
Ralph-Johan Back | Viorel Preoteasa

Semantics and Proof Rules of Invariant
Based Programs

TUCS Technical Report
No 903, June 2008

Semantics and Proof Rules of Invariant
Based Programs

Ralph-Johan Back
Åbo Akademi University
Department of Information Technologies
Joukahaisenkatu 3-5 B, 20520 Turku, Finland

Viorel Preoteasa
Åbo Akademi University
Department of Information Technologies
Joukahaisenkatu 3-5 B, 20520 Turku, Finland

TUCS Technical Report

No 903, June 2008

Abstract

Invariant based programmingis an approach where we start to construct a pro-
gram by first identifying the basic situations (pre- and postconditions as well as
invariants) that could arise during the execution of the algorithm. These situations
are identified before any code is written. After that, we identify the transitions
between the situations, which will give us the flow of controlin the program. The
transitions are verified at the time when they are constructed. The correctness of
the program is thus established as part of constructing the program. The program
structure in invariant based programs is determined by the information content of
the situations, usingnested invariant diagrams.The control structure is secondary
to the situation structure, and will usually not be well-structured in the classical
sense, i.e., it is not necessarily built out of single-entrysingle-exit program con-
structs.

The execution of an invariant diagram may start in any situation and will
choose one of the enabled transitions in this situation, to continue to the next sit-
uation. In this way, the execution proceeds from situation to situation. Execution
terminates when a situation is reached from which there are no enabled transitions.
Because the execution could start and terminate in any situation, invariant-based
programs can be thought of as multiple entry, multiple exit programs. The tran-
sitions may have statements with unbounded nondeterminism, because we allow
specification statements in transitions. Invariant based programs are thus a con-
siderable generalization of ordinary structured program statements, and defining
their semantics and proof theory provides a challenge that usually does not arise
for more traditional programming languages

We study in this paper the semantics and proof rules for invariant-based pro-
grams. The total correctness of an invariant diagram is established by proving
that each transition preserves the invariants and decreases a global variant. The
proof rules for invariant-based programs are shown to be correct and complete
with respect to an operational semantics. The proof of correctness and complete-
ness introduces the weakest precondition semantics for invariant diagrams, and
uses a special construction, based on well-ordered sets, ofthe least fixpoint of a
monotonic function on a complete lattice. The results presented in this paper have
been mechanically verified in the PVS theorem prover.

TUCS Laboratory
Software Construction Laboratory

1 Introduction

Invariant based programmingis an approach where we start to construct a pro-
gram by first identifying the basic situations (pre- and postconditions as well as
invariants) that could arise during the execution of the algorithm. These situations
are identified before any code is written. After that, we identify the transitions
between the situations, which will give us the flow of controlin the program. The
transitions are verified at the time when they are constructed. The correctness of
the program is thus established as part of constructing the program. The program
structure in invariant based programs is determined by the information content of
the situations, usingnested invariant diagrams.The control structure is secondary
to the situation structure, and will usually not be well-structured in the classical
sense, i.e., it is not necessarily built out of single- entrysingle-exit program con-
structs. We refer to a program constructed in this manner as an invariant based
program.

The execution of an invariant based program may start in any situation and will
choose one of the enabled transitions in this situation, to continue to the next sit-
uation. In this way, the execution proceeds from situation to situation. Execution
terminates when a situation is reached from which there are no enabled transitions.
Because the execution could start and terminate in any situation, invariant-based
programs can be thought of as multiple entry, multiple exit programs. Termina-
tion of a program may also happen anywhere, not just at some prespecified exit
points. The transitions may have statements with unboundednondeterminism, be-
cause we allow specification statements in transitions. Invariant based programs
are thus a considerable generalization of ordinary structured program statements,
and defining their semantics and proof theory provides a challenge that usually
does not arise for more traditional programming languages

We study here the semantics and proof theory of invariant based programs
[3, 4, 5]. The idea of invariant based programming is not new,similar ideas were
proposed in the 70’s by John Reynolds [16], Martin van Emden [18], and Ralph-
Johan Back [3, 4], in different forms and variations. Dijkstra’s later work on
program construction also points in this direction [9], where he emphasizes the
formulation of a loop invariant as a central step in derivingthe program code.
However, Dijkstra insists on building the program in terms of well-structured
(single-entry single-exit) control structures, whereas there are no restrictions on
the control structure in invariant based programming. Basic for these approaches
is that the loop invariants are formulated before the program code is written. Eric
Hehner [10] was working along similar lines, but chose relations rather than pred-
icates as the basic construct.

Invariant based programs are intended to be correct by construction, so proof
of correctness is part of the programming process. For that purpose, we need to
define the semantics of invariant based programs, give proofrules for showing
that the program is correct, and we need to show that these proof rules are sound

1

(and preferably complete). But we cannot use existing theories directly, as they
are typically based on well-structured control constructs. Our purpose here is
therefore to define the semantics and proof theory of invariant based programs
from scratch, and to show that the proof rules we give are bothsound and complete
with respect to the semantics we give for invariant based programs.

We will proceed in the following way. We first describe invariant based pro-
grams in an intuitive way, to give a feel for the basic ideas behind this approach,
and for the constraints and generalizations inherent in this approach. We begin
the theoretical study of invariant based programs by defining their operational se-
mantics. We will in fact define two different operational semantics. The first one
is a small-step operational semantics that describes the way in which an invariant
based program is executed by a computer. In essence, the small step semantics
describes an interpreter for the programming language. Thesecond one is a big
step operational semantics that describes the overall behavior of an invariant based
program, essentially as a mapping from input states to possible output states. This
semantics is only concerned with the input output behavior of the program. It
allows us to define basic properties of program execution, like partial correctness
and termination. We show that the small step semantics and the big step semantics
are equivalent. In other words, any correctness property that holds for the big step
semantics of an invariant based program will also hold for the small step execution
of the program, and vice versa.

We then define a weakest precondition semantics for invariant based programs.
The weakest precondition semantics is compositional, and allows us to directly
compute the basic correctness properties of an invariant based program. We show
that the weakest precondition semantics is equivalent to the big step operational
semantics.

The weakest precondition semantics does not, however, giveus a practical
method for proving program correctness, because it uses least fixpoints to deter-
mine the semantics of loops. We get around this obstacle by giving a collection
of Hoare-like [11] total correctness proof rules for invariant based program. We
show that the proof rules are sound with respect to the weakest precondition se-
mantics. This means that if we prove, using these proof rules, that our invariant
based program is correct, then it will also be correct according to the weakest
precondition semantics.

Because we have shown that the weakest precondition semantics is equivalent
to the big step semantics, which in turn is equivalent to the small step semantics,
we get the following basic property: If we have proved that aninvariant based
program is correct using the given proof rules, then any execution of the invariant
based program that respects the small step semantics will becorrect. This means
that our proof system issound.

We also study the converse problem: Assume that we have a correct invariant
based program that is executed according to the small step semantics. Can we
then prove that the program is correct using the given proof rules for invariant

2

based programs? The answer to this question is positive, i.e., our proof system
is alsocomplete. In the end, this means that our proof system is both sound and
complete for invariant based programs.

The theory of invariant based programs has been completely mechanized in
the PVS interactive proof system [15]. This gives a very solid foundation for our
results. This PVS formalization depends on the well-ordering theorem which says
that any set can be well-ordered.

Both the soundness and completeness results we have for invariant based pro-
grams are consequences of more general results for monotonic functions on a
complete lattice. We give a special construction, based on awell ordered set, of
the least fixpoint of a monotonic function on a complete lattice. The completeness
theorem is a consequence of this construction. We allow specification statements
in our programs, so our semantics may have unbounded nondeterminism. This
means that we need to go beyond natural numbers and use well ordered rela-
tions [13] or ordinals [1] when proving completeness. This is due to the fact
that unbounded non-deterministic statements are not continuous. Nipkow [13]
presents an Isabelle [14] formalization of complete Hoare proof rules for recur-
sive parameterless procedures in the context of unbounded nondeterminism. Our
programming language is, however, more general than the onestudied in [13],
because it features multiple-entry, multiple-exit statements, and a more general
recursion mechanism. Our proof of completeness is also moregeneral and sim-
pler than the one in [13], and we believe that it could be applied unmodified
to richer programming constructs, such as procedures with parameters and local
variables.

The framework that we build allows us to study termination proofs for invari-
ant based programs in more detail, and to justify specific proof rules for termi-
nation. Proving termination of invariant based programs ismore difficult than
usually, because the control structure is unconstrained. This means that our loops
need not be nested, we can have intersecting loops, loops with exits in the middle
(multiple exit loops) and loops that can be entered in the middle (multiple entry
loops). Nevertheless, the framework that we have built allows us to formulate
new proof techniques for termination, that are more generalthan existing ones,
but which we still can prove to be sound.

2 Syntax of invariant diagrams

Let State be an unspecified type ofstatesand Var be the type of all program
variables. Forx ∈ Var, the type of the variablesx, denotedT.x, contains all values
that can be assigned tox. Intuitively a states from State gives the values to the
program variables. Formally, we access and update program variables using two
functions.val.x : State → T.x andset.x : T.x → State → State. Forx ∈ Var,
s ∈ State, anda ∈ T.x, valx.s is the value ofx in states, andsetx.a.s is the

3

state obtained froms by setting the value of locationx to a. The behavior of these
functions is described using a set of axioms [6]. For the purpose of this paper we
do not need to consider in greater details the treatment of program variables.

Let Bool be the set of Boolean values. Predicates, denotedPred, are the func-
tions fromState → Bool. Relations, denoted byRel, are functions fromState to
Pred. We denote by⊆, ∪, and∩ the predicate inclusion, union, and intersection
respectively. The typePred together with inclusion forms a complete Boolean
algebra.

We use higher-order logic [7] as the underlying logic. Iff : A → B is a
function andx ∈ A, then the function application is denoted byf.x (f dotx).

An invariant diagramis a directed graph where nodes are labeled withinvari-
ants(predicates) and edges are labeled withtransitions(program statements). The
transitions are non-iterative programs built from assertions, assumptions, demonic
updates, demonic choices, and sequential compositions. The abstract syntax of
transitions is defined by the following recursive data type:

Trs = Assert(Pred)
| Assume(Pred)
| Update(Rel)
| Choice(Trs, Trs)
| Comp(Trs, Trs)

If p is a predicate,R is a relation, andS, T are transitions, then we use the nota-
tions{p}, [p], [R], S ⊓ T, S ; T for the constructsAssert, Assume, Update,
Choice, andComp, respectively. Intuitively the execution of theassertstatement
{p} and theassumestatement[p] starting in a states in whichp is true behave as
skip. If p is false ins, then{p} fails and[p] is notenabled. Thedemonic update
[R], when starting in a states, terminates in a nondeterministically chosen state
s′ such thatR.s.s′. If there is no states′ such thatR.s.s′, then[R] is not enabled.
The execution of thedemonic choiceS ⊓ T nondeterministically choosesS or T .
The transitionS ; T is thesequential compositionof the transitionsS andT .

We model bothassignmentsandnondeterministic assignmentsusing the de-
monic update:

(x := e) = [λs, s′ • s′ = set.x.(e.s).s]

[x := a • b.a] = [λs, s′ • (∃a • s′ = set.x.a.s ∧ b.a.s)]

A transitionS is enabled, when starting from a states, if it is possible to avoid
any assume or demonic choice statements which are not enabled. For example the
transitionS = ([x < 4]; x := x + 1; [x > 1]) ⊓ ([x > 10]; x := 3) is enabled
for all states wherex is 1, 2, 3 or greater than10. If x is 1 in the initial states,
then we chose the first part of the choice inS, and all assume statements in this
part are enabled. Theguard of a transitionS is a predicate which is true for all
states from whichS is enabled. We will define formally later the notions enabled

4

and guard, but we have introduced them here informally to explain the intuition
behind invariant based programs.

Let I be a nonempty set of indexes. Formally aninvariant diagramID is
a tuple(P, D) whereP : I → Pred are theinvariantsandD : I × I → Trs

are thetransitions. D is called atransition diagramand the elements ofI are
calledsituations.The invariant diagrams are represented as special graphs. The
nodes are represented by rectangles. Inside the rectangleswe write the invariants.
The transitions are represented by directed edges in the graph, labeled with the
transition statements.

Figure 1 represents an invariant diagram. The program represented in this
figure searches if an element is member in an array of numbers.

i = n i < n ∧ a.i = x

[i = n] [i < n ∧ a.i = x]

0 ≤ i ≤ n ∧ (∀j • 0 ≤ j < i ⇒ a.j 6= x)

i := 0

n, x ∈ nat ∧ a : {0, 1, . . . , n − 1} → nat

1

2

3 4

[i < n ∧ a.i 6= x];
i := i + 1

(1)

In Figure 1 the situations are 1, 2, 3, 4. In practice, it is very often the case
that the invariant of a situationi is stronger than the invariant of another situation
j (Pi = Pj ∧ q). In this case we draw the situationi inside situationj, and we
labeli only with the predicateq. The invariant of situationi is the conjunction of
q and the labels of all situations containing the situationi. For example in (1), the
invariant of situation 4 is the conjunction of the predicatelabels of situations 1, 2,
and 4:

(n, x ∈ nat ∧ a : {0, 1, . . . , n − 1} → nat)

∧(0 ≤ i ≤ n ∧ (∀j • 0 ≤ j < i ⇒ a.j 6= x))

∧(i < n ∧ a.i = x)

Intuitively the execution of an invariant diagram starts from an initial situa-
tion and follows the transitions which areenabled. At each step the invariant of
the current situation must be satisfied by the current value of the program vari-
ables. The execution terminates in a situationi wheni is reached, and there are
no enabled transitions fromi.

5

The formal definition of an invariant diagram requires that there must be a
transition between any two situations. However in our example (1) this require-
ment is not meet, there is no transition between situation 3 and 4. Formally, when
there is no transition between two situations, we assume that there is a default
transition (miracle = [false]) which is always disabled. Always, when we draw
the diagram, we omit the transitions labeled bymiracle.

Invariant programs are more general than imperative programs, they can be
thought of as multiple entry, multiple exist programs. In principle an invariant
program could start and terminate in any situation. If the program represented in
(1) starts in situation 1, then it can terminate in situations 2 if the elementx is not
member of the arraya or in situation 3 otherwise.

3 Operational semantics

We introduce in this section smallstep and bigstep operational semantics for in-
variant diagrams and we prove their equivalence.

3.1 Small step semantics

We introduce first the smallstep semantics for transitions.If S, T ∈ Trs ands, s′ ∈
Σ , then thesmallstep relation(s, S) → (s′, T) is true if from states we get to
s′ by executing onestep(atomic statement) ofS, andT is the transitionS from
which the executed step is removed. If the transitionS consists of only one step,
then the smallstep relation becomes(s, S) → (s′, []). We denote by(s, S) → ⊥
the fact that the execution ofS fails in the next step when starting froms.

b.s

(s, {b}) → (s, [])

¬b.s

(s, {b}) → ⊥

b.s

(s, [b]) → (s, [])

R.s.s′

(s, [R]) → (s′, []) (s, S ⊓ T) → (s, S) (s, S ⊓ T) → (s, T)

(s, S) → (s′, S ′)

(s, S ; T) → (s′, S ′ ; T)

(s, S) → (s′, [])

(s, S ; T) → (s′, T)

(s, S) → ⊥

(s, S ; T) → ⊥

Let D be a transition diagram. Figure (2) represents one transition of D la-
beled byS ′ ; S. We assume that the execution reached the states in this transition.
Then the tuple(s, S, i, D) denotes the status of the execution. The execution is in
states, and it proceeds towards the situationi by executingS. If the execution
reachesi in a states′, then status of the execution is denoted by(s′, [], i, D).

s
S′ Sj i (2)

6

Thesmallstep relation(s, A, i, D) → (s′, B, i, D), whereA, B ∈ Trs ∪ {[]},
is defined by the following rules.

(s, Di,j) → (s′, S)

(s, [], i, D) → (s′, S, j, D)

(s, S) → (s′, S ′)

(s, S, i, D) → (s′, S ′, i, D)

The transition diagram couldfail in (s, A, i, D), denoted by(s, S, i, D) → ⊥,
if some available transition could fail in next step.

(s, Dij) → ⊥

(s, [], i, D) → ⊥

(s, S) → ⊥

(s, S, i, D) → ⊥

3.2 Big step semantics

Similarly to smallstep semantics, we introduce first the bigstep semantics of tran-
sitions. If S ∈ Trs ands, s′ ∈ Σ, then thebigstep relation(s, S) s′ is true if
there is an execution ofS starting ins and ending ins′. (s, S) s′ is defined by
induction on the structure ofS.

b.s

(s, {b}) s

b.s

(s, [b]) s

R.s.s′

(s, [R]) s′

(s, S) s′

(s, S ⊓ T) s′
(s, T) s′

(s, S ⊓ T) s′
(s, S) s′ ∧ (s′, T) s′′

(s, S ; T) s′′

A transitionS, starting from a states, may fail (denoted(s, S) ⊥) if some
of its executions leads to a false assertion.Failure is defined by induction on the
structure ofS.

¬b.s

(s, {b}) ⊥

(s, S) ⊥

(s, S ⊓ T) ⊥

(s, T) ⊥

(s, S ⊓ T) ⊥

(s, S) ⊥

(s, S ; T) ⊥

(s, S) s′ ∧ (s′, T) ⊥

(s, S ; T) ⊥

Similarly, the execution ofS, starting from a states, is miraculousor disabled
(denoted(s, S) ⊤) if any of its executions leads to a false assumption or to
a demonic update[R] which cannot progress. The demonic update[R] cannot
progressfrom a states if for all statess′, R.s.s′ is false.

¬b.s

(s, [b]) ⊤

∀s′ • ¬R.s.s′

(s, [R]) ⊤

(s, S) ⊤ ∧ (s, T) ⊤

(s, S ⊓ T) ⊤

(s, S) ⊤

(s, S ; T) ⊤

(s, S) 6 ⊥∧ (∀s′ • (s, S) s′ ⇒ (s′, T) ⊤

(s, S ; T) ⊤

7

Theorem 1 Miracle could be defined in terms of bigstep and fail.

(s, S) ⊤ ⇔ ((s, S) 6 ⊥ ∧ (∀s′ • (s, S) 6 s′))

If D ∈ I × I → Trs, s, s′ ∈ Σ, and i, j ∈ I, then thebigstep relation
(s, i, D) (s′, j) is true if there is an execution from states and situationi,
following the enabled transitionsD, ending in states′ and situationj, and all
transitions from states′ and situationj are disabled. The execution ofD from
states and situationi may fail, denoted(s, i, D) ⊥, if there is a situationj
such that the transitionDi,j may fail when starting froms.

(s, Di,j) s′ ∧ (s′, j, D) (s′′, k)

(s, i, D) (s′′, k)

(∀j • (s, Di,j) ⊤)

(s, i, D) (s, i)

(s, Di,j) ⊥

(s, i, D) ⊥

When starting from states and situationi, the transition diagramT terminates,
denoted(s, i, T) ↓, if all execution paths starting ins, i are finite and do not fail.

(∀j • (s, Di,j) ⊤)

(s, i, D) ↓

(s, i, D) 6 ⊥∧ (∀j, s′ • (s, Di,j) s′ ⇒ (s′, j, D) ↓)

(s, i, D) ↓

The bigstep semantics is useful in establishing further properties of transition
diagrams, however it does not give a very intuitive understanding of how invariant
diagrams are executed. In the next section we introduce the smallstep operational
semantics for transition diagrams which is closer to the waythe diagrams would
be executed by a computer.

3.3 Connection between bigstep semantics andsmallstepseman-
tics.

The small step semantics is equivalent to the bis step semantics in the following
sense. If the execution ofD starts from a states and a situationi and proceeds in
small steps until a states′ in situationj, and there are no transitions enabled from
(s′, j), then this is equivalent withD performing a big step from(s, i) to (s′, j).
In the next theorems the symbol

∗

→ denotes the reflexive and transitive closure of
the relation→.

Theorem 2 (s, S) s′ ⇔ (s, S)
∗

→ (s′, [])

Theorem 3 (s, S) ⊥ ⇔ (s, S)
∗

→ ⊥

8

We define the miracle in the smallstep semantics by
(s, S) 99K ⊤ = ¬(s, S)

∗

→ ⊥∧ (∀s′ • ¬(s, S)
∗

→ (s′, []))

Theorem 4

(s, i, D) (s′, j) ⇔ (s, [], i, D)
∗

→ (s′, [], j, D) ∧ (∀k • (s′, Dj,k) 99K ⊤)

In the remainder of this paper we will work with bigstep semantics only.

4 Weakest precondition and predicate transformers

Proving correctness of invariant diagrams is unfeasible using the operational se-
mantics. We will therefore define here a compositional semantics for invariant
based programs, based on the notion of weakest preconditions.

4.1 Weakest precondition and predicate transformers for tran-
sitions.

If p, q ∈ Pred , andS ∈ Trs then theHoare total correctness triplep {|S |} q

denotes the fact that if the transitionS start in states from p, then it terminates in
a state fromq. The Hoare triplep {|S |} q is valid, denoted|= p {|S |} q, if

|= p {|S |} q ⇔ (∀s • p.s ⇒ (s, S) 6 ⊥ ∧ (∀s′ • (s, S) s′ ⇒ q.s′)) (3)

Theweakest preconditionfor a transitionS and apost conditionq is a pred-
icate,wp.S.q ∈ Pred. For a states, wp.S.q.s is true if the execution ofS does
not fail and always terminates in a states′ from q (q.s′ is true). Using the bigstep
operational semantics for transitions we define the weakestprecondition by:

wp.S.q.s = (s, S) 6 ⊥ ∧ (∀s′ • (s, S) s′ ⇒ q.s′).

The validity of Hoare triples could be expressed equivalently using the weakest
precondition:

|= p {|S |} q ⇔ p ⊆ wp.S.q (4)

Relation (4) reduces the proof of validity of a Hoare triple to an inclusion of
predicates. However the predicatewp.S.q is defined in terms of bigstep semantics,
and the proof of the statementp ⊆ wp.S.q is still unfeasible in practice.

For S ∈ Trs we define, by induction onS, thepredicate transformerassoci-
ated toS, pt.S : Pred → Pred by:

9

pt.{p}.q = p ∧ q

pt.[p].q = ¬p ∨ q

pt.[R].q.s = (∀s′ • R.s.s′ ⇒ q.s′)

pt.(S ⊓ T).q = pt.S.q ∧ pt.T.q

pt.(S ; T).q = pt.S.(pt.T.q)

Theorem 5 For all S ∈ Trs

wp.S = pt.S

Proof. By induction on the structure ofS. �

Using Theorem 5 and relation (4) it follows

|= p {|S |} q ⇔ p ⊆ pt.S.q (5)

The relation (5) reduces the proof of the validity of a Hoare triple to an inclusion
of predicates. These predicates are defined in terms of the predicatesp, q, the
predicates and expressions occurring inS using Boolean connectives (∧,∨,→
, . . .).

Theorem 6 For all S ∈ Trs the predicate transformerpt.S is monotonic.

Proof. This fact follows directly from Theorem 5 and the definition of wp.S. �

Theguardof a transitionS is a predicate denotedgrd.S ∈ Pred and is true for
all statess from which the execution ofS is enabled.

grd.S = ¬pt.S.false

Theorem 7 The guard of a transitionS is true in a states if and only if the
execution ofS starting froms is not miraculous:

grd.S.s ⇔ (s, S) 6 ⊤

Proof. Using Theorem 1, Theorem 5, and the definitions ofgrd andwp.

grd.S.s

= {Definition of grd}

¬pt.S.false

= {Theorem 5}

10

¬wp.S.false

= {Definition of wp}

¬((s, S) 6 ⊥∧ (∀s′ • (s, S) s′ ⇒ false.s′))

= {Boolean properties}

¬((s, S) 6 ⊥∧ (∀s′ • (s, S) 6 s′))

= {Theorem 1}

(s, S) 6 ⊤ �

4.2 Weakest precondition and predicate transformers for tran-
sition diagrams

The Hoare triples for diagrams have similar interpretations to those of the transi-
tions. However, a diagram may be executed starting in any situation and it may
terminate in any situation. LetP, Q : I → Pred andD : I × I → Pred. The
diagram Hoare total correctness triple, P {|D |}Q, is true if whenever the exe-
cution of D starts in a states from a situationi, such thatP.i.s is true, thenD
always terminates, and ifD terminates in a states′ and a situationj, thenQ.j.s′

is true. The predicateP.i is thepreconditionof D when starting from situationi.
Similarly,Q.j is thepostconditionof D when terminating in situationj.

The Hoare tripleP {|D |}Q is valid, denoted|= P {|D |}Q, if

|= P {|D |}Q

⇔
(∀i, s • P.i.s ⇒ (s, i, D) ↓ ∧(∀j, s′ • (s, i, D) (s′, j) ⇒ Q.j.s′))

(6)

Theweakest preconditionfor a diagramD and a postconditionQ is an indexed
predicatewp.D.Q : I → Pred. For a states and a situationi, wp.D.Q.i.s is true
if the execution ofD from s, i always terminates, and if it terminates in a states′

and a situationj thenQ.j.s′ is true. Using the bigstep operational semantics for
diagrams we define the weakest precondition by:

wp.D.Q.i.s = (s, i, D) ↓ ∧(∀j, s′ • (s, i, D) (s′, j) ⇒ Q.j.s′).

The validity of diagram Hoare triples could be expressed equivalently using the
weakest precondition:

|= P {|D |}Q ⇔ P ⊆ wp.D.Q (7)

11

Relation (7) reduces the proof of validity of a Hoare triple to an inclusion of
indexed predicates. However, similarly to transitions’ case, provingP ⊆ wp.D.Q

is unfeasible in practice due to the bigstep semantics expressions occurring inwp.
Theguardof a situationi in a diagramD is a predicategrd.D.i ∈ Pred which

is true in those states in which the execution from situationi is enabled:

grd.D.i =
∨

j∈I

grd.Di,j

Let Dpt = (I → Pred) → (I → Pred). For D ∈ I × I → Trs let F.D :
Dpt → Dpt be the monotonic function given by

F.D.U.Q.i.s = (∀j • pt.Di,j.(U.Q.j).s) ∧ (¬grd.D.i.s ⇒ Q.i.s)

Thepredicate transformerassociated toD, pt.D : Dpt, is the least fix point
of F :

pt.D = µ F.D

Theorem 8 wp.D = pt.D

Proof. We prove thatwp.D is fixpoint for F.D and it is smaller than any other
fixpoint. �

Using Theorem 8 and relation (7) it follows

|= P {|D |}Q ⇔ P ⊆ pt.D.Q (8)

The relation (8) reduces the proof of the validity of a Hoare triple to an inclusion
of predicates. However, unlike for transitions, the predicate pt.D.Q is a least
fixpoint expression, and provingP ⊆ pt.D.Q is unfeasible in practice.

Theorem 9 For all D ∈ I × I → Trs the predicate transformerpt.D is mono-
tonic.

Proof. This fact follows directly from Theorem 8 and the definition of wp.D. �

5 Axiomatic semantics

The weakest precondition semantics does not allow us to prove correctness of
programs in practice, because of the use of the least fixed point operator. We
need to define Hoare like proof rules for invariant based programs to establish
correctness in practice.

12

5.1 Hoare rules for transitions

The Hoare triplep {|S |} q is correct, denoted⊢ p {|S |} q, if it can be proved using
following Hoare rules.

∀s • p.s ⇒ r.s ∧ q.s

⊢ p {| {r} |} q

∀s • p.s ∧ r.s ⇒ q.s

⊢ p {| [r] |} q

∀s, s′ • p.s ∧ R.s.s′ ⇒ q.s′

⊢ p {| [R] |} q

⊢ p {|S |} q ⊢ p {| T |} q

⊢ p {|S ⊓ T |} q

⊢ p {|S |} r ⊢ r {| T |} q

⊢ p {|S ; T |} q

⊢ p {|S |} q p′ ⊆ p ∧ q ⊆ q′

⊢ p′ {|S |} q′

The validity is equivalent to proving correctness using theHoare rules, and, in
practice, the Hoare rules are used to prove the correctness of transitions.

Theorem 10 (Correctness)

⊢ p {|S |} q ⇒ |= p {|S |} q

Proof. By induction on the structure ofS. �

Theorem 11
wp.S.q {|S |} q.

Proof. We provept.S.q {|S |} q by induction on the structure ofS. �

Theorem 12 (Completeness)

|= p {|S |} q ⇒ ⊢ p {|S |} q.

Proof. By the definition of|= p {|S |} q andwp.q it follows p ⊆ wp.q and by
theorem 11 and Hoare consequence rule it followsp {|S |} q. �

Before introducing the proof rules for diagrams we need somedefinitions and
properties of complete lattices and fixpoints.

5.2 Complete lattices and fixpoints

This section introduces some results about fixpoints in complete lattices [8].
These results are the main tools in proving correctness and completeness of the
proof rules for invariant diagrams.

A partially ordered(poset) set〈L, ≤〉 is acomplete latticeif every subset of
L hasleast upper boundor equivalentlygreatest lower bound. For a subsetA of

13

L, ∨A ∈ L denotes the least upper bound (join) of A and∧A ∈ L denotes the
greatest lower bound (meet) of A. If L is a complete lattice, than theleast(bot-
tom) and thegreatest(top) elements ofL exist and they are denoted by⊥, ⊤ ∈ L,
respectively. IfA is a nonempty set andL is a lattice, than thepointwise extension
of the order onL to A → L is also a complete lattice. The operations meet, join,
bottom, and top onA → L are also the pointwise extensions of the correspond-
ing operations onL. If 〈A,≤〉 is a partially ordered set, then the set ofmonotonic
functions fromA to L, denotedA

m
→ L is also a complete lattice. The order, meet,

join, top, and bottom onA
m
→ L are the pointwise extensions of the corresponding

operations onL. For a complete latticeL, MF.L is the complete lattice of mono-
tonic functions fromL to L. The Boolean algebra with two elementsBool, the
predicatesPred, the indexed predicatesI → Pred, and the monotonic predicate
transformers are complete lattices.

We list briefly some properties of well founded and well ordered sets that are
needed in this paper. For a comprehensive treatment of this subject see [12]. A
partially ordered set〈W, <〉 is well foundedif every nonempty subset ofW has a
minimal element. The poset〈W, <〉 is well orderedif it is well founded andtotal.

Theorem 13 For any setA there is a well ordered set〈W, <〉 such that no func-
tion f : W → A is injective. In other words, for any functionf : W → A there
existsw1, w2 ∈ W , w1 < w2, such thatf.w1 = f.w2. For a setA we denote by
WA a well ordered set satisfying the property above.

Proof. This theorem follows from Cantor’s theorem stating that the power set (set
of all subsets) of any setA has a strictly greater cardinality than that ofA and the
well-ordering theorem stating that every set can be well-ordered. �

We use Theorem 13 to give a new proof for the classical Knaster-Tarski fix-
point theorem [17]. We give a construction of the least fixpoint of a monotonic
function on a complete latticeL based on a well ordered set. Our construction is
more general than the one in [6] which is based on ordinals, since we only need
a well ordered set.

Theorem 14 If 〈L,≤〉 is a complete lattice andF : L → L is a monotonic
function, thenF has a least fixpoint denoted byµ F .

Proof.Assume that〈L,≤〉 is a complete lattice and thatF : L → L is a monotonic
function. LetWL be a well ordered set given by Theorem 13. Letw ∈ WL and
definexw, x ∈ L by

xw =
∨

v<w

F.xv and x =
∨

w∈W

xw

Thenx is the least fixpoint ofF . We prove first a number of properties aboutxw.
(a) We first prove thatxv forms an increasing chain:

14

v ≤ w ⇒ xv ≤ xw (9)

Assumev ≤ w. Then

xv ≤ xw

⇔ {Definition of xv andxw}
∨

u<v F.xu ≤
∨

s<w F.xs

⇐ {Properties of
∨

, the least upper bound operator }

∀u • u < v ⇒ (∃s • s < w ∧ F.xu ≤ F.xs)

⇐ {Existential quantifier introduction}

∀u • u < v ⇒ u < w ∧ F.xu ≤ F.xu

⇔ {Assumption}

∀u • u < v ⇒ F.xu ≤ F.xu

⇔ {Symmetry of≤}

true

(b) We then prove that

xw ≤ F.xw (10)

The proof is as follows:

xw ≤ F.xw

⇔ {Definition of xw}
∨

v<w F.xv ≤ F.xw

⇔ {Definition of
∨

}

∀v • v < w ⇒ F.xv ≤ F.xw

⇔ {Monotonicity of F and property (9)}

true

15

(c) By the property ofWL it now follows that there existsw1 < w2 such that
xw1

= xw2
. We now show that

xw1
= F.xw1

(11)

We already provedxw1
≤ F.xw1

. The converse inequality is proved as follows:

xw1

= {Assumption}

xw2

= {Definition of xw2
}

∨

v<w2
F.xv

≥ {Definition of
∨

andw1 < w2}

F.xw1

(d) We now prove that

y = F.y ⇒ (∀w • xw ≤ y) (12)

We prove (12) by well founded induction onw. Assumey = F.y and(∀v • v <

w ⇒ xv ≤ y).

xw ≤ y

⇔ {Definition of xw}
∨

v<w F.xv ≤ y

⇔ {Definition of
∨

}

(∀v • v < w ⇒ F.xv ≤ y)

⇔ {Assumptiony = F.y}

(∀v • v < w ⇒ F.xv ≤ F.y)

⇐ {Monotonicity of F }

(∀v • v < w ⇒ xv ≤ y)

⇔ {Assumption}

true

16

We have now shown that the elementxw1
is a fixpoint forF and that for allw ∈

WL, xw is smaller than any fixpoint ofF . It follows thatx = xw1
andx is the

least fixpoint ofF . �

Let 〈W, <〉 be a well founded set andxw ∈ L a collection of elements indexed
by w ∈ W . Then the elementsx<w, x ∈ L are given by

x<w =
∨

v<w

xv and x =
∨

w∈W

xw

Theorem 15 If 〈L,≤〉 is a complete lattice,F : L → L is monotonic, andxw ∈ L

is a collection of elements indexed byw ∈ W , then

(∀w • xw ≤ F.x<w) ⇒ x ≤ µ F

Proof. We prove by well founded induction that(∀w • xw ≤ µ F). �

If x, y ∈ L, thenα.(x, y) ∈ MF.L is given by

α.(x, y).z =

{

x if z ≥ y

⊥ otherwise

It is easy to prove thatα.(x, y) is monotonic.

Lemma 16 If x, y ∈ L, xi ∈ L for all i ∈ I, andf ∈ MF.L, then

α.(x, y) ≤ f ⇔ x ≤ f.y

α.(∨xi, y) = ∨α(xi, y)

Proof.

α.(x, y) ≤ f

⇒ {Definition of ≤ for functions}

α.(x, y).y ≤ f.y

⇔ {Definition of α}

x ≤ f.y

The revers implication follows from. Assumex ≤ f.y.

α.(x, y) ≤ f

⇔ {Definition of ≤}

∀z • α.(x, y).z ≤ f.z

17

⇐ {Generalization}

α.(x, y).z ≤ f.z

⇔ {Casez ≥ y}

• α.(x, y).z ≤ f.z

[z ≥ y]

⇔ {Definition of α}

x ≤ f.z

⇐ {Monotonicity of f }

x ≤ f.y

⇔ {Assumption}

true

• α.(x, y).z ≤ f.z

[z 6≥ y]

⇔ {Definition of α}

⊥ ≤ f.z

⇔ {Definition of ⊥}

true

. . . true

The second property is proved by:

α.(∨xi, y) = ∨α(xi, y)

⇔ {Function equality and definition of∨ for functions}

∀z • α.(∨xi, y).z = ∨α(xi, y).z

⇐ {Generalization}

α.(∨xi, y).z = ∨α(xi, y).z

⇔ {Casez ≥ y}

• α.(∨xi, y).z = ∨α(xi, y).z

[z ≥ y]

⇔ {Definition of α}

∨xi ≤ ∨xi

18

⇔ {Reflexivity of ≤}

true

• α.(∨xi, y).z = ∨α(xi, y).z

[z 6≥ y]

⇔ {Definition of α}

⊥ ≤ ∨⊥

⇔ {Definition of ⊥}

true

. . . true

Theorem 17 If xw, y ∈ L, andF : MF.L → MF.L is a monotonic function, then

(∀w ∈ W, f ∈ MF.L • x<w ≤ f.y ⇒ xw ≤ F.f.y) ⇒ x ≤ (µ F).y

Proof.

(∀w ∈ W, f ∈ MF.L • x<w ≤ f.y ⇒ xw ≤ F.f.y)

⇔ {Lemma 16}

(∀w ∈ W, f ∈ MF.L • α.(x<w, y) ≤ f ⇒ α.(xw, y) ≤ F.f)

⇔ {Monotonic function properties}

(∀w ∈ W • α.(xw, y) ≤ F.(α.(x<w, y)))

⇔ {Lemma 16}

(∀w ∈ W • α.(xw, y) ≤ F.(
∨

v<w α.(xv, y)))

⇒ {Theorem 15}

∨

w∈W α.(xw, y) ≤ µ F

⇔ {Lemma 16}

α.(x, y) ≤ µ F

⇔ {Lemma 16}

x ≤ (µ F).y �

19

5.3 Hoare rules for transition diagrams.

Let 〈W, <〉 be a well founded set, andXw : I → Pred a collection of indexed
predicates for allw ∈ W . Then the indexed predicatesX<w, X : I → Pred, are
defined by

X<w =
∨

v<w

Xv, X =
∨

w∈W

Xw

The Hoare tripleP {|D |}Q is correct, denoted⊢ P {|D |}Q, if it can be
proved using the followingHoare rules:

P ′ ⊆ P Q ⊆ Q′ ⊢ P {|D |}Q

⊢ P ′ {|D |}Q′

∀i, j, w• ⊢ Xw.i {|Di,j |}X<w.j

⊢ X {|D |} (X ∧ ¬grd.D)

Theorem 18
⊢ P {|D |}Q ⇒ |= P {|D |}Q

Proof. For all i, j ∈ I, we assume

|= Xw.i {|Di,j |}X<w.j (⇔ Xw.i ⊆ pt.Di,j.(X<w.j))

and we prove|= X {|D |}X ∧ ¬grd.D which is equivalent to

X ⊆ pt.D.(X ∧ ¬grd.D) = (µ F.D).(X ∧ ¬grd.D)

Using Theorem 17 we have to prove

X<w ⊆ U.(X ∧ ¬grd.D) ⇒ Xw ⊆ F.D.U.(X ∧ ¬grd.D)

for all w ∈ W andU ∈ (I → Pred) → (I → Pred). We assumeX<w ⊆
U.(X ∧ ¬grd.D) and for i ∈ I and s ∈ Σ we assumeXw.i.s, and we prove
F.D.U.(X ∧ ¬grd.D).i.s.

• F.D.U.(X ∧ ¬grd.D).i.s

⇔ {Definition of F }

(∀j • pt.Di,j.(U.(X ∧ ¬grd.D).j).s) ∧ (¬grd.D.i.s ⇒ (X ∧ ¬grd.D).i.s)

⇔ {Assumptions}

(∀j • pt.Di,j.(U.(X ∧ ¬grd.D).j).s)

⇐ {Assumptions and monotonicity ofpt.Di,j}

20

(∀j • pt.Di,j.(X<w.j).s)

⇐ {Assumptions}

Xw.i.s

⇔ {Assumptions}

true �

Theorem 19
⊢ wp.D.Q {|D |}Q

Proof. We need to prove that there existsXw : I → Pred such that

wp.D.Q ⊆ X

(X ∧ (¬grd.D)) ⊆ Q

(∀i, j ∈ I, w ∈ W• ⊢ Xw.i {|Di,j |}X<w.j)

Let Tw =
∨

v<w F.D.Tv andXw = Tw.Q. By Theorem 14,
∨

w∈W Tw is the least
fixpoint of F.D, thereforewp.D =

∨

w∈W Tw.

wp.D.Q ⊆ X

⇔ {Assumptions}

(
∨

Tw).Q ⊆
∨

(Tw.Q)

⇔ {Definition of
∨

}

true

For the second property we have:

(X ∧ (¬grd.D)) ⊆ Q

⇔ {Definitions of X and
∨

}

(∀w • Xw ∧ (¬grd.D) ⊆ Q)

⇔ {Definitions of Xw and
∨

}

(∀w, v • v < w ⇒ F.D.Tv.Q ∧ (¬grd.D) ⊆ Q)

⇐ {Definition of ⊆}

∀v, i, s • F.D.Tv.Q.i.s ∧ ¬grd.D.i.s ⇒ Q.i.s

21

⇔ {Definition of F.D}

. . . ∧ (¬grd.D.i.s ⇒ Q.i.s) ∧ ¬grd.D.i.s ⇒ Q.i.s

⇔ {Boolean properties}

true

For the last property leti, j ∈ I andw ∈ W .

⊢ Xw.i {|Di,j |}X<w.j

⇐ {Theorem 12}

|= Xw.i {|Di,j |}X<w.j

⇔ {Relation (4) }

Xw.i ⊆ wp.Di,j.(X<w.j)

⇔ {Theorem 5}

Xw.i ⊆ pt.Di,j.(X<w.j)

⇔ {Definition of Xw}

Tw.Q.i ⊆ pt.Di,j.(X<w.j)

⇔ {Definition of Tw}

(
∨

v<w F.D.Tv).Q.i ⊆ pt.Di,j .(X<w.j)

⇔ {For arbitraryv, v < w ands}

F.D.Tv.Q.i.s ⇒ pt.Di,j.(X<w.j).s

⇐ {Definition of F.D}

(∀j • pt.Di,j.(Tv.Q.j).s) ⇒ pt.Di,j .(X<w.j).s

⇐ {Generalization}

pt.Di,j.(Tv.Q.j).s ⇒ pt.Di,j.(X<w.j).s

⇔ {Definition of X<w}

pt.Di,j.(Tv.Q.j).s ⇒ pt.Di,j.((
∨

u<w Tu.Q).j).s

⇔ {Monotonicity of pt.Di,j}

pt.Di,j.(Tv.Q.j).s ⇒ (∃u • pt.Di,j.(Tu.Q.j).s)

22

⇐ {Existential quantifier introduction}

pt.Di,j.(Tv.Q.j).s ⇒ pt.Di,j.(Tv.Q.j).s

⇔ {Symmetry of implication}

true

Theorem 20
|= P {|D |}Q ⇒ ⊢ P {|D |}Q

Proof. This is a consequence of Theorem 19.

6 Conclusions

We have introduced in this paper the semantics and proof rules for invariant based
programs. We have started by defining big step and small step operational se-
mantics for transition diagrams and we proved their equivalence (a big step of
the program is equivalent to a sequence of small steps until the execution is ter-
minated). Using the big step operational semantics we have defined the weakest
precondition of a transition diagram and we have proved thatit is compositional
(it can be computed from the post-conditions and transitions, using a fixpoint op-
erator). Although the weakest precondition is compositional, it cannot be used
directly to prove correctness for transition diagrams, dueto the use of the least
fixpoint operator. We therefore introduced total correctness Hoare proof rules for
transition diagrams, and we proved that they are correct andcomplete with re-
spect to the operational semantics. Both the correctness and the completeness of
the proof rules for transition diagrams are consequences ofmore general results
about least fixpoints of monotonic functions on complete lattices.

In addition to meeting our original challenge, we have also contributed to other
areas of programming language semantics. We have given a sound and com-
plete proof system for multiple-entry multiple-exit program statements with unre-
stricted flow of control and unbounded non-determinism. This is pretty much as
general as you can get, without going into higher levels of modularity (procedures,
data modules, classes, processes etc.). This gives us a verygeneral framework for
establishing soundness and completeness of proof system for simple imperative
programs. Most programming languages can be seen as specialcases of invariant
based programs, with restricted flow of control. By mapping the control structures
of such programming languages onto invariant based programs, it is easy for us
to study the soundness of proof systems for these more restricted languages, by
reducing their soundness to the soundness of invariant based programs (which has
been proved). Our result also opens up the way for checking the correctness of
more complex structures. Multiple exits will, in particular, be useful for modeling
exception handling [2] in programming languages. Multipleentries can again be

23

used to model data modules (procedures with multiple entry points are an old trick
for modeling data modules).

We proved all results presented in this paper using the PVS interactive theorem
prover. This gives a very solid foundation of our results.

We are currently working on extensions of these results to procedures (with
parameters and local variables), and to data refinement. Another direction of re-
search is the specialization of the proof rule for termination of the execution of a
transition diagram into a collection of rules that can be easier applied in practice.

References

[1] K. R. Apt and G. D. Plotkin. Countable nondeterminism andrandom assign-
ment.J. ACM, 33(4):724–767, 1986.

[2] R. J. Back. Exception handling with multi-exit statements. In H. J. Hoff-
mann, editor,6th Fachtagung Programmiersprachen und Programmentwick-
lungen, volume 25 ofInformatik Fachberichte, pages 71–82, Darmstadt,
1980. Springer-Verlag.

[3] R. J. Back. Semantic correctness of invariant based programs. InInterna-
tional Workshop on Program Construction, Chateau de Bonas, France, 1980.

[4] R. J. Back. Invariant based programs and their correctness. In W. Bier-
mann, G Guiho, and Y Kodratoff, editors,Automatic Program Construction
Techniques, number 223-242. MacMillan Publishing Company, 1983.

[5] R. J. Back. Invariant based programming revisited. In S.Donatelli and
P.S. Thiagarajan, editors,Petri Nets 2006, 27th International Conference on
Application and Theory of Petri Nets and Other Models of Concurrency,
volume 4024 ofLecture Notes in Computer Science, pages 1 – 18. Springer
Verlag, Jun 2006.

[6] R.J. Back and J. von Wright.Refinement Calculus. A systematic Introduc-
tion. Springer, 1998.

[7] A. Church. A formulation of the simple theory of types.J. Symbolic logic,
5:56–68, 1940.

[8] B.A. Davey and H.A. Priestley.Introduction to lattices and order. Cam-
bridge University Press, New York, second edition, 2002.

[9] E.W. Dijkstra.A Discipline of Programming. Prentice-Hall Inc., Englewood
Cliffs, N.J., 1976. With a foreword by C. A. R. Hoare, Prentice-Hall Series
in Automatic Computation.

24

[10] E. C. R. Hehner. do considered od: A contribution to the programming
calculus.Acta Informatica, 11(4):287–304, 1979.

[11] C.A.R. Hoare. An axiomatic basis for computer programming. Communi-
cations of the ACM, 12(10):576–580, 1969.

[12] P.T. Johnstone.Notes on logic and set theory. Cambridge University Press,
New York, NY, USA, 1987.

[13] T. Nipkow. Hoare logics for recursive procedures and unbounded nondeter-
minism. In J. Bradfield, editor,Computer Science Logic (CSL 2002), volume
2471 ofLNCS, pages 103–119. Springer, 2002.

[14] T. Nipkow, L.C. Paulson, and M. Wenzel.Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 ofLNCS. Springer, 2002.

[15] S. Owre, N. Shankar, J.M. Rushby, and D.W.J. Stringer-Clavert. PVS lan-
guage reference. Technical report, Computer Science Laboratory, SRI Inter-
national, dec 2001.

[16] J. C. Reynolds. Programming with transition diagrams.In D. Gries, editor,
Programming Methodology. Springer Verlag, Berlin, 1978.

[17] A. Tarski. A lattice-theoretical fixpoint theorem and its applications.Pacific
J. Math., 5:285–309, 1955.

[18] M. H. Van Emden. Programming with verification conditions. IEEE Trans.
Softw. Eng., 5(2):148–159, 1979.

25

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2111-8
ISSN 1239-1891

