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Abstract

The increasing size, complexity, speed, and power requirements poses challenges
for the development methods of modern System-on-Chip designs. Traditionally,
the system is implemented according to the specification using a hardware de-
scription language and then verified using simulation basedmethods. In case of
unwanted mismatch between the initial specification and theimplementation a
new design cycle is needed. This is time consuming as well as an error prone
approach to design systems. Therefore, there is a need for a framework that pro-
vides essential information of the system under design. With this information a
designer is capable to make far-reaching decisions and avoid costly design back-
tracking later on in the project.

In exploring new approaches to outdo design challenges formal methods are a
solution to be reckoned with. They provide an environment tospecify, design, and
verify systems with the benefits of rigorous mathematical basis. For this study we
chose the Action Systems framework to be our base formalism.The framework
will be extended with a method that allows us to estimate and analyze the area/size
of a system in a formal, abstract system specification. The model relies on the size
estimation of the Boolean functions. The model presents a test environment under
which the formal model is evaluated and compared with the existing high level
size model.

Keywords: Action Systems, area, formal, model
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1 Introduction

The development methods and languages dedicated to modern,large System-on-
Chip (SoC) designs are facing tremendous pressure of the ever increasing size,
complexity, speed, and power requirements. To answer thesechallenges formal
methods provide an environment to specify, design, and verify systems with the
benefits of rigorous mathematical basis. Furthermore, large SoC designs need
large and power hungry clock distribution networks that have been recognized
one of the major challenges in modern deep submicron designs. Therefore, a keen
interests towards multi-clocked and multiprocessor systems is growing. A com-
monly used method to alleviate the problems described aboveis to use Globally
Asynchronous Locally Synchronous (GALS) design method introduced in [10].
A GALS design is composed of locally synchronous islands whose clocks are in-
dependent of each other, and therefore there is no need for a clock distribution
network. Thus, in industry and academia the interest towards formal methods and
GALS architecture is continuously increasing.

In general, the development of SoC design begins from a high level specifica-
tion, which describes the functional and timing requirements of the end product.
The functional requirements defines how the system operatesaccording to the in-
put and timing requirements are set to system components that must be satisfied.
Traditionally, according to the specification, the system is implemented using, for
instance, hardware specification language like VHDL or Verilog, and then verified
using simulation based methods. In the case of an unwanted mismatch between
the initial specification and the implementation a new design cycle is needed. This
is time consuming as well as an error prone approach to designsystems. Further-
more, modern wireless and mobile technology platforms poselow-power require-
ments for the system, which have to be taken into account during design flow.

In power consumption estimation there is a trade-off between accuracy and
design time. The more detailed the analysis is the more time it consumes. To
avoid costly design backtracking a designer wants to make decisions as early as
possible. In this study, we present a method to evaluate the area / size of a sys-
tem from formal system descriptions and compare the resultsof an existing high
level synthesis tool. The purpose is to evaluate the accuracy of the method since
the area of the system is an essential metric in a power consumption estimation
[31][32][33] due to the static power consumption [18].

The formal area complexity modeling technique presented inthis study is tar-
geted to Action Systems [2], which is based on an extended version of Dijkstra’s
language of guarded commands [14]. The Action Systems formalism was chosen
to be the base formalism because it has been successfully applied to the devel-
opment of both synchronous [28] and asynchronous [23] systems. Moreover, it
has a time spiced extension, Timed Action Systems, which canbe used to analyze
systems timing requirements. Owing to the complexity of themulticlocked and
multiprocessor systems, the possibility to abstract unnecessary implementation
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details at higher abstraction levels is an essential part ofthe used design language.
With the encapsulation and abstraction techniques incorporated with the proce-
dure based communication [24] enables a designer to use Action Systems as well
as Timed Action Systems in modeling these systems. These techniques allow one
to divide the development of the communication and computation into their own
tasks. In addition, one of the benefits on choosing Action Systems formalism as
the base formalism is the ability to use it throughout the design project: in other
words, to be able to model systems from an abstract specification down to an im-
plementable specification. The area complexity estimationis suitable for Timed
Action Systems formalism, too, and it is used when discussedhigh level power
estimation [32], [33].

1.1 Related Work

Recent years has shown, based on the active research carriedout in the field, that
there is a need for a rigorous development framework that operates at higher ab-
straction levels than the traditional approaches. That is,there is a need to evaluate
the performance (time, area and power) of the system above RTL-level allowing
us to detect performance related bugs earlier. The target application fields among
the presented formalism varies from software systems to hardware systems and
from embedded systems to hybrid systems.

To model VLSI systems several synchronous formalism existssuch asSignal
[4], Lustre[9] and Esterel[5]. All of these approaches rely onsynchronous hy-
pothesisin which computations and behaviors are divided into a discrete sequence
of steps with deterministic concurrency. Signal is appliedto modeling and vali-
dating globally asynchronous design in [20] and Esterel is extended to multiple
clock domains in [6] and [26] allowing one to model both multiclocked and asyn-
chronous systems, and furthermore, to capture asynchronous behavior within syn-
chronous framework. These extensions enable one to use the formalisms for the
same application area than the Action Systems. However, theresearch presented
in this study is targeted to formal power modeling frameworkwhere time is a sig-
nificant measure. Therefore, one should consider the timinganalysis capabilities
as well. The timing analysis of these synchronous languagesis more restrictive
than the timing analysis in the timed spiced extension of Action Systems, Timed
Action Systems, because they rely on theperfect synchrony hypothesisthat de-
fines that the outputs are produced synchronously with the inputs. Furthermore,
the rigorous system development, to our knowledge, is supported only in Signal.
It supports system refinement via semantics-preserving transformations [30], but
its mathematical basis seems to be less rigorous than the Refinement Calculus
Paradigm [3] defined for Action Systems.

Esterel studio [40] is a tool set targeted to design SoC systems. It uses a formal
description language and a verification environment to produce RTL-level system
descriptions. These RTL-level descriptions can be exported at least in Verilog,
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VHDL and SystemC. Furthermore, the generated system descriptions appeared to
be equally good or in many cases better than hard coded ones [40]. The tool does
not directly offer any area evaluation methods but its verification methods can be
used to make the design as efficient as possible. For instance, a power manager
design [15] framework relates to the Esterel Studio. The system specifications
are written in terms of hierarchical concurrent state machines where the formal
verification makes it possible to check critical propertiesand preserve behavior
when beautifying the specification. That is, the Esterel verification environment
is used to define a more efficient power management system for SoC. The power
management device optimizes dynamic and static power reduction by dynami-
cally distributing and controlling clock, reset, and powerdistribution for various
SoC parts. This approach however is targeted to control power consumption by
designing specific component using the most effective approach available. Our
approach in terms of area complexity and later on power consumption is more
general. That is, one can estimate performance related metrics to all components
that are valid for the formalism. Furthermore, the presented model is more flex-
ible since it is not restricted to synchronous systems. The closest high level area
models operates at Boolean level, which are discussed in thenext subsection.

1.1.1 On the Boolean Complexity

In an early work [27] of Shannon the area complexity of Boolean function was
studied (switch count). In this paper Shannon proved that the asymptotic complex-
ity of Boolean functions is exponential in the number of inputs (m), and that for
largem, almost every Boolean function is exponentially complex. Muller demon-
strated the same result for Boolean functions implemented using logic gates (gate-
count measure) in [21]. Over the years several other researchers have reported
results related to the area complexity of Boolean functions, for instance, the re-
lationship between area complexity and entropy (H) is reported, for instance, in
[17], [25], [13] and [11]. Cheng and Agrawal [11] measured the area complexity
as a literal count and it was generated for small number of inputs from randomly
generated Boolean functions. As one tries to apply that model to realistic VLSI
circuits, it quickly breaks down due to the exponential dependence on the num-
ber of inputs. Nemani et. al. [22] proposed a method for predicting the area of
a single output Boolean function given only its functional specification and no
structural information. The presented area complexity model is based on thearea
cube complexityand the results were compared with the SIS high-level synthe-
sis tool nowadays known as MVSIS [36]. The presented model was reasonably
accurate compared with the results given by the SIS tool.

Another approach to model the area complexity of a Boolean function is to
use a graphical model. A Boolean function can be represent asa directed acyclic
graph, where the size of a function can be evaluated by calculating the number of
nodes needed to present the function. These graphs are oftenreferred to asBinary
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Decision Diagrams (BDD)and described, for instance, in [1] [7] [8]. Binary
Decision diagram represent a Boolean function as a directedacyclic graph with
each vertex labeled by Boolean variable. In anOrdered Binary Decision Diagram
(OBDD), the vertex label occurs in the same order along all directedpaths. This
presentation has many desirable algorithmic properties. For instance, it has proved
to work well as a data structure for symbolically representing and manipulating
Boolean functions [7]. Furthermore, for a given variable ordering, the smallest
OBBD for a particular Boolean function is unique.

Several tools and packages exist to automate the BDD manipulation. For in-
stance, packages such as CUDD [37] and BuDDy [38] offer functions to manip-
ulate BDDs via C++ interface. However, benchmark circuits such as ISCAS and
ACM/SIGMA benchmark set do not support these tools. University of Berke-
ley has research groups [36], [39] for high level synthesis and verification, which
offer their own tool sets for that including the possibilityto use and manipulate
BDDs. Furthermore, decision diagrams are often related to verification tools, for
instance,Esterelverification environment (Xeve) [41] uses BDDs to symbolically
describe input events to analyze state machines.

2 Formal Basis

In this section we will introduce the formal basis for our area complexity (size)
analysis. We start by reviewing the Action Systems formalism after which we dis-
cuss the area complexity modeling of those action constructs, which are essential
for the work. Finally, we present the area complexity modeling at an action sys-
tem level. The accuracy evaluation and comparison between existing area models
will be given in the forthcoming sections.

2.1 Actions

An actionA is defined (for example) by:

A ::= abort (abortion, non-termination)

| skip (empty statement)

| x := x′.Q (non-deterministic assignment)

| x := e ((multiple) assignment)

| g → A (guarded action)

| A1 8 A2 (non-deterministic choice)

| A1; A2 (sequential composition)

| A1 � A2 (prioritized composition)

| do A od (iterative composition)
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whereA andAi, i = 1, 2, are actions;x is a variable or a list of variables;e
is an expression or a list of expressions; andg andQ are predicates (Boolean
conditions). An action is considered to beatomic, which means that only the
initial and final states areobservableby the system. Therefore, when an action is
selected for execution, it is completed without any interference from other actions.
If an action does not establish any post-condition it behaves as anabort statement
(a never terminating statement), and if it does not change the state at all, it behaves
as anskip statement (an empty statement). Thenon-deterministic choicechooses
one of the enabled actions non-deterministically without achance of an external
influence. Thesequential compositionexecutes the actions one by one in the given
order. The prioritized composition[29] is a composition in which the execution
order of enabled actions is prioritized. We have:A � B =̂ A 8 ¬gA → B, where
the highest priority belongs to the leftmost action in the composition; therefore,
the leftmost enabled action is always chosen for execution.The variables which
are assigned within the actionA are called thewrite variablesof A, denoted by
wA. The other variables present in the actionA are called theread variablesof
A, denoted byrA. The write and read variables form together theaccess setvA
of A: vA =̂ wA ∪ rA.

The actions are defined using weakest precondition for predicate transform-
ers [14]. Theweakest preconditionfor action A to establish the post condi-
tion q is defined for example:wp(abort, q) = false, wp(skip, q) = q and
wp((A 8 B), q) = wp(A, q)∧wp(B, q). The guardgA of an actionA is defined
by gA =̂ ¬wp(A, false). Considering a guarded actionA =̂ P → B we have that
gA =̂ P ∧ gB. An actionA is said to beenabledin some state, if its guard istrue
(T ) in that state, otherwisedisabled. The actionA is said to bealways enabled,
if wp(A, false) = false (that is, the guardgA is invariantlytrue: gA = true).
Furthermore, ifwp(A, true) = true holds, the actionA is said to bealways ter-
minating. ThebodysA of the action A is defined by:sA =̂ A 8 ¬gA → abort.

A quantified compositionof actions is denoted by:[• 1 ≤ i ≤ n : Ai], and it
is defined by:A1 • . . . • An, where the bullet• denotes any of the composition
operators, andn is the number of actions. Furthermore, we have asubstitution
operation, denoted byA[e′/e], wheree refers to an element such as variables and
predicates of the original actionA ande′ denotes the new element, which replaces
e in A.

2.1.1 On modeling area complexity of actions

To model area complexity of an arbitrary action, we utilize the following infor-
mation: the read and write variables of an action, and the abstract specification of
its functionality. We start by defininga variable width, which is the number of
bits needed to present the variable. At a high abstraction level, it is typical that
variables are other types than Boolean, and therefore the width information is the
basic necessity to model area complexity [32]. Thus, the area complexity of a
variablex is defined by:
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Figure 1: Illustrations of assignments

C(x) =̂ wx (area complexity of a variable (x))

wherewx is the variable width. For a set of variables, sayS, the area complexity
is obtained by adding together the widths of the variablesx ∈ S. We have:

C(S) =̂
∑

x∈Swx (area complexity of a set (S)) (1)

The premise of our area complexity modeling, in addition to the variable
widths, is thenon-deterministic assignment(x := x′.Q) because it can be used
to describe any operations performed on variables in an action context. Consider
an actionA =̂ x := x′.Q, where the predicateQ is evaluated and the result is
assigned to the variablex. The area complexity modeling ofA is divided into
two parts:assignment, andpredicate evaluation. In assignment part the result of
the predicate evaluation is written into a variable and it isillustrated as a chain
of storage elements in our area complexity model, as shown inFig. 1(a) and de-
fined by: C(wA) =

∑
x∈wA wx, where thewA is the write set ofA. Observe

that the definition is based on (1). The predicate evaluationon the other hand is
thought as a “combinatorial cloud”, shown in Fig. 1(a), which at a lower abstrac-
tion level is the logic that performs the computation. In general, the predicate is a
Boolean function. The presented model is targeted to more abstract descriptions,
and therefore the size evaluation methods for Boolean functions are not directly
applicable. For instance, an action may define an addition operation but it does not
define whether the addition is implemented using a ripple carry adder or a carry-
look-ahead adder structure. Furthermore, by adopting directly the definition (1)
for the setrQ, it would give the same area complexity regardless of the operation
that Q performs. For instance, the area complexity between two predicates say
Q1 =̂ v := v′(x′ = y) andQ2 =̂ v := v′(v′ = x + y), would be the same if we
adopt the similar approach that was selected for the assignment.

Usually a combinatorial logic forms a layered structure, which can be de-
scribed using tree alike structures. To model the depth of a tree, our model relies
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Figure 2: Example: Ripple Carry Adder Structure.

on BDD modeling of Boolean functions. Naturally, we cannot generate exact
BDD because we only have an abstract description of a logic operation. In addi-
tion to the tree model, we will exploit the Shannon’s size equation presented in
the previous section but not directly for the setrQ because with the large num-
ber of input arguments it quickly breaks down due to its exponential dependency.
Furthermore, as the abstraction level of the system decreases during system re-
finement [3], the system descriptions will be closer to Boolean definitions, and
therefore the evaluation methods targeted to Boolean functions will be more and
more accurate. Thus, in the end there should be enough information to generate
the BDD description for the system, and, furthermore, to useit as an area com-
plexity model.

To model area complexity of the predicate evaluation we define the setrQ,
which consist of those variables that appear in the predicate Q (rQ ∈ rA). First
we define the area complexity of the setrQ, denoted byC(rQ) as stated in (1). To
imitate the tree like structure mentioned above, we set the area complexity of the
setC(rQ) as a root node. The number of children is calculated byC(rQ)

|rQ|
, where

the area complexity (C(rQ)) of the set is divided by the cardinality of the set
(|rQ|). The cardinality of the set describes the number of variables in the set, that
is, the number of children is the average variable width in the setrQ. The idea
is that if we have a Boolean function between variables the operation is carried
out in a “bit wise” manner. As an example, assume that we perform an addition
operation between two variables having width of four. At circuit level, see Fig 2,
the variables are added together in a way that the least significant bits of both vari-
ables are added together and then the most significant bits (and carry). Each child
node in the tree has two possible output values, namely′0′ or ′1′. That is, every
node has|rQ| arguments and by combining these variables using differentorders
we have2|rQ| different combinations to produce either′0′ or ′1′ as an output value
according to the Shannon’s size equation. Adopting this approach we assume that
the number of input arguments does not increase so dramatically, and therefore
the exponential dependence does not have significant negative effect to the model.
The area complexity of the predicate evaluation (Q) in thenon-deterministic as-
signmentis defined by:
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Figure 3: Example area complexity modeling.

C(Q) =̂

⌈
C(rQ)

|rQ|

⌉
· 2|rQ| (area complexity of a predicate evaluation) (2)

where the first term calculates the average width of the inputvariables of the pred-
icate. Observe that the variable width in a system description, at any abstraction
level, is usually integer, and therefore the result of the average variable width is
rounded. Let us illustrate the area complexity evaluation with the following to
examples:
Example 1 The predicateQ defines integer addition:Q =̂ A + B, where the
variablesA andB have widthswA = WB = 4. The setrQ of the predicate
Q is rQ =̂ {A,B}. To clarify the “bit wise” addition where the model is based
on, see the Fig. 2. We start by calculating the area complexity C(rQ) for the set
rQ: C(rQ) = 4 + 4 = 8. The number of children in the tree is then calculated
by dividing theC(rQ) with the cardinality of the set|rQ|, we have: C(rQ)

|rQ|
=

8
2

= 4. Each of these four children have two possible output valuesand the area
complexity of one child node is22 = 4. The area complexity of the predicateQ

is calculated using (2):C(Q) =
⌈

C(rQ)
|rQ|

· 2|rQ|
⌉

= 8. The tree model for the area

complexity model is shown in Fig. 3.
End of example.
In Example 1 both of the variables involved in the area complexity evaluation had
the same width. Let us further introduce an area complexity modeling with the
general example with input variable widths.
Example 2 Let us assume that the set of variablesrQ of the predicateQ is
rQ =̂ {X,Y, Z}. The variablesX,Y, Z are of same type and their widths are
wX = 4, wY = 4 andwZ = 6. The area complexity of the setrQ is C(rQ) =
wX+wY +wZ = 14, and for the predicate evaluation we have:C(Q) = ⌈14

3
⌉·23 =

40. The tree like structure is shown in Fig. 4, where the number of successor nodes
from the root is defined by the average variable width. Each ofthese nodes have
three input arguments and assumed to perform a Boolean operation. Therefore,
the area complexity is calculated using the Shannon’s2m equation, wherem = 3
in this example.
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Figure 4: Example area complexity illustration.

End of example.
To summarize, the area complexity of the actionA =̂ x := x′.Q is defined by:

C(A) =̂ C(wA) + C(Q) (area complexity of an action A) (3)

where the first term is the area complexity of the write set is defined in (1) and the
second term is the area complexity of the predicate evaluation defined in (2). A
special case in the area complexity modeling of the non-deterministic assignment
occurs when the predicateQ is of form: Q =̂ (x′. = y), wherey is a variable. For
instance, consider an actionA =̂ x := x′.(x′ := y), wherex andy are the variables
of the same type. The actions area complexity is defined by:C(A) =̂ C(wA),
where the area complexity of the predicateC(Q) is zero as there is no computation
just the assignment (x′ := y).

Consider a guarded action of form:g → B. When the guardg evaluates to
true (T ) the actionB is enabled, otherwise the action is disabled (theg evaluates
to false(F )). An illustration of the guarded non-deterministic assignment for area
complexity modeling is shown in Fig. 1(b). The area complexity modeling starts
by defining the set of write variableswB and read variablesrB of the action.
The area complexity of the setwB is defined as shown in (1). However, the area
complexity of the read setrB requires further studying. The variable(s) in the
read set appears either in the guardg, in the predicateQ, or in both. Therefore,
we define a set of variablesrg that appear in the guardg and a set of variablesrQ
that appear in the predicateQ (rB =̂ rg ∪ rQ). The area complexity is evaluated
for the setsrg andrQ separately by replacing therQ with the setrg in (2). Thus,
for an actionB we have:

C(B) =̂ C(wB) + C(Q) + C(g) (area complexity of an action B) (4)

The predicateQ in the non-deterministic assignment (or in the guarded non-
deterministic assignment) is often used to describe arithmetic operations. The
above presented area complexity model would give identicalresult, for instance,
for multiplication and addition due to the high abstractionlevel. In other words,
the read set of the multiplication action and the read set of the addition actions
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contains the same variables, and therefore the area complexity model does not
make difference between these operations. To overcome this, acomplexity factor
φ ∈ R

+ is introduced for arithmetic operations, and thus the area complexity of
the predicateQ evaluation becomes of form:

C(Q) =̂

⌈∑
v∈wv

wv

|rQ|

⌉
· (2|rQ|)φ

The value of the complexity factor can be any positive real number, and further-
more, it is adjusted by the designer. In this thesis, the complexity factor is adjusted
in a way that it takes the high abstraction level into account. For instance, the com-
plexity factor for addition is assumed to be one (φ = 1) and for multiplication it
is assumed to be (φ = 2). This follows from the complexity relation between
binary addition and multiplication. That is, in [12], the complexity of binary addi-
tion isn and the complexity of schoolbook multiplication isn2. Observe that, the
complexity factor is adjustable, for instance, when the abstraction level decreases.
However, this study is targeted to abstract system descriptions, and therefore, it is
fair to assume the above presented values.

2.2 Action System

An action systemA has a form:
sys A ( imp pI ; exppE ; )( uA; ) ::
|[

type
type : Def ;

variable
lA;

private procedure
pI(in x : out y) : (PI);

public procedure
pE(in x : out y) : (PE);

action
Ai : (aAi);

initialisation
uA, lA := uA0, lA0;

execution
forever do composition of actions Ai od

]|

where we can identify three main sections:interface, declarationand iteration.
The interface part declares those variables,uA, that are visible outside the action
system boundaries and therefore accessible by other actionsystems. Global vari-
ables maybe of type input, output or bi-directional input-output, and the types
are denoted by the following identifiers:in, out and inout, respectively. It also
introducesinterface procedurespI andpE that are imported in or introduced in
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and exported by the system. These are denoted by theimp andexp identifiers,
respectively. If an action system has no interface variables or procedures, it isa
closed action system, otherwise it isan open action system.

The declaration part introduces all new, local type definitions (type) and the
local variableslA (variable). Furthermore, the declaration part introduces private
pI and publicpE procedures (private procedure / public procedure) and action
definitionsaAi (action) that perform operations on local and global variables.
Furthermore, a labelAi is given for every action definition.

The operation of action system is started by the initialization in which the
variables are set to predefined values. In the iteration part, theexecutionclause,
actions are selected for execution based on their composition and enabledness.
This is continued until there are no enabled actions, whereupon the computation
terminates. Hence, an action system is essentially an initialized block with a body
that contains an iteration, that is, a statement which is repeatedly executed.

2.2.1 Parallel composition of action systems

Consider two action systemsA andB whose local variables are distinct,lA∩ lB =
∅, and communication variables are a setuA ∩ uB. We require that the initial-
izations of the communication variablesuA ∩ uB are consistent with each other,
so that the initial values are equivalent:∀v ∈ uA ∩ uB.(v0A = v0B), where
v0A ∈ u0A and v0B ∈ u0B. The parallel composition ofA andB, denoted
A‖B, is defined to be another action system whose global and localidentifiers
(procedures, variables, actions) consist of the identifiers of the component sys-
tems and whoseexecutionclause has the form:forever do A 8 B od, where
A andB are the actions of the systemsA andB, respectively. The constituent
systems communicate via their shared interface procedures. The definition of the
parallel composition is used inversely in system derivation to decompose a system
description into a composition of smaller separate systemsor internal subsystems.

2.2.2 Procedures

A bodyP of the procedurep : p(in x; out y) : P , is in general any atomic action
A, possibly with some auxiliary local variablesu initialized tou0 every time the
procedure is called. The actionA accesses the global and local variablesg and
l of the host/enclosing system and the formal parametersx and y. Hence, the
body P can be generally defined by:P [var v; init u := u0;A(g, l, u, x, y)]. If
there are no local variables, the begin-end brackets[ ] can be removed together:
[A(g, l, x, y] = A(g, l, x, y). If there are neither local variables nor parameters,
the action only accesses the global and local variables of the host system, then the
procedurep can be written as:proc p : A(g, l).
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Figure 5: Bus arbitration with three clients.

2.2.3 Area complexity of systems

Consider a systemA ‖ Env where the latter is the environment of the former. Its
area complexity is denoted by:C(A ‖ Env) and defined as follows: we form a set
SA, which contains actionsA, andEnv of the systemA ‖ Env. It is easy to see
thatSA‖Env =̂ SA ∪ SEnv, where the setsSA andSEnv are defined bySA =̂ {A|A
is an action of A} andSEnv =̂ {Env|Env is an action of Env}.
The area complexity of the system is the sum of the complexities of actions in the
setSA‖Env and defined by:

C(A ‖ Env) =̂ (area complexity of systems) (5)

C(A) + C(Env)
∑

SA

C(A) +
∑

SEnv

C(Env)

where
∑

A∈SA
C(A) is the area complexity of the systemA, and

∑
Env∈SEnv

C(Env)
is the area complexity of the systemEnv.

Example 3.Consider a systemArbiter ‖ Env [ ‖ 1 ≤ i ≤ 3 : Controller(i)],
where theArbiter controls the bus access between the three controllers systems
and theEnv system as shown in Fig. 5. The dotted line in Fig. 5 describes the
above mentioned system. In other words, the environment andthe clients are not
described here, and furthermore, they are not part of the area complexity eval-
uation. TheArbiter defines the operation of the arbiter and its interface to the
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environment and to the clients. TheController system defines the interface to
theArbiter from the client side and to the data bus. Originally the arbiter system
is a benchmark circuit from ACM/SIGMA benchmark set [35] andit is used to
evaluate the accuracy of the presented area complexity model in the forthcoming
sections, and therefore the presented parallel system imitates the operation of the
benchmark circuit. The operation of the benchmark is described in A.1.3. The
Arbiter system is defined by:

sys Arbiter ( in req1, req2, req3, ereq1, ereq2, ereq3 : Bool;
out ack1, ack2, ack3, eack1, eack2, eack3 : Bool;

areq1, areq2, areq3 : Bool; ) ::
|[

type
Status = {idle, operation};

variable
direction : Status;

action
A1 : req1 ∧ ¬ack2 ∧ ¬ack3 ∧ direction = idle →

ack1, direction := T, operation;
A2 : ¬ack1 ∧ req2 ∧ ¬ack3 ∧ direction = idle →

ack2, direction := T, operation;
A3 : ¬ack1 ∧ ¬ack2 ∧ reg3 ∧ direction = idle →

ack3, direction := T, operation;
A4 : ¬req1 ∧ ack1 → ack1, direction := F, idle;
A5 : ¬req2 ∧ ack2 → ack2, direction := F, idle;
A6 : ¬req3 ∧ ack3 → ack3, direction := F, idle;
A7 : ereq1 ∧ ¬eack2 ∧ ¬eack3 ∧ direction = idle →

eack1areq1, direction := T, T, operation;
A8 : ereq2 ∧ ¬eack1 ∧ ¬eack3 ∧ direction = idle →

eack2, areq2, direction := T, T, operation;
A9 : ereq3 ∧ ¬eack1 ∧ ¬eack2 ∧ direction = idle →

eack3, areq3, direction := T, T, operation;
A10 : ¬ereq1∧ eack1∧ aack1 → eack1, areq1, direction := F, F, idle;
A11 : ¬ereq2∧ eack2∧ aack2 → eack2, areq2, direction := F, F, idle;
A12 : ¬ereq3∧ eack3∧ aack3 → eack3, areq3, direction := F, F, idle;

initialisation
direction := idle;
ack1, ack2, ack3, req1, req2, req3 := F ;
eack1, eack2, eack3, ereq1, ereq2, ereq3 := F ;
areq1, areq2, areq3 := F ;

execution
forever do [ 8 1 ≤ i ≤ 12 : Ai] od

]|

where the actionsA1, A2, and A3 describe the operation when the client side
requests the bus access. The bus access is granted for one client at a time by set-
ting one of the acknowledgement signalsack1, ack2,or ack3 to true. After the
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data transfer is completed the actionsA4, A5, andA6 set the acknowledgement
signalsack1, ack2,or ack3 to falseafter which a new communication may be-
gin. The original benchmark circuit defines that the environment may select the
client as well. To ensure that the client side and the environment side cannot ob-
tain simultaneous write access to the system bus, we define a variabledirection
which has two possible statesidle, operation. A communication cycle may begin
only if the state isidle. The communication from the environment is defined by
the actionsA7 − A12. The environment requests the access by setting request
signalsereq1, ereq2,or ereq3to true, and if the access is granted thenArbiter
sends a request to controller unit by setting one of the requestsareq1, areq2,or
areq3to true. The client performs data transfer and sends an acknowledgement
to the arbiteraack1, aack2, aack3after which the environment is acknowledged
eack1, eack2,or eack3. Observe that for simplicity the requestareq2, areq3and
acknowledgementaack2, aack3signals are not illustrated in Fig. 5. Furthermore,
these actions define only the communication between the environment and the se-
lected client through the arbiter. However, there were no definition on the type of
the communication that environment performs with the clients, and thus we do not
give a detailed specification of that. For instance, the environment may transfer
data to the client, which in turn transfers the data into the system bus. Observe that
neither the presented system nor the original benchmark system cannot guarantee
fairness.

The controller interface for each client is defined as follows:

sys Controller(i) ( in ack(i), creq(i) : Bool; din(i) : Data;
out req(i), cack(i) : Bool; dBus : Data;

aack(i) : Bool; ) ::
|[

action
C1 : creq(i) ∧ ¬cack(i) → req(i) := T ;
C2 : ack(i) → dBus, cack(i) := din(i), T ;
C3 : ¬creq(i) ∧ cack(i) → cack(i), req(i) := T, F ;
C4 : areq(i) → aack(i) := T ;
C5 : ¬areq(i) ∧ aack → aack := F ;

initialisation
dBus, din(i) := dBus0, din(i)0;
creq(i), cack(i) := F ;
aack(i) := F ;

execution
forever do C1(i) 8 C2(i) 8 C3(i) 8 C4(i) 8 C5(i) od

]|

The controller system is identical in each clients, and therefore we used a single
system definition using quantified composition. The client side starts the com-
munication cycle by setting the requestcreq(i) to the controllertrue after which
the controller sets the request signalreq(i) to the arbiter totrue (C1). If the bus
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Table 1: Area complexity evaluation of theArbiter system

Action Write variables Read variables Area complexity

A1 ack1(1), direction(1) req1(1), ack2(1),
ack3(1), direction(1)

3 +
⌈

4
4

⌉
· (24) = 18

A2 ack2(1), direction(1) ack1(1), req2(1),

ack3(1), direction

2 +
⌈

4
4

⌉
· (24) = 18

A3 ack3(1), direction ack1(1), ack2(1),

req3(1), direction(1)

2 +
⌈

4
4

⌉
· (24) = 18

A4 ack1(1), direction(1) req1(1), ack1(1) 2 +
⌈

2
2

⌉
· (22) = 8

A5 ack2(1), direction(1) req2(1), ack2(1) 2 +
⌈

2
2

⌉
· (22) = 8

A6 ack3(1), direction(1) req3(1), ack3(1) 2 +
⌈

2
2

⌉
· (22) = 8

A7 eack1(1), direction(1),
areq1(1)

ereq1(1), eack2(1),
eack3(1), direction(1)

4 +
⌈

4
4

⌉
· (24) = 19

A8 eack2(1), direction(1),
areq2(1)

ereq2(1), eack1(1),
eack3(1), direction(1)

4 +
⌈

4
4

⌉
· (24) = 19

A9 eack3(1), direction(1),
areq3(1)

ereq3(1), eack1(1),
eack2(1), direction(1)

4 +
⌈

4
4

⌉
· (24) = 19

A10 eack1(1),
direction(1), areq1(1)

ereq1(1), eack1(1),
aack1(1)

3 +
⌈

3
3

⌉
· (23) = 11

A11 eack2(1),
direction(1), areq2(1)

ereq2(1), eack2(1),
aack2(1)

3 +
⌈

3
3

⌉
· (23) = 11

A12 eack3(1),
direction(1), areq3(1)

ereq3(1), eack3(1),
aack3(1)

3 +
⌈

3
3

⌉
· (23) = 11

access is granted, data is transferred to the system busdBus and the acknowl-
edgement to the client side is set totrue indicating that data transfer is completed
(C2). Once the client side sets the requestcreq(i) to false, the acknowledgement
to the client sidecack(i) and the requestreq(i) to the arbiter are set tofalse(C3).
The actionsC4 andC5 are the interface for the communication between environ-
ment and client through the arbiter. Therefore, the functionality between this kind
of communication parties is not described.

The area complexity of the system is calculated as defined in Sect. 2.2.3:
C(Arbiter ‖ Client1 ‖ Client2 ‖ Client3) =̂ C(Arbiter) + C(Client1) +
C(Client2) + C(Client3), where the area complexities are calculated for each
system separately and then added together. We start by defining the read and
write sets of theArbiter system, and then using this information we calculated
the area complexity of the actions in theArbiter system shown in Table 1, where
the number in the parenthesis after each variable is its width. The width of the
direction variable is one because all the two states in the type definition can be
presented using one bit. Based on Table 1, the area complexity of the system
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Table 2: Area complexity evaluation of theController system
.

Action Write variables Read variables Area complexity

C1 req(i)(1) creq(i)(1), cack(i)(1) 1 +
⌈

2
2

⌉
· (22) = 5

C2 dBus(32), cack(i)(1) ack(i)(1) 33 +
⌈

1
1

⌉
· (21) = 34

C3 cack(i)(1), req(i)(1) creq(i)(1), cack(i)(1) 2 +
⌈

2
2

⌉
· (22) = 6

C4 aack(i)(1) areq(i)(1) 1 +
⌈

1
1

⌉
· (21) = 3

C5 aack(i)(1) areq(i)(1), aack(i)(1) 1 +
⌈

2
2

⌉
· (22) = 5

Arbiter is C(Arbiter) =̂ C(A1) + . . . + C(A12) = 168.
In a similar manner we evaluate the controller system. Each of the clients have

a similar controller unit, and therefore it is enough to present the area complexity
calculations for one controller and then multiply it by three. The result of the area
complexity estimation is shown in Table 2, where the area complexity of the sys-
temController is C(Client3) = C(C1)+C(C2)+C(C3) = 53. This area com-
plexity is also the area complexity of the systemsClient2 andClient3. Therefore,
the area complexity of the parallel systemArbiter ‖ Client1 ‖ Arbiter ‖ Client1
is C(Arbiter ‖ Client1 ‖ Client2 ‖ Client3) =̂ C(Arbiter) + C(Client1) +
C(Client2) + C(Client3) = 168 + 53 + 53 + 53 = 327. The accuracy of this
modeling technique will be evaluated in the forthcoming sections.
End of example.

3 Test Environment

The accuracy of the presented area complexity model is estimated using binary
decision diagrams. As stated in 1.1.1, there are several tools to manipulate binary
decision diagrams. The amount of available benchmark circuits had significant
impact to our test environment selection. That is, it ruled out the BDD packages
with C++ interface and drove our interests to the high-levelsynthesis tools from
UC Berkeley, and toBerkeley Logic Interchange Format (BLIF). Next we shortly
present the BLIF format and then we discuss tool alternatives. Finally, we pre-
sented the properties of the selected test environment using an example circuit.

3.1 Berkeley Logic Interchange Format

The Berkeley Logic Interchange Formatis used to describe a logic-level hierar-
chical circuit in a textual form. A BLIF file represents a sequential circuit as
an interconnection of logic gates and latches as a state transition table of a finite
state machine or both. The syntactical information of the BLIF language can be
found at MVSIS group home page [36]. Furthermore, BLIF is an entry point
for logic optimizers such asSynthesis System (SIS)and its followerMultivalued
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Logic Synthesis System (MVSIS), a synthesis tool developed by MVSIS group at
UC Berkeley [36]. The BLIF-MV is an extension to the BLIF format. It is a lan-
guage designed for describing hierarchical systems with non-determinism. The
non-determinism is accomplished by allowing the use of non-deterministic gates
in an input description. These gates generate the output arbitrarily from a set of
predefined outputs. Although the BLIF is the input language for the SIS logic
synthesis tool has constructs for hierarchical system description they are automat-
ically flattened into single level circuit once they are readin. This is because
the internal structure ofSISdoes not support hierarchical representations. The
successor of theSIStool supports theBLIF-MV format, too.

3.2 Tool Selection

After studied both BLIF and BLIF-MV languages, the use of theMVSIS tool
seemed to be a good choice. The tool can, for instance, do initial manipulation of a
hardware description before it is encoded into binary and processed by a standard
binary logic synthesis programs. Furthermore, it offers a front-end to a software
compiler, which allows its usage in embedded systems applications. However, we
encountered several problems, in particular, when a benchmark circuit written by
BLIF-MV was read in. Therefore, we also considered another high-level synthe-
sis tool: Verification Interacting with Synthesis [39] (VIS), which is a joint work
of University of Berkeley, University of Colorado at Boulder, and more recently
University of Texas at Austin. This program offers pretty much similar BDD ma-
nipulation environment, and, furthermore, it has a compiler, which allows to turn
Verilog code into BLIF-MV. The Verilog compiler supports only a small subset
of the language, and therefore any system description written in Verilog is not
applicable. More information on compiler, the Verilog subset, and the VIS tool
can be found from the VIS documentation [39]. The syntactical aspects of the
different input languages are not studied in this paper because we adopt existing
and documented benchmarks circuits [35].

3.2.1 Verification Interacting with Synthesis tool

VIS tool has three main parts: a front-end to read and traverse a hierarchical
system described by BLIF-MV, which may have been translatedfrom Verilog; a
verification core; and a core to perform logic synthesis. In this study, we exploit
the front-end and the synthesis parts of the tool, which are highlighted using dot-
ted lines in Fig. 6. More precisely, we use the BDD manipulation properties of the
tool, which are demonstrated using the Greatest Common Divisor (GCD) Bench-
mark circuit [35]. The GCD algorithm (implemented by the benchmark circuit)
is described in Appendix A.1.4. The BDD generation starts byreading the BLIF-
MV (or BLIF) description into VIS, where it is stored as a “hierarchy” tree. The
term “hierarchy” tree refers to the method, which the tool uses to store the initial
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-State minimization

-Restruct hierarchy

-State encoding

Synthesis:

-Equivalence checking

-Model checking

Verification:

-Cycle-based simulation

Front end:

-Traversal of hierarchy

Verilog

Figure 6: Overview of the VIS tool.

specification of the design. It consist of modules that in turn consist on sub mod-
ules that are related in some fashion. This relation is described as a table, which
implements the output function in terms of the sub module inputs. The command
line procedure is shown below:

vis release 2.1 (compiled 27-Mar-08 at 11:59 AM)
vis> read_blif_mv test_data/gcd.mv
vis> print_hierarchy_stats
Model name = testGcd, Instance name = testGcd
inputs = 17, outputs = 0, variables = 97, tables = 40,
latches = 17, children = 1

where the BLIF-MV file is read in using theread_blif_mv command. In a
similar manner a BLIF file could be read in withread_blif command. The
properties of the hierarchy tree is enquired usingprint_hierarchy_stats
command.

The hierarchy structure described above can be expressed asa tree. The root
of the tree is the main module, and the child nodes are the lower level instantia-
tions of modules. The hierarchy in a VIS can be traversed in a similar manner as
directories in UNIX. It is possible to reach the desired nodeby walking up and
down with thecd command. At any node the verification and synthesis opera-
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tions can be performed. The commandpwd prints the name of the current node
and the commandls lists all the nodes from the current node.

The first step towards the BDD construction is to ”flatten” thehierarchical
description into a single network (netlist of multivalued logic gates). The output
is computed from the inputs of the design by the network circuit which consist
of logic gates, interconnections between them, and latchesto represent the se-
quential elements. Theflatten_hierarchy command does this all and the
print_network_stats command prints the network statistics. For theGCD
example these commands work as follows:

vis> flatten_hierarchy
vis> print_network_stats
testGcd combinational=657 pi=17 po=0 latches=45
pseudo=0 const=45 edges=1362

The network description is transferred into a functional description that represents
the output and next state variables as a function of the inputs and next state vari-
ables. In this study, the BDDs are used to represent Boolean and discrete func-
tions. Before creating a BDD it is necessary to order the variables to reach the
most optimal solution. The ordering is started by the staticordering method by
invoking the command:static_order, which gives the initial ordering. The
ordering can be canceled at any point by invoking theflatten_hierarchy
command or the current variable ordering can be written out using the command
write_order. For the GCD, the static ordering is invoked as follows:

vis> static_order -o all -r depth
vis> print_bdd_stats

where the-o all defines that the ordering is done to all nodes and the-r depth
defines the ordering method. The ordering method is selectedto give the most
optimal BDD structure. In other words, the ordering method,which gives the
smallest BDD is selected. The commandprint_bdd_stats gives informa-
tion on ordering, memory usage and more importantly the BDD node count. The
node count forGCD is 768, which is the size estimate for the circuit. Often the
ordering can be improved by using dynamic variable orderingmethods, which
are techniques to reorder the BDD variables to reduce the size of the existing
BDDs. Furthermore, dynamic ordering may be time consuming but sometimes
it can reduce the size of the BDD dramatically. Observe that the commands
flatten_hierarchy andstatic_order must be invoked before the dy-
namic ordering command:dynamic_var_order. Available methods for dy-
namic reordering arewindowandsift. We adopted the tools default reordering
mode:

vis> dynamic_var_ordering
Dynamic variable ordering is enabled with method sift.
vis> print_bdd_stats
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After the dynamic variable ordering is completed the BDD node count is given by
the commandprint_bdd_stats. In this case the dynamic ordering did not
found better ordering of the variables, and thus the BDD nodecount (and the size
estimate) for the GCD circuit is 768.

4 Formal Area Complexity Modeling

In this section, we model theGCD benchmark circuit using the Action Systems
formalism and then evaluate its area complexity as defined inSect.2. The area
complexity is then compared with the result given by the VIS tool. Finally, we
present and compare other area complexity results from several other benchmark
circuits.

4.1 Modeling the area complexity of the GCD-system

The greatest common divisor system operates in parallel with its environment:
GCD ‖ Env, whereGCD describes the greatest common divisor system and the
systemEnv is its environment. The environment provides the necessarystimulus
for theGCD system, but we are only interested in the area complexity of theGCD
system, and therefore the environment is excluded from the system modeling and
the area complexity estimation. The systemGCD is defined on Page 21, where
the enablegcd signal is settrue by the environment to start the calculation. The
input variablesu and v are non-negative integers. The output variablegcd is
of type integer and returns the greatest common divisor betweenu andv. The
actionsG1 andG2 calculates the trivial cases when one of the input variablesis
zero, and therefore the greatest common divisor is the non-zero input. The actions
store the GCD value into the variablegcd and then they disable the calculation by
settingenablegcd to false. The actionsG3 − G19 compute GCD in those cases
when both of the inputs are non-zero. The actionG3 checks whether both of
the input variables areeven, odd, or another isevenand another isodd. This is
accomplished by calling the procedureparity, which receives the input variables
u and v as input parameters. The parity is decided using themodulooperator
(mod). The input variable isevenif the input variable mod 2 = 0, andodd if the
input variable mod 2 6= 0. According to the parity check theGCD calculation
is carried by the actionsG4 - G8. The GCD calculation is completed whenu
equals withv (u = v ∧ u 6= 0 ∧ v 6= 0), which is defined by the actionG9. If
bothu andv have beenevenat the same time during the GCD computation the
result is multiplied, which follows the algorithm presented in A.1.4. The variable
mcoef is multiplied by two (initially mcoef = 1) every time the actionG4 is
executed. Once the result of the calculation is stored into the output variablegcd,
the actionA9 sets the parity check variablepcheck to true and theenablegcd to
falseindicating to the environment that a new calculation may begin. Furthermore,
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the multiplication variablemcoef is set to its initial value.

sys GCD ( in u, v : integer; out gcd : integer;
inout enablegcd : Bool; ) ::

|[ type
status = {even, odd};

variable
pcheck : Bool;
mcoef : integer;
statu, statv : status;

private procedure
parity : (in x, y : integer out statx, staty : status)

(statx := stat′x.(x mod 2 = 0 ⇒ stat′x = even)
∧ (x mod 2 6= 0 ⇒ stat′y = odd);
(staty := stat′y.(y mod 2 = 0 ⇒ stat′y = even
∧ (y mod 2 6= 0 ⇒ stat′y = odd);

mult(out z : integer) : (z := 2 ∗ z);
div : (in x, y : integer out z : integer) : (z := z′.(z′ = x/y));
sub : (in x, y : integer out z : integer) : (z := z′.(z′ = x − y);

action
G1 : enablegcd ∧ u = 0 ∧ v 6= 0 → gcd := v; enablegcd := F ;
G2 : enablegcd ∧ u 6= 0 ∧ v = 0 → gcd := u, enablegcd := F ;
G3 : enablegcd ∧ pcheck ∧ u 6= v →

parity(u, v, statu, statu); pcheck := F ;
G4 : ¬pcheck ∧ statu = even ∧ statv = even →

div(u, 2, u); div(v, 2, v); mult(mcoef); pcheck := T ;
G5 : ¬pcheck ∧ statu = even ∧ statv = odd →

div(u, 2, u); v := v); pcheck := T ;
G6 : ¬pcheck ∧ statu = odd ∧ statv = even →

u := u); div(v, 2, v); pcheck := T ;
G7 : ¬pcheck ∧ statu = odd ∧ statv = odd ∧ u ≥ v →

sub(u, v, u); div(u, 2, u); v := v); pcheck := T ;
G8 : ¬pcheck ∧ statu = odd ∧ statv = odd ∧ u < v →

u := u), sub(v, u, v); div(v, 2, v); pcheck := T ;
G9 : u = v ∧ ¬pcheck → gcd := gcd′.(gcd′ = mcoef ∗ u),

enablegcd, pcheck, mcoef := F, T, 1;
initialisation
enablegcd, pcheck := F, T ;
mcoef := 1;

execution
forever do G1 8 G2 8 G3 8 G4 8 G5 8 G6 8 G7 8 G8 8 G9 od ]|
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Figure 7: Example area complexity illustration for action G1 (enablegcd = e).

4.1.1 Area complexity modeling of theGCD system

In the modeling of the area complexity we assume that the variable widths of
Boolean (Bool) variables is one(1) and the integer variables width is eight (n =
8). The area complexity for the systemGCD is estimated by calculating the area
complexity for each action and procedure separately. As an example, consider the
actionG1. Its write variables is a setwG1 =̂
{gcd(8), enablegcd(1)} and its read variables is a setrG1 =̂ {enablegcd(1), u(8),
v(8)}, where the number inside parenthesis denote the width of theparticular vari-
able. The area complexity estimation of the write set, as defined in 1:C(wG1) =
wgcd + wenablegcd

= 8 + 1 = 9. The area complexity estimation of the read set is

based on (2), and it is defined by:C(rG1) = ⌈C(rG1)
|rG1|

⌉·2|rG1| = ⌈17
3
⌉·23 = 48. The

area complexity of the read set is illustrated using a tree model, shown in Fig. 7,
which describes the structure of the logic needed to implement the guard. The area
complexity of the actionG1 is then calculated by adding the complexities of the
read set and write set together as defined in (4):C(G1) = C(wG1) + C(rG1) =
57.
Let us consider another action, sayG9, whose write variables is a set:wG9 =̂
{gcd(8), enablegcd(1), pcheck(1),mcoef(8)}, and the area complexity for the set
is calculated as presented above:C(wG9) = 18. The set of read variables of
the actionG9 are divided into two sets: the variables that are used in the guard
and the variables that are used in the predicate:rG9 =̂ rg ∪ rQ. The setrg is
rg =̂ {u(8), v(8), pcheck(1)} and the setrQ is rQ =̂ {u(8),mcoef(8)}. The area
complexity for the setrg is C(rg) = ⌈17

3
⌉ · 23 = 48, and its tree model is shown

in Fig. 8. Next, we calculate the area complexity for the setrQ. The predicate
Q performs a multiplication, and therefore, its area complexity is calculated by:
C(rQ) = ⌈C(rQ

|rQ|
⌉ · (2|rQ|)φ =⌈16

2
⌉ · (22)2 = 128, whereφ is the complexity coeffi-

cient defined in Sect. 2.1.1. The tree model is shown in Fig. 9.To summarize, the
area complexity of the actionG9 is C(G9) = C(wG9) + C(rg) + C(rQ) = 194.

The read and write sets and the area complexity calculation for every action
and procedure in the system are summarized in Table 3, where the subtraction and
the division operations are defined using separate procedures. This highlights the
fact that it would be too expensive to implement own divisionand subtraction units
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Figure 8: Example area complexity illustration for action G9 (guard,pcheck = p).
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Figure 9: Example area complexity illustration for action G9 (predicate,mcoef =
m).

for each action. In other words there are only one division unit and one subtraction
unit in the system. Furthermore, none of these actions / procedures do not acquire
the division simultaneously. The multiplication unit is implemented inside the
actionA9 because it is the only action that uses it. The total area complexity of
the systemGCD is: C(GCD) =̂ C(G1)+ · · ·+C(G11)+C(parity)+C(div)+
C(sub)), where theC(G1) . . . C(G11) are the area complexities of the actions
in the system. The area complexity of the systemGCD is: C(GCD) = 967.
Comparing this result with the BDD-result from the VIS tool,we see that our
model gave slightly smaller area complexity estimate. The accuracy of our model
in this case study is79 %.

4.2 Results summary

The area complexity analysis was carried out for several benchmark circuits. The
system descriptions of the functionality and the formal specifications are defined
in Appendix A. The BLIF/BLIF-MV benchmark circuits were analyzed in a sim-
ilar manner as presented in Sect. 3. The formal area complexity analysis is done
as shown in the previous section. The variable widths are assumed to be one (1)
for Boolean variable (Bool) and forintegervariables we use the same width as is
used in the benchmark circuits. Furthermore, generic variable types such asdata
used, for instance, infull-adder on page 33 are turned either into Boolean vari-
ables or some width is assigned to those variables. The results are summarized in
Table 4, where the first column describes the benchmark circuit, the second col-
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Table 3: Results of the area complexity estimation forGCD.
Action Write variables Read variables Area complexity

G1 gcd(8), enablegcd(1) enablegcd, u(8), v(8) 9 +
⌈

17
3

⌉
· 23 = 57

G2 gcd(8), enablegcd(1) enablegcd, u(8), v(8) 9 +
⌈

17
3

⌉
· 23 = 57

G3 pcheck(1) enablegcd(1), u(8),
v(8), pcheck(1)

2 +
⌈

18
4

⌉
· 24 = 42

G4 pcheck(1) statu(1), statv(1),
pcheck(1)

1 +
⌈

3
3

⌉
· 23 = 9

G5 v(8), pcheck(1) statu(1),
statv(1),pcheck(1)

9 +
⌈

3
3

⌉
· 23 = 17

G6 u(8), pcheck(1) statu(1), statv(1),
pcheck(1)

9 +
⌈

3
3

⌉
· 23 = 17

G7 v(8), pcheck(1) statu(1), statv(1),
pcheck(1), u(8), v(8)

9 +
⌈

19
5

⌉
· 25 = 137

G8 u(8), pcheck(1) statu(1), statv(1),
pcheck(1), u(8), v(8)

9 +
⌈

19
5

⌉
· 25 = 137

G9 gcd(8), pcheck(1),
enablegcd(1)
mcoef(8)

u(8), v(8),
pcheck(1),mcoef(8)

18 +
⌈

17
3

⌉
· 23 +

⌈
16
2

⌉

·(22)2 = 194

parity statu(1), statv(1) x(8), y(8) 2+
⌈

16
2

⌉
· (22)2 = 130

div z(8) x(8), y(8) 8+
⌈

16
2

⌉
· (22)2 = 136

sub z(8) x(8), y(8) 8 +
⌈

16
2

⌉
· 22 = 40

umn an area estimate from VIS-tool, the third column the areacomplexity of the
action systems descriptions and the last one the accuracy ofthe presented model
with respect to the VIS results.

The accuracy of the presented formal area complexity model varies from56 %
to 99 % compared to the BDD estimate given by the VIS tool (average72 %).
The 8-bit ALU gave the worst accuracy for our area complexitymodel. However,
this benchmark circuit is also the one with the most open questions. It reserves
some amount of space for the extra control logic and we do not know how well it
is actually described in the original code. Therefore, it isfair to assume that the
definition of the system might differ most between the original benchmark circuit
and the action systemALU8.

The most common level of accuracy was in between60 % to 70 %, which
is acceptable since the formal system definitions are at a higher abstraction level
whereas the Benchmark circuit operates at lower (Boolean) level. Furthermore, it
is expected that accuracy increases as the abstraction level decreases.

In addition to the above presented results, we compared the full-adder struc-
ture using different bit widths. The results are shown in Fig. 10, where the circles
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Table 4: Results.

Design VIS-2.1 Action model %
16-bit multiplier 198 272 72
32-bit multiplier 374 544 69

16-bit adder 48 72 67
32-bit adder 96 160 60

8-bit alu + control 447 250 56
Arbiter with 3 clients 323 327 99

Greatest common divisor 768 967 79

represent the full-adder areas from the VIS tool and the boxes are the areas from
the formal model. The accuracy in the addition operation is60 % for variable
widths 4,8,32,64. For 16-bit adder the accuracy is67 %, and therefore the average
accuracy of the area complexity of the addition operation is61 %.

Considering all of the results presented in this chapter in aformal point of
view, we see that the majority of the area complexity estimates were larger than
the corresponding BBD estimate. This benefits, for instance, the refinement [3]
of systems in terms of area [32]. That is, the result indicates that during system
development the area limit is rarely exceeded.

5 Conclusion

In this paper, we presented and compared formal area complexity model targeted
to abstract system specifications. The model adopts properties which are used on
the size estimation of Boolean functions. The accuracy of the model was analyzed
using various benchmark circuits and a high-level (above RTL) synthesis tool. We
used theV IS tool developed in the Berkeley University for high-level (Boolean)
synthesis and verification. One of the criteria was that there exists freely available
benchmark circuits written the correct input language for the tool. The operation
of the benchmark circuits were then written using Action Systems formalism. The
goal with all benchmark circuits were to increase the level of abstraction while
preserving the similar functionality as the original benchmark circuit.

The size of the benchmark circuits were analyzed using BDDs and then com-
pared with the formal definitions. The accuracy of the model varied most com-
monly between60% and70% from the size of the benchmark circuits. Observe
that in the most cases the formal model gave larger result than the BDD one.
Therefore, it is fair to assume that as the level of abstraction decreases the model
the performance analysis gets more and more accurate because the system de-
scriptions will be closer to Boolean descriptions. At certain phase we might be
able to use the actual BDD instead of the presented area complexity model for the
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Figure 10: Size of full-adder with different bit widths.

estimation. Thus, the benefit of this is that during system development, where the
accuracy of the system descriptions increases, the area complexity limit set for the
system is rarely exceeded.
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A Models for Area Complexity Estimation

This Section describes the models used in this study. First,we give an informal
description of the benchmark systems. Then, we give the formal definitions for
those systems that are not yet defined in this paper. The reference models for the
formal area complexity model are either fromACM/SIGMA[35] benchmark set
or from ISCAS’85[16] benchmark set. There is one exception the adder circuit
is from BuDDY [19] BDD package, which consist on ready made C++ code to
generate n-bit full adder circuit wheren is any positive integer. Observe that in
BDD generation we used same ordering methods between BuDDy and VIS in
order to keep the results consistent. Second, we give the formal definitions for
those systems that are not yet defined in this paper

A.1 Model descriptions

A.1.1 Full-adder and multiplier

To evaluate the accuracy of our area complexity model in arithmetic circuits we
selected a basic full adder circuit and a basic multiplication unit. The adder circuit
was simulated with the following bit widths: 4, 8, 16, 32, 64.The multiplier unit
were analyzed using 16-bit and 32-bit word lengths.

A.1.2 8-bit ALU and control logic

A high level model [16] of the ALU benchmark is shown in Fig. 11. The core
of the circuit is an 8-bit adder, which consist of two 4-bit carry look ahead adders
(modulesM4 andM5) and the CLA generator circuit, which produces generate,
propagate and sum signals (moduleM3). Multiplexers (modulesM1 andM6) se-
lect the incoming and outgoing data buses. The control unit (moduleM2) controls
both multiplexers such that only one function is activated at time. Furthermore,
the control unit contains extra control logic, which can be used to generate addi-
tional control logic, for instance, for devices next to the ALU.

A.1.3 Arbiter

The arbiter is a simple circuit where three modules (clients) are competing to get
a bus access. Each client has a controller attached to it fromwhich the acknowl-
edgement is given. The controllers communicate with the arbiter in a way that at
any time at most one controller gives an acknowledgment. Thearbiter is a simple
three-state machine. It has a single output indicating which controller can be se-
lected among the three. If the ”active” input of the controller is 0, the output is X,
meaning that no one is selected.

The protocol here is that a controller takes a control from the arbiter if it is
selected by the arbiter and it has a request. Otherwise, the control is passed to
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Figure 11: 8-bit ALU with additional control logic.

the next controller. A signalpassctrl is set to one if the controller needs to pass a
control to another controller. There are two cases: 1) when the controller is done
processing a request, 2) when the controller has no request waiting, but is selected.
In both cases, the variable is set to one in the next clock so that another controller
waiting for an access can take a control. The ”active” signalof the arbiter is set to
one if one of thepassctrl is set to one.

A client has to keep a request signal high until an acknowledgment is given.
Even after an acknowledgment is returned from the corresponding controller, req
can be high for a finite amount of time. This means that different requests take
different time to complete. Fairness constraints arise here since we do not want to
keepreq high for infinite time. Simple block diagram of the arbiter isshown in
Fig. 5.

A.1.4 Greatest common divisor

The binary greatest common divisor (GCD) algorithm is an algorithm which com-
putes the greatest common divisor of two non-negative integers. It gains a mea-
sure of efficiency over the ancient Euclidean algorithm by replacing divisions and
multiplications with shifts, which are cheaper when operating on the binary rep-
resentation used by modern computers. The algorithm reduces the problem of
finding GCD by repeatedly applying the identities1 − 5 shown below. Theu and
v are non-negative integers.

1. The greatest common divisor between0 andv is gcd(0, v) = v, because
everything divides zero, andv is the largest number that dividesv. Similarly,
gcd(u, 0) = u andgcd(0, 0) is not defined.

2. If u andv are both even, thengcd(u, v) = 2 · gcd(u/2, v/2), because 2 is a
common divisor.
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3. If u is even andv is odd, thengcd(u, v) = gcd(u/2, v), because 2 is not
a common divisor. Similarly, ifu is odd andv is even, thengcd(u, v) =
gcd(u, v/2).

4. If u andv are both odd, andu ≥ v, thengcd(u, v) = gcd((u − v)/2, v). If
both are odd andu < v, thengcd(u, v) = gcd((v − u)/2, u).

5. Repeat steps 3 and 4 untilu = v, or until u = 0.

A.2 Action System descriptions

The action system description are written using the information given in the sub-
section 2.2.3 as a guideline. The purpose is to keep the functionality of the sys-
tems as similar as possible whereas the syntactical aspectsmay differ. All formal
system descriptions are assumed to work in parallel with itsenvironment system
(Sys ‖ Env). The purpose of the environment system is to provide necessary
stimulus for the actual system but its internal specifications are left intact. Fur-
thermore, it is not part of the area complexity estimation presented in Section 2
and therefore it is not modeled.

A.2.1 Full-adder and multiplier

An addition operation is described by the systemA and it is defined by:
sys A ( opadd; ) ::
|[
variable

d1, d2, r : data;
action

Add : opadd → r := r′.(r′ = d1 + d2);
initialisation
d1, d2, r := d10, d20, r0;

execution
forever do Add od

]|

where the environment sets the variableopadd to true whenever addition is re-
quested. Observe that when the variableopadd is set tofalse the systemA is in
idle state waiting another addition request from its environment. The actionAdd
performs the addition of the two input variablesd1 andd2 and stores the result to
the output variabler. These variables are of typedata and its variable length isn
(n ∈ N

+)
In a similar manner we define the multiplication operationMult, we have:
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Table 5: Results for adder and multiplication.

Action Write variables Read variables Area complexity
Add16 {r(16)} {d1(16), d2(16)} C(Add16) = 16 + ⌈32

2
⌉ ·

(22)1 = 80
Add32 {r(32)} {d1(32), d2(32)} C(Add32) = 32 + ⌈64

2
⌉ ·

(22)1 = 160
Mult16 {r(16)} {d1(16), d2(16)} C(Mult16) = 16 + ⌈32

2
⌉ ·

(22)2 = 272
Mult32 {r(32)} {d1(32), d2(32)} C(Mult32) = 32 + ⌈64

2
⌉ ·

(22)2 = 544

sys Mult ( opmult; ) ::
|[
variable

d1, d2, r : data;
action

Mult : opmult → r := r′.(r′ = d1 ∗ d2);
initialisation
d1, d2, r := d10, d20, r0;

execution
forever do Mult od

]|

where the environment enables the multiplication by setting the variableopmult to
true(when set tofalsethe system is disabled). Once the multiplication is requested
the actionMult is executed and the result of the multiplication is stored tothe
output variabler. The variables are of typedatawhich length isn (n ∈ N

+).

The area complexity calculations for 16-bit and 32-bit adder and 16-bit and
32-bit multiplier are summarized in Table 5.

The first column describes the action under evaluation. The second and third
column describes the set of write variables and the set read variables for each ac-
tion, respectively. Observe that variable widths are denoted inside the parenthesis.
Naturally the widths are similar with the original benchmark circuit. The fourth
column shows the area complexity calculation.

A.2.2 8-bit ALU and control logic

The implementation of the 8-bit ALU and control logic is defined by:
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sys Alu8 ( in a, b : data8; d, g : data4; select : instruction; out f : data8; ) ::
|[

type
instruction : {add8, add4, idle, other};

variable
tmpa, tmpb : data8;
tmpco : bool;
select : instruction;

private procedure
Control(in c : instruction25; out o : instruction17) : control logic;
Add(in x, y : data8; out r : data8) : (r := r′.(r′ = x + y));

action
A1 : select = add8 → (tmpa, tmpb := a, b), enableadd := T ;
A2 : select = add4 → (tmpa, tmpb := d, g), enableadd := T ;
A3 : enableadd → Add(tmpa, tmpb, r);

f, enableadd, select := r, F, idle;
A4 : select = other → Control(c, a, b); select := idle;

initialisation
tmpa, tmpb := tmpa0, tmpb0;
select := idle;

execution
forever do A1 8 A2 8 A3 8 A4 od

]|

where the system consist of two procedures: theaddprocedure performs the 8-bit
addition operation and thecontrol describes the control logic that the benchmark
implements. The operation of thecontrolprocedure is described simply withcon-
trol logic because the type of the control logic is black box in the original circuit
as well. That is, there is reserved space for some amount of extra logic. The
control unit in the original benchmark controls the operation of the ALU. In this
specification the ALU control is implemented outside the control unit. In all cases
the variable widths match with the lengths in the benchmark circuit. Theselect
signal operates as a communication path between the ALU and its environment.
It has four possible states:add8 requests 8-bit addition,add4 requests 4-bit ad-
dition, other chooses to use the external control logic and theidle informs the
environment that the ALU is ready accept new operation requests. The environ-
ment requests all operations from the ALU.

The read and write sets and the area complexities for each actions of the sys-
tem ALU are shown in Table 6. The variable widths are denoted after inside
parenthesis. Observe that even though the system description defines only four
states to theselectvariable, which could be encoded using two-bit numbers, its
width is 8. This follows from the benchmark circuit definitions. most likely there
is left space to include more states in future for instance due to the external control
logic.
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Table 6: Read and Write sets and area complexities for systemALU8.

Action Write variables Read variables Area complexity
A1 {enableadd(1),

tmpa(1), tmpb(1)}
{select(8)} C(A1) = 3 + ⌈8

1⌉ · (2
1) = 19

A2 {enableadd(1),
tmpa(1), tmpb(1)}

{select(8)} C(A2) = 1 + ⌈8
1⌉ · (2

1) = 19

A3 {select(8), f(8),
enableadd(1)}

{enableadd(1)} C(A3) = 17 + ⌈1
1⌉ · (2

1) = 19

A4 {select(8)} {select(8)} C(A4) = 8 + ⌈8
1⌉ · 2

1 = 24

Add {r(8)} {x(8), y(8)} C(Add) = 8 + ⌈16
2 ⌉ · 22 = 40

Control {o(17)} {c(25), a(8), b(8)} C(Control) = 17+⌈41
3 ⌉ ·2

3 = 129
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