of
the current situation must be satisfied by the current vafubeoprogram vari-
ables. The execution terminates in a situatiavhen;: is reached, and there are
no enabled transitions from

The formal definition of an invariant diagram requires thare must be a
transition between any two situations. However in our exanip) this require-
ment is not meet, there is no transition between situatiami34a Formally, when
there is no transition between two situations, we assumietllese is a default
transition (niracle = [false]) which is always disabled. Always, when we draw
the diagram, we omit the transitions labelednbyacle.

Invariant programs are more general than imperative prograhey can be
thought of as multiple entry, multiple exist programs. hinpiple an invariant
program could start and terminate in any situation. If thegpam represented in
(1) starts in situation 1, then it can terminate in situagi@nf the element is not
member of the array or in situation 3 otherwise.

3 Operational semantics

We introduce in this section smallstep and bigstep operatisemantics for in-
variant diagrams and we prove their equivalence.

3.1 Small step semantics

We introduce first the smallstep semantics for transitiths, 7" € Trs ands, s’ €
Y., then thesmallstep relatior(s, S) — (', 7)) is true if from states we get to
s’ by executing onstep(atomic statement) of, andT is the transitionS from
which the executed step is removed. If the transitfoconsists of only one step,
then the smallstep relation becom@ssS) — (s, []). We denote by(s, S) — L
the fact that the execution ¢f fails in the next step when starting frosm

b.s —b.s b.s
(s,{b}) = (s,1]) (s, {b}) = L (s, [b]) = (s,[)
R.s.s'
(s, [R]) = (',]) (5,5MT) = (s,5) (s,511T) = (s,T)
(s,5) — (¢, 5") (s,5) = (s, []) (s,5) = L
(s,5;T)— (s,8;T) (s,5:;T)— (s,T) (s,5;T)— L

Let D be a transition diagram. Figure (2) represents one transdf D la-
beled byS’ ; S. We assume that the execution reached the siatthis transition.
Then the tuplés, S, i, D) denotes the status of the execution. The execution is in
states, and it proceeds towards the situatiohy executingS. If the execution
reaches in a states’, then status of the execution is denoted By][], i, D).

— s —f @

i

Thesmallstep relation(s, A, i, D) — (s', B,i, D), whereA, B € Trs U {]]},
is defined by the following rules.

(5. Dij) = (5, 5) (5.9) = (5.5
(s,[,4, D) = (¢, 5,5, D) (s,58,1,D) — (s, 5,1, D)
The transition diagram coul@il in (s, A, 4, D), denoted by(s, S,7, D) — L,
if some available transition could fail in next step.

(s,D;;) — L (s,8)— L
(s,[,i,D) — L (s,8,i,D) — L

3.2 Big step semantics

Similarly to smallstep semantics, we introduce first thesteg semantics of tran-
sitions. IfS € Trs ands, s’ € ¥, then thebigstep relation(s, S) ~ s’ is true if
there is an execution & starting ins and ending ins’. (s, S) ~ s’ is defined by
induction on the structure df.

b.s b.s R.s.s
(s, {b}) ~ s (s, [0]) ~ s (s, [R]) ~ &
(5,8) ~ s (s,T) ~> & (5,5) ~ "N (s, T) ~ 5"
(s,STT) ~> s (s,STT) ~> s (5,S;T) ~> s"

A transition S, starting from a state, may fail (denoted(s, S) ~» L) if some
of its executions leads to a false assertion.Failure is @éfiby induction on the
structure ofS.

—b.s (s,8) ~ L (s,T)~ L
(s,{b}) ~ L (s,SMT) ~ L (s,SMT)~ L
(s,8) ~ L (5,5) ~ "N (s, T) ~ L

(s,8;T)~ L (s,8;T)~ L

Similarly, the execution of, starting from a state, is miraculousor disabled
(denoted(s, S) ~» T) if any of its executions leads to a false assumption or to
a demonic updatéR] which cannot progress The demonic updatgr] cannot
progressrom a states if for all statess’, R.s.s’ is false.

—b.s Vs' @ ~R.s.s (5,S) ~ TA(s,T)~T
(s, [b]) ~ T (s,[R]) ~ T (5,ST1T) ~ T
(5,5)~ T (5,8) 4 LA (Vs ®(5,8)~ s = (s,T)~T
(5,8;T)~ T (5,8;T)~ T

Theorem 1 Miracle could be defined in terms of bigstep and fail.
(5,9) = T & ((5,5) A LA (Vs 0 (5,5) 4 &)

If D e I xI — Trs, s,s € %, andi,j € I, then thebigstep relation
(s,i,D) ~ (&,7) is true if there is an execution from stateand situation,
following the enabled transition®, ending in states’ and situationj, and all
transitions from state’ and situationj are disabled. The execution &f from
states and situationi may fail denoted(s,i, D) ~~ L, if there is a situatiory
such that the transitiof; ; may fail when starting frona.

(s,D;)~ s'"N(s',7,D)~ (5" k)
(s,i, D) ~~ (s, k)

(Vj e (s, Dij) ~T) (s, Dij) ~ L

(s,i, D) ~ (s,1) (s,i,D) ~ L
When starting from stateand situation, the transition diagrarf terminates
denoted s, i, T') |, if all execution paths starting in ¢ are finite and do not fail.

(Vje(s,Dij)~T)
(s,i,D) |

(s,i,D) ¥ LA (Vj,s"®(s,D;;)~ s = (s,5,D) |)
(s,i,D) |
The bigstep semantics is useful in establishing furthepgrites of transition
diagrams, however it does not give a very intuitive undediteg of how invariant
diagrams are executed. In the next section we introducentéistep operational
semantics for transition diagrams which is closer to the thaydiagrams would
be executed by a computer.

3.3 Connection between bigstep semantics agehallstepseman-
tics.

The small step semantics is equivalent to the bis step sasantthe following
sense. If the execution @b starts from a state and a situatiorn and proceeds in
small steps until a staté in situation;, and there are no transitions enabled from
(s',7), then this is equivalent witth performing a big step frongs, i) to (s, j).

In the next theorems the symbé! denotes the reflexive and transitive closure of
the relation—.

Theorem 2 (s, 5) ~ s’ < (s,9) = (s,]])

Theorem 3 (s, 5) ~ L < (s,5) = L

We define the miracle in the smallstep semantics by
(5,9) —=» T ==(s5,8) 5 LA (Vs ®=(s,59) = (s,]]))

Theorem 4
(S7i7D) ~ (3/7j> And (37 HvivD) = (Slv ijv D) A (Vk b (8/7DJ'J€) -2 T)

In the remainder of this paper we will work with bigstep setrzmonly.

4 Weakest precondition and predicate transformers

Proving correctness of invariant diagrams is unfeasibieguthe operational se-
mantics. We will therefore define here a compositional sditsifor invariant
based programs, based on the notion of weakest precorglition

4.1 Weakest precondition and predicate transformers for tan-
sitions.

If p,g € Pred, andS € Trs then theHoare total correctness triple { S [} ¢
denotes the fact that if the transitiéhstart in states from p, then it terminates in
a state fromy. The Hoare tripley {| S [} ¢ is valid, denoted= p {| S |} q, if

Ep{Shqe (Vseps=(s,5)» LA(Vs ®(5,8)~ s =q5)) (3)

The weakest preconditiofor a transitionS and apost conditiory is a pred-
icate,wp.S.q € Pred. For a states, wp.S.q.s is true if the execution of' does
not fail and always terminates in a statdrom ¢ (¢.s’ is true). Using the bigstep
operational semantics for transitions we define the weakesbndition by:

wp.S.q.s = (5,5) ¥ LA (Vs @ (s,5) ~ s = q.s).

The validity of Hoare triples could be expressed equiviyemsing the weakest
precondition:

Ep{SltqepCwpSyq (4)

Relation (4) reduces the proof of validity of a Hoare tripbeain inclusion of
predicates. However the predicatg.S.q is defined in terms of bigstep semantics,
and the proof of the statementC wp.S.q is still unfeasible in practice.

For S € Trs we define, by induction ol§, the predicate transformeassoci-
ated toS, pt.S : Pred — Pred by:

pt.{p}.q = pAgq

pt.[p].q = —pVyg

pt.[R].q.s = (Vs'e R.s.s' = q.)
pt.(ST1T).q = pt.SqgAptT.q

pt.(S; T).q = pt.S.(pt.T.q)

Theorem 5 For all S € Trs
wp.S = pt.S

Proof. By induction on the structure &f. |
Using Theorem 5 and relation (4) it follows

Ep{SlqepCptSyg (5)

The relation (5) reduces the proof of the validity of a Hoauglé to an inclusion
of predicates. These predicates are defined in terms of #igatesp, ¢, the
predicates and expressions occurringsirusing Boolean connectiveg\ (v, —

)
Theorem 6 For all S € Trs the predicate transformest. S is monotonic.

Proof. This fact follows directly from Theorem 5 and the definiticdhwp.S. W
Theguardof a transitionS is a predicate denotegid. S € Pred and is true for
all statess from which the execution of' is enabled

grd.S = —pt.S false

Theorem 7 The guard of a transitiort is true in a states if and only if the
execution of5' starting froms is not miraculous:

grd.S.s & (s,8) A~ T
Proof. Using Theorem 1, Theorem 5, and the definitiongrdfandwp.
grd.S.s
= {Definition of grd}
—pt.S.false

= {Theorem 5}

10

—wp.S.false
= {Definition of wp}

=((s,9) » LA (Vs @ (s,8) ~ ' = false.s’))
= {Boolean properties}

“((s5,9) % LA (Vs 0 (s,5) 4 5))
= {Theorem 1}

(s,5) 4T [

4.2 Weakest precondition and predicate transformers for tan-
sition diagrams

The Hoare triples for diagrams have similar interpretaitmthose of the transi-
tions. However, a diagram may be executed starting in amatsitn and it may
terminate in any situation. Le®, @ : I — Pred andD : I x I — Pred. The
diagram Hoare total correctness triplé® {| D [} @, is true if whenever the exe-
cution of D starts in a state from a situationi, such thatP.i.s is true, thenD
always terminates, and i terminates in a stat€ and a situatiory, then@.;.s'
is true. The predicat®.; is thepreconditionof D when starting from situation
Similarly, @.j is thepostconditiorof D when terminating in situation
The Hoare tripleP {| D [} @ is valid, denoted= P {| D [} Q, if

=P{D}Q
& (6)
(Vi,s ® Pi.s = (s,1,D) | A(Vj,s" @ (s,i,D) ~ (s',7) = Q.j.5"))

Theweakest preconditiofor a diagramD and a postconditio is an indexed
predicatewp.D.(Q : I — Pred. For a states and a situation, wp.D.(Q).i.s is true
if the execution ofD from s, i always terminates, and if it terminates in a stdte
and a situationy then().j.s’ is true. Using the bigstep operational semantics for
diagrams we define the weakest precondition by:

wp.D.Q.i.s = (s,1,D) | A(Vj,s @ (s,i,D)~ (s,7) = Q.5.5).

The validity of diagram Hoare triples could be expressedwedgently using the
weakest precondition:

—P{D}Q e PCwp.DQ @)

11

Relation (7) reduces the proof of validity of a Hoare tripbeain inclusion of
indexed predicates. However, similarly to transitionsegrovingP C wp.D.(Q
is unfeasible in practice due to the bigstep semantics sgjmes occurring iswp.

Theguardof a situatiory in a diagramD is a predicatgrd.D.i € Pred which
is true in those states in which the execution from situatisrenabled:

grd.D.i = \/ grd.D, ;
Jel
Let Dpt = (I — Pred) — (I — Pred). ForD € I x I — Trslet F.D :
Dpt — Dpt be the monotonic function given by

FD.UQ.i.s = (VjeptD, ;. (UQ.j).s) A (—grd.D.i.s = Q.i.s)

The predicate transformeassociated t@, pt.D : Dpt, is the least fix point
of I

pt.D = pu F.D
Theorem 8 wp.D = pt.D

Proof. We prove thatvp.D is fixpoint for F.D and it is smaller than any other
fixpoint. |
Using Theorem 8 and relation (7) it follows

—P{D}Qe PCptDQ ®)

The relation (8) reduces the proof of the validity of a Hoamglé to an inclusion
of predicates. However, unlike for transitions, the pratBet.D.QQ is a least
fixpoint expression, and proving C pt.D.(Q is unfeasible in practice.

Theorem 9 For all D € I x I — Trs the predicate transformest. D is mono-
tonic.

Proof. This fact follows directly from Theorem 8 and the definiticdhwp.D. R

5 Axiomatic semantics

The weakest precondition semantics does not allow us toepcovrectness of
programs in practice, because of the use of the least fixatt pperator. We
need to define Hoare like proof rules for invariant based anog to establish
correctness in practice.

12

5.1 Hoare rules for transitions

The Hoare tripley {| S [} ¢ is correct denoted- p {| S |} ¢, if it can be proved using
following Hoare rules

Vsep.s=rsAhq.s Vsep.sAr.s=q.s
Fp{{ri Fp{]l g
Vs,s'ep.s A R.s.s' = q.s Fp{Slte Fp{Tlq
Fp{[Rl[}q Fp{STT}q
Fp{Shr Fr{T[q Fp{Ska P SprgCd
Fp{S;Tlq Fr{Shd

The validity is equivalent to proving correctness using lteare rules, and, in
practice, the Hoare rules are used to prove the correcthé&sseitions.

Theorem 10 (Correctness)

Fp{Ste = Fpr{Slq

Proof. By induction on the structure ¢f. |
Theorem 11

wp.S.q{ S }q.
Proof. We provept.S.q { S [} ¢ by induction on the structure of. [

Theorem 12 (Completeness)

Fr{Slte = Fp{Sha

Proof. By the definition of= p{| S [} ¢ andwp.q it follows p C wp.q and by
theorem 11 and Hoare consequence rule it follpisS [} g. [

Before introducing the proof rules for diagrams we need sdefmitions and
properties of complete lattices and fixpoints.

5.2 Complete lattices and fixpoints

This section introduces some results about fixpoints in detadattices [8].
These results are the main tools in proving correctness amgpleteness of the
proof rules for invariant diagrams.

A partially ordered(posej set(L, <) is acomplete latticef every subset of
L hasleast upper boundr equivalentlygreatest lower boundror a subse# of

13

L, VA € L denotes the least upper boundif) of A andAA € L denotes the
greatest lower boundr(ee} of A. If L is a complete lattice, than tHeast(bot-
tom) and thegreatest{top) elements of. exist and they are denoted by T € L,
respectively. IfA is a nonempty set andlis a lattice, than thpointwise extension

of the order onl. to A — L is also a complete lattice. The operations meet, join,
bottom, and top o1 — L are also the pointwise extensions of the correspond-
ing operations or.. If (A, <) is a partially ordered set, then the setmdnotonic
functions fromA to L, denotedd = L is also a complete lattice. The order, meet,
join, top, and bottom o = L are the pointwise extensions of the corresponding
operations orl.. For a complete latticé, MF.L is the complete lattice of mono-
tonic functions fromL to L. The Boolean algebra with two elemerfgsol, the
predicatesred, the indexed predicatels — Pred, and the monotonic predicate
transformers are complete lattices.

We list briefly some properties of well founded and well oetksets that are
needed in this paper. For a comprehensive treatment ofubjec see [12]. A
partially ordered setlV, <) is well foundedf every nonempty subset &% has a
minimal elementThe posetV, <) is well orderedif it is well founded andotal.

Theorem 13 For any setA there is a well ordered s&il/, <) such that no func-
tion f : W — Als injective. In other words, for any functiofh: W — A there
existswy, wy, € W, wy < wsy, such thatf.w; = f.w,. For a setA we denote by
W, a well ordered set satisfying the property above.

Proof. This theorem follows from Cantor’s theorem stating thatplower set (set
of all subsets) of any set has a strictly greater cardinality than that4ofand the
well-ordering theorem stating that every set can be weleod. |

We use Theorem 13 to give a new proof for the classical Kndsteski fix-
point theorem [17]. We give a construction of the least fixp@f a monotonic
function on a complete lattice based on a well ordered set. Our construction is
more general than the one in [6] which is based on ordinaisgsive only need
a well ordered set.

Theorem 14 If (L, <) is a complete lattice and” : L — L is a monotonic
function, thenF" has a least fixpoint denoted pyF'.

Proof. Assume tha{, <) is a complete lattice and that: . — L is a monotonic
function. LetW/, be a well ordered set given by Theorem 13. ket W, and
definex,,,x € L by

Ty = \/F.xv and z = \/ T
v<w weW
Thenz is the least fixpoint of". We prove first a number of properties abot
(a) We first prove that, forms an increasing chain:

14

v<w =z, <@y 9

Assumev < w. Then

Ty < Ty
< {Definition of x, andz,}
Ve Faw <V oy Fraos
< {Properties of\/, the least upper bound operator }
Vieu<v= (dses<wA Fux, < F.uay)
< {Existential quantifier introduction}
Yueu<v=u<wAFux, <Fuz,
< {Assumption}
Yueu<v= Fuz, < Fux,
< {Symmetry of<}
true

(b) We then prove that

Ty < Fl.ay, (10)

The proof is as follows:

T < F.xy
< {Definition of x,}
Voew Frvy < Foxy,
< {Definition of \/}
Yveuv <w = Fux, < F.x,
< {Monotonicity of F' and property (9)}

true

15

(c) By the property ofit/;, it now follows that there exista;; < w, such that
Ty, = Tuy. WE now show that

Ty, = F.y, (11)
We already proved,, < F.z,,. The converse inequality is proved as follows:
Ly
= {Assumption}
Lapy
= {Definition of z,,,}

\/v<w2 F..’L’v

{Definition of \/ andw,; < wy}

v

F.x,,
(d) We now prove that

y=Fy= VYwex, <y) (12)

We prove (12) by well founded induction an Assumey = F.y and(Yv e v <
w =z, <Yy).

Ty Z Y
< {Definition of x,}
Vicw Fito <y
& {Definition of \/}
(VMvev<w= Fux,<y)
< {Assumptiony = F.y}
(Vvev <w= Fux, < Fuy)
< {Monotonicity of F'}
(Mvev <w=x, <vy)
< {Assumption}

true

16

We have now shown that the element is a fixpoint for /" and that for alkw €
Wi, . is smaller than any fixpoint of". It follows thatx = z,, andz is the
least fixpoint off" . |

Let (W, <) be a well founded set and, € L a collection of elements indexed
by w € W. Then the elements_.,,, z € L are given by

x<w:\/xv and x = \/xw

v<w weWw

Theorem 15 If (L, <) is a complete latticel" : L. — L is monotonic, and,, € L
is a collection of elements indexedby= W, then

Vwex, < Faoy) =x<puF

Proof. We prove by well founded induction thatw e x,, < u F). |
If 2,y € L, thena.(z,y) € MF.L is given by

x ifz>y
a.(z,y).z = .
L otherwise

It is easy to prove that.(z, y) is monotonic.
Lemmal6 If v,y € L,x; € Lforalli € I,andf € MF.L, then
a.(v,y) < fer< fy
a.(Vay, y) = Va(z;, y)
Proof.
a(z,y) < f
= {Definition of < for functions}
a.(z,y)y < fuy
< {Definition of o}
x<fuy
The revers implication follows from. Assume< f.y.
a.(z,y) < f
< {Definition of <}

Vzea.(x,y).z < f.z

17

< {Generalization}

a(z,y).z < fz

< {Casez >y}

o a(ry)z<fz

[z >]

< {Definition of a}
x< fz

< {Monotonicity of f}
< fy

< {Assumption}
true

o al(xy).z< fz

[z 2 y]

< {Definition of a}
1< fz

< {Definition of 1}
true

true
The second property is proved by:
a.(Va,y) = Va(z;, y)
< {Function equality and definition of for functions}
Vzea.(V;,y).z = Va(x;,y).z
< {Generalization}
a.(Va,y).z = Va(z;, y).z
< {Casez >y}

o a.(Vr,y).z = Va(x,y).z

[z > y]
< {Definition of a}

18

< {Reflexivity of <}
true
o a.(Vr,y).z=Va(z,y).z

[z 2 9]

< {Definition of a}
1 <vl

< {Definition of L}

true
true
Theorem 17 If z,,,y € L, andF' : MF.L — MF.L is a monotonic function, then
NVweW, feEMF.Lex, < fy=x,< Ffy =z<(uF)y
Proof.

NVweW, feMF.Lex_, < fy=x,<F.fy)
< {Lemma 16}

(Vw € W, f € MF.L o a.(t<y,y) < | = (20, y) < F.f)
< {Monotonic function properties}

(Vw € W o a2y, y) < F(a(t<u,y)))
< {Lemma 16}

(Vo € W » (20 y) < F(V,epy 0.(20.9))
= {Theorem 15}

Vew - (2w, y) < p F
< {Lemma 16}

a(z,y) < pF
< {Lemma 16}

< (pF)y u

19

5.3 Hoare rules for transition diagrams.

Let (W, <) be a well founded set, anl,, : I — Pred a collection of indexed
predicates for allv € W. Then the indexed predicatés.,,, X : [— Pred, are
defined by

X<w:\/Xv7 X:\/Xw

v<<w weW

The Hoare tripleP {| D[} Q) is correct, denotet P{ D [} @, if it can be
proved using the followingoare rules
PcP Q@ FP{D}Q
FP D[

Viajaw. F sz {| Dl,] |} X<’wj
X (D[(X A —grd.D)

Theorem 18
FP{D}}Q = EP{D}Q

Proof. For alli, j € I, we assume
= Xyi{ D[} Xcwj (& Xyt Cpt.D;j.(Xcy.j))
and we prove= X {| D [} X A —grd.D which is equivalent to
X Cpt.D.(X A—grd.D) = (uF.D).(X A —grd.D)
Using Theorem 17 we have to prove
X.w CU(X A—grd.D) = X,, C F.D.U.(X A—grd.D)

forallw e WandU € (I — Pred) — (I — Pred). We assumeX_,, C
U(X A —grd.D) and fori € I ands € ¥ we assumeX,.i.s, and we prove
F.D.U.(X A —grd.D).i.s.

o FDU(XAN-grd.D).i.s
< {Definition of F}

(Vjept.D,; ;. (U(X A—-grd.D).j).s) A (—grd.D.i.s = (X A —grd.D).i.s)
< {Assumptions}

(Vjept.D; ;. (U(X A—-grd.D).j).s)

< {Assumptions and monotonicity @ft.D; ;}

20

(Vjept.D;;.(Xcw.j).5)
< {Assumptions}

Xy .8
< {Assumptions}

true []

Theorem 19
Fwp.D.Q{D[}Q

Proof. We need to prove that there exists, : I — Pred such that
wp.D.QQ C X
(X A (-grd.D)) € Q

Vi,jel, we Wet X,.i{ D; [} Xcw.j)

Let?, =V, ., F.D.T, andX,, = T,,.Q. By Theorem 14)/ _,. T, is the least
fixpoint of F.D, thereforewp.D = \/, .1y T

wp.D.QQ C X
< {Assumptions}
(VTu).Q € V(Tw.Q)
< {Definition of \/}
true
For the second property we have:
(X A(—grd.D)) CQ
< {Definitions of X and\/}
(Vw @ X, A (—grd.D) C Q)
& {Definitions of X, and\/}
(Vw,vev <w = F.D.T,.Q N (—grd.D) C Q)
< {Definition of C}

Vu,i,s e F.D.T,,.QQ.i.s N —grd.D.i.s = Q.i.s

21

< {Definition of F.D}
A (—grd.D.i.s = Q.i.s) A =grd.D.i.s = Q.i.s
< {Boolean properties}
true
For the last property let j € I andw € W.
FXuwi{|Dij [} Xcw.J
< {Theorem 12}
F Xt { D[} X<w.j
< {Relation (4) }
Xoui Cwp.Dij. (X))
< {Theorem 5}
Xo.i C pt.D; (X cw.j)
< {Definition of X}
T.Q.i Cpt.D;;.(X o)
< {Definition of 7,,}
(Vyew F-D.T,,).Q.0 C pt.D; j.(Xcw.j)
< {For arbitraryv, v < w ands}
F.D.T,.Q.i.s = pt.D;;.(Xcy.j).s
< {Definition of F.D}
(Vjept.D,; ;. (T,.Q.7).s) = pt-D,; ;.(Xcw.5).s
< {Generalization}
pt.D; ;.(1,.Q.5).s = pt.D; ;.(Xcy.j).s
< {Definition of X_,}
pt.D; ;.(T,.Q.5).s = pt-D; ;.((Vyew Tu-Q)-J)-5
< {Monotonicity of pt.D; ;}
pt.D; ;.(T,.Q.5).s = (Suept.D; ;.(T,.Q.7).s)

22

< {Existential quantifier introduction}
pt.D; ;.(T,,.Q.5).s = pt.D; ;.(T,,.Q.j).s
< {Symmetry of implication}
true

Theorem 20
FP{D}Q = FP{D}Q

Proof. This is a consequence of Theorem 19.

6 Conclusions

We have introduced in this paper the semantics and prodf fatenvariant based
programs. We have started by defining big step and small gie@bonal se-
mantics for transition diagrams and we proved their eqaiveg (a big step of
the program is equivalent to a sequence of small steps uetiéxecution is ter-
minated). Using the big step operational semantics we hafieatl the weakest
precondition of a transition diagram and we have provedithatcompositional
(it can be computed from the post-conditions and transstiasing a fixpoint op-
erator). Although the weakest precondition is compos#lipit cannot be used
directly to prove correctness for transition diagrams, tuthe use of the least
fixpoint operator. We therefore introduced total correstndoare proof rules for
transition diagrams, and we proved that they are correctcantplete with re-
spect to the operational semantics. Both the correctnestharcompleteness of
the proof rules for transition diagrams are consequencesooé general results
about least fixpoints of monotonic functions on completedas.

In addition to meeting our original challenge, we have atsatigbuted to other
areas of programming language semantics. We have givenral smd com-
plete proof system for multiple-entry multiple-exit pragn statements with unre-
stricted flow of control and unbounded non-determinism.sTifipretty much as
general as you can get, without going into higher levels aflatarity (procedures,
data modules, classes, processes etc.). This gives us gerezyal framework for
establishing soundness and completeness of proof systesiniple imperative
programs. Most programming languages can be seen as spes#al of invariant
based programs, with restricted flow of control. By mapphegdontrol structures
of such programming languages onto invariant based pragrans easy for us
to study the soundness of proof systems for these moreatestiianguages, by
reducing their soundness to the soundness of invariantiipesgrams (which has
been proved). Our result also opens up the way for checkiagadhrectness of
more complex structures. Multiple exits will, in particylbe useful for modeling
exception handling [2] in programming languages. Multiphéries can again be

23

used to model data modules (procedures with multiple emytpare an old trick
for modeling data modules).

We proved all results presented in this paper using the Piégactive theorem
prover. This gives a very solid foundation of our results.

We are currently working on extensions of these results tagmures (with
parameters and local variables), and to data refinementth&ndirection of re-
search is the specialization of the proof rule for termmaif the execution of a
transition diagram into a collection of rules that can beezagpplied in practice.

References

[1]

[2]

[3]

[4]

[5]

[6]

K. R. Aptand G. D. Plotkin. Countable nondeterminism aadom assign-
ment.J. ACM 33(4):724-767, 1986.

R. J. Back. Exception handling with multi-exit statentgenin H. J. Hoff-
mann, editorgth Fachtagung Programmiersprachen und Programmentwick-
lungen volume 25 ofinformatik Fachberichtepages 71-82, Darmstadt,
1980. Springer-Verlag.

R. J. Back. Semantic correctness of invariant basedrprmg. Ininterna-
tional Workshop on Program ConstructiocBhateau de Bonas, France, 1980.

R. J. Back. Invariant based programs and their correstndn W. Bier-
mann, G Guiho, and Y Kodratoff, editor&utomatic Program Construction
Techniquesnumber 223-242. MacMillan Publishing Company, 1983.

R. J. Back. Invariant based programming revisited. IrD8Snatelli and
P.S. Thiagarajan, editorBetri Nets 2006, 27th International Conference on
Application and Theory of Petri Nets and Other Models of Gorency,
volume 4024 ol ecture Notes in Computer Scienpages 1 — 18. Springer
Verlag, Jun 2006.

R.J. Back and J. von WrightRefinement Calculus. A systematic Introduc-
tion. Springer, 1998.

[7] A. Church. A formulation of the simple theory of type3. Symbolic logic

[8]

[9]

5:56—-68, 1940.

B.A. Davey and H.A. Priestley.Introduction to lattices and order Cam-
bridge University Press, New York, second edition, 2002.

E.W. Dijkstra. A Discipline of ProgrammingPrentice-Hall Inc., Englewood
Cliffs, N.J., 1976. With a foreword by C. A. R. Hoare, Pregtidall Series
in Automatic Computation.

24

[10] E. C. R. Hehner. do considered od: A contribution to thegpamming
calculus.Acta Informatica11(4):287-304, 1979.

[11] C.A.R. Hoare. An axiomatic basis for computer programgm Communi-
cations of the ACM12(10):576-580, 1969.

[12] P.T. JohnstoneNotes on logic and set thearZambridge University Press,
New York, NY, USA, 1987.

[13] T. Nipkow. Hoare logics for recursive procedures andaimded nondeter-
minism. In J. Bradfield, edito€omputer Science Logic (CSL 2002)lume
2471 ofLNCS pages 103-119. Springer, 2002.

[14] T. Nipkow, L.C. Paulson, and M. Wenzédtabelle/HOL — A Proof Assistant
for Higher-Order Logi¢ volume 2283 ot NCS Springer, 2002.

[15] S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Strindex€t. PVS lan-
guage reference. Technical report, Computer Science htdrgr SRI Inter-
national, dec 2001.

[16] J. C. Reynolds. Programming with transition diagrammsD. Gries, editor,
Programming Methodologyspringer Verlag, Berlin, 1978.

[17] A. Tarski. A lattice-theoretical fixpoint theorem ard applicationsPacific
J. Math, 5:285-309, 1955.

[18] M. H. Van Emden. Programming with verification condit® IEEE Trans.
Softw. Eng.5(2):148-159, 1979.

25

TURKU

CENTRE for

COMPUTER

SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

m University of Turku
§ ,{é‘ e Department of Information Technology
= 3 i
— N e Department of Mathematics
AT
O

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 978-952-12-2111-8
ISSN 1239-1891

