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Abstract

The increasing size, complexity, speed, and power reqeinésrposes challenges
for the development methods of modern System-on-Chip dssigraditionally,
the system is implemented according to the specificationguaihardware de-
scription language and then verified using simulation basethods. In case of
unwanted mismatch between the initial specification andiridementation a
new design cycle is needed. This is time consuming as welhas@ar prone
approach to design systems. Therefore, there is a need famawork that pro-
vides essential information of the system under designh Wiis information a
designer is capable to make far-reaching decisions and aesily design back-
tracking later on in the project.

In exploring new approaches to outdo design challengesdiamethods are a
solution to be reckoned with. They provide an environmesptecify, design, and
verify systems with the benefits of rigorous mathematicalddor this study we
chose the Action Systems framework to be our base formalime. framework
will be extended with a method that allows us to estimate aadlyae the area/size
of a system in a formal, abstract system specification. Theehelies on the size
estimation of the Boolean functions. The model presentstate/ironment under
which the formal model is evaluated and compared with thetiexg high level
size model.

Keywords: Action Systems, area, formal, model
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1 Introduction

The development methods and languages dedicated to mdaiga System-on-
Chip (SoC) designs are facing tremendous pressure of theirewreasing size,
complexity, speed, and power requirements. To answer ttieséenges formal
methods provide an environment to specify, design, andyveystems with the
benefits of rigorous mathematical basis. Furthermoregel&gC designs need
large and power hungry clock distribution networks thatenbeen recognized
one of the major challenges in modern deep submicron desidnesefore, a keen
interests towards multi-clocked and multiprocessor sgstes growing. A com-
monly used method to alleviate the problems described aisaeeuse Globally
Asynchronous Locally Synchronous (GALS) design methorbthiced in [10].
A GALS design is composed of locally synchronous islandssehdocks are in-
dependent of each other, and therefore there is no need focla distribution
network. Thus, in industry and academia the interest tosvemanal methods and
GALS architecture is continuously increasing.

In general, the development of SoC design begins from a leigk Epecifica-
tion, which describes the functional and timing requiretaaf the end product.
The functional requirements defines how the system opeaatesding to the in-
put and timing requirements are set to system componeritsiiingt be satisfied.
Traditionally, according to the specification, the systsnmiplemented using, for
instance, hardware specification language like VHDL orldgriand then verified
using simulation based methods. In the case of an unwantedatch between
the initial specification and the implementation a new desigle is needed. This
is time consuming as well as an error prone approach to deggams. Further-
more, modern wireless and mobile technology platforms pmsgower require-
ments for the system, which have to be taken into accounnguaiesign flow.

In power consumption estimation there is a trade-off betwaecuracy and
design time. The more detailed the analysis is the more tirmensumes. To
avoid costly design backtracking a designer wants to makesidas as early as
possible. In this study, we present a method to evaluatertee/assize of a sys-
tem from formal system descriptions and compare the regtiia existing high
level synthesis tool. The purpose is to evaluate the acgwhihe method since
the area of the system is an essential metric in a power cgutgnrestimation
[31][32][33] due to the static power consumption [18].

The formal area complexity modeling technique presentedisstudy is tar-
geted to Action Systems [2], which is based on an extendesioreof Dijkstra’s
language of guarded commands [14]. The Action Systems i@mavas chosen
to be the base formalism because it has been successfuligdipp the devel-
opment of both synchronous [28] and asynchronous [23] BystéVoreover, it
has a time spiced extension, Timed Action Systems, whiclbearsed to analyze
systems timing requirements. Owing to the complexity ofindticlocked and
multiprocessor systems, the possibility to abstract uessary implementation
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details at higher abstraction levels is an essential pdhieofised design language.
With the encapsulation and abstraction techniques incated with the proce-
dure based communication [24] enables a designer to usemstistems as well
as Timed Action Systems in modeling these systems. Thelritpes allow one
to divide the development of the communication and compartanto their own
tasks. In addition, one of the benefits on choosing Actiortegs formalism as
the base formalism is the ability to use it throughout thegieproject: in other
words, to be able to model systems from an abstract spemficddwn to an im-
plementable specification. The area complexity estimat@uitable for Timed
Action Systems formalism, too, and it is used when discubsgld level power
estimation [32], [33].

1.1 Related Work

Recent years has shown, based on the active research cartiedhe field, that
there is a need for a rigorous development framework thatatge at higher ab-
straction levels than the traditional approaches. Th#hée is a need to evaluate
the performance (time, area and power) of the system aboled¥€l allowing
us to detect performance related bugs earlier. The targditapon fields among
the presented formalism varies from software systems tdwexe systems and
from embedded systems to hybrid systems.

To model VLSI systems several synchronous formalism esisté asSignal
[4], Lustre[9] and Esterel[5]. All of these approaches rely @ynchronous hy-
pothesisn which computations and behaviors are divided into a digcsequence
of steps with deterministic concurrency. Signal is appt@anodeling and vali-
dating globally asynchronous design in [20] and Esterekiereded to multiple
clock domains in [6] and [26] allowing one to model both mzlticked and asyn-
chronous systems, and furthermore, to capture asynchsdyesavior within syn-
chronous framework. These extensions enable one to userthalisms for the
same application area than the Action Systems. Howevergtearch presented
in this study is targeted to formal power modeling framewaHere time is a sig-
nificant measure. Therefore, one should consider the timnadysis capabilities
as well. The timing analysis of these synchronous languegesmre restrictive
than the timing analysis in the timed spiced extension ofdhcBystems, Timed
Action Systems, because they rely on rexfect synchrony hypothedisat de-
fines that the outputs are produced synchronously with tbetsn Furthermore,
the rigorous system development, to our knowledge, is stggonly in Signal.
It supports system refinement via semantics-preservimgfivamations [30], but
its mathematical basis seems to be less rigorous than theeRednt Calculus
Paradigm [3] defined for Action Systems.

Esterel studio [40] is a tool set targeted to design SoC systé uses a formal
description language and a verification environment to pcedRTL-level system
descriptions. These RTL-level descriptions can be exdaatdeast in Verilog,
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VHDL and SystemC. Furthermore, the generated system gésas appeared to
be equally good or in many cases better than hard coded oded e tool does
not directly offer any area evaluation methods but its veatfon methods can be
used to make the design as efficient as possible. For instarm@ver manager
design [15] framework relates to the Esterel Studio. Theesysspecifications
are written in terms of hierarchical concurrent state maehiwhere the formal
verification makes it possible to check critical propert@esl preserve behavior
when beautifying the specification. That is, the Esterelfication environment
is used to define a more efficient power management systenofor Bhe power
management device optimizes dynamic and static power tiedulsy dynami-
cally distributing and controlling clock, reset, and powiéstribution for various
SoC parts. This approach however is targeted to control poasumption by
designing specific component using the most effective amtr@available. Our
approach in terms of area complexity and later on power copson is more
general. That is, one can estimate performance relatedcsi&drall components
that are valid for the formalism. Furthermore, the presgmedel is more flex-
ible since it is not restricted to synchronous systems. Tbsest high level area
models operates at Boolean level, which are discussed metktesubsection.

1.1.1 On the Boolean Complexity

In an early work [27] of Shannon the area complexity of Bonl&anction was
studied (switch count). In this paper Shannon proved tlesaglymptotic complex-
ity of Boolean functions is exponential in the number of itgoun), and that for
largem, almost every Boolean function is exponentially complexilliet demon-
strated the same result for Boolean functions implemengedudogic gates (gate-
count measure) in [21]. Over the years several other resedave reported
results related to the area complexity of Boolean functidmsinstance, the re-
lationship between area complexity and entrop) (s reported, for instance, in
[17], [25], [13] and [11]. Cheng and Agrawal [11] measured #rea complexity
as a literal count and it was generated for small number aftsyfrom randomly
generated Boolean functions. As one tries to apply that iodealistic VLSI
circuits, it quickly breaks down due to the exponential defsce on the num-
ber of inputs. Nemani et. al. [22] proposed a method for @tedj the area of
a single output Boolean function given only its functionpésification and no
structural information. The presented area complexity eh@dbased on tharea
cube complexityand the results were compared with the SIS high-level synthe
sis tool nowadays known as MVSIS [36]. The presented modslreasonably
accurate compared with the results given by the SIS tool.

Another approach to model the area complexity of a Booleawtion is to
use a graphical model. A Boolean function can be represemtiaected acyclic
graph, where the size of a function can be evaluated by edioglthe number of
nodes needed to present the function. These graphs areefiéered to a8inary
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Decision Diagrams (BDDjand described, for instance, in [1] [7] [8]. Binary
Decision diagram represent a Boolean function as a direatgdlic graph with
each vertex labeled by Boolean variable. InGumdered Binary Decision Diagram
(OBDD), the vertex label occurs in the same order along all direpsgds. This
presentation has many desirable algorithmic propertiesinstance, it has proved
to work well as a data structure for symbolically represem&énd manipulating
Boolean functions [7]. Furthermore, for a given variabldesing, the smallest
OBBD for a particular Boolean function is unique.

Several tools and packages exist to automate the BDD matiqil For in-
stance, packages such as CUDD [37] and BuDDy [38] offer fanstto manip-
ulate BDDs via C++ interface. However, benchmark circuitshsas ISCAS and
ACM/SIGMA benchmark set do not support these tools. Unitersf Berke-
ley has research groups [36], [39] for high level synthest \@rification, which
offer their own tool sets for that including the possibiltty use and manipulate
BDDs. Furthermore, decision diagrams are often relateetidieation tools, for
instanceEsterelverification environment{eve [41] uses BDDs to symbolically
describe input events to analyze state machines.

2 Formal Basis

In this section we will introduce the formal basis for ourammplexity (size)

analysis. We start by reviewing the Action Systems fornmakdter which we dis-

cuss the area complexity modeling of those action construdtich are essential
for the work. Finally, we present the area complexity maugkt an action sys-
tem level. The accuracy evaluation and comparison betweastirg) area models
will be given in the forthcoming sections.

2.1 Actions

An actionA is defined (for example) by:

A := abort abortion, non-termination
empty statemet
non-deterministic assignment
|z:=e (multiple) assignment

(
| skip (
(
(
lg— A (guarded action
(
(
(
(

|z :=2".Q

| A1 [ As non-deterministic choige
| Ay; Ao sequential compositign

| A1 /| A prioritized compositioh

| do A od iterative composition




where A and A;, « = 1,2, are actionsy is a variable or a list of variablesg;

is an expression or a list of expressions; agndnd () are predicates (Boolean
conditions). An action is considered to Béomig which means that only the
initial and final states arebservabldy the system. Therefore, when an action is
selected for execution, it is completed without any intenfee from other actions.

If an action does not establish any post-condition it bebasgearubort statement
(a never terminating statement), and if it does not chargettite at all, it behaves
as anskip statement (an empty statement). Tioa-deterministic choicehooses
one of the enabled actions non-deterministically withoahance of an external
influence. Thesequential compositioexecutes the actions one by one in the given
order. The prioritized compositiorf29] is a composition in which the execution
order of enabled actions is prioritized. We havej/ B= A || -gA — B, where
the highest priority belongs to the leftmost action in thenposition; therefore,
the leftmost enabled action is always chosen for execufit variables which
are assigned within the actiof are called thevrite variablesof A, denoted by
wA. The other variables present in the actidrare called theead variablesof

A, denoted by A. The write and read variables form together #toeess set A

of A: vA=wAUrA.

The actions are defined using weakest precondition for pagelitransform-
ers [14]. Theweakest preconditioor action A to establish the post condi-
tion ¢ is defined for examplewp(abort,q) = false, wp(skip,q) = ¢ and
wp((A [ B),q) =Wwp(A,q) Awp(B,q). The guardyA of an actionA is defined
by gA = -wp(A, false). Considering a guarded actioh= P — B we have that
gA = P A gB. An actionA is said to beenabledin some state, if its guard tsue
(T) in that state, otherwisdisabled The actionA is said to bealways enabled
if wp(A, false) = false (that is, the guar@A is invariantlytrue: gA = true).
Furthermore, ifwp(A, true) = true holds, the actiom is said to bealways ter-
minating ThebodysA of the action A is defined bysA = A || —gA — abort.

A quantified compositionf actions is denoted by» 1 < i < n: A4;], and it
is defined by:A; e ... e A,, where the bulle® denotes any of the composition
operators, and is the number of actions. Furthermore, we hawubstitution
operation, denoted hy[e’/e], wheree refers to an element such as variables and
predicates of the original actiofande’ denotes the new element, which replaces
ein A.

2.1.1 On modeling area complexity of actions

To model area complexity of an arbitrary action, we utilibe following infor-
mation: the read and write variables of an action, and theatispecification of
its functionality. We start by defining variable width which is the number of
bits needed to present the variable. At a high abstractieel, @ is typical that
variables are other types than Boolean, and therefore tthign wiformation is the
basic necessity to model area complexity [32]. Thus, tha amnplexity of a
variablez is defined by:
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(&) A non-deterministic assignment (b) A guarded non-deterministic as-
statement: := 2’.Q). signmenty — x := 2'.Q

Figure 1: lllustrations of assignments

C(z) = wy (area complexity of a variable (x)

wherew,, is the variable width. For a set of variables, sgythe area complexity
is obtained by adding together the widths of the variablesS. We have:

c(s) = Zmeswx (area complexity of a set (B)1)

The premise of our area complexity modeling, in additionte variable
widths, is thenon-deterministic assignmeft := z’.()) because it can be used
to describe any operations performed on variables in anractntext. Consider
an actionA = x := 2/.QQ, where the predicaté is evaluated and the result is
assigned to the variable. The area complexity modeling of is divided into
two parts:assignmentandpredicate evaluationln assignment part the result of
the predicate evaluation is written into a variable and itlistrated as a chain
of storage elements in our area complexity model, as shovnginl(a) and de-
fined by: C(wA) = > ., 4w, Where thewA is the write set ofA. Observe
that the definition is based on (1). The predicate evaluaiiothe other hand is
thought as a “combinatorial cloud”, shown in Fig. 1(a), what a lower abstrac-
tion level is the logic that performs the computation. Ingeh, the predicate is a
Boolean function. The presented model is targeted to mastaadt descriptions,
and therefore the size evaluation methods for Boolean iumetare not directly
applicable. For instance, an action may define an additienation but it does not
define whether the addition is implemented using a rippleycaider or a carry-
look-ahead adder structure. Furthermore, by adoptingtiijréne definition (1)
for the set-@, it would give the same area complexity regardless of theatjos
that Q performs. For instance, the area complexity between twdigaies say
Q1 =v :=V(2d =y)and@Qy = v := V' (v = x + y), would be the same if we
adopt the similar approach that was selected for the assighm

Usually a combinatorial logic forms a layered structure,jociihcan be de-
scribed using tree alike structures. To model the depth mdeg bur model relies
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Figure 2. Example: Ripple Carry Adder Structure.

on BDD modeling of Boolean functions. Naturally, we cannehgrate exact
BDD because we only have an abstract description of a logecation. In addi-
tion to the tree model, we will exploit the Shannon’s sizeamn presented in
the previous section but not directly for the $€1 because with the large num-
ber of input arguments it quickly breaks down due to its exgmtial dependency.
Furthermore, as the abstraction level of the system dessedisring system re-
finement [3], the system descriptions will be closer to Baalelefinitions, and
therefore the evaluation methods targeted to Booleanifumstvill be more and
more accurate. Thus, in the end there should be enough iafanmto generate
the BDD description for the system, and, furthermore, toitias an area com-
plexity model.

To model area complexity of the predicate evaluation we defie set @),
which consist of those variables that appear in the preglQat-) € rA). First
we define the area complexity of the 8ét, denoted by’ (rQ)) as stated in (1). To
imitate the tree like structure mentioned above, we settb@ eomplexity of the
setC(rQ) as a root node. The number of children is calculated-§§, where
the area complexity({(r(@)) of the set is divided by the cardinality of the set
(I*Ql). The cardinality of the set describes the number of vaembi the set, that
is, the number of children is the average variable width engbtr(). The idea
is that if we have a Boolean function between variables trerain is carried
out in a “bit wise” manner. As an example, assume that we paré;n addition
operation between two variables having width of four. Atuit level, see Fig 2,
the variables are added together in a way that the leasfisagmi bits of both vari-
ables are added together and then the most significant bdsc@ry). Each child
node in the tree has two possible output values, nafély '1’. That is, every
node hagr@| arguments and by combining these variables using diffeneters
we have2!"?! different combinations to produce eitiéfor’1’ as an output value
according to the Shannon’s size equation. Adopting thisagrh we assume that
the number of input arguments does not increase so draihgtead therefore
the exponential dependence does not have significant negdfiect to the model.
The area complexity of the predicate evaluati@)) (n the non-deterministic as-
signmentis defined by:



Figure 3: Example area complexity modeling.

cQ) = {@w - olrel (area complexity of a predicate evaluatjo(2)

Q|

where the first term calculates the average width of the imguiables of the pred-
icate. Observe that the variable width in a system desoripait any abstraction
level, is usually integer, and therefore the result of therage variable width is
rounded. Let us illustrate the area complexity evaluatiath whe following to
examples:

Example 1 The predicate) defines integer addition) = A + B, where the
variablesA and B have widthsw, = Wy = 4. The setr() of the predicate
Q isr@Q = {A, B}. To clarify the “bit wise” addition where the model is based
on, see the Fig. 2. We start by calculating the area compléxit(Q) for the set
r@Q: C(rQ) = 4+ 4 = 8. The number of children in the tree is then calculated
by dividing the C'(rQ) with the cardinality of the serQ|, we have: C‘%f) =

5 = 4. Each of these four children have two possible output vadunesthe area
complexity of one child node i8?> = 4. The area complexity of the predicafe

is calculated using (2)0(Q) = [%QQ) : Q‘TQq = 8. The tree model for the area

complexity model is shown in Fig;. ?l

End of example.

In Example 1 both of the variables involved in the area comipleevaluation had
the same width. Let us further introduce an area complexigeting with the
general example with input variable widths.

Example 2 Let us assume that the set of variable€3 of the predicate is
r@ = {X,Y,Z}. The variablesX,Y, Z are of same type and their widths are
wxy = 4, wy = 4 andw; = 6. The area complexity of the sef) is C'(rQ) =
wx +wy +wyz = 14, and for the predicate evaluation we hag&r)) = [4]-2° =
40. The tree like structure is shown in Fig. 4, where the numbsuocessor nodes
from the root is defined by the average variable width. Eadhese nodes have
three input arguments and assumed to perform a Booleantmperd herefore,
the area complexity is calculated using the Shann®f’squation, wheren = 3

in this example.



(X(0..3),Y(0..3), Z(0..5))
(X(),}/E),Z()) (Xla)/lazl) (X27)/2722) (X37}/3723) (X47)/4724)
0 1 0 1 0 1 0 1 0 1

Figure 4: Example area complexity illustration.

End of example.
To summarize, the area complexity of the actibe: x := 2/.Q) is defined by:

C(A)=C(wA) +C(Q) (area complexity of an action)A(3)

where the first term is the area complexity of the write seefengd in (1) and the
second term is the area complexity of the predicate evaluatefined in (2). A
special case in the area complexity modeling of the nonrahetéstic assignment
occurs when the predicafgis of form: Q) = (2/. = y), wherey is a variable. For
instance, consider an actioh= z := 2’.(z' := y), wherex andy are the variables
of the same type. The actions area complexity is definedl) = C(wA),
where the area complexity of the predicat&)) is zero as there is no computation
just the assignment:( := y).

Consider a guarded action of form: — B. When the guard evaluates to
true (7)) the actionB is enabled, otherwise the action is disabled (flevaluates
to false(F’)). An illustration of the guarded non-deterministic assigent for area
complexity modeling is shown in Fig. 1(b). The area compgieriodeling starts
by defining the set of write variablesB and read variablesB of the action.
The area complexity of the setB is defined as shown in (1). However, the area
complexity of the read setB requires further studying. The variable(s) in the
read set appears either in the guardn the predicate), or in both. Therefore,
we define a set of variableg that appear in the guardand a set of variables)
that appear in the predicatg (rB = rg U r(Q). The area complexity is evaluated
for the sets-g andr() separately by replacing th€) with the set-g in (2). Thus,
for an actionB we have:

C(B)=C(wB) +C(Q)+C(g) (area complexity of an action)B(4)

The predicate) in the non-deterministic assignment (or in the guarded non-
deterministic assignment) is often used to describe aatlmmoperations. The
above presented area complexity model would give identesallt, for instance,
for multiplication and addition due to the high abstractievel. In other words,
the read set of the multiplication action and the read sehefaddition actions
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contains the same variables, and therefore the area coityptegdel does not
make difference between these operations. To overcomeattasnplexity factor
¢ € R* is introduced for arithmetic operations, and thus the aceaptexity of

the predicaté) evaluation becomes of form:

~ Zvewv wv—‘ [rQl\o

CQ) = | Zxem] . )
The value of the complexity factor can be any positive reahber, and further-
more, itis adjusted by the designer. In this thesis, the dexity factor is adjusted
in away that it takes the high abstraction level into accobat instance, the com-
plexity factor for addition is assumed to be ore=£ 1) and for multiplication it
is assumed to bep(= 2). This follows from the complexity relation between
binary addition and multiplication. That is, in [12], themaplexity of binary addi-
tion isn and the complexity of schoolbook multiplicatiorvi$. Observe that, the
complexity factor is adjustable, for instance, when theralson level decreases.
However, this study is targeted to abstract system degmmgytand therefore, it is
fair to assume the above presented values.

2.2 Action System

An action systermd has a form:
sys A ( imp pr; exppg; )(ua; ) .-
Il

type
type: Def;
variable
La;
private procedure
pr(inz :outy): (Pr);
public procedure
pe(inz:outy): (Pg);
action
Al‘: (G,Al‘);
initialisation
uA,la = ua0,140;
execution
forever doconposi ti on of actions A; od
Il

where we can identify three main sectionsterface declarationanditeration.
The interface part declares those variables,that are visible outside the action
system boundaries and therefore accessible by other agtstems. Global vari-
ables maybe of type input, output or bi-directional inputput, and the types
are denoted by the following identifiers, out andinout, respectively. It also
introducesinterface procedureg; andpy that are imported in or introduced in
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and exported by the system. These are denoted bintheand exp identifiers,
respectively. If an action system has no interface vargableprocedures, it ia
closed action systemtherwise it isan open action system

The declaration part introduces all new, local type debngi fype) and the
local variabled 4 (variable). Furthermore, the declaration part introduces private
pr and publicpr proceduresgrivate procedure / public procedure) and action
definitionsa A; (action) that perform operations on local and global variables.
Furthermore, a labed, is given for every action definition.

The operation of action system is started by the initialmain which the
variables are set to predefined values. In the iteration freexecutionclause,
actions are selected for execution based on their composiind enabledness.
This is continued until there are no enabled actions, whmEmeuhe computation
terminates. Hence, an action system is essentially aaliméd block with a body
that contains an iteration, that is, a statement which isatgully executed.

2.2.1 Parallel composition of action systems

Consider two action systeroéand3 whose local variables are distin€j,N iz =

(), and communication variables are a 8gtn uz. We require that the initial-
izations of the communication variables N up are consistent with each other,
so that the initial values are equivalentv € us N up.(v04 = v0g), where
v04 € u0y andvOp € ulg. The parallel composition afl and 3, denoted
A||B, is defined to be another action system whose global and ideatifiers
(procedures, variables, actions) consist of the idergifedrthe component sys-
tems and whosexecution clause has the formforeverdo A || B od, where
A and B are the actions of the systemsand 5, respectively. The constituent
systems communicate via their shared interface procediihesdefinition of the
parallel composition is used inversely in system derivateodecompose a system
description into a composition of smaller separate systarmgernal subsystems.

2.2.2 Procedures

A body P of the procedure : p(in z;out y) : P, is in general any atomic action
A, possibly with some auxiliary local variablesinitialized to«0 every time the
procedure is called. The actiof accesses the global and local variabjesnd

[ of the host/enclosing system and the formal parameteaady. Hence, the
body P can be generally defined by?[var v;init v := u0; A(g,l, u, z,y)]. If
there are no local variables, the begin-end brackgtsan be removed together:
[A(g,l,z,y] = A(g,l,z,y). If there are neither local variables nor parameters,
the action only accesses the global and local variablesedidist system, then the
procedurey can be written asproc p : A(g, [).

11
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Figure 5: Bus arbitration with three clients.

2.2.3 Area complexity of systems

Consider a systemd || Env where the latter is the environment of the former. Its
area complexity is denoted bg(A || Env) and defined as follows: we form a set
S 4, which contains actiond, and Env of the systemA || Enwv. Itis easy to see
that S 4 en0 = Sa U Seny, Where the set§ 4 andSg,,, are defined by 4, = {A|A

is an action of A}andSg,, = {Fnv|Envis an action of &Env}.
The area complexity of the system is the sum of the compésxdf actions in the

setS 4ene @and defined by:

C(A| Env) = (area complexity of systemg5)
C(A) + C(Envw)

Y C(A)+ ) C(BEnw)
Sa

Senv

where)_ , s, C(A)is the area complexity of the systefpand} ., 5. C(Env)
is the area complexity of the systemo.

Example 3.Consider a systemrbiter || Env [ || 1 <i < 3 :Controller(i)],
where theArbiter controls the bus access between the three controllerssyste
and theEnv system as shown in Fig. 5. The dotted line in Fig. 5 describes t
above mentioned system. In other words, the environmenthendlients are not
described here, and furthermore, they are not part of thee @enplexity eval-
uation. TheArbiter defines the operation of the arbiter and its interface to the
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environment and to the clients. Tldentroller system defines the interface to
the Arbiter from the client side and to the data bus. Originally the arlsystem
is a benchmark circuit from ACM/SIGMA benchmark set [35] aht used to
evaluate the accuracy of the presented area complexity Imrothee forthcoming
sections, and therefore the presented parallel systeratenithe operation of the
benchmark circuit. The operation of the benchmark is deedrin A.1.3. The
Arbiter system is defined by:
sys Arbiter (inreql,req2,req3, ereql,ereq2,ereq3 : Bool,
out ackl, ack2, ack3, eackl, eack2, eack3 : Bool;
areql,areq2,areq3 : Bool; ) .

I

type

Status = {idle, operation};
variable

direction : Status;
action

Al : reql A —ack2 A —ack3 A direction = idle —
ackl, direction := T, operation;
A2 : —ackl Areq2 A —ack3 A direction = idle —
ack2, direction := T, operation;
A3 : —ackl A\ —ack2 A reg3 A direction = idle —
ack3, direction := T, operation;
A4 . —reql N ackl — ackl, direction := Fidle;
A5 —req2 N ack2 — ack2, direction := Fidle;
A6 : —req3 N ack3 — ack3, direction := F\idle;
AT : ereql N\ —eack2 N —eack3 N direction = idle —
eacklareql, direction := T, T, operation;
A8 : ereq2 N\ —eackl N —eack3 A direction = idle —
eack2, areq2, direction := T, T, operation;
A9 : ereq3 N\ —eackl N —eack2 N direction = idle —
eack3, areq3, direction := T, T, operation;
A10 : —ereql A eackl Naackl — eackl,areql, direction := F, Fidle;
All : —ereq2 A eack2 N aack2 — eack2, areq2, direction := F, F,idle;
Al2 : —ereq3 A eack3 N\ aack3 — eack3, areq3, direction := F, F,idle;
initialisation
direction := idle;
ackl, ack2, ack3,reql,req2,req3 .= F
eackl, eack?2, eack3, ereql, ereq2, ereq3 := F;
areql,areq?,areq3 := F
execution
foreverdo[[| 1 <i<12: A;] od
Il

where the actionsil, A2, and A3 describe the operation when the client side
requests the bus access. The bus access is granted foremteacla time by set-
ting one of the acknowledgement signalskl, ack2or ack3to true. After the
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data transfer is completed the actians, A5, and A6 set the acknowledgement
signalsackl, ack2or ack3to false after which a new communication may be-
gin. The original benchmark circuit defines that the envinent may select the
client as well. To ensure that the client side and the enumenmt side cannot ob-
tain simultaneous write access to the system bus, we defingabledirection
which has two possible stata#ie, operation A communication cycle may begin
only if the state igdle. The communication from the environment is defined by
the actionsA7 — A12. The environment requests the access by setting request
signalsereql, ereq2¢r ereq3to true, and if the access is granted thdmbiter
sends a request to controller unit by setting one of the isiqaesql, areq2pr
areq3to true. The client performs data transfer and sends an acknowieeige
to the arbiteraackl, aack2, aackafter which the environment is acknowledged
eackl, eack2pr eack3 Observe that for simplicity the requestq2, areq3and
acknowledgemerdack2, aack&ignals are not illustrated in Fig. 5. Furthermore,
these actions define only the communication between theemaent and the se-
lected client through the arbiter. However, there were rfimdi®n on the type of
the communication that environment performs with the ¢igand thus we do not
give a detailed specification of that. For instance, therenvnent may transfer
data to the client, which in turn transfers the data into ttstesn bus. Observe that
neither the presented system nor the original benchmat&reysannot guarantee
fairness

The controller interface for each client is defined as foow

sys Controller(i) (in ack(i),creq(i) : Bool; din(i) : Data;
out req(i), cack(i) : Bool; dBus : Data;
aack(i) : Bool; ) ..
Il
action
C1: creq(i) N —cack(i) — req(i) := T}
C2 : ack(i) — dBus, cack(i) := din(i), T
C3: —creq(i) A cack(i) — cack(i),req(i) :== T, F;
C4 :areq(i) — aack(i) =T}
C5 : —areq(i) A aack — aack := F;
initialisation
dBus,din(i) := dBus0, din(i)0;
creq(i), cack(i) := F;
aack(i) := F;
execution
foreverdo C1(i) [| C2(i) [ C3(:) [ C4(:) [ C5(¢) od
Il
The controller system is identical in each clients, anddfoge we used a single
system definition using quantified composition. The cliade starts the com-

munication cycle by setting the requestq(:) to the controllettrue after which
the controller sets the request signa(:) to the arbiter tdrue (C'1). If the bus
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Table 1: Area complexity evaluation of thérbiter system

| Action | Write variables | Read variables | Area complexity |
Al ack1(1), direction(1) | reql(1), ack2(1), 3+ (3] (2Y) =18
ack3(1), direction(1)
A2 ack2(1), direction(1) | ackl(1),req2(1), 2+ [1]-(2Y) =18
ack3(1), direction
A3 ack3(1),direction ack1(1),ack2(1), 2+ [3]-(2Y) =18
req3(1), direction(1)
A4 ackl1(1l), direction(1) | reql(1), ack1(1) 24 [3]-(2%) =38
Ab ack2(1), direction(1) | req2(1), ack2(1) 24 [2]-(2%) =38
A6 ack3(1), direction(1) | req3(1), ack3(1) 2+ [2]-(2%) =38
AT eack1(1), direction(1), | ereql(1), eack2(1), 4+ [3]-(2H =19
areql(1) eack3(1), direction(1)
A8 eack2(1), direction(1), | ereq2(1), eack1(1), 4+ [7]-2H =19
areq2(1) eack3(1), direction(1)
A9 eack3(1), direction(1), | ereq3(1), eack1(1), 4+ [7]-@2H =19
areq3(1) eack2(1), direction(1)
A10 eackl(1), ereql(1), eack1(1), 3+[3]-(2%) =11
direction(1), areql(1) | aackl(1)
All eack2(1), ereq2(1), eack2(1), 3+[3]-(2%) =11
direction(1), areq2(1) | aack2(1)
Al2 eack3(1), ereq3(1), eack3(1), 3+[3]-(2%) =11
direction(1), areq3(1) | aack3(1)

access is granted, data is transferred to the systend Bus and the acknowl-
edgement to the client side is setttoe indicating that data transfer is completed
(C2). Once the client side sets the requesi; (i) to false the acknowledgement
to the client sideack(i) and the requesteq(i) to the arbiter are set alse(C3).

The actiong”4 andC'5 are the interface for the communication between environ-
ment and client through the arbiter. Therefore, the fumetidy between this kind

of communication parties is not described.

The area complexity of the system is calculated as definedeat. 2.2.3:
C(Arbiter || Clientl || Client2 || Client3) = C(Arbiter) + C(Clientl) +
C(Client2) + C(Client3), where the area complexities are calculated for each
system separately and then added together. We start byrdgtime read and
write sets of theArbiter system, and then using this information we calculated
the area complexity of the actions in thebiter system shown in Table 1, where
the number in the parenthesis after each variable is itshwidihe width of the
direction variable is one because all the two states in the type defindgan be
presented using one bit. Based on Table 1, the area comyplaxihe system
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Table 2: Area complexity evaluation of tilientroller system

| Action | Write variables | Read Variables | Area complexity |
C1 req(i)(1) creq(i)(1), cack(i)(1) 1+[2]-(2%) =5
C2 dBus(32), cack(i)(1) | ack(i)(1) 33+ [1]-(2Y) =34
C3 cack(i)(1),req(i)(1) | creq(i)(1),cack(i)(1) 24 [2]-(2%) =6
C4 aack(i)(1) areq(i)(1) 1+[1]-(2Y) =3
Ch aack(i)(1) areq(i)(1), aack(i)(1) 1+[2]-(2%) =5

Arbiter is C(Arbiter) = C(Al) + ... + C(A12) = 168.

In a similar manner we evaluate the controller system. E&tirecclients have
a similar controller unit, and therefore it is enough to preshe area complexity
calculations for one controller and then multiply it by tar& he result of the area
complexity estimation is shown in Table 2, where the areapdexity of the sys-
temController is C(Client3) = C(C1)+C(C2)+C(C3) = 53. This area com-
plexity is also the area complexity of the systeti&nt2 andClient3. Therefore,
the area complexity of the parallel systetnbiter || Clientl || Arbiter || Client1
is C(Arbiter || Clientl || Client2 || Client3) = C(Arbiter) + C(Clientl) +
C(Client2) + C(Client3) = 168 + 53 + 53 + 53 = 327. The accuracy of this
modeling technique will be evaluated in the forthcomingises.
End of example.

3 Test Environment

The accuracy of the presented area complexity model is astarusing binary
decision diagrams. As stated in 1.1.1, there are seversltoonanipulate binary
decision diagrams. The amount of available benchmark itsr¢iad significant
impact to our test environment selection. That is, it ruletitbe BDD packages
with C++ interface and drove our interests to the high-leyeithesis tools from
UC Berkeley, and t@erkeley Logic Interchange Format (BLLRYlext we shortly

present the BLIF format and then we discuss tool alternati@nally, we pre-

sented the properties of the selected test environmerg asiexample circuit.

3.1 Berkeley Logic Interchange Format

The Berkeley Logic Interchange Formét used to describe a logic-level hierar-
chical circuit in a textual form. A BLIF file represents a seqtial circuit as
an interconnection of logic gates and latches as a statsitiantable of a finite
state machine or both. The syntactical information of théFBlanguage can be
found at MVSIS group home page [36]. Furthermore, BLIF is atryepoint
for logic optimizers such aSynthesis System (Si&)d its followerMultivalued
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Logic Synthesis System (MVSI&synthesis tool developed by MVSIS group at
UC Berkeley [36]. The BLIF-MV is an extension to the BLIF foam It is a lan-
guage designed for describing hierarchical systems withdederminism. The
non-determinism is accomplished by allowing the use of deterministic gates

in an input description. These gates generate the outpiitaaily from a set of
predefined outputs. Although the BLIF is the input languagettie SISlogic
synthesis tool has constructs for hierarchical systemrig®n they are automat-
ically flattened into single level circuit once they are read This is because
the internal structure a81Sdoes not support hierarchical representations. The
successor of th8IStool supports th&LIF-MV format, too.

3.2 Tool Selection

After studied both BLIF and BLIF-MV languages, the use of M¥SIS tool
seemed to be a good choice. The tool can, for instance, &l mianipulation of a
hardware description before it is encoded into binary and¢ssed by a standard
binary logic synthesis programs. Furthermore, it offersoatrend to a software
compiler, which allows its usage in embedded systems ajuits. However, we
encountered several problems, in particular, when a beadhaircuit written by
BLIF-MV was read in. Therefore, we also considered anotlgn-kevel synthe-
sis tool: Verification Interacting with Synthesis [39] (MISvhich is a joint work
of University of Berkeley, University of Colorado at Bould@and more recently
University of Texas at Austin. This program offers prettyahsimilar BDD ma-
nipulation environment, and, furthermore, it has a compildich allows to turn
Verilog code into BLIF-MV. The Verilog compiler supports only a singlibset
of the language, and therefore any system descriptionenritt Verilog is not
applicable. More information on compiler, the Verilog setysand the VIS tool
can be found from the VIS documentation [39]. The syntattispects of the
different input languages are not studied in this paper dmeave adopt existing
and documented benchmarks circuits [35].

3.2.1 \Verification Interacting with Synthesis tool

VIS tool has three main parts: a front-end to read and travarfierarchical
system described by BLIF-MV, which may have been transl&taa Verilog; a

verification core; and a core to perform logic synthesis.hia study, we exploit
the front-end and the synthesis parts of the tool, which ayelighted using dot-
ted lines in Fig. 6. More precisely, we use the BDD manipataproperties of the
tool, which are demonstrated using the Greatest Commors@iyGCD) Bench-
mark circuit [35]. The GCD algorithm (implemented by the blemark circuit)

is described in Appendix A.1.4. The BDD generation startsdading the BLIF-
MV (or BLIF) description into VIS, where it is stored as a “ragchy” tree. The
term “hierarchy” tree refers to the method, which the to@sut store the initial
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Verilog

Front end:

-Traversal of hierarchy

Verification: Synthesis:
-Model checking i -State minimization
-Equivalence checking -State encoding

) . -Restruct hierarchy
-Cycle-based simulation

Figure 6: Overview of the VIS tool.

specification of the design. It consist of modules that im wonsist on sub mod-
ules that are related in some fashion. This relation is destras a table, which
implements the output function in terms of the sub moduleispThe command
line procedure is shown below:

vis release 2.1 (conpiled 27-Mar-08 at 11:59 AM

vis> read_blif_nv test_data/gcd. nv

vis> print_hierarchy_stats

Model name = testCGcd, |nstance nanme = testGed

inputs = 17, outputs = 0, vari abl es 97, tables = 40,
| atches = 17, children =1

where the BLIF-MV file is read in using theead_bl i f _mv command. In a
similar manner a BLIF file could be read in wittead bl i f command. The
properties of the hierarchy tree is enquired ugang nt _hi erarchy_stats
command.

The hierarchy structure described above can be expressettes The root
of the tree is the main module, and the child nodes are therlavel instantia-
tions of modules. The hierarchy in a VIS can be traversed imdas manner as
directories in UNIX. It is possible to reach the desired nbgtevalking up and
down with thecd command. At any node the verification and synthesis opera-
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tions can be performed. The commgmad prints the name of the current node
and the commands lists all the nodes from the current node.

The first step towards the BDD construction is to "flatten” therarchical
description into a single network (netlist of multivaluedyjic gates). The output
is computed from the inputs of the design by the network dinmhich consist
of logic gates, interconnections between them, and latalhespresent the se-
guential elements. Thiel att en_hi er ar chy command does this all and the
print_networ k_st at s command prints the network statistics. For G&€D
example these commands work as follows:

vis> flatten_hierarchy

Vi s> print_network_stats

test Gcd conbi national =657 pi =17 po=0 | atches=45
pseudo=0 const=45 edges=1362

The network description is transferred into a functionaatgtion that represents
the output and next state variables as a function of the sngudl next state vari-
ables. In this study, the BDDs are used to represent Booledrizcrete func-
tions. Before creating a BDD it is necessary to order thealdes to reach the
most optimal solution. The ordering is started by the statdering method by
invoking the commandst at i c_or der, which gives the initial ordering. The
ordering can be canceled at any point by invokingfthet t en_hi er ar chy
command or the current variable ordering can be written sintgithe command
write_order. Forthe GCD, the static ordering is invoked as follows:

vis> static_order -0 all -r depth
vis> print_bdd_stats

wherethe o al | definesthatthe orderingis done to all nodes and thedept h
defines the ordering method. The ordering method is sel@otgd/e the most
optimal BDD structure. In other words, the ordering methatijch gives the
smallest BDD is selected. The commandi nt _bdd_st at s gives informa-
tion on ordering, memory usage and more importantly the BoBerncount. The
node count foIGCD is 768, which is the size estimate for the circuit. Often the
ordering can be improved by using dynamic variable ordenrehods, which
are techniques to reorder the BDD variables to reduce tleedfizhe existing
BDDs. Furthermore, dynamic ordering may be time consumurgsbmetimes

it can reduce the size of the BDD dramatically. Observe thatdommands
flatten_hierarchy andst ati c_order must be invoked before the dy-
namic ordering commandlynami c¢_var _or der . Available methods for dy-
namic reordering arevindowandsift. We adopted the tools default reordering
mode:

vi s> dynam c_var _ordering
Dynam c variable ordering is enabled with nethod sift.
vis> print_bdd_stats
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After the dynamic variable ordering is completed the BDD@&odunt is given by
the commandgri nt _bdd_st ats. In this case the dynamic ordering did not
found better ordering of the variables, and thus the BDD romimt (and the size
estimate) for the GCD circuit is 768.

4 Formal Area Complexity Modeling

In this section, we model th€C'D benchmark circuit using the Action Systems
formalism and then evaluate its area complexity as defin€feit.2. The area
complexity is then compared with the result given by the W8It Finally, we
present and compare other area complexity results fronraesther benchmark
circuits.

4.1 Modeling the area complexity of the GCD-system

The greatest common divisor system operates in parallél kgtenvironment:
GCD || Env, whereGC D describes the greatest common divisor system and the
systemEnu is its environment. The environment provides the necesstanulus
for theGC' D system, but we are only interested in the area complexityed C' D
system, and therefore the environment is excluded fromytsies modeling and
the area complexity estimation. The systédD is defined on Page 21, where
the enable,.q Signal is setrue by the environment to start the calculation. The
input variablesu and v are non-negative integers. The output variait€ is

of type integer and returns the greatest common divisor é&&tw andv. The
actionsG1 and G2 calculates the trivial cases when one of the input variaisles
zero, and therefore the greatest common divisor is the eomiaput. The actions
store the GCD value into the variabjed and then they disable the calculation by
settingenable,.q to false The actiongs3 — G'19 compute GCD in those cases
when both of the inputs are non-zero. The acti@®h checks whether both of
the input variables areven odd, or another ievenand another i®dd This is
accomplished by calling the procedyarity, which receives the input variables
u andwv as input parameters. The parity is decided usingntioglulo operator
(mod). The input variable igvenif the input variable mod 2 = 0, andoddif the
input variable mod 2 # 0. According to the parity check th@éC' D calculation

is carried by the action&4 - G8. The GCD calculation is completed when
equals withv (u = v A u # 0 A v # 0), which is defined by the actio§9. If
bothu andv have beerevenat the same time during the GCD computation the
result is multiplied, which follows the algorithm presethia A.1.4. The variable
mcoe f 1S multiplied by two (initially mcoef = 1) every time the actior74 is
executed. Once the result of the calculation is stored h#mutput variablecd,
the actionA9 sets the parity check variabjeheck to true and theenable ., to
falseindicating to the environment that a new calculation mayimegurthermore,
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the multiplication variablencoe f is set to its initial value.

SysGCD ( inw,v :integer; out ged : integer;
inout enableyeq : Bool; ) ..
[ type
status = {even, odd};
variable
pcheck : Bool;
mcoef :integer;
stat,, stat, : status;
private procedure
parity : (in z,y : integer out stat,, stat, : status)
(staty = statl,.(x mod 2 = 0 = stat), = even)
A (zmod2 # 0 = stat;, = odd);
(staty := stat,.(y mod 2 = 0 = stat;, = even
A (ymod?2 # 0 = stat;, = odd);
mult(out z : integer) : (z := 2 * 2);
div : (in x,y : integer out z : integer) : (z :=
sub: (in z,y : integer out z : integer) : (z :
action
G1:enablegeg Nu=0Av # 0 — ged := v;enablegeq := F;
G2 :enablegeg Nu# 0ANv =0 — ged := u,enableyeq == F
G3 : enablegeq N pcheck N u # v —
parity(u, v, stat,, stat,,); pcheck := F;
G4 : —pcheck N stat, = even A stat, = even —
div(u, 2,u); div(v, 2,v); mult(mcoef); pcheck = T
G5 : =pcheck N stat, = even A stat, = odd —
div(u,2,u);v = v); pcheck =T
G6 : =pcheck N stat, = odd N stat, = even —
w:=u);div(v,2,v); pcheck .= T}
G7 : =pcheck N stat, = odd N stat, = odd N u > v —
sub(u, v, u); div(u, 2,u);v := v); pcheck := T
G8 : =pcheck N stat, = odd N stat, = odd N u < v —
u = u), sub(v,u,v); div(v,2,v); pcheck := T
G9 : u = v A ~pcheck — ged := ged'.(ged = meoef * u),
enablegeq, pcheck, mecoef := F, T, 1,
initialisation
enablegeq, pcheck := F, T
mcoef = 1;
execution
foreverdoG1 | G2 | G3 [ G4 | G5 [| G6 | GT || G8 [ G9 od ||

(2 =x/y));

/
Z(Z =x—vy);
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Figure 7: Example area complexity illustration for actioh Gnableg.q = €).

4.1.1 Area complexity modeling of theGC' D system

In the modeling of the area complexity we assume that thebkiwidths of
Boolean Bool) variables is oné1) and the integer variables width is eight £
8). The area complexity for the systemd’'D is estimated by calculating the area
complexity for each action and procedure separately. Axample, consider the
actionGG1. Its write variables is a setG'1 =
{gcd(8), enable,4(1)} and its read variables is a se¥1 = {enable,.4(1), u(8),
v(8)}, where the number inside parenthesis denote the width @tieular vari-
able. The area complexity estimation of the write set, aniddfin 1:C'(wG1) =
Wyed + Wenable,ey = S+ 1 = 9. The area complexity estimation of the read set is
based on (2), and itis defined by(rG1) = [ ]-217¢1 = [47].2% = 48. The
area complexity of the read set is illustrated using a tredehshown in Fig. 7,
which describes the structure of the logic needed to imphethe guard. The area
complexity of the actiortz1 is then calculated by adding the complexities of the
read set and write set together as defined in(4)>1) = C(wG1) + C(rG1) =
57.
Let us consider another action, s@y, whose write variables is a sei:G9 =
{gcd(8), enabley.q(1), pcheck(1), mecoe f(8) }, and the area complexity for the set
is calculated as presented abové(w(G9) = 18. The set of read variables of
the actionG9 are divided into two sets: the variables that are used in tlaedy
and the variables that are used in the predicated = rg U rQ. The setrg is
rg ={u(8),v(8), pcheck(1)} and the setQ is r@Q = {u(8), mcoef(8)}. The area
complexity for the setg is C(rg) = [1I] - 2% = 48, and its tree model is shown
in Fig. 8. Next, we calculate the area complexity for thei€gt The predicate
Q@ performs a multiplication, and therefore, its area comipjeis calculated by:
C(rQ) = ((ff—gf} - (2lr@hy? =[187 . (22)? = 128, whereg is the complexity coeffi-
cient defined in Sect. 2.1.1. The tree model is shown in FiJosummarize, the
area complexity of the actio@9 is C(G9) = C(wG9) + C(rg) + C(rQ) = 194.
The read and write sets and the area complexity calculatioevery action
and procedure in the system are summarized in Table 3, wineszibtraction and
the division operations are defined using separate proesdiihis highlights the
fact that it would be too expensive to implement own divisamial subtraction units
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Figure 8: Example area complexity illustration for actio@ (uard,pcheck = p.
(u(0..7),m(0..7))
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Figure 9: Example area complexity illustration for actiofl (predicatemcoef =
m).

for each action. In other words there are only one divisiahamd one subtraction
unit in the system. Furthermore, none of these actions Fglaes do not acquire
the division simultaneously. The multiplication unit isplemented inside the
action A9 because it is the only action that uses it. The total area tatyp of
the systenyC'D is: C(GCD) = C(G1)+- - -+ C(G11) + C(parity) 4+ C(div) +
C(sub)), where theC'(G1)...C(G11) are the area complexities of the actions
in the system. The area complexity of the sys@aiD is: C(GCD) = 967.
Comparing this result with the BDD-result from the VIS towle see that our
model gave slightly smaller area complexity estimate. Tdwigacy of our model

in this case study %9 %.

4.2 Results summary

The area complexity analysis was carried out for severattomark circuits. The
system descriptions of the functionality and the formalcHjmations are defined
in Appendix A. The BLIF/BLIF-MV benchmark circuits were dgaed in a sim-
ilar manner as presented in Sect. 3. The formal area conyplanalysis is done
as shown in the previous section. The variable widths anenasd to be onel(

for Boolean variableBool) and forintegervariables we use the same width as is
used in the benchmark circuits. Furthermore, generic birigypes such adata
used, for instance, ifull-adder on page 33 are turned either into Boolean vari-
ables or some width is assigned to those variables. Thesesel summarized in
Table 4, where the first column describes the benchmarkititbe second col-
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Table 3: Results of the area complexity estimationdorD.

\ Action \ Write variables

Read variables

| Area complexity

G1 gcd(8), enablegeq(1) | enablegeq, u(8), v(8) | 9+ [5]-2% =57

G2 gcd(8), enableyeq(1) | enablegeq, u(8), v(8) |9+ [F] 2% =57

G3 pcheck(1) enablegeq(1), u(8), 2+ [2]-2* =42
v(8), pcheck(1)

G4 pcheck(1) stat, (1), stat,(1), 1+ [3]-29=9
pcheck(1)

G5 v(8), pcheck(1) stat, (1), 9+ [5]-23=17
stat,(1),pcheck(1)

G6 u(8), pcheck(1) stat, (1), stat,(1), 9+ [3]-23 =17
pcheck(1)

G7 v(8), pcheck(1) stat, (1), stat,(1), 9+ [2].2° =137
pcheck(1), u(8), v(8)

G8 u(8), pcheck(1) stat, (1), stat,(1), 94 [2]-2° =137
pcheck(1), u(8), v(8)

G9 ged(8), peheck(1), | u(8), v(8), 184 [F]-23+ [

enableyeq(1) pcheck(1),mcoef(8) | -(2%)* = 194
mecoe f(8)

parity | stat,(1), stat,(1) z(8), y(8) 2+ 3] (22)2 =130

div 2(8) z(8), y(8) 8+ 2] -(22)2 =136

sub | z(8) z(8), y(8) 8+ L] -22=140

umn an area estimate from VIS-tool, the third column the aoeaplexity of the
action systems descriptions and the last one the accurabg @gresented model
with respect to the VIS results.

The accuracy of the presented formal area complexity moaléés from56 %
to 99 % compared to the BDD estimate given by the VIS tool (averzdy&).
The 8-bit ALU gave the worst accuracy for our area complexitdel. However,
this benchmark circuit is also the one with the most open tques It reserves
some amount of space for the extra control logic and we do mawikhow well it
is actually described in the original code. Therefore, fis to assume that the
definition of the system might differ most between the omdimenchmark circuit
and the action systetd LUS.

The most common level of accuracy was in betwéer?; to 70 %, which
is acceptable since the formal system definitions are attzehigbstraction level
whereas the Benchmark circuit operates at lower (Booles).| Furthermore, it
is expected that accuracy increases as the abstractidrdreases.

In addition to the above presented results, we compareduthadder struc-
ture using different bit widths. The results are shown in Eig, where the circles
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Table 4: Results.

Design VIS-2.1 | Action model| %

16-bit multiplier 198 272 72
32-bit multiplier 374 544 69
16-bit adder 48 72 67
32-bit adder 96 160 60

8-bit alu + control 447 250 56
Arbiter with 3 clients 323 327 99
Greatest common divisqr 768 967 79

represent the full-adder areas from the VIS tool and the $axe the areas from
the formal model. The accuracy in the addition operatiofi0igs for variable
widths 4,8,32,64. For 16-bit adder the accuragy7i$o, and therefore the average
accuracy of the area complexity of the addition operatidil i%.

Considering all of the results presented in this chapter fioraal point of
view, we see that the majority of the area complexity es@satere larger than
the corresponding BBD estimate. This benefits, for instatiee refinement [3]
of systems in terms of area [32]. That is, the result inde#itat during system
development the area limit is rarely exceeded.

5 Conclusion

In this paper, we presented and compared formal area coityptegdel targeted
to abstract system specifications. The model adopts prepevhich are used on
the size estimation of Boolean functions. The accuracy®hibdel was analyzed
using various benchmark circuits and a high-level (above)Rynthesis tool. We
used the/ IS tool developed in the Berkeley University for high-levelo@ean)
synthesis and verification. One of the criteria was thaitlesists freely available
benchmark circuits written the correct input language fiertbol. The operation
of the benchmark circuits were then written using Actiont8gss formalism. The
goal with all benchmark circuits were to increase the levalustraction while
preserving the similar functionality as the original bemetnk circuit.

The size of the benchmark circuits were analyzed using BDdglaen com-
pared with the formal definitions. The accuracy of the modgled most com-
monly betweer60% and70% from the size of the benchmark circuits. Observe
that in the most cases the formal model gave larger resutt tia BDD one.
Therefore, it is fair to assume that as the level of abstvaalecreases the model
the performance analysis gets more and more accurate leettamisystem de-
scriptions will be closer to Boolean descriptions. At cerfghase we might be
able to use the actual BDD instead of the presented area egitypihodel for the
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Figure 10: Size of full-adder with different bit widths.

estimation. Thus, the benefit of this is that during systeweld@ment, where the
accuracy of the system descriptions increases, the argal@aty limit set for the
system is rarely exceeded.
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A Models for Area Complexity Estimation

This Section describes the models used in this study. Fusgive an informal
description of the benchmark systems. Then, we give thedbd®finitions for
those systems that are not yet defined in this paper. Theerefermodels for the
formal area complexity model are either froh&M/SIGMA[35] benchmark set

or from ISCAS’85[16] benchmark set. There is one exception the adder circuit
is from BuDDY [19] BDD package, which consist on ready made C++ code to
generate n-bit full adder circuit whereis any positive integer. Observe that in
BDD generation we used same ordering methods between BubBWwis in
order to keep the results consistent. Second, we give tineafadefinitions for
those systems that are not yet defined in this paper

A.1 Model descriptions
A.1.1 Full-adder and multiplier

To evaluate the accuracy of our area complexity model im@uétic circuits we
selected a basic full adder circuit and a basic multiplaratinit. The adder circuit
was simulated with the following bit widths: 4, 8, 16, 32, Gse multiplier unit

were analyzed using 16-bit and 32-bit word lengths.

A.1.2 8-bit ALU and control logic

A high level model [16] of the ALU benchmark is shown in Fig. . 1The core

of the circuit is an 8-bit adder, which consist of two 4-bitrgdook ahead adders
(modulesM4 andM5) and the CLA generator circuit, which produces generate,
propagate and sum signals (mod8). Multiplexers (module$11 andM6) se-
lect the incoming and outgoing data buses. The control mmodguleM?2) controls
both multiplexers such that only one function is activatetime. Furthermore,
the control unit contains extra control logic, which can sedito generate addi-
tional control logic, for instance, for devices next to thielA

A.1.3 Arbiter

The arbiter is a simple circuit where three modules (clieate competing to get
a bus access. Each client has a controller attached to itvireich the acknowl-
edgement is given. The controllers communicate with théearlm a way that at
any time at most one controller gives an acknowledgment.afbiger is a simple
three-state machine. It has a single output indicating wbantroller can be se-
lected among the three. If the "active” input of the con&olk 0, the output is X,
meaning that no one is selected.

The protocol here is that a controller takes a control fromdhbiter if it is
selected by the arbiter and it has a request. Otherwise,athieot is passed to
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Figure 11: 8-bit ALU with additional control logic.

the next controller. A signalass.,; is set to one if the controller needs to pass a
control to another controller. There are two cases: 1) whercontroller is done
processing a request, 2) when the controller has no reqagstgy but is selected.
In both cases, the variable is set to one in the next clockatattother controller
waiting for an access can take a control. The "active” sigih#he arbiter is set to
one if one of theyass,; is set to one.

A client has to keep a request signal high until an acknowtezlg is given.
Even after an acknowledgment is returned from the corredipgrcontroller, req
can be high for a finite amount of time. This means that differequests take
different time to complete. Fairness constraints arise bgrce we do not want to
keepreq high for infinite time. Simple block diagram of the arbitersisown in
Fig. 5.

A.1.4 Greatest common divisor

The binary greatest common divisor (GCD) algorithm is amatgm which com-
putes the greatest common divisor of two non-negative @rgeglt gains a mea-
sure of efficiency over the ancient Euclidean algorithm Ipfaeing divisions and
multiplications with shifts, which are cheaper when opegabn the binary rep-
resentation used by modern computers. The algorithm redilheeproblem of
finding GCD by repeatedly applying the identities- 5 shown below. The: and
v are non-negative integers.

1. The greatest common divisor betwegandv is gcd(0,v) = v, because
everything divides zero, ands the largest number that dividesSimilarly,
ged(u, 0) = w andged(0, 0) is not defined.

2. If w andv are both even, thegrd(u,v) = 2 - ged(u/2,v/2), because 2 is a
common divisor.
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3. If w is even and is odd, thenged(u,v) = ged(u/2,v), because 2 is not
a common divisor. Similarly, it is odd andv is even, themcd(u,v) =
ged(u,v/2).

4. If w andv are both odd, and > v, thenged(u, v) = ged((u — v)/2,v). If
both are odd and < v, thengcd(u, v) = ged((v — u)/2,u).

5. Repeat steps 3 and 4 until= v, or untilu = 0.

A.2 Action System descriptions

The action system description are written using the infaionagiven in the sub-
section 2.2.3 as a guideline. The purpose is to keep theifunadity of the sys-
tems as similar as possible whereas the syntactical aspegtsliffer. All formal
system descriptions are assumed to work in parallel witBntsronment system
(Sys || Env). The purpose of the environment system is to provide nepessa
stimulus for the actual system but its internal specificetiare left intact. Fur-
thermore, it is not part of the area complexity estimatioaspnted in Section 2
and therefore it is not modeled.

A.2.1 Full-adder and multiplier

An addition operation is described by the systdmand it is defined by:
sys A ( Opadd; ) -

I

variable
dl,d2,r : data;
action
Add : opagg — 7 :=1".(r' =d1 + d2);
initialisation
dl,d2,r := d10,d20, r0;
execution
forever do Add od
Il

where the environment sets the variabje,, to true whenever addition is re-
guested. Observe that when the varialglg;, is set tofalsethe systemA is in
idle state waiting another addition request from its enwment. The actiomdd
performs the addition of the two input variablésandd2 and stores the result to
the output variable. These variables are of typleta and its variable length is
(n € NT)

In a similar manner we define the multiplication operatiofult, we have:
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Table 5: Results for adder and multiplication.

Action | Write variables| Read variables| Area complexity

Add16 {r(16)} {d1(16),d2(16)} | C(Add16) = 16 + [2] -
(22)! =80

Add32 {r(32)} {d1(32),d2(32)} | C(Add32) = 32 + [&] -
(22)! = 160

Mult16 {r(16)} {d1(16), d2(16)} | C(Mult16) = 16 + [2] -
(22)2 = 272

Mult32 {r(32)} {d1(32),d2(32)} | C(Mult32) = 32 + [5] -
(22)2 = 544

|s[ys Mult ( oppuit; )
variable
dl,d2,r : data;
action
Mult : oppiy — 7 :=1".(r" = d1 * d2);
initialisation
dl,d2,r := d10,d20, r0;
execution
forever do Mwult od

]

where the environment enables the multiplication by sgtive variablep,,,.;; to
true (when set tdalsethe system is disabled). Once the multiplication is reqeeest
the actionMult is executed and the result of the multiplication is storetht®
output variable . The variables are of typgatawhich length isn (n € NT).

The area complexity calculations for 16-bit and 32-bit adaled 16-bit and
32-bit multiplier are summarized in Table 5.

The first column describes the action under evaluation. Hoersd and third
column describes the set of write variables and the set raaaloles for each ac-
tion, respectively. Observe that variable widths are deshotside the parenthesis.
Naturally the widths are similar with the original benchkaircuit. The fourth
column shows the area complexity calculation.

A.2.2 8-bit ALU and control logic

The implementation of the 8-bit ALU and control logic is defthby:

33



sys Alu8 ( ina,b: data8;d,g : data4; select : instruction;out f : dataS; ) ..
Il
type
instruction : {add8, add4, idle, other};
variable
tmpg, tmpy, : data8;
tmpeo : bool;
select : instruction;
private procedure
Control(in ¢ : instruction25; 0ut o : instruction17) : control logic
Add(in z,y : data8;0utr : data8) : (r:=1".(r' =x +y));
action
Al : select = add8 — (tmpg, tmpy := a,b), enableqqq := T
A2 : select = add4d — (tmpg, tmpy := d, g), enableqqq := T}
A3 : enableygq — Add(tmpg, tmpy, r);
f,enableyqq, select := r, F, idle;
A4 : select = other — Control(c, a,b); select := idle;
initialisation
tmpg, tmpy = tmpy0, tmpy0;
select := idle;
execution
foreverdo A1 [ A2 [ A3 [ A4 od

]

where the system consist of two procedures:atieéprocedure performs the 8-bit
addition operation and theontrol describes the control logic that the benchmark
implements. The operation of tiesentrol procedure is described simply witlon-
trol logic because the type of the control logic is black box in the aagcircuit
as well. That is, there is reserved space for some amounttd gic. The
control unit in the original benchmark controls the openatof the ALU. In this
specification the ALU control is implemented outside thetoarunit. In all cases
the variable widths match with the lengths in the benchmaduit. The select
signal operates as a communication path between the ALUtamahvironment.
It has four possible statesidd8requests 8-bit additioadd4 requests 4-bit ad-
dition, other chooses to use the external control logic andithe informs the
environment that the ALU is ready accept new operation rsiguel he environ-
ment requests all operations from the ALU.

The read and write sets and the area complexities for eamnadf the sys-
tem ALU are shown in Table 6. The variable widths are denoted aftaden
parenthesis. Observe that even though the system desoriggfines only four
states to theselectvariable, which could be encoded using two-bit numbers, its
width is 8. This follows from the benchmark circuit definit® most likely there
is left space to include more states in future for instaneetdihe external control
logic.
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Table 6: Read and Write sets and area complexities for sygtems.

Action | Write variables Read variables | Area complexity

Al {enablegqq(1), {select(8)} C(A1) =3+[2]-(21) =19
tmpa(l)a tmpb(l)}

A2 {enableyqq(1), {select(8)} C(A2) =1+[2]-(2") =19
tmpa(l)v tmpb(l)}

A3 {select(8), f(8), {enableqqq(1)} C(A3)=17+[1]-(2)) =19
enablegqq(1)}

A4 {select(8)} {select(8)} C(A4)=8+[2]-2! =24

Add {r(8)} {x(8),y(8)} C(Add) =8+ [187]-22 = 40

Control | {o(17)} {c(25),a(8),b(8)}| C(Control) = 17+[5]-2% =129
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