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Abstract

Systems of equations of the form ϕj(X1, . . . , Xn) = ψj(X1, . . . , Xn) with
1 6 j 6 m are considered, in which the unknowns Xi are sets of natural
numbers, while the expressions ϕj, ψj may contain singleton constants and
the operations of union (possibly replaced by intersection) and pairwise ad-
dition S + T = {m + n |m ∈ S, n ∈ T}. It is shown that the family of sets
representable by unique (least, greatest) solutions of such systems is exactly
the family of recursive (r.e., co-r.e., respectively) sets of numbers. Basic de-
cision problems for these systems are located in the arithmetical hierarchy.
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1 Introduction

Consider equations, in which the variables assume values of sets of natu-
ral numbers, and the left- and right-hand sides use Boolean operations and
pairwise addition of sets defined as S + T = {m + n | m ∈ S, n ∈ T}.
The simplest example of such an equation is X = (X + X) ∪ {2}, with the
set of all even numbers as the least solution. On one hand, such equations
constitute a basic mathematical object, which is closely related to integer
expressions introduced in the seminal paper by Stockmeyer and Meyer [18]
and later systematically studied by McKenzie and Wagner [11]. On the other
hand, they can be regarded as language equations over a one-letter alphabet,
with the sum of sets representing concatenation of such languages.

Language equations are equations with formal languages as unknowns,
which recently became an active area of research, with unexpected connec-
tions to computability established. Undecidability of the solution existence
problem for language equations with concatenation and Boolean operations
was shown by Charatonik [1]. Later it was determined by Okhotin [13, 15, 16]
that the family of sets representable by unique (least, greatest) solutions of
such equations is exactly the family of recursive languages (recursively enu-
merable, co-recursively enumerable, respectively). Kunc [8] constructed an
equation of the form XL = LX, where L is a finite constant language, with a
computationally universal greatest solution. See Kunc [9] for a recent survey
of the area.

The cited results essentially use languages over alphabets containing at
least two symbols, and, until recently, language equations over a unary al-
phabet received fairly little attention. Systems of the form

Xi = ϕi(X1, . . . , Xn) (1 6 i 6 n) (*)

with union and concatenation represent context-free grammars and their so-
lutions over a unary alphabet* are well-known to be regular. Constructing
any equation with a non-regular unique solution is already not a trivial task;
the first example of such an equation using the operations of concatenation
and complementation was presented by Leiss [10]. Recently Jeż [5] con-
structed a system (*) using concatenation, union and intersection with a
non-regular solution. This result was extended to a large class of unary lan-
guages by Jeż and Okhotin [6, 7], who showed that these equations can sim-
ulate trellis automata [2] (which are the simplest type of cellular automata)
recognizing positional notation of numbers.

These recent advances suggest the question of understanding the exact
limits of the expressive power of equations over sets of numbers. Unex-
pectedly, this paper establishes computational completeness of systems of
equations of the form ϕj(X1, . . . , Xn) = ψj(X1, . . . , Xn), in which Xi are sets
of natural numbers and ϕj, ψj contain sum and either union or intersection.
To be precise, it is proved that a set is representable as a component of a
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unique solution of such a system if and only if this set is recursive. Similar
characterizations are obtained for least and greatest solutions. The results
are established by re-creating the existing computational completeness re-
sults for language equations using a much more restricted object, equations
over sets of numbers. Before proceeding with the arguments, let us review
the key result on language equations.

2 Language equations and their computa-

tional completeness

Let Σ be a finite alphabet and consider systems of equations of the form

ϕj(X1, . . . , Xn) = ψj(X1, . . . , Xn), (**)

where the unknowns Xi are languages over Σ, while ϕj and ψj are expressions
using union, intersection and concatenation, as well as singleton constants.

Theorem 1 (Okhotin [13, 15]). Let (**) be a system that has a unique (least,
greatest) solution (L1, . . . , Ln). Then each component Li is recursive (r.e.,
co-r.e., respectively). Conversely, for every recursive (r.e., co-r.e.) language
L ⊆ Σ∗ (with |Σ| > 2) there exists a system (**) with the unique (least,
greatest, respectively) solution (L, . . .).

As this paper considers a much more restricted family of equations, the
first part of Theorem 1 will apply as it is, while the lower bound proofs will
have to be entirely remade. Let us summarize the proof of the second part
of Theorem 1, which will serve as a model for the arguments presented later.

The main technical device used in the construction of such a system is
the language of computation histories of a Turing machine, defined and used
by Hartmanis [4]. In short, for every TM T over an input alphabet Σ one
can construct an alphabet Γ and an encoding of computations CT : Σ∗ → Γ∗,
so that for every w ∈ L(T ) the string CT (w) lists the configurations of T on
each step of its accepting computation on w, and the language

VALC(T ) = {w\CT (w) | CT (w) is an accepting computation},

where \ /∈ Σ ∪ Γ, is an intersection of two linear context-free languages.
Since equations (**) can directly simulate context-free grammars and are
equipped with intersection, for every Turing machine it is easy to construct
a system in variables (X1, . . . , Xn) with a unique solution (L1, . . . , Ln), so
that L1 = VALC(T ).

It remains to “extract” L(T ) out of VALC(T ) using a language equation.
Let Y be a new variable and consider the inequality

VALC(T ) ⊆ Y \Γ∗,
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which can be formally rewritten as an equation X1 ∪ Y \Γ∗ = Y \Γ∗. This
inequality states that for every w ∈ L(T ), the string w\CT (w) should be in
Y \Γ∗, that is, w should be in Y . This makes L(T ) the least solution of this
inequality and proves the second part of Theorem 1 with respect to r.e. sets
and least solutions. The construction for a co-r.e. set and a greatest solution
is established by a dual argument, and these two constructions can be then
combined to represent every recursive set [15].

At the first glance, the idea that the same result could hold if the al-
phabet consists of a single letter sounds odd. However, this is what will
be proved in this paper, and, moreover, the general plan of the argument
remains essentially the same.

3 Resolved systems with {∪,∩, +}
A formal language L over the alphabet Σ = {a} can be regarded as a set of
numbers { an |n ∈ L}, and so equations over sets of numbers represent a very
special subclass of language equations. Let us first review the recent results
on resolved systems over sets of natural numbers of the form

Xi = ϕ(X1, . . . , Xn) (1 6 i 6 n)

Here the right-hand sides ϕi may contain union, intersection and addition,
as well as singleton constants. To minimize the number of brackets, assume
that the addition has the highest precedence, followed by intersection, while
the precedence of union is the least.

If intersection is disallowed, such systems are basically context-free gram-
mars over a one-letter alphabet, and hence their solutions are ultimately
periodic. Equations with both union and intersection are equivalent to an
extension of context-free grammars, the conjunctive grammars [12], and the
question whether any non-periodic set can be specified by such a system
of equations has been open for some years, until answered by the following
example:

Example 1 (Jeż [5]). The least solution of the system





X1 = (X2+X2 ∩ X1+X3) ∪ {1}
X2 = (X6+X2 ∩ X1+X1) ∪ {2}
X3 = (X6+X6 ∩ X1+X2) ∪ {3}
X6 = X3+X3 ∩ X1+X2

is
({ 4n | n > 0}, { 2 · 4n | n > 0}, { 3 · 4n | n > 0}, { 6 · 4n | n > 0}).
To understand this construction, it is useful to consider positional nota-

tion of numbers. Let Σk = {0, 1, . . . , k− 1} be digits in base-k notation. For
every w ∈ Σ∗

k, let (w)k be the number defined by this string of digits. Define
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(L)k = { (w)k |w ∈ L}. Now the solution of the above system can be conve-
niently represented in base-4 notation as

(
(10∗)4, (20

∗)4, (30
∗)4, (120

∗)4

)
.

The following generalization of this example has been obtained:

Theorem 2 (Jeż [5]). For every k > 2 and for every regular language L ⊆ Σ+
k

there exists a resolved system over sets of natural numbers in variables X,
Y2, . . . , Yn with the least solution X = (L)k and Yi = Ki for some Ki ⊆ N.

A further extension of this result allows one to take a trellis automaton
(one-way real-time cellular automaton) recognizing a positional notation of
a set of numbers, and construct a system of equations representing this set
of numbers.

A trellis automaton [2, 14], defined as a quintuple (Σ, Q, I, δ, F ), processes

an input string of length n > 1 using a uniform array of n(n+1)
2

nodes, as
presented in the figure below. Each node computes a value from a fixed
finite set Q. The nodes in the bottom row obtain their values directly from
the input symbols using a function I : Σ → Q. The rest of the nodes compute
the function δ : Q×Q → Q of the values in their predecessors. The string is
accepted if and only if the value computed by the topmost node belongs to
the set of accepting states F ⊆ Q.

Definition 1. A trellis automaton is a quintuple M = (Σ, Q, I, δ, F ), in
which:

• Σ is the input alphabet,

• Q is a finite non-empty set of states,

• I : Σ → Q is a function that sets the initial states,

• δ : Q×Q → Q is the transition function, and

• F ⊆ Q is the set of final states.

Extend δ to a function δ : Q+ → Q by δ(q) = q and

δ(q1, . . . , qn) = δ(δ(q1, . . . , qn−1), δ(q2, . . . , qn)),

while I is extended to a homomorphism I : Σ∗ → Q∗.

a1 a2 a3 a4

Let LM(q) = {w | δ(I(w)) = q} and define L(M) =
⋃

q∈F LM(q).

Theorem 3 (Jeż, Okhotin [6]). For every k > 2 and for every trellis au-
tomaton M over Σk with L(M) ∩ 0Σ∗

k = ∅ there exists a resolved system
over sets of natural numbers in variables X, Y2, . . . , Yn with the least solu-
tion X = (L(M))k and Yi = Ki for some Ki ⊆ N.

An important example of a set representable according to this theorem
is the numeric version of the set of computational histories of a given Turing
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machine. The symbols needed to represent the standard language of compu-
tations of a Turing machine are interpreted as digits, and then every string
from this language is represented by a number. Since the standard language
of computations can be recognized by a trellis automaton, by Theorem 3
there is a system of equations representing the corresponding set of numbers.
This set can be used quite straightforwardly to infer some undecidability
results on conjunctive grammars [6].

In the next section, such a set of numbers will be used for the same
purpose as the standard language VALC in the computational completeness
proofs for language equations [13, 15, 16].

4 Unresolved systems with {∪,∩, +}
Consider systems of equations of the form

ϕj(X1, . . . , Xn) = ψj(X1, . . . , Xn) (1 6 j 6 m),

where the unknowns Xi are sets of natural numbers and ϕj, ψj may use union,
intersection and addition, as well as singleton constants.

The ultimate result of this paper is the computational completeness of
such systems using either union or intersection. However, let us start with
the case of systems that use both Boolean operations. The case of only one
Boolean operation presents additional challenges, since Theorem 3 as it is
requires both union and intersection; these issues will be discussed later in
Section 5.

Theorem 4. The family of sets of natural numbers representable by
unique (least, greatest) solutions of systems of equations of the form
ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn) with union, intersection and addition, is
exactly the family of recursive (r.e., co-r.e., respectively) sets.

These solutions are recursive (r.e., co-r.e., respectively) because so are the
solutions of language equations with union, intersection and concatenation,
see Theorem 1. So the task is to take any recursive (r.e., co-r.e.) set of
numbers and to construct a system of equations representing this set by a
solution of the corresponding kind. The construction is based upon a rather
complicated arithmetization of Turing machines, which proceeds in several
stages.

First, valid accepting computations of a Turing machine are represented
as numbers, so that these numbers could be recognized by a trellis automa-
ton working on base-6 positional notations of these numbers. While trellis
automata are rather flexible and could accept many different encodings of
such computations, the subsequent constructions require a set of numbers of
a very specific form. This form will now be defined.

First, computations are expressed as strings in the standard way:
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Definition 2. Let T be a Turing machine recognizing numbers given to it in
base-6 notation. Let V ⊃ Σ6 be its tape alphabet, let Q be its set of states,
and define Γ = V ∪Q ∪ {]}.

For every number n ∈ L(T ), denote the instantaneous description of T
after i steps of computation on n as a string IDi = αqaβ ⊆ V ∗QV V ∗, where
T is in state q scanning a ∈ Γ and the tape contains αaβ. Define

C̃T (n) = ID0·]·ID1·]·. . .·]·ID`−1·]]·ID`·]·
(
ID`

)R·]·. . .·]·(ID1

)R·]·(ID0

)R

Next, consider any code h : Γ∗ → Σ∗
6, under which every codeword is in

{30, 300}+. Define CT (n) = h(C̃T (n))300.

The language { C̃T (n) | n ∈ L(T )} ⊆ Γ∗ is an intersection of two linear
context-free languages and hence is recognized by a trellis automaton [2,
14]. By the known closure of trellis automata under codes, the language
{CT (n) | n ∈ L(T )} ⊆ Σ+

6 is recognized by a trellis automaton as well.
Now the set of accepting computations of a Turing machine is represented

as the following six sets of numbers:

Definition 3. Let T be a Turing machine recognizing numbers given in base-
6 notation. For every i ∈ {1, 2, 3, 4, 5}, the valid accepting computations of
T on numbers n > 6 with their base-6 notation beginning with the digit i is

VALCi(T ) = { (CT (n)1w)6 | n = (iw)6, n ∈ L(T )},
The computations of T on numbers n ∈ {0, 1, 2, 3, 4, 5}, provided that they
are accepting, are represented by the following finite set of numbers:

VALC0(T ) = { (CT (n))6 + n | n ∈ {0, 1, 2, 3, 4, 5} and n ∈ L(T )}
For example, under this encoding, the accepting computation

on a number n = (543210)6 will be represented by a number
(30300300 . . . 30300143210)6 ∈ VALC5(T ), where the whole computation
is encoded by blocks of digits 30 and 300, the digit 1 acts as a separator
and the lowest digits 43210 represent n with its leading digit cut. A crucial
property of this encoding is that the digits representing n can be separated
from the digits representing the computation:

Lemma 1. Let L ⊆ (1Σ+
6 )6. Then for every m ∈ ({30, 300}∗3000`)6 and

for every n ∈ (1Σ6`
6 )6, if m + n ∈ ({30, 300}∗3000∗)6 + L, then n ∈ L.

Proof. Let (x1u)6 = (y0`)6 +(1v)6, where y ∈ ({30, 300}∗300)6 and (1v)6 ∈
L. Depending on the number of digits in |1v|, consider the following cases:

1. |1v| < `. Then (y0`)6 + (1v)6 = (y0`−|1v|1v)6, which is a number with
a base-6 notation containing at least three consecutive zeroes to the
left of the leftmost digit 1. Since (x1u)6 does not have this property, it
follows that (y0`)6 + (1v)6 6= (1u)6, which makes this case impossible.
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2. |1v| = `. Then (y0`)6 + (1v)6 = (y1v)6, and thus (y1v)6 = (x1u)6.
The leftmost instance of 1 in (y1v)6 and in (x1u)6 is at the first position
of 1v and 1u, respectively. Therefore, y = x and 1v = 1u.

3. ` < |1v| 6 |y| + `. Let y = y1iy2, where |y2| + ` = |v|. The digit i is
either 0 or 3.

• If i = 0, then y1 ends with 3 or 30. The sum (y1iy20
`)6 + (1v)6

is thus of the form (y1i
′z)6, where i′ ∈ {1, 2}, and the prefix y1i

′

is in {30, 300}∗{31, 32, 301, 302}. On the other hand, in (x1u)6,
the leftmost occurrence of digits outside of {3, 0} must be of the
form 3001.

• If i = 3, then the sum (y1iy20
`)6 + (1v)6 is of the form (y1i

′z)6,
where i′ ∈ {4, 5} and |z| = |v|. Then the leftmost digit of (y1i

′z)6

not in {3, 0} is not 1, while for (x1u)6 it is 1.

In both cases it follows that (y1iy20
`)6 + (1v)6 and (x1u)6 must be

different, and the case is impossible.

4. |1v| > |y|+ `. Then the leading digit of (y0`)6 + (1v)6 is 1 or 2, hence
again (y0`)6 + (1v)6 6= (x1u)6, which rules out this case.

It has thus been established that y = x and 1v = 1u in the only possible
case, which yields the claim.

Trellis automata recognizing the base-6 notation of numbers in VALCi(T ),
by Theorem 3, give the following system of equations:

Lemma 2. For every Turing machine T recognizing numbers there ex-
ists a system of equations Xi = ϕi(X1, . . . , Xn) over sets of natural num-
bers using union, intersection and addition, such that its least solution is
(L0, L1, . . . , L5, L6, . . . , Ln) with Li = VALCi(T ) for 0 6 i 6 5.

Using these sets as constants, the required equations can be constructed.
The first case to be established is the case of least solutions and r.e. sets.

Lemma 3. For every recursively enumerable set of numbers L0 ⊆ N there
exists a system of equations of the form

ϕj(Y,X1, . . . , Xm) = ψj(Y, X1, . . . , Xm)

with union, intersection and addition, which has the set of solutions

{
(L, f1(L), . . . , fm(L))

∣∣ L0 ⊆ L
}

where f1, . . . , fm : 2N → 2N are some monotone functions on sets of numbers
defined with respect to L0. In particular, there is a least solution with Y = L0.
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Proof. Consider any Turing machine T recognizing L0. A system in variables
(Y, Y1, . . . , Y5, Y0, X7, . . . , Xm) will be constructed, where the number m will
be determined below, and the set of solutions of this system will be defined
by the following conditions, which ensure that the statement of the lemma
is fulfilled:

L(T ) ∩ {0, 1, 2, 3, 4, 5} ⊆ Y0 ⊆ {0, 1, 2, 3, 4, 5}, (1a)

{ (1w)6 | w ∈ Σ+
6 , (iw)6 ∈ L(T )} ⊆ Yi ⊆ (1Σ+

6 )6 (1 6 i 6 5), (1b)

Y = Y0 ∪
5⋃

i=1

{ (iw)6 | (1w)6 ∈ Yi}, (1c)

Xj = Kj (7 6 j 6 m). (1d)

The sets K7, . . . , Km are some constants needed for the construction to work.
These constants and the equations needed to specify them will be implicitly
obtained the proof. The constructed system will use inequalities of the form
ϕ ⊆ ψ, which can be equivalently rewritten as equations ϕ ∪ ψ = ψ or
ϕ ∩ ψ = ϕ.

For each i ∈ {1, 2, 3, 4, 5}, consider the above definition of VALCi(T ) and
define a variable Yi with the equations

Yi ⊆ (1Σ+
6 )6, (2a)

VALCi(T ) ⊆ ({30, 300}∗3000∗)6 + Yi. (2b)

Both constants are given by regular languages of base-6 representations, and
therefore can be specified by equations according to Theorem 2. It is claimed
that this system is equivalent to (1b).

Suppose (1b) holds for Yi. Then (2a) immediately follows. To check
(2b), consider any (Ci

T (iw)1w)6 ∈ VALCi(T ). Since this number repre-
sents the computation of T on (iw)6, this implies (iw)6 ∈ L(T ), and hence
(1w)6 ∈ Yi by (1b). Then (Ci

T (iw)1w)6 ∈ ({30, 300}∗3000|1w|)6 + (1w)6 ⊆
({30, 300}∗3000)6 + Yi, which proves the inclusion (2b).

Conversely, assuming (2), it has to be proved that for every (iw)6 ∈ L(T ),
where w ∈ Σ+

6 , the number (1w)6 must be in Yi. Since (iw)6 ∈ L(T ),
there exists an accepting computation of T : (Ci

T (iw)1w)6 ∈ VALCi(T ).
Hence, (Ci

T (iw)1w)6 ∈ ({30, 300}∗3000∗)6 + Yi due to the inclusion (2b),
and therefore (1w)6 ∈ Yi by Lemma 1.

Define one more variable Y0 with the equations

Y0 ⊆ {0, 1, 2, 3, 4, 5}, (3a)

VALC0(T ) ⊆ ({30, 300}∗300)6 + Y0. (3b)

The claim is that (3) holds if and only if (1a).
Assume (1a) and consider any number (CT (n))6 +n ∈ VALC0(T ), where

n ∈ {0, 1, 2, 3, 4, 5} by definition. Then n is accepted by T , and, by (1a),
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n ∈ Y0. Since (CT (n))6 ∈ ({30, 300}∗300)6, the addition of n affects only the
last digit, and (CT (w))6 +n ∈ ({30, 300}∗300)6 +n ⊆ ({30, 300}∗300)6 +Y0,
which proves (3b).

The converse claim is that (3) implies that every n ∈ L(T )∩{0, 1, 2, 3, 4, 5}
must be in Y0, The corresponding (CT (n))6 + n ∈ VALC0(T ) is in
({30, 300}∗300)6 + n by (3b). Since n is represented by a single digit, the
number (CT (n))6 + n ends with this digit. The set ({30, 300}∗300)6 + Y0

contains a number of such a form only if n ∈ Y0.
Next, combine the above six systems together and add a new variable Y

with the following equation:

Y = Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
i′∈Σk

(
(Yi ∩ (1i′Σ∗

k)6) + ((i− 1)0∗)6 ∩ (ii′Σ∗
k)6

)
. (4)

This equation has been borrowed from the authors’ previous paper [6, Lem.7],
where it was proved equivalent to Y = Y0 ∪ { (iw)6 | (1w)6 ∈ Yi}, that is, to
(1c).

The final step of the construction is to express constants used in the
above systems through singleton constants, which can be done by Theorem 2
and Lemma 2. The variables needed to specify these languages are denoted
(X7, . . . , Xn), and the equations for these variables have a unique solution
Xj = Kj for all j.

This completes the description of the set of solutions of the system. It
is easy to see that there is a least solution in this set, with Y = L(T ),
Y0 = L(T ) ∩ {0, 1, 2, 3, 4, 5}, Yi = { (1w)6 | w ∈ Σ+

6 , (iw)6 ∈ L(T )} and
Xj = Kj.

The representation of co-recursively enumerable sets by greatest solutions
is dual to the case of least solutions and is established by an analogous
argument.

Denote the complements of the languages VALCi(T ) (0 6 i 6 5) by
INVALCi(T ). Base-6 notations of numbers in these sets are recognized by
trellis automata due to the closure of trellis automata under complementa-
tion. Therefore, analogously to Lemma 2, the sets INVALCi(T ) are repre-
sentable by equations.

Lemma 4. For every co-recursively enumerable set of numbers L0 ⊆ N there
exists a system of equations of the form

ϕj(Z, X1, . . . , Xm) = ψj(Z, X1, . . . , Xm)

with union, intersection and addition, which has the set of solutions
{

(L, f1(L), . . . , fm(L))
∣∣ L ⊆ L0

}
,

where f1, . . . , fm : 2N → 2N are some monotone functions on sets of numbers
defined with respect to L0. In particular, there is a greatest solution with
Z = L0.
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Proof. Let the complement of L0 be recognized by a Turing ma-
chine T . The system to be constructed will have a set of variables
(Z, Z1, . . . , Z5, X0, X7, . . . , Xm), and its set of solutions will be characterized
by the following conditions:

Z0 ⊆ L(T ) ∩ {0, 1, 2, 3, 4, 5} (5a)

Zi ⊆ { (1w)6 | w ∈ Σ+
6 , (iw)6 /∈ L(T )} (1 6 i 6 5), (5b)

Z = Z0 ∪
5⋃

i=1

{ (iw)6 | (1w)6 ∈ Zi} (5c)

Xj = Kj (7 6 j 6 n) (5d)

The number m and the vector of languages (K7, . . . , Km) will be determined
below. This set of solutions will satisfy the statement of the lemma.

The equations defining the value of each Zi (1 6 i 6 5) are as follows:

Zi ⊆ (1Σ+
6 )6 (6a)

({30, 300}∗3000∗)6 + Zi ⊆ INVALCi(T ), (6b)

It is claimed that (6) holds if and only if (5b).
If Zi satisfies (5b), then (6a) follows immediately, and in order to prove

(6b), one has to consider any number not in INVALCi(T ) and show that
it is not in ({30, 300}∗3000∗)6 + Zi. By definition, a number is not in
INVALCi(T ) if it is in VALCi(T ), so take any number n = (iw)6 ∈ L(T ),
for which (CT (n)1w)6 ∈ VALCi(T ) with CT (iw) ∈ {30, 300}∗300. Suppose
(CT (iw)1w)6 ∈ ({30, 300}∗3000∗)6 + Zi. Then, by Lemma 1, (1w)6 ∈ Zi,
hence (iw)6 /∈ L(T ) by (5b), which yields a contradiction.

The converse is established as follows. Assuming (6), consider any number
n ∈ L(T ) and let n = (iw)6 for some i ∈ {1, 2, 3, 4, 5} and w ∈ Σ+

6 . It is
sufficient to prove that (1w)6 /∈ Zi. Suppose (1w)6 ∈ Zi, then (CT (n)w)6 ∈
({30, 300}∗3000∗)6 + Zi ⊆ INVALCi(T ) by (6b). However, (CT (n)w)6 is in
VALCi(T ) and thus cannot be in INVALCi(T ). The contradiction obtained
proves this case.

Define the following equations for the variable Z0:

Z0 ⊆ {0, 1, 2, 3, 4, 5} (7a)

({30, 300}∗300)6 + Z0 ⊆ INVALC0(T ) (7b)

Again, the claim is that these equations are equivalent to (5a).
Let Z0 be a subset of {0, 1, 2, 3, 4, 5} \ L(T ), as stated in (5a). This

immediately implies (7a). Consider any number not in INVALC0(T ); proving
that it is not in ({30, 300}∗300)6 + Z0 will establish (7b). A number not in
INVALC0(T ) must be in VALC0(T ), so let CT (n) + n ∈ VALC0(T ) for any
n ∈ {0, 1, 2, 3, 4, 5}, and suppose CT (n) + n ∈ ({30, 300}∗300)6 + Z0. The
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last digit of CT (n)+n is n, and hence n ∈ Z0. Therefore, by (5a), n /∈ L(T ),
which contradicts the accepting computation CT (n).

Conversely, assume (7) and suppose there exists n ∈ {0, 1, 2, 3, 4, 5},
which is at the same time in L(T ) and in Z0. Then there exists an
accepting computation CT (n) + n ∈ VALC0(T ), that is, CT (n) + n /∈
INVALC0(T ). However, CT (n) + n ∈ ({30, 300}∗300)6 + Z0, because
CT (n) ∈ ({30, 300}∗300)6 and w ∈ Z0 by assumption, which contradicts
(7b). The contradiction obtained proves that no such w exists, which estab-
lishes (5a).

The equation for Z is the same as in Lemma 3:

Z = Z0 ∪ Z1 ∪
⋃

i∈{2,3,4,5}
i′∈Σk

(
(Zi ∩ (1i′Σ∗

k)6) + ((i− 1)0∗)6 ∩ (ii′Σ∗
k)6

)
. (8)

As in the previous case, it is equivalent to (5c).
Linear conjunctive constants are expressed as in Theorem 3, using extra

variables (X7, . . . , Xn).
The set of solutions has been described, and, clearly, the greatest of them

is Z0 = L(T ) ∩ {0, 1, 2, 3, 4, 5}, Zi = { (1w)6 | w ∈ Σ+
6 , (iw)6 /∈ L(T )},

Z = L(T ), where the latter equals L0.

Finally, the case of recursive languages and unique solutions can be es-
tablished by combining the constructions of Lemmata 3 and 4 as follows:

Lemma 5. For every recursive set of numbers L ⊆ N there exists a system
of equations of the form ϕi(Y, Z, X1, . . . , Xn) = ψi(Y, Z, X1, . . . , Xn) with
union, intersection and addition, such that its unique solution is Y = Z = L,
Xi = Ki, where (K1, . . . , Kn) is some vector of sets.

Proof. As a recursive language, L is both recursively enumerable and co-
recursively enumerable, hence both Lemmata 3 and 4 apply. Consider both
systems of language equations given by these lemmata, let Y be the variable
from Lemma 3, let Z be the variable from Lemma 4, and let X1, . . . , Xn be
the rest of the variables in these systems combined. The set of solutions of
the systems obtained is

{
(Y, Z, f1(Y, Z), . . . , fn(Y, Z))

∣∣ Z ⊆ L ⊆ Y
}
.

Add one more equation to the system:

Y = Z.

This condition collapses the bounds Z ⊆ L ⊆ Y to Z = L = Y , and the
resulting system has the unique solution

{
(L,L, f1(L,L), . . . , fn(L,L))

}
,

which completes the proof.
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5 Unresolved systems with {∪, +} and {∩, +}
All results so far have been established for equations with addition, union and
intersection. In fact, the same results hold for equations using addition and
either union or intersection. Establishing all results in this stronger form,
in particular, requires rewriting the basic constructions of Theorems 2 and 3
[5, 6]. The proof of the new Theorem 4 also has to undergo some changes.

5.1 Two general translation lemmata

The first basic result is a simulation of a resolved system of a specific form
using union, intersection and addition by an unresolved system that does not
use intersection.

Consider resolved systems of equations over sets of numbers, as in Sec-
tion 3. They are of the form

Xi = ϕi(X1, . . . , Xn) (1 6 i 6 n),

where ϕi may contain union, intersection and addition, as well as singleton
constants.

This subsection defines a syntactical transformation of resolved equations
of a particular kind into unresolved equations using only one Boolean oper-
ation (that is, either union or intersection).

A resolved system of equations is said to have a chain dependency of X
from Y if the equation defining X is of the form X = Y ∩ ϕ or X = Y ∪ ϕ,
where ϕ is an arbitrary expression.

The following fact about solutions of systems of resolved equations with-
out 0 in the constants can be easily proved using standard methods:

Proposition 1. If 0 is an element of some component of the least solution of
a resolved system of equations with only monotone and continuous operations,
then at least one constant used in this system contains 0.

Indeed, since the least solution of such a system is given by fixpoint
iteration, the number 0 may only appear in this process if it is contained in
one of the constants.

Lemma 6. Let Xi = ϕi(X1, . . . , Xn) be a resolved system of equations with
union, intersection and addition and with constants from a set C, where every
constant contains only positive integers. Let (L1, . . . , Ln) be its least solution.
Assume that for every variable Xi0 there exists a subset of variables {Xi}i∈I

containing Xi0, such that

• the sets {Li}i∈I are pairwise disjoint and their union is in C, and
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• the equations for all {Xi}i∈I are either all of the form Xi =
⋃

j αij,
or all of the form Xi =

⋂
j αij ∪ C, where C is a constant and αij =

A1 + . . . + Ak, with k > 1 and with each At being a constant or a
variable.

In addition, assume that there are no cyclic chain dependencies in the sys-
tem. Then there exists an unresolved system with union and addition, with
constants from C, which has the unique solution (L1, . . . , Ln).

Proof. Such a system is given directly by replacing each equation X =⋂
i αi ∪ C, where each αi is a sum of constants and variables, by the fol-

lowing collection of inequalities:

X ⊆ αi ∪ C (9)

In addition, for each group of variables {Xi}i∈I , whose union of the group is
a constant CI , the following equation is added:

⋃
i∈I

Xi = CI . (10)

The rest of the equations, which are of the form Xi =
⋃

j αij, with αij being
a sum of variables and constants, are left as they are. Clearly, the least
solution (L1, . . . , Ln) of the former system is a solution of the new system.
It remains to prove that no other solutions exist.

Assume for the sake of contradiction, that there is another solution
(L′1, . . . , L

′
n). So there is a number n ∈ Li ∆ L′i for some i. Such a num-

ber is called wrong or wrong for Xi. In particular, if n ∈ L′i \ Li, then n is
said to be an extra number for Xi, and if w ∈ Li \ L′i, then n is a missing
number for Xi.

Note that the supposed solution must have 0 /∈ L′i for all i. Indeed, every
i belongs to some group of variables I, and then, by (10), L′i ⊆ CI . Since
0 /∈ CI , zero may not be in L′i. This, in particular, means that 0 cannot be
a wrong number (as 0 /∈ Li by Proposition 1).

Fix n > 0 as the smallest wrong number. Then it can be proved that if
this number is obtained as a nontrivial sum of variables and constants, it is
equally obtained under the substitution of both solutions:

Claim 1. If n is the smallest wrong number and α = A1 + . . . + Ak, where
k > 2 and all Aj are variables and constants, then n ∈ α(. . . , Li, . . .) if and
only if n ∈ α(. . . , L′i, . . .).

Proof. If n ∈ α(. . . , Li, . . .), then n = n1 + . . .+nk, with nj ∈ Aj(. . . , Li, . . .).
As all sets Aj(. . . , Li, . . .) are 0-free, each number nj must be positive. Fur-
thermore, each of them must be less than n because k > 2. Since n is the
smallest wrong number, none of n1, . . . , nk is wrong for its respective vari-
able, and hence nj ∈ Aj(. . . , L

′
i, . . .). The same argument applies for the

converse implication.
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Among all pairs (n, Xi), where n is the smallest wrong number and it is
wrong for Xi, choose a pair such that n is an extra number for Xi, and if it
is not possible, then a pair such that n is a missing number for Xi is chosen.
Let us show that n must be wrong for another variable Xi′ , with a chain
dependency of Xi′ on Xi.

Suppose that Xi has an equation Xi =
⋃

j αij in the original system,
which is preserved in the new system. So Li =

⋃
j αj(. . . , Lt, . . .). Hence

there exists αj, such that n ∈ αj(. . . , Lt, . . .) ∆ αj(. . . , L
′
t, . . .). Clearly this

αj cannot be a constant. If it is a variable Xi′ then we replace Li by Li′ .
Note, that there is a chain dependency of Li from Li′ and n is wrong for L′i′
and if n is an extra number, we can choose Li′ so that n is still an extra
number for Li′ . By Claim 1 αj cannot be a non-trivial sum of variables and
constants.

Suppose now that the equation for Xi in the original system is of the
form Xi =

⋂
j αij ∪C, and n is a missing number. We use (10) in this case—

let i ∈ I and
⋃

j∈I Xj = CI . Then by substituting Li into those equations
we obtain that n ∈ CI . On the other hand by substituting L′i into those
equations we obtain that n ∈ L′i′ for some i′ ∈ I and t 6= i. As n ∈ Li then
n /∈ Li′ , as i, i′ ∈ I and by assumption sets in the same group are pairwise
disjoint. Hence we obtain a contradiction, as n is an extra number for Xi′

and we are supposed to choose an extra number if there is any.
Let the equation for Xi in the original system be Xi =

⋂
j αij ∪ C and

suppose that n is an extra number. So in the new system there are equations
Xi ⊆ αj ∪Ci for j ∈ I, hence n ∈ αj(. . . , L

′
t, . . .)∪Ci for j ∈ I. On the other

hand n /∈ Li =
⋂

j∈I αj(. . . , Li, . . .) ∪ Ci. And so there is j′ ∈ I such that
n /∈ αj′(. . . , Lt, . . .)∪Ci. Hence n ∈ αj′(. . . , L

′
t, . . .)\αj′(. . . , Lt, . . .). Clearly

α′j cannot be a constant, assuming that it is a non-trivial sum would again
derive a contradiction by Claim 1. And so αj′ is a variable Xi′ . We replace
Xi by Xi′ and continue the process. Note, that there is a chain dependency
of Xi from Xi′ and n is an extra number for Xi′ .

Now the same argument applies to the pair (n,Xi′), and in this way an
infinite sequence of variables with a chain dependency to their successors is
obtained. This is a contradiction, as there are no cyclic chain dependencies
in the system.

A similar construction produces equations with intersection instead of
union. The next lemma is very similar in spirit and proof technique to
Lemma 6, but some technical details are different, therefore it has to be
proved separately.

Lemma 7. Under the assumptions of Lemma 6, there exists an unresolved
system with intersection and addition and with constants from C, which has
a unique solution that coincides with the least solution of the given system.

Proof. Here the new system is obtained by the following transformation. For
every equation X =

⋃
i αi in the original system, where each αi is a sum of

14



constants and variables, the new system contains inequalities

αi ⊆ X for each i. (11)

For every subset of variables {Xi}i∈I , with union CI , the following equations
are added:

Xi ∩Xj = ∅ for each i, j ∈ I with i 6= j, (12)

Xi ⊆ CI for each i ∈ I. (13)

The rest of the equations are of the form Xi =
⋂

j αij ∪ C, where C is a
constant and αij = A1 + . . . + Ak, with k > 1 and with each At being a
constant or a variable, are left intact. Clearly, the least solution (. . . , Li, . . .)
of the former system is still a solution. It should be proved that no other
solution exists.

As in Lemma 6, Proposition 1 is used to show that the least solution
(. . . , Li, . . .) of the resolved system is ε-free. Also, since the assumptions of
the lemma are the same as those of Lemma 6, then Claim 1 holds.

Suppose that there is another solution (. . . , L′i, . . .). Note that 0 may not
be in any L′i by the equation (13).

Define wrong numbers, missing numbers and extra numbers as in the
proof of Lemma 6. Let n be the smallest wrong number with n ∈ Li ∆ L′i
for some i. By the above arguments, n must be positive. Among all pairs
(n,Xi), such that n is the smallest wrong number and it is wrong for Xi,
choose the one in which n is a missing number, if there is any such pair. If
there is none, then choose a pair (n,Xi), where n is an extra number for Xi.
As in the proof of the previous lemma, the idea is to show that there must
be another variable Xi′ which has a chain dependence on Xi, so that n is a
wrong number of Xi′ .

Suppose that in the original system the equation for Xi is of the form
Xi =

⋂
j αj ∪ C, where C is a constant and αj = A1 + . . . + Ak for k > 1

and all Ai are constants or variables. So Li =
⋂

j αj(. . . , Li, . . .) ∪ C. Hence
there is αj with n ∈ αj(. . . , Lt, . . .) ∆ αj(. . . , L

′
t, . . .). Clearly αj cannot be a

constant. By Claim 1 it cannot be a non-trivial sum of variables or constants.
Hence it is a variable Xi′ and there is a chain dependency of Xi from Xi′ .
Now n ∈ Li′∆L′i′ and so we replace Li by Li′ . If n is a missing number for
Xi then we can choose Li′ such that n is a missing number for Li′ as well.

Suppose now that in the original resolved system the equation defining
Li is of the from Xi =

⋃
j αj and n is an extra number. We use the (12)

and (13) in this case: substituting (. . . , Lt, . . .) into (13) we obtain that
n ∈ CI , where i ∈ I. On the other hand by the assumption of the Lemma⋃

j∈I Lj = CI , hence there exists i′ 6= i such that n ∈ Li′ . But by (12):
n /∈ L′i′ , as L′i ∩L′i′ = ∅. Hence n is a missing number for i′, a contradiction,
as we were supposed to choose a missing number if there was any.

Assume now that n is a missing number and in the original resolved sys-
tem the equation defining Li is of the from Xi =

⋃
j αj. By the construction
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there are equations αj ⊆ Xi for j ∈ I, hence n /∈ αj(. . . , L
′
t, . . .) for j ∈ I.

On the other hand n ∈ Li =
⋃

j∈I αj(. . . , Li, . . .). Hence there is i′ ∈ I such
that n ∈ αi′(. . . , Lt, . . .) and therefore n ∈ αi′(. . . , Lt, . . .) \ αi′(. . . , L

′
t, . . .).

By Claim 1 αi′ cannot be a non-trivial sum. Clearly it cannot be a constant,
hence it is a variable. And so αi′ = Xi′ We swap Li for Li′ . Note that there
is a chain dependency of Xi from Xi′ and n is a missing number for L′i′ .

And so for every n and Li for which it is wrong we are able of finding
another Li′ such that n is wrong for it as well and Li points at Li′ . As there
are no cyclic chain dependencies in the system we obtain a contradiction.

The next task is to apply Lemmata 6 and 7 to resolved systems con-
structed in the proofs of Theorems 2 and 3. For the lemmata to be applica-
ble, the existing equations (see Jeż [5] and Jeż and Okhotin [6]) need to be
decomposed into smaller parts and slightly changed. Then the variables can
be grouped into subsets, as required by the lemmata.

5.2 Sets with a regular positional notation

Using the lemmata from the previous section, the resolved equations from
Jeż [5] and Jeż and Okhotin [6] will now be converted to unresolved equations
with sum and either union or intersection. The first task is to reformulate
them so that Lemmata 6 and 7 are applicable.

The following known properties of equations over sets of numbers will be
used in the constructions:

Lemma 8 ([6, Lem.3]). Let S ⊆ N be a set of numbers, let k and km (with
k > 2, m > 2) be two bases of positional notation. Then the language L ⊆
Σ∗

k \ 0Σ∗
k of base-k notations of numbers in S is regular (linear conjunctive)

if and only if the language L′ ⊆ Σ∗
km \ 0Σ∗

km of their base-km notations is
regular (linear conjunctive, respectively).

Lemma 9 ([6, Lem.4]). Let ϕ(X) be an expression defined as a composition
of the following operations: (i) the variable X; (ii) constant sets; (iii) union;
(iv) intersection with a constant set; (v) addition of a constant set. Then ϕ
is distributive over infinite union, that is, ϕ(X) =

⋃
n∈X ϕ({n}).

In addition, two transformations of systems of equations, which are intu-
itively obvious meta-theorems, will be used to convert equations over sets of
numbers to the form required by Lemmata 6 and 7.

Proposition 2. Let a system

ϕi(X1, . . . , Xm, Y1, . . . , Yn) = ψi(X1, . . . , Xm, Y1, . . . , Yn)

have a least solution Xi = Ki, Yj = Lj. Then the system

ϕi(K1, . . . , Km, Y1, . . . , Yn) = ψi(K1, . . . , Km, Y1, . . . , Yn)

in variables {Y1, . . . , Yn} has the least solution Yj = Lj.
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Proposition 3. Let (. . . , L, . . .) be the least solution of resolved system of
equations in variables (. . . , X, . . .) using union, intersection and addition,
and let X = ϕ(. . . , X, . . .) be the equation for X with ϕ(. . . , X, . . .) =
ϕ1(. . . , X, . . .)+ϕ2(. . . , X, . . .) (respectively ϕ(. . . , X, . . .) = ϕ1(. . . , X, . . .)∩
ϕ2(. . . , X, . . .) or ϕ(. . . , X, . . .) = ϕ1(. . . , X, . . .) ∪ ϕ2(. . . , X, . . .)). Then
a system with new variables X1, X2 added and with equations Xi =
ϕi(. . . , X, . . .) (for i = 1, 2) and equation for X replaced by X = X1 + X2

(respectively X = X1 ∩ X2 or X = X1 ∪ X2) has the least solution
(. . . , L, . . . , ϕ1(. . . , L, . . .), ϕ2(. . . , L, . . .)).

Now the first result on the expressive power of equations with one Boolean
operations asserts representability of finite and co-finite sets of numbers.

Lemma 10. Every finite or co-finite subset of N is representable by a unique
solution of a resolved system with union and addition, as well as by a unique
solution of an unresolved system with intersection and addition.

Proof. The case of union follows from the fact that every ultimately periodic
unary language can be specified by a resolved system of language equations
with union, one-sided concatenation and constants {a} and {ε}.

Let us prove the lemma in the case of intersection, where the use of
unresolved equations becomes essential. Let K = {n1, n2, . . . , nm}, with
0 6 n1 < . . . < nm, be any finite set of numbers. First define the following
equations for a variable X:

nm + 1 ⊆ X (14a)

X + 1 ⊆ X (14b)

nm ∩X = ∅ (14c)

Here (14b) ensures that the solution is of the form {n | n > k} for some k
(or empty), (14b) states that nm + 1 is in X, while (14a) ensures that n is
not in X. Thus the unique solution of these equations is X = {n | n > nm}.
Using this variable, define three more equations for a new variable Y :

X ∩ Y = ∅ (14d)

ni ⊆ Y for i ∈ {1, 2, . . . , m} (14e)

n ∩ Y = ∅ for each n < nm with n /∈ K (14f)

By (14d), Y must be a subset of {0, . . . , nm}. The next two equations state
the membership of every number between 0 and nm in Y : it should be in Y
if and only if it is in K. Hence, the unique solution is Y = K. Finally, define
one more variable Z, with the following equations:

X ⊆ Z (14g)

ni ∩ Z = ∅ for i = 1, 2, . . . , m (14h)

ni ⊆ Z for ni < nm, ni /∈ {n1, . . . , nm} (14i)
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The equation (14g) states that every number greater than ni must be in Z.
The next two equations define, similarly to the equations for Y , for each
number not exceeding ni, that it should be in Z if and only if it is not in K.
Altogether these equations specify Z = N\K, which completes the proof.

Consider a set of natural numbers with base-k notation ij0∗ for i 6= 0.
It is known that such sets are representable by resolved systems with union,
intersection and sum [5]. This result will now be reconstructed to use only
one Boolean operation, at the expense of turning the resolved equations into
unresolved ones. The new construction is based upon a slightly modified
version of equations from the original paper [5]. The proof that they have a
stated solution is omitted, as it is exactly the same as the original one.

Theorem 5. For every k > 9, there exists an unresolved system with union
(intersection), sum and singleton constants, which has a unique solution with
some of its components being

(ij0∗)k (for all i, j ∈ Σk with i > 0).

Proof. It is known that there exists a resolved system of equations with
union, intersection and addition representing the sets Sij = (ij0∗)k through
each other [5, Thm.14]. However, this system would not be sufficient for the
present paper, since these sets cannot be grouped to match the conditions
of Lemmata 6 and 7. The proposed construction relies on representing both
these sets and the complementary sets S̃ij = (ij(Σ∗

k \ 0∗))k. Then all sets Sij

and S̃ij will be pairwise disjoint and their union will be co-finite, making the
lemmata applicable.

In order to represent the second collection of sets, the more general con-
struction of Theorem 2 has to be applied. Consider that Σ∗

k \ 0∗ is a regular
language recognized by a finite automaton reading the string of digits from
the right to the left. The automaton has two states, q0 and q1; it is in state q0

while all digits encountered so far are zeroes, and once any non-zero digit is
read, it enters state q1 and remains there. According to the construction [5,
Lem.17], define the set of all variables Xi,j,q and Xi,j,`,q, with i, j, ` ∈ Σk, i 6= 0
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and q ∈ {q0, q1}, and consider the following resolved system of equations.

X1,j,q0 =
2⋂

n=1

Xk−n,0,q0 +Xj+n,0,q0 ∪ (1j)k for j = 0, 1, 2

Xi,j,q0 =
2⋂

n=1

Xi−1,k−n,q0 +Xj+n,0,q0 ∪ (ij)k for j = 0, 1, 2, i > 2

Xi,j,q0 =
( 2⋂

n=1

Xi,j−n,q0 +Xn,0,q0

)

∩ Xi,0,q0 +Xj,0,q0 ∪ (ij)k for j > 3

Xi,j,q1 =
⋃

(`,q):δ(q,`,q1)

Xi,j,`,q for j > 4, i 6= 0,

Xi,j,`,q =
3⋂

n=0

Xi,n,q0 + Xj−n,`,q for j > 4, i 6= 0, ` ∈ Σk, q ∈ Q,

Xi,j,q1 =
⋃

(`,q):δ(q,`,q1)

Xi,j,`,q for j 6 3, i 6= 0, 1,

Xi,j,`,q =
4⋂

n=1

Xi−1,j+n,q0 +Xk−n,`,q for j 6 3, i 6= 0, 1, ` ∈ Σk, q ∈ Q,

Xi,j,q1 =
⋃

(`,q):δ(q,`,q1)

Xi,j,`,q for j 6 3

X1,j,`,q =
4⋂

n=1

Xk−n,0,q0 +Xj+n,`,q for j 6 3, ` ∈ Σk, q ∈ Q.

It is known [5, Thm.14, Lem.17] that the least solution of those equations is:

Xi,j,q0 = (ij0∗)k,

Xi,j,q1 = (ij(Σ∗
k \ 0∗))k,

Xi,j,`,q0 = (ij`0∗)k,

Xi,j,`,q1 = (ij`(Σ∗
k \ 0∗))k.

It will now be shown that these equations satisfy the assumptions of
Lemmata 6 and 7, with the variables separated into the following two groups:

{Xi,j,q | i, j ∈ Σk, i 6= 0, q ∈ {q0, q1}}, {Xi,j,`,q | i, j, ` ∈ Σk, i 6= 0, q ∈ {q0, q1}}.

The unions of the corresponding sets in the least solution for the former
group is {n | n > k}, and for the latter group it is {n | n > k2}; both
are co-finite sets. Clearly, in either group all the components are pairwise
disjoint. There may be chain dependencies of variables Xi,j,q from (some)
variables Xi,j,`,q′ and hence there are no cyclic chain dependencies. And
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so by Lemma 6 and Lemma 7 there exist unresolved systems with union
(intersection), sum and finite and co-finite constants, whose least solution
has the requested components. Co-finite and finite constants are eliminated
by expressing them according to Lemma 10.

Now the construction of Theorem 2 can be remade using unresolved equa-
tions using only one Boolean operation.

Lemma 11. For every deterministic finite automaton M = (Σ, Q, q0, δ, F )
there exists an unresolved system of equations using union (intersection),
sum and singleton constants, in which some of the components of the unique
solution are

Li,j,q := { (ijw)k | δ(q0, w
R) = q} for i, j ∈ Σk, i 6= 0, q ∈ Q.

Proof. Consider the following resolved language equations [5, Lem. 17] with
constants of the form (ij0∗)k:

Xi,j,q =
⋃

(x,q′):δ(q′,`,q)

Xi,j,`,q′ ∪ { (ij)k | if q = q0} for j > 4, i > 1,

Xi,j,`,q =
3⋂

n=0

(in0∗)k + Xj−n,`,q for j > 4, i > 1,

Xi,j,q =
⋃

(`,q′):δ(q′,`,q)

Xi,j,`,q′ ∪ { (ij)k | if q = q0} for j 6 3, i > 2,

Xi,j,`,q =
4⋂

n=1

((i− 1)(j + n)0∗)k + Xk−n,`,q for j 6 3, i > 2,

X1,j,q =
⋃

(`,q′):δ(q′,`,q)

X1,j,`,q′ ∪ { (ij)k | if q = q0} for j 6 3,

X1,j,`,q =
4⋂

n=1

((k − n)00∗)k + Xj+n,`,q for j 6 3

For these equations, it was proved that their least solution is

Xi,j,q = { (ijw)k | δ(q0, w
R) = q}, Xi,j,`,q = { (ij`w)k | δ(q0, w

R) = q}.

The rest of the proof shows how to obtain an unresolved system of equa-
tions with the same unique solution, which is done similarly to the proof of
Theorem 5.

The plan is to apply Lemmata 6 and 7 to the above system. To this end,
the variables of the system have to be grouped. Again, there will be two
groups,

{Xi,j,q | i, j ∈ Σk, i 6= 0, q ∈ Q} and {Xi,j,`,q | i, j, ` ∈ Σk, i 6= 0, q ∈ Q}.
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The union of the least solution in the first group is {n |n > k}, and {n |n >
k2} for the second group. The sets within each group are clearly disjoint.

The resulting system uses two co-finite constants obtained as unions of
the groups, as well as constants of the form (ij0∗)k. The former are expressed
as in Lemma 10, while the latter are replaced by references to equations from
Theorem 5.

Theorem 6. For every k > 2 and for every regular language L ⊆ Σ∗
k \

0Σ∗
k there exists an unresolved system with union (intersection), addition

and singleton constants, which has a unique solution with (L)k as one of its
components.

Proof. First consider the case of 2 6 k < 9. Then, by Lemma 8, there exists
a regular language L′ ⊆ Σ∗

k′ for k′ = k4 > 9, such that (L′)k′ = (L)k. Hence
it is sufficient to establish the theorem for k > 9.

Let M = (Σ, Q, q0, δ, F ) be a deterministic finite automaton recognizing
LR. By Lemma 11, there exists an unresolved system of the specified form, in
which every variable Xi,j,q in the unique solution equals { (ijw)k |δ(q0, w

R) =
q}. Then the set (L)k can be obtained as the following union:

(L)k =
(
(L)k ∩ {n | n < k}︸ ︷︷ ︸

finite constant

) ∪
⋃
i,j,q:

δ(q,ji)∈F

{ (ijw)k | δ(q0, w
R) = q}︸ ︷︷ ︸

Xi,j,q

. (15)

In the case of unresolved equations with union, the equality (15) can be
directly specified by introducing a new variable Y and adding the following
equation:

Y =
(
(L)k ∩ {n | n < k}) ∪

⋃
i,j,q:

δ(q,ji)∈F

Xi,j,q.

The finite constant {n | n < k} is expressed according to Lemma 10.

For the case of intersection, consider that the sets { (ijw)k |δ(q0, w
R) = q},

along with the finite set {n | n < k}, form a partition of N. Then a new
variable Y is added, and its intersection with every element of this partition
is expressed:

Y ∩ {n | n < k} = (L ∩ Σ61
k )k

Y ∩Xi,j,q = ∅ for (i, j, q) with δ(q, ji) /∈ F

Y ∩Xi,j,q = Xi,j,q for (i, j, q) with δ(q, ji) ∈ F

Because these equalities state the membership of every natural number in Y ,
this representation is equivalent to (15), and hence the system has a unique
solution with Y = (L)k. Both finite constants are again replaced according
to Lemma 10.
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5.3 Any linear conjunctive language

The next task is to remake another key construction of a system of equa-
tions using only one Boolean operation. As stated in Theorem 3, for every
trellis automaton M with L(M) ⊆ Σ+

k \ 0Σ∗
k, there exists a resolved system

of equations over sets of natural numbers with (L(M))k as one of the com-
ponents of its least solution. This construction essentially uses both union
and intersection, and the goal is again to refine the known construction [6]
so that Lemmata 6 and 7 could be applied to it.

This construction essentially uses the operations of symbolic addition and
subtraction of 1 on positional notations of numbers. For every base k > 2
and for every string w ∈ Σ∗

k \ (k − 1)∗, the string w′ = w ¢ 1 is defined as
the unique string with |w| = |w′| and (w)k + 1 = (w′)k. Similarly, for every
w ∈ Σ∗

k \ 0∗, define w′ = w ¯ 1 as the unique string with |w| = |w′| and
(w)k − 1 = (w′)k.

For example, in decimal notation, 0099¢1 = 0100. and 0100¯1 = 0099.
This notation shall never be used for strings on which it is undefined, such
as 999 ¢ 1 and 000 ¯ 1. This notation is extended to languages as

L ¢ 1 = {w ¢ 1 | w ∈ L \ (k − 1)∗}
L ¯ 1 = {w ¯ 1 | w ∈ L \ 0∗}

This operation obviously preserves regularity, hence it can be used inside
regular expressions for sets of positional notations, and the sets thus defined
will remain regular.

The original construction of a resolved system simulating a trellis au-
tomaton went in three stages: first, the set (1(L(M) ¯ 1)10∗)k was rep-
resented [6, Lem.5]; next, (1 · L(M))k [6, Lem.6]; and finally, a system for
(L(M))k was obtained [6, Lem.7]. This composition will be followed in the
below proof, and each part of the known construction will be carefully re-
made.

Lemma 12. For every k > 4 and for every trellis automaton M over
Σk = {0, . . . , k− 1} with L(M)∩0Σ∗

k = ∅, there exists and can be effectively
constructed an unresolved system of equations over sets of natural numbers
using union and addition (or intersection and addition) and singleton con-
stants, such that the unique solution of this system contains a component

(1(LM(q) ¯ 1)10∗)k = { (1w10`)k | ` > 0, w /∈ (k − 1)∗, w ¢ 1 ∈ LM(q)}.
Proof. Let M = (Σk, Q, I, δ, F ) be any trellis automaton and consider the
known resolved system of equations representing the given sets of num-
bers [6, Lem.5]. It uses variables Xq for all q ∈ Q and contains the equations

Xq = Rq ∪
⋃

q,q′:δ(q′,q′′)=q
i,j∈Σk

λi(Xq′′) ∩ ρj(Xq′) (for all q ∈ Q)
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where

Rq = { (1(w ¯ 1)10∗)k | w ∈ 0∗(Σk \ 0) ∪ (Σk \ 0)0∗, w ∈ LM(q)}
κi′(X) =

(
X ∩ (1i′Σ∗

k10
∗)k

)
+(10∗)k ∩ (2i′Σ∗

k)k, for all i′ ∈ Σk

λi(X) =
⋃

i′∈Σk

(
κi′(X) + ((k + i− 2)0∗)k ∩ (1iΣ∗

k)k

)
, for i = 0, 1

λi(X) =
⋃

i′∈Σk

(
κi′(X) + (1(i− 2)0∗)k ∩ (1iΣ∗

k)k

)
, for i > 2

πj′(X) =
(
X ∩ (1Σ∗

kj
′10∗)k

)
+(10∗)k ∩ (1Σ∗

kj
′20∗)k, for all j′ ∈ Σk

ρj(X) =
⋃

j′∈Σk

(
πj′(X) + ((k + j − 2)10∗)k ∩ (1Σ∗

kj10
∗)k

)
, for j = 0, 1

ρj(X) =
⋃

j′∈Σk

(
πj′(X) + (1(j − 2)10∗)k ∩ (1Σ∗

kj10
∗)k

)
, for 2 6 j 6 k − 2

ρk−1(X) =
⋃

j′∈Σk

(
πj′(X) + ((k − 3)10∗)k ∩ (1Σ∗

k(k − 1)10∗)k

)

All constants used in the system have regular base-k notation.
The least solution is Xq = Lq [6, Main Claim], where

Lq = (1((LM(q) \ 0∗) ¯ 1)10∗)k = { (1w10`)k | ` > 0, w /∈ (k − 1)∗, w ¢ 1 ∈ LM(q)}.
These sets are pairwise disjoint and their union is a set with a regular base-k
notation. In order to prove this, let us establish a more general statement
that will be used several times in the following:

Claim 2. Let x ∈ Σ+
k \ 0Σ∗

k and y ∈ Σ+
k \ 0∗ be strings of digits, let

K1, . . . , Km ⊆ Σ+
k be any pairwise disjoint languages. Let S1, . . . , Sm be sets

of numbers defined by

St = { (xuy0`)k | ` > 0, u ∈ Kt}.
Then these sets are pairwise disjoint and their union is

m⋃
t=1

St = (x(
⋃m

t=1 Kt)y0
∗)k.

Proof. Consider any two sets St and St′ with t 6= t′, and suppose there is a
number n belonging to both sets. Then n = (xuy0`)k for some u ∈ Kt and
n = (xu′y0`′)k with u′ ∈ Kt′ . Since y contains a non-zero digit, the length of
the tail of zeroes in n is independent of u and u′, and therefore ` = `′. Then
u and u′ must be the same string, which is impossible since Kt ∩Kt′ = ∅ by
assumption. This proves that St ∩ St′ = ∅.

The union of these sets is⋃
t

St =
⋃
t

(xKty0
∗)k = (x(

⋃
t Kt)y0

∗)k,

as stated.
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Now Claim 2 can be applied to the particular case of the sets Lq to obtain
the following result:

Claim 3. The sets of numbers Lq with different q ∈ Q are pairwise disjoint,
and their union is

⋃
q

Lq = (1(Σ+
k \ (k − 1)∗)10∗)k.

Proof. As a trellis automaton computes a uniquely determined state
∆(I(w)) ∈ Q on each string w ∈ Σ+

k , it induces a partition of Σ+
k into

classes corresponding to different states. Define Kq = (LM(q)\0∗)¯1; these
sets are pairwise disjoint and their union for all q ∈ Q is Σ∗

k \ (k − 1)∗, since
every string w ∈ Σ+

k belongs to some LM(q). The rest is given by Claim 2
with x = y = 1.

Though the values of the variables Xq as they are already satisfy Lemma 6
and Lemma 7, the right-hand side of the above equations are not of the
required simple form. Now the goal is to transform the system, splitting the
existing equations into smaller parts and introducing new variables, so that
it satisfies the assumptions of the lemmata.

The first step is to construct equations of the required form representing
λ and ρ. Each occurrence of λi(Xq) will be replaced by a new variable Zλ

i,q,
and similarly κi′(Xq) is replaced by W λ

i′,q, where the new variables have the
following equations:

Uλ
i′,q = Xq ∩ (1i′Σ∗

k10
∗)k (16)

W λ
i′,q = Uλ

i′,q + (10∗)k ∩ (2i′Σ∗
k)k (17)

Y λ
i,i′,q = W λ

i′,q + (1(i− 2)0∗)k ∩ (1iΣ∗
k)k for i > 3 (18)

Y λ
i,i′,q = W λ

i′,q + ((k + i− 2)0∗)k ∩ (1iΣ∗
k)k for i 6 2 (19)

Zλ
i,q =

⋃

i′
Y λ

i,i′,q (20)

Since the equation for Zλ
i,q represents the expression λi(Xq) broken into pieces,

by Proposition 3, the “old variables” {Xq} have the same values in the least
solution of the new system as in the least solution of the old system. These
variables are arranged into the following four groups:

{Uλ
i′,q | i′ ∈ Σk, q ∈ Q}, {W λ

i′,q | i′ ∈ Σk, q ∈ Q},
{Y λ

i,i′,q | i, i′ ∈ Σk, q ∈ Q}, {Zλ
i,q | i ∈ Σk, q ∈ Q}.

Let us calculate the values of these variables in the least solution. For
every variable V , let S(V ) be the set corresponding to V in the least solution
of the new system of equations.
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Claim 4. The sets S(Uλ
i′,q) with different i′ ∈ {0, . . . , k − 1} and q ∈ Q are

pairwise disjoint, and their union is

⋃

i′,q

S(Uλ
i′,q) = (1(Σ+

k \ (k − 1)∗)10∗)k.

Proof. It is already known [6, Eq. (3)] that

S(Uλ
i′,q) = { (1i′w10`)k | ` > 0, i′w /∈ (k − 1)∗, i′w ¢ 1 ∈ LM(q)}.

These sets are obtained from the languages Kλ
i′,q = (LM(q) ¯ 1) ∩ i′Σ∗

k with

i′ ∈ Σk and q ∈ Q as in the statement of Claim 2. To see that the sets Kλ
i′,q

are pairwise disjoint, consider Kλ
i1,q1

and Kλ
i2,q2

: if i1 6= i2, then the words in
these sets start from different digits, and if q1 6= q2, then Kλ

i1,q1
⊆ LM(q1)¯ 1

and Kλ
i2,q2

⊆ LM(q2) ¯ 1. In both cases, Kλ
i1,q1

∩Kλ
i2,q2

= ∅.
Therefore, Claim 2 with x = y = 1 asserts that S(Uλ

i′,q) are pairwise
disjoint and the union of this group of sets is

⋃

i′,q

S(Uλ
i′,q) = (1(

⋃
i′,q Ki′,q)10

∗)k = (1
( ⋃

i′,q((LM(q)\0∗)¯1)∩i′Σ∗
k

)
10∗)k =

= (1((
⋃

q LM(q)\0∗)¯1)10∗)k = (1((Σ∗
k\0∗)¯1)10∗)k = (1(Σ+

k \(k−1)∗)10∗)k,

which completes the proof.

Similar statements will now be proved for the other three groups of vari-
ables.

Claim 5. The sets S(W λ
i,q) with different i and q are pairwise disjoint, the

union of all sets in the group is:

⋃

i′,q

W λ
i′,q = (2(Σ+

k \ (k − 1)∗)10∗)k.

Proof. It is known [6, Eq. (4)] that

S(W λ
i′,q) = { (2i′w10`)k | ` > 0, i′w /∈ (k − 1)∗, i′w ¢ 1 ∈ LM(q)}.

These sets are induced by Kλ
i′,q = (LM(q) ¯ 1)∩ i′Σ∗

k with i′ ∈ Σk and q ∈ Q
as in Claim 2 with x = 2 and y = 1. It has been proved in Claim 4 that
Kλ

i′,q are pairwise disjoint and their union is Σ+
k \ (k − 1)+. Both statements

of the present claim follow.

Claim 6. The sets S(Y λ
i,i′,q) with different i, i′ and q are pairwise disjoint.

Their union is:
⋃

i,i′,q

S(Y λ
i,i′,q) = (1Σk(Σ

+
k \ (k − 1)∗)10∗)k.
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Proof. It is known [6, Eqs. (5,6)] that

S(Y λ
i,i′,q) = { (1ii′w10`)k | ` > 0, i′w /∈ (k − 1)∗, i′w ¢ 1 ∈ LM(q)}.

Then, for each fixed i, those sets are obtained from the languages Kλ
i′,q =

(LM(q) ¯ 1) ∩ i′Σ∗
k as in Claim 2 with x = 1i and y = 1. It was shown in

Claim 4 that Kλ
i′,q are pairwise disjoint and their union is Σ+

k \(k−1)∗. Thus,
for each i, ⋃

i′,q

S(Y λ
i,i′,q) = (1i(Σ∗

k \ (k − 1)∗)10∗)k,

and for all (i′1, q1) 6= (i′2, q2) the sets S(Y λ
i,i′1,q1

) and S(Y λ
i,i′2,q2

) are disjoint.

Then, clearly,
⋃

i,i′,q

S(Y λ
i,i′,q) =

⋃
i

(1i(Σ+
k \ (k − 1)∗)10∗)k = (1Σk(Σ

+
k \ (k − 1)∗)10∗)k,

What is left to show is that for (i1, i
′
1, q1) 6= (i2, i

′
2, q2), the sets S(Yi1,i′1,q1

)
and S(Yi2,i′2,q2

) are disjoint. If i1 = i2, then (i′1, q1) 6= (i′2, q2), and such sets
were already shown to have empty intersection. If i1 6= i2, then these sets
consist of numbers with a different second leading digit, and are bound to be
disjoint as well.

Claim 7. For all (i1, q1) 6= (i2, q2), the sets S(Zλ
i1,q1

) and S(Zλ
i2,q2

) are dis-
joint, and their union equals

⋃
i,q

S(Zλ
i,q) = (1Σk(Σ

+
k \ (k − 1)+)10∗)k.

Proof. The equation (20) defines Zλ
i,q as the union of Y λ

i,i′,q for all i′, and the

values of the latter variables are known from Claim 6. Then the value of Zλ
i,q

is calculated as follows:⋃
i,q

S(Zλ
i,q) =

⋃
i,q

(
⋃

i′ S(Y λ
i,i′,q)) =

⋃

i,i′,q

S(Y λ
i,i′,q) = (1Σ(Σ∗

k \ (k − 1)∗)10∗)k.

The sets S(Zλ
i,q) are pairwise disjoint as unions of pairwise disjoint sets.

The equations for ρ will now undergo a similar reconstruction. Every
ρj(Xq) is replaced by Uρ

j,q and each πj′(Xq) by W ρ
j′,q(Xq). The new variables

are defined by the following resolved equations:

Uρ
j′,q = Xq ∩ (1Σ∗

kj
′10∗)k (21)

W ρ
j′,q = Uρ

j′,q+(10∗)k ∩ (1Σ∗
kj
′20∗)k (22)

Y ρ
j,j′,q = W ρ

j′,q+(1(k + j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k for j < 2 (23)

Y ρ
j,j′,q = W ρ

j′,q+(1(j − 2)10∗)k ∩ (1Σ∗
kj10

∗)k for 2 6 j < k − 1 (24)

Y ρ
k−1,j′,q = W ρ

j′,q+((k − 3)10∗)k ∩ (1Σ∗
k(k − 1)10∗)k (25)

Zρ
j,q =

⋃

j′
Y ρ

j,j′,q (26)
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As the new equations represent the subexpressions of ρj(Xq), by Proposi-
tion 3, the values of the variables Xq in the least solution of the new system
are the same as in the least solution of the old system.

These variables are grouped as follows:

{Uρ
j′,q | j′ ∈ Σk, q ∈ Q}, {W ρ

j′,q | j′ ∈ Σk, q ∈ Q},
{Y ρ

j,j′,q | j, j′ ∈ Σk, q ∈ Q}, {Zρ
j,q | j ∈ Σk, q ∈ Q}.

As in the case of λ, the values of the variables in each group are pairwise
disjoint, and the union of each group is a set with a regular notation.

Claim 8. For all (j′1, q1) 6= (j′2, q2), the sets S(Uρ
j′1,q1

) and S(Uρ
j′2,q2

) are dis-

joint, and their union is

⋃

j′,q

S(Uρ
j′,q) = (1(Σ+

k \ (k − 1)∗)10∗)k.

Proof. It was proved [6, Eq. (8)] that

S(Uρ
j′,q) = { (1wj′10`)k | ` > 0, wj′ /∈ (k − 1)∗, wj′ ¢ 1 ∈ LM(q)}.

These sets can be obtained from the languages Kρ
j,q = (LM(q) ¯ 1) ∩ Σ∗

kj
as in Claim 2 with x = 1 and y = 1. The languages Kρ

j1,q1
and Kρ

j1,q1
are

disjoint for all (j1, q1) 6= (j2, q2), as for j1 6= j2 their last digits are different,
while for q1 6= q2 it holds that Kρ

j1,q1
⊆ LM(q1) ¯ 1 and Kρ

j2,q2
⊆ LM(q2) ¯ 1,

and the supersets are disjoint. Then, by Claim 2, S(Uρ
j1,q1

) ∩ S(Uρ
j2,q2

) = ∅
for (j1, q1) 6= (j2, q2), while the union of these sets is

⋃
j∈Σk,q∈Q

S(Uρ
j,q) = (1(

⋃
j∈Σk,q∈Q Kρ

j,q)10
∗)k = (1(

⋃
j∈Σk,q∈Q(LM(q)¯1)∩Σ∗

kj
)
10∗)k =

= (1(
⋃

q∈Q(LM(q)¯1)∩Σ+
k )10∗)k = (1((Σ∗

k\0∗)∩Σ+
k )10∗)k = (1(Σ+

k \(k−1)∗)10∗)k,

and the claim follows.

Claim 9. For (j′1, q1) 6= (j′2, q2), the sets S(W ρ
j′1,q1

) abd S(W ρ
j′2,q2

) are disjoint,

and ⋃

j′,q

S(W ρ
j′,q) = (1(Σ+

k \ (k − 1)∗)20∗)k.

Proof. It was proved [6, Eq. (9)] that

S(W ρ
j′,q) = { (1wj′20m)k | wj′ ¢ 1 ∈ LM(q), wj′ /∈ (k − 1)∗, m > 0}.

These sets are induced by the languages Kρ
j,q = (LM(q)¯1)∩Σ∗

kj as in Claim 2
with x = 1 and y = 2. These languages appeared already in Claim 8, where
it was shown that they are pairwise disjoint and their union is Σ+

k \ (k− 1)∗.
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Then, by Claim 2, for all (j′1, q
′
1) 6= (j′2, q

′
2), the sets S(W ρ

j′1,q1
) and S(W ρ

j′2,q2
)

are disjoint, and
⋃

j′,q

S(W ρ
j′,q) = (1(

⋃
j′,q Kρ

j′,q)20
∗)k = (1(Σ+

k \ (k − 1)∗)20∗)k,

which completes the proof.

Claim 10. The sets S(Y ρ
j1,j′1,q1

) and S(Y ρ
j2,j′2,q2

) are disjoint for all

(j1, j
′
1, q1) 6= (j2, j

′
2, q2), and the union in the group equals

⋃

j,j′,q

S(Y ρ
j,j′,q) = (1((Σ∗

k \ 0∗)Σk ¯ 1)10∗)k.

Proof. It is known [6, Eqs. (10, 11, 12)] that

S(Y ρ
j,j′,q) = { (1(w′j′ ¢ 1)j10m−1)k |m > 1, w′j′ /∈ (k − 1)∗, w′j′ ¢ 1 ∈ LM(q)}

for all j 6= k − 1, and

S(Y ρ
k−1,j′,q) = { (1w′j′(k − 1)10m−1)k |m > 1, w′j′ /∈ (k − 1)∗, w′j′ ¢ 1 ∈ LM(q)}.
Fix any j 6= k−1. Then the sets S(Y ρ

j,j′,q) are obtained from the languages
Kρ

j,j′,q = (LM(q) \ 0∗) ∩ (Σ∗
kj
′ ¢ 1) as in Claim 2 with x = 1 and y = j1.

Then, for all (j′1, q1) 6= (j′2, q2), the languages Kρ
j,j′1,q1

and Kρ
j,j′2,q2

are disjoint,

as for q1 6= q2 Kρ
j,j′1,q1

⊆ LM(q1) and Kρ
j,j′1,q1

⊆ LM(q2), and the supersets are

disjoint. If j1 6= j2, then the strings from these languages differ in the last
digit. Therefore, by Claim 2,

⋃

j′,q

S(Y ρ
j,j′,q) = (1(

⋃
j′,q Kρ

j,j′,q)j10
∗)k = (1(

⋃
j′,q(LM(q)\0∗)∩(Σ∗

kj
′¢1))j10∗)k =

= (1(
⋃

j′(Σ
+
k \ 0∗) ∩ (Σ∗

kj
′ ¢ 1))j10∗)k = (1((Σ+

k \ 0∗) ∩ (Σ+
k ¢ 1))j10∗)k =

= (1(Σ+
k \ 0∗)j10∗)k = (1((Σ+

k \ 0∗)(j + 1) ¯ 1)10∗)k,

and S(Y ρ
j,j′1,q1

) ∩ S(Y ρ
j,j′2,q2

) = ∅ for all (j′1, q1) 6= (j′2, q2).

Next, consider the case of j = k − 1 and recall the languages Kρ
j′,q =

(LM(q) ¯ 1) ∩ Σ∗
kj introduced in Claim 8, where it was shown that these

languages are pairwise disjoint and their union is
⋃

j′,q

Kρ
j′,q = Σ+

k \ (k − 1)∗.

Now the sets S(Y ρ
k−1,j′1,q1

) can be obtained from the languages Kρ
j′,q by the

method of Claim 2 with x = 1 and y = (k − 1)1. Therefore,

⋃

j′,q

S(Y ρ
k−1,j′1,q1

) = (1(Σ+
k \ (k − 1)∗)(k − 1)10∗)k = (1((Σ+

k \ 0∗)0 ¯ 1)10∗)k,
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where the the first equality comes from Claim 2 and the second one is a
simple calculation. Also, for different (j′1, q1) 6= (j′2, q2), the sets S(Y ρ

k−1,j′1,q1
)

and S(Y ρ
k−1,j′1,q1

) are disjoint.

Finally, in order to prove the claim, consider any two sets S(Y ρ
j1,j′1,q1

)

and S(Y ρ
j2,j′2,q2

) with (j1, j
′
1, q1) 6= (j2, j

′
2, q2). If j1 6= j2, then these sets are

disjoint, as their elements differ in the second from the last non-zero digit.
If j1 = j2 and (j′1, q1) 6= (j′2, q2), then these two sets have been proved to be
disjoint in one of the cases above.

The union of all these sets is

⋃

j,j′,q

S(Y ρ
j,j′,q) =

⋃

j 6=k−1

⋃

j′,q

S(Y ρ
j,j′,q) ∪

⋃

j′,q

S(Y ρ
k−1,j′,q) =

⋃

j 6=k−1

(1((Σ+
k \0∗)(j+1)¯1)10∗)k∪(1((Σ+

k \0∗)0¯1)10∗)k = (1((Σ+
k \0∗)Σk¯1)10∗)k,

which establishes the claim.

Claim 11. The sets S(Zρ
j1,q1

) and S(Zρ
j2,q2

) are disjoint for (j1, q1) 6= (j2, q2).
Their union equals

⋃
j,q

S(Zρ
j,q) = (1((Σ∗

k \ 0∗)Σk ¯ 1)10∗)k.

Proof. The variable Zρ
j,q is defined by the equation (26) as the union of Y ρ

j,j′,q
for all j′. Then

⋃
j,q

S(Zρ
j,q) =

⋃
j,q

⋃

j′
S(Y ρ

j,j′,q) =
⋃

j,j′,q

S(Y ρ
j,j′,q) = (1((Σ∗

k \ 0∗)Σk ¯ 1)10∗)k,

where the second equality is given by Claim 10. The latter claim also states
that the sets S(Y ρ

j,j′,q) are pairwise disjoint, and hence so are the sets S(Zρ
j,q).

Thus the expressions λi(Xq) and ρj(Xq) have been expressed by equa-
tions of the form satisfying the assumptions of Lemma 6 and Lemma 7. It
remains to transform the equation defining Xq to the same form. The original
equation [6] was

Xq = Rq ∪
⋃

q′,q′′: δ(q′,q′′)=q
i,j∈Σk

λi(Xq′′) ∩ ρj(Xq′),

The subexpression corresponding to every i, q′′, j and q′ shall be represented
by a new variable Xi′′q ,j,q′ with the equation

Xi,q′′,j,q′ = Zλ
i,q′′ ∩ Zρ

j,q′ , (27)
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while the equation for Xq is accordingly replaced by

Xq = Rq ∪
⋃

q′,q′′: δ(q′,q′′)=q
i,j∈Σk

Xi,q′′,j,q′ (28)

The variables are divided into two groups,

{Xi,q′′,j,q′ | i, j ∈ Σk, q
′, q′′ ∈ Q}, {Xq | q ∈ Q}

and it remains to show the required properties of the variables in each group.

Claim 12. For all (i1, q
′′
1 , j1, q

′
1) 6= (i2, q

′′
2 , j2, q

′
2), the sets S(Xi1,q′′1 ,j1,q′1) and

S(Xi2,q′′2 ,j1,q′2) are disjoint, and the union of all these sets is

⋃

i,q′′,j,q′
S(Xi,q′′,j,q′) = (1((Σ∗

k \ 0∗) ¯ 1)10∗)k \
⋃

q Rq.

Proof. According to the equation (27), S(Xi,q′′,j,q′) = S(Zλ
i,q′′) ∩ S(Zρ

j,q′).

By Claim 7, S(Zλ
i1,q′′1

) ∩ S(Zλ
i2,q′′2

) = ∅ for (i1, q
′′
1) 6= (i2, q

′′
2). Similarly,

by Claim 11, S(Zρ
i1,q′1

) ∩ S(Zρ
i2,q′2

) = ∅ for (j1, q
′
1) 6= (j2, q

′
2). Thus for

(i1, q
′′
1 , j1, q

′
1) 6= (i2, q

′′
2 , j2, q

′
2) it holds that S(Xi1,q′′1 ,j1,q′1) ∩ S(Xi2,q′′2 ,j2,q′2) = ∅.

By the equation (27), the union of all these sets is

⋃

i,q′′,j,q′
S(Xi,q′′,j,q′) =

⋃

i,q′′,j,q′
S(Zλ

i,q′′)∩S(Zρ
j,q′) =

( ⋃

i,q′′
S(Zλ

i,q′′)
)
∩

( ⋃

j,q′
S(Zρ

j,q′)
)
,

and using the values of both unions given by Claim 7 and Claim 11, this can
be calculated as follows:

(1Σk(Σ
∗
k \ (k − 1)∗)10∗)k ∩ (1((Σ∗

k \ 0∗)Σk ¯ 1)10∗)k =

= (1(Σk(Σ
∗
k \ 0∗) ¯ 1)10∗)k ∩ (1((Σ∗

k \ 0∗)Σk ¯ 1)10∗)k =

= ((1((Σ∗
k \ 0∗) ¯ 1)10∗))k \ (((1(Σk0

∗ ∪ 0∗Σk) ¯ 1)10∗))k =

= ((1((Σ∗
k \ 0∗) ¯ 1)10∗))k \

⋃
q∈Q Rq,

which concludes the proof.

It is already known from Proposition 3 that S(Xq) = Lq, and Claim 3
asserts that the sets Lq are pairwise disjoint and that their union is a set
with a regular notation. Thus the only thing remaining to be checked is that
there are no cyclic chain dependencies in the defined system.

Claim 13. There are no cyclic chain dependencies in the equations (16)–
(28).

Proof. The constructed system contains the following chain dependencies:

• there may be a chain dependency of Uλ
i′,q from Xq or Uρ

j′,q from Xq
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• of Xq from (some)Xi,q′′,j,q′

• of Xi,q′′,j,q′ from Zλ
i,q′′ and from Zρ

i,q′

• of Zλ
i,q from Y λ

i,i′,q

• of Zρ
j,q from Y ρ

j,j′,q

Consider the following groups of variables:

G1 = {Xq | q ∈ Q}
G2 = {Uλ

i′,q, U
ρ
j′,q | q ∈ Q; i′, j′′ ∈ Σk}

G3 = {Zλ
i,q, Z

ρ
j,q | q ∈ Q; i, j ∈ Σk}

G4 = {Xi,q′′,j,q′ | q′, q′′ ∈ Q; i, j ∈ Σk}
G5 = {Y λ

i,i′,q, Y
ρ
j,j′,q | q ∈ Q; i, j, i′, j′ ∈ Σk}

Then it can be easily seen that if a variable from a group Gk depends on a
variable in a group Gj, then i < j. Therefore, there are no chain dependencies
in the system.

According to the above claims, there exists a resolved system of equations
satisfying the assumption of Lemma 6 and Lemma 7, such that one of the
components in its least solution is

(1(LM(q) ¯ 1)10∗)k = { (1w10`)k | ` > 0, w /∈ (k − 1)∗, w ¢ 1 ∈ LM(q)}.

Then, by the aforementioned lemmata, there exist unresolved systems either
with union and sum, or with intersection and sum, which have the same
unique solution. Finally, using Theorem 6, regular constants used in these
systems are replaced by singleton constants, which completes the proof of
Lemma 12.

The next task is to represent the set (1LM(q))k for any trellis automaton
M and its state q. Similarly to Lemma 12, this will be done by transforming
an existing construction [6, Lem.6].

Lemma 13. For every k > 4 and for every trellis automaton M over Σk there
exists and can be effectively constructed an unresolved system of equations
over sets of numbers using the operations of union (or intersection) and
addition, as well as singleton constants, such that its unique solution contains
a component (1LM(q))k for each state q of this automaton.

Proof. The argument will use a simple technical claim, similar to Claim 2 in
the proof of Lemma 12.
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Claim 14. Let x ∈ Σ+
k \0Σ∗

k and y ∈ Σ∗
k be a string of digits (possibly empty),

let K1, . . . , Km ⊆ Σ+
k be any pairwise disjoint languages, and let S1, . . . , Sm

be sets of numbers defined by

St = { (xuy)k | u ∈ Kt}.
Then these sets are pairwise disjoint and their union is

m⋃
t=1

St = (x
⋃m

t=1 Kty)k.

The proof is nearly obvious and is omitted. A stronger statement will be
proved in the following as Claim 17.

Consider the trellis automaton M over Σk. For every state q and for every
digit j ∈ Σk, construct a trellis automaton Mq,j recognizing the language
LM(q){j}−1 using the known transformation [14]. Then, by Lemma 12, there
is a system of equations using addition and either union or intersection, which
contains a variable Yq,j,p for each state p of Mq,j, and has a unique solution
with Yq,j,p = (1((LMq,j

(p) \ 0∗) ¯ 1)10∗)k.
The first goal is to combine these systems into a larger system of equations

containing variables Yq,j for each state q of M and for each digit j, so that it
has Yq,j = (1((L(Mq,j) \ 0∗) ¯ 1)10∗)k in its unique solution.

When union and addition are allowed, the construction is immediate: if
Fq,j is the set of accepting states of Mq,j, then

Yq,j =
⋃

p∈Fq,j

Yq,j,p (29)

merged with subsystems defining Yq,j,p satisfies the goal.
If the allowed operations are intersection and addition, then the following

system is constructed:

Yq,j ∩ Yq,j,p = ∅ for p 6∈ Fq,j (30)

Yq,j ∩ Yq,j,p = Yq,j,p for p ∈ Fq,j (31)

Yq,j ∩
[
N \ (1((Σ∗

k \ 0∗) ¯ 1)10∗))k

]
= ∅, (32)

where the variables Yq,j,p are defined in subsystems. As the sets
{(1((LMq,j

(p)\0∗)¯1)10∗)k}p∈Q(Mq,j) together with N\(1((Σ∗
k\0∗)¯1)10∗))k

form a partition of natural numbers, these equations effectively represent the
union of Yq,j,p for all p. The additional constant (1((Σ∗

k \ 0∗) ¯ 1)10∗))k

used in the construction is a set of numbers with a regular base-k positional
notation, and hence it can be expressed by Theorem 6.

The sets (1(((LM(q){j}−1) \ 0∗) ¯ 1)10∗)k are used in a known construc-
tion [6, Lem.6] of an equation representing the set (1·LM(q))k. This equation
is of the form

Zq = Cq ∪
k−1⋃
j=0

(Yq,j ∩ (1Σ∗
k1)k) + (1j ¯ 1)k,
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which uses the constant Cq = (1LM(q))k ∩ (10∗Σk)k with a regular base-k
notation. These constants are similar to the constants Rq in Lemma 12, in
the sense that they represent strings of digits of a simple form not handled
by the main formula. This equation also refers to variables Yq,j defined in
their own subsystems, so that their least solution satisfies

S(Yq,j) = (1(((LM(q){j}−1) \ 0∗) ¯ 1)10∗)k.

It is already known [6, Eq. (15)] that this equation, together with the
aforementioned subsystems for variables Yq,j, has a least solution with

S(Zq) = (1 · LM(q))k.

Then, by Proposition 2, the equation for Zq with variables Yq,j replaced by
constants Yq,j = (1(((LM(q){j}−1) \0∗)¯1)10∗)k has the least solution with
S(Zq) = (1 · LM(q))k. The equations for Zq for all q ∈ Q can be turned into
a system satisfying the assumption of Lemma 6 and Lemma 7 by introducing
new variables Zq,j and rewriting the equations as:

Zq,j = Yq,j ∩ (1Σ∗
k1)k

Zq = Cq ∪
k−1⋃
j=0

Zq,j + (1j ¯ 1)k

The grouping of variables required by Lemmata 6 and 7 is

{Zq | q ∈ Q}, {Zq,j | q ∈ Q}j∈Σk
.

It has to be proved that the sets in each group form a disjoint partition of a
certain set with a regular notation.

Claim 15. For every j ∈ Σk and q1 6= q2, the sets S(Zq1,j) and S(Zq2,j) are
disjoint and ⋃

q

S(Zq,j) = (1(Σ∗
k \ (k − 1)∗)1)k

Proof. The value of Zq,j is determined from its equation as follows:

S(Zq,j) = S(Yq,j)∩(1Σ∗
k1)k = (1(((LM(q){j}−1)\0∗)¯1)10∗)k∩(1Σ∗

k1)k =

(1(((LM(q){j}−1) \ 0∗) ¯ 1)10∗ ∩ 1Σ∗
k1)k = (1(((LM(q){j}−1) \ 0∗) ¯ 1)1)k

Fix any digit j. The sets S(Zq,j) satisfy the assumption of Claim 14
with Kq = ((LM(q){j}−1) \ 0∗) ¯ 1 and x = y = 1. For q1 6= q2

the languages Lq1(M) and Lq2(M) are disjoint, and hence the sets also
Kq1 = ((LM(q1){j}−1) \ 0∗) ¯ 1 and Kq2 = ((LM(q2){j}−1) \ 0∗) ¯ 1 are
disjoint as well. Hence S(Zq1,j) ∩ S(Zq2,j) = ∅ by Claim 14. Also

⋃
q

S(Zq,j) = (1(
⋃

q Kq)1)k = (1Σ+
k 1)k,

since every non-empty string belongs to some Kq.
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Claim 16. For all q1 6= q2, the sets S(Zq1) and S(Zq2) are disjoint and

⋃
q

S(Zq) = (1Σ+
k )k.

Proof. By Proposition 3, S(Zq) remains the same as in the original system,
hence S(Zq) = (1Lq(M))k. Thus S(Zq) satisfy the assumption of Claim 14
with K ′

q = Lq(M), x = 1 and y = ε. Clearly, the languages {K ′
q} are

pairwise disjoint, as trellis automata are deterministic. Also each non-empty
string belongs to some K ′

q, hence
⋃

q∈Q K ′
q = Σ+

k . Therefore, by Claim 14,
S(Zq1) ∩ S(Zq2) = ∅ for q1 6= q2 and

⋃
q

S(Zq) = (1(
⋃

q∈Q K ′
q))k = (1Σ+

k )k.

as claimed.

Lemma 6 and Lemma 7 require that there are no chain cyclic dependencies
in the constructed system. As the only chain dependencies are those of Zq

from (some) Zq,j, there are no cycles among them.
Therefore, the new system satisfies the assumption of the Lemma 6 and

Lemma 7, and accordingly, there exists an unresolved system using addition
and either union or intersection, which has a unique solution with (1·LM(q))k

as one of its components. The system uses regular constants, which can be
eliminated using Theorem 6, and constants Yq,j, which are represented in
(29) in the case of union and addition, and in (30–32) using intersection and
addition.

The final step of the known construction [6] was to specify the set
(L(M))k with minimal assumptions on the language L(M). This step will
now be similarly replicated using unresolved systems.

Lemma 14. For every k > 4 and for every trellis automaton M over Σk,
such that L(M) ∩ 0Σ∗

k = ∅, there exists and can be effectively constructed
an unresolved system of equations over sets of numbers using the operations
of union (or intersection) and addition, as well as singleton constants, such
that its unique solution contains a component (L(M))k.

Proof. The following slightly more complicated version of Claim 14 will be
used in the proof:

Claim 17. Let x ∈ Σ+
k \ 0Σ∗

k and y, z ∈ Σ∗
k be strings of digits (possibly

empty), let K1, . . . , Km ⊆ Σ+
k be any pairwise disjoint languages, and let

S1, . . . , Sm be sets of numbers defined by

St = { (x(z−1u)y)k | u ∈ Kt}.
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Then these sets are pairwise disjoint and their union is

m⋃
t=1

St = (x(z−1(
⋃m

t=1 Kt))y)k.

Proof. Let St and St′ be any two sets with t 6= t′ and suppose there is
a number n belonging to both of them. Then n = (x(z−1u)y)k for some
u ∈ Kt and n = (x(z−1u′)y)k with u′ ∈ Kt′ . Clearly, z is a prefix of both
u and u′, that is, u = zv and u′ = zv′. Then n = (x(z−1)uy)k = (xvy)k

and n = (x(z−1)u′y)k = (xv′y)k, and therefore v′ = v and u = u′. It is a
contradiction, as Kt and Kt′ are disjoint. This proves that St ∩ St′ = ∅.

The union of these sets is

⋃
t

St =
⋃
t

(x(z−1Kt)y)k = (x(z−1
⋃

t Kt)y)k,

as desired.

The proof of Lemma 14 begins with the following system of equa-
tions [6, Eqs. (16,19)]:

Tq = (LM(q) ∩ Σk)k ∪ Z1,p ∪
⋃

i∈Σk\{0,1}
τi(Zi,q), where

τi(X) =
⋃

i′∈Σk

(
(X ∩ (1i′Σ∗

k)k)+((i− 1)0∗)k ∩ (ii′Σ∗
k)k

)
(for i 6= 0, 1).

The system refers to the variables Zi,p; the values of these variables are
defined in their own subsystems with the solution S(Zi,q) = (1{i}−1LM(q))k.

It is known [6, Eqs. (16,19)], that

τi({n}) =

{
{(iw)k}, if n = (1w)k w ∈ Σ+

k ,

∅, otherwise,

and that the system of equations formed by the above equation for Tq and
the subsystems for all variables Zi,p has a least solution with

S(Tq) = (LM(q) \ 0∗)k.

Consider the following decomposition of this equation:

Ui,i′,q = Zi,q ∩ (1i′Σ∗
k)k for i > 2

Wi,i′,q = Ui,i′,q + ((i− 1)0∗)k ∩ (ii′Σ∗
k)k for i > 2

Tq =
⋃

i>1,i′
Wi,i′,q ∪ Z1,q ∪ (LM(q) ∩ Σk)k
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Let the set of variables be split into the following 2k − 3 groups:

{Ui,i′,q |i′ ∈ Σk, q ∈ Q}26i<k, {Wi,i′,q |i, i′ ∈ Σk, q ∈ Q}26i<k, {Tq |q ∈ Q}.
As in the previous proofs, it is claimed that the union of each group is a set
with a regular base-k notation, and that the sets in each group are pairwise
disjoint.

It it known from the previous work [6, Eq. (16)] that

S(Ui,i′,q) = { (1i′w)k | ii′w ∈ LM(q)}.
Fix i > 2. Then the sets {S(Ui,i′,q)} for all i′ ∈ Σk and q satisfy the assump-
tion of Claim 17 with Ki′,q = ii′Σ∗

k∩LM(q), x = 1, y = ε and z = i. The inter-
section Ki′1,q1

∩Ki′2,q2
is empty, as for i′1 6= i′2 it holds that i1i

′Σ∗
k∩ i2i

′Σ∗
k = ∅,

and LM(q1) ∩ LM(q2) = ∅ for q1 6= q2, because trellis automata is determin-
istic. Hence,
⋃

i′,q

S(Ui,i′,q) = (1(i−1
⋃

i′,q

Ki′,q))k = (1(i−1iΣ+
k ))k = (1Σ+

k )k for each i > 2.

It is also known [6, Eq. (17)] that

S(Wi,i′,q) = { (ii′w)k | ii′w ∈ LM(q)} = (LM(q))k ∩ (ii′Σ∗
k)k.

Consider any two variables Wi1,i′1,q1
and Wi2,i′2,q2

with (i1, i
′
1, q1) 6= (i2, i

′
2, q2).

If q1 6= q2, then LM(q1) ∩ LM(q2) = ∅. If (i1, i
′
1) 6= (i2, i

′
2) then i1i

′
1Σ

∗
k ∩

i2i
′
2Σ

∗
k = ∅. In both cases S(Wi1,i′1,q1

) ∩ S(Wi2,i′2,q2
) = ∅. The union of these

sets equals:
⋃

i,i′,q

S(Wi,i′,q) =
⋃

i,i′,q

(LM(q))k ∩ (ii′Σ∗
k)k = (Σ>2

k )k.

The proof concerning the group {Tq}q∈Q is immediate, as, by Proposi-
tion 3, S(Tq) = (LM(q) \ 0∗)k. Thus for all q1 6= q2

S(Tq1) ∩ S(Tq2) ⊆ (LM(q1))k ∩ (LM(q2))k = ∅,

while the union of all these sets is
⋃
q

S(Tq) =
⋃
q

(LM(q) \ 0∗)k = (Σ+
k \ 0∗)k.

The only chain dependency in the constructed system is that of Tq from
Wi,i′,q. Hence there are no cyclic chain dependencies and the system obtained
satisfies the assumptions of Lemma 6 and Lemma 7 with constants Zi,q and
regular constants.

Hence there exists an unresolved system of the required form with one
of the components of its unique solution equal to (L(M))k. This system
uses constants Zi,q and regular constants. The former are expressed using
Lemma 13 and the latter by Theorem 6.
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5.4 Universality

The final step of the argument is to show how the systems defined in the
proofs of Lemmata 3 and 4 can be transformed to use, along with addition,
either union or intersection. The only equations using Boolean operations
are (4) and (8), and since they are identical, it is sufficient to rephrase a
single equation (4).

Its reformulation using addition and intersection is immediate:

Lemma 15. Let Yi ⊆ (1Σ+
6 )6 for 1 6 i 6 5 and let Y0 ⊆ {0, 1, 2, 3, 4, 5}.

Then, for every set Y ⊆ N,

Y = Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)
(33)

if and only if

Y ∩ (ijΣ∗
6)6 = (Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6 (i, j ∈ Σ6, i 6= 0, 1),

Y0 = Y ∩ {0, 1, 2, 3, 4, 5},
Y1 = Y ∩ (1Σ+

6 )6.

Proof. ⇐© Assume that the sets Yi satisfy the latter three equations. Then,
since N = {0, . . . , 5} ∪ (1Σ+

6 )6 ∪
⋃

i>1,j(ijΣ
∗
6)6,

Y = (Y ∩ {0, . . . , 5}) ∪ (Y ∩ (1Σ+
6 )6) ∪

⋃
i>1,j

(Y ∩ (ijΣ∗
6)6) =

Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)
.

⇒© Conversely, assume that (33) holds. Then, intersecting both sides of
(33) with (ijΣ∗

6)6, {0, . . . 5} and (1Σ+
6 )6, one obtains:

Y ∩ (ijΣ∗
6)6 = (Yi ∩ (1jΣ∗

6)6) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

Y ∩ {0, . . . 5} = Y0

Y ∩ (1Σ+
6 )6 = Y1.

An analogous result for addition and union requires introducing new vari-
ables, and so the statement looks more complicated:

Lemma 16. There exist monotone functions fi,j, gi,j, hi,j : 2N → 2N, with
i ∈ {2, . . . , 5} and j ∈ {0, . . . , 5}, such that Y = L, Yi = Li, Yi,j = Li,j,
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Y ′
i,j = L′i,j, Y ′′

i,j = L′′i,j with i ∈ {2, . . . , 5} and j ∈ {0, . . . , 5} is a solution of
the system

Y = Y0 ∪ Y1 ∪
⋃
i,j

Y ′
i,j (34)

Y0 ⊆ {0, 1, 2, 3, 4, 5} (35a)

Y1 ⊆ (1Σ+
6 )6 (35b)

5⋃
j=0

Yi,j = Yi (36a)

Yi,j ⊆ (1jΣ∗
6)k (36b)

Y ′
i,j ⊆ Yi,j + ((i− 1)0∗)6 (37a)

Y ′
i,j ⊆ (ijΣ∗

6)6 (37b)

Y ′′
i,j ⊆ Yi,j + ((i− 1)0∗)6 (37c)

Y ′′
i,j ⊆ (Σ∗

6 \ ijΣ∗
6)6 (37d)

Y ′
i,j ∪ Y ′′

i,j = Yi,j + ((i− 1)0∗)6 (37e)

if and only if L0 ⊆ {0, 1, 2, 3, 4, 5}, L1, L2, L3, L4, L5 ⊆ (1Σ+
6 )6,

Li,j = fi,j(Li) L′i,j = gi,j(Li) L′′i,j = hi,j(Li)

for i ∈ {2, . . . , 5} and j ∈ {0, . . . , 5}, and (L,L0, . . . , L5) is a solution of the
equation

Y = Y0 ∪ Y1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Yi ∩ (1jΣ∗

6)6)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)

Proof. Define

fi,j(X) = X ∩ (1jΣ∗
6)6,

gi,j(X) = fi,j(X)+((i− 1)0∗)6 ∩ (ijΣ∗
6)6,

hi,j(X) = fi,j(X)+((i− 1)0∗)6 ∩ (Σ∗
6 \ ijΣ∗

6)6.

These are monotone functions.
⇒© Suppose (L,L0 . . . , L5, . . . , Li,j, L

′
i,j, L

′′
i,j, . . .) is a solution of the system

(34–37e). Then, by (36), for each i ∈ {2, . . . , 5} and j ∈ {0, . . . , 5},
Li,j ⊆ (1jΣ∗

6)k,
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and taking into account that
⋃5

j=0 Li,j = Li, it follows that Li ⊆ (1Σ+
6 )k

holds for L2, . . . , L5. The inclusions L0 ⊆ {0, 1, 2, 3, 4, 5} and L1 ⊆ (1Σ+
6 )6

are explicitly stated in (35).
To see that Li,j = fi,j(Li), consider that, by (36a), Li =

⋃
j Li,j, and

further, by (36a) and (36b),
⋃

j Li,j ⊆
⋃

j Li ∩ (1jΣ∗
6)6. The latter is, clearly,

a subset of Li, and hence all the inequalities are in fact equalities:

Li =
⋃
j

Li,j =
⋃
j

Li ∩ (1jΣ∗
6)6 = Li.

Since for j 6= j′ the sets (1jΣ∗
6)6 and (1j′Σ∗

6)6 are disjoint, for each j it holds
that Li,j = Li ∩ (1jΣ∗

6)6 = fi,j(Li).
The proof of L′i,j = gi,j(Li) and L′′i,j = hi,j(Li) is by a similar chain of

inclusions:

Li,j + ((i− 1)0∗)6
(37e)
= L′i,j ∪ L′′i,j

(37a–37d)

⊆
⊆

(
Li,j+((i− 1)0∗)6 ∩ (ijΣ∗

k)6

)
∪

(
Li,j+((i− 1)0∗)6 ∩ (Σ∗

6 \ ijΣ∗
k)6

)
=

= Li,j + ((i− 1)0∗)6.

Therefore, the inequalities turn into equalities:

L′i,j = Li,j + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6 = gi,j(Li)

L′′i,j = Li,j + ((i− 1)0∗)6 ∩ (Σ∗
6 \ ijΣ∗

6)6 = hi,j(Li).

Since (L, . . . , Li, . . . , Li,j, . . . , L
′
i,j, . . . , L

′′
i,j, . . .) satisfies (34),

L = L0 ∪ L1 ∪
⋃
i,j

L′i,j,

and it can be concluded that

L = L0 ∪ L1 ∪
⋃
i,j

L′i,j = L0 ∪ L1 ∪
⋃
i,j

gi,j(Li) =

= L0 ∪ L1 ∪
⋃

i∈{2,3,4,5}
j∈Σ6

(
(Li ∩ (1jΣ∗

6)6) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

)
.

Hence (L,L0, . . . , L5) is a solution of the equation.
⇐© Conversely, assume that (L,L0 . . . , L5) is a solution of the equation.

To show that (L,L0 . . . , L5, . . . , fi,j(Li), . . . , gi,j(Li), . . . , hi,j(Li), . . .) is a so-
lution of the former system, these values should be substituted into (34)–(37).
For (36), the equality holds by the following calculations:

fi,j(Li) = Li ∩ (1jΣ∗
6)6 ⊆ (1jΣ∗

6)6⋃
j

fi,j(Li) =
⋃
j

Li ∩ (1jΣ∗
6)6 = Li ∩

⋃
j

(1jΣ∗
6)6 = Li.
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In the same manner, all five equations in (37) hold true:

gi,j(Li) = fi,j(Li) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

⊆ fi,j(Li) + ((i− 1)0∗)6

gi,j(Li) = fi,j(Li) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6

⊆ (ijΣ∗
6)6

hi,j(Li) = fi,j(Li) + ((i− 1)0∗)6 ∩ (Σ∗
6 \ ijΣ∗

6)6

⊆ fi,j(Li) + ((i− 1)0∗)6

hi,j(Li) = fi,j(Li) + ((i− 1)0∗)6 ∩ (Σ∗
6 \ ijΣ∗

6)6

⊆ (Σ∗
6 \ ijΣ∗

6)6

gi,j(Li) ∪ hi,j(Li) =
(
fi,j(Li) + ((i− 1)0∗)6 ∩ (ijΣ∗

6)6

)

∪
(
fi,j(Li) + ((i− 1)0∗)6 ∩ (Σ∗

6 \ ijΣ∗
6)6

)

= fi,j(Li) + ((i− 1)0∗)6

The equality (34) follows by the assumption that (L,L0, . . . , L5) is a solution
of the original system:

L0 ∪ L1 ∪
⋃
i,j

gi,j(Li) = L0 ∪ L1 ∪
⋃
i,j

fi,j(Li) + ((i− 1)0∗)6 ∩ (ijΣ∗
6)6 =

= L0 ∪ L1 ∪
⋃
i,j

(Li ∩ (1jΣ∗
6)6) + ((i− 1)0∗)6 ∩ (ijΣ∗

6)6 = L.

Finally, (35) is explicitly stated in the former system, so it clearly holds.

Using these equivalent reformulations of equations (4) and (8), the con-
structions in the proofs of Lemmata 3 and 4 can be modified to use either
union only or intersection only. This leads to the following stronger restate-
ments of these results:

Lemma 3*. For every recursively enumerable set of numbers L0 ⊆ N there
exists a system of equations of the form

ϕj(Y,X1, . . . , Xm) = ψj(Y, X1, . . . , Xm)

with union and addition (or with intersection and addition) and with single-
ton constants, which has the set of solutions

{
(L, f1(L), . . . , fm(L))

∣∣ L0 ⊆ L
}

where f1, . . . , fm : 2N → 2N are some monotone functions on sets of numbers
defined with respect to L0. In particular, there is a least solution with Y = L0.
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Lemma 4*. For every co-recursively enumerable set of numbers L0 ⊆ N
there exists a system of equations of the form

ϕj(Z, X1, . . . , Xm) = ψj(Z, X1, . . . , Xm)

with union and addition (or with intersection and addition) and with single-
ton constants, which has the set of solutions

{
(L, f1(L), . . . , fm(L))

∣∣ L ⊆ L0

}
,

where f1, . . . , fm : 2N → 2N are some monotone functions on sets of numbers
defined with respect to L0. In particular, there is a greatest solution with
Z = L0.

A strengthened version of Lemma 5 is inferred from Lemmata 3* and 4*
in the same way as in the proof of Lemma 5.

Lemma 5*. For every recursive set of numbers L ⊆ N there exists a system
of equations of the form ϕi(Y, Z, X1, . . . , Xn) = ψi(Y, Z, X1, . . . , Xn) with
union and addition (or with intersection and addition) and with singleton
constants, such that its unique solution is Y = Z = L, Xi = Ki, where
(K1, . . . , Kn) is some vector of sets.

These lemmata yield the proof of the following strengthened version of
Theorem 4.

Theorem 4*. The family of sets of natural numbers representable by
unique (least, greatest) solutions of systems of equations of the form
ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn) with union and addition and singleton con-
stants, is exactly the family of recursive (r.e., co-r.e., respectively) sets. The
same result holds for systems with intersection, addition and singleton con-
stants.

6 Decision problems

Consider basic properties of equations, such as the existence and the unique-
ness of solutions. For the more general case of language equations it is known
that these and a few other properties are undecidable [13, 15, 16], and their
exact position in the arithmetical hierarchy has been determined. These re-
sults will now be re-created for equations over sets of numbers, based upon
the constructions from the previous section.

Theorem 7. The problem of whether a system of equations ϕi(X1, . . . , Xn) =
ψi(X1, . . . , Xn) over sets of natural numbers has a solution is Π1-complete.
It remains Π1-hard if the allowed operations are union and addition, or in-
tersection and addition.
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Proof. The problem is in Π1 in the more general case of language equations
[13].

Its Π1-hardness is proved by a reduction from the emptiness problem for
Turing machines. Let T be a TM and construct a system of equations in
variables (Y0, . . . , Y5, X1, . . . , Xm) with the unique solution Yi = VALCi(T ),
Xj = Kj ⊆ N. Since L(T ) = ∅ if and only

⋃5
i=0 VALCi(T ) = ∅, it is

sufficient to add a new equation
⋃5

i=0 Yi = ∅ so that the resulting system
has a solution if and only if L(T ) = ∅.

Theorem 8. Testing whether a system ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn)
over sets of natural numbers has a unique solution is a Π2-complete problem.
It is still Π2-hard if the operations are limited to union (intersection) and
addition.

Proof. The Π2 upper bound is known from the case of language equations
[13].

Π2-hardness is proved by a reduction from the known Π2-complete Turing
machine universality problem, which can be stated as follows: “Given a TM
M working on natural numbers, determine whether it accepts every n ∈ N0”.
Given M , construct the system of equations as in Lemma 3*. It has a unique
solution if and only if the bounds L(T ) ⊆ L ⊆ N are tight, that is, if and
only if the TM accepts every number. This completes the reduction.

Theorem 9. The problem whether a system ϕi(X1, . . . , Xn) =
ψi(X1, . . . , Xn) over sets of natural numbers has finitely many solu-
tions is Σ3-complete. Its Σ3-hardness is maintained for the operations of
union (intersection) and addition.

Proof. The problem is in Σ3 for language equations [16].
To prove Σ3-hardness, consider the co-finiteness problem for Turing ma-

chines, which is stated as “Given a TM T working on natural numbers,
determine whether N\L(T ) is finite”, which is known to be Σ3-complete [17,
Cor. 14-XVI]. Given M , use Lemma 3* to construct the system of equations
with the set of solutions { (L, f1(L), . . . , fk(L)) |L(T ) ⊆ L}. This set is finite
if and only if N \ L(T ) is finite, which completes the reduction.

7 Conclusion

The equations considered in this paper are a pure mathematical object and
apparently a rather simple one: constructing any system with a non-periodic
solution is a challenging task in itself. Unexpectedly, it turned out to be
equivalent to the notion of effective computability.

This can be compared to Diophantine equations, which have been proved
to be computationally complete by Matiyasevich. Due to this result, it is
known, for instance, that there is a Diophantine equation for which the range
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of admissible values of a certain variable x is exactly the set of primes. Sim-
ilarly, our Lemma 3 allows one to construct a system of equations over sets
of natural numbers, which has a unique solution with one of its components
being exactly the set of primes.

Among the applications of this result, it settles the expressive power of a
generalization of integer circuits [11], as well as shows that language equations
are computationally complete even in the seemingly trivial case of a unary
alphabet.
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lis automata”, Informatique Théorique et Applications, 38:1 (2004), 69–
88.

[15] A. Okhotin, “Unresolved systems of language equations: expressive
power and decision problems”, Theoretical Computer Science, 349:3
(2005), 283–308.

[16] A. Okhotin, “Strict language inequalities and their decision problems”,
Mathematical Foundations of Computer Science (MFCS 2005, Gdańsk,
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