
Tommi Lehtinen | Alexander Okhotin

Boolean grammars are closed
under inverse gsm mappings

TUCS Technical Report
No 911, October 2008

Boolean grammars are closed
under inverse gsm mappings

Tommi Lehtinen
Department of Mathematics, University of Turku
Turku FIN–20014, Finland
tojleht@utu.fi

Alexander Okhotin
Academy of Finland, and
Department of Mathematics, University of Turku, and
Turku Centre for Computer Science
Turku FIN–20014, Finland
alexander.okhotin@utu.fi

TUCS Technical Report

No 911, October 2008

Abstract

It is proved that for every Boolean grammar G and for every generalized se-
quential machine M , the set M−1(L(G)) of pre-images of words generated by
G is generated by a Boolean grammar, which can be effectively constructed.
Furthermore, if G is unambiguous, the constructed grammar is unambiguous
as well. These results extend to conjunctive grammars.

Keywords: Boolean grammars, conjunctive grammars, closure properties,
gsm mappings

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

Boolean grammars [11] are an extension of the context-free grammars, in
which the rules may contain explicit Boolean operations. The extended ex-
pressive power and the intuitive clarity of the new operations make these
grammars a much more powerful tool for specifying languages than the
context-free grammars. Another important fact is that the main context-
free parsing algorithms, such as the Cocke–Kasami–Younger, the recursive
descent and the generalized LR, can be extended to Boolean grammars with-
out increasing their computational complexity [11, 12].

Though the Boolean grammars easily inherit many good practical prop-
erties of context-free grammars, their theoretical properties present a greater
challenge to a researcher. No methods of proving any limitations of
Boolean grammars are known up to date, and the languages they generate
still could not be separated from their complexity-theoretic upper bound,
DTIME(n3) ∩ DSPACE(n) [11].

Also quite little progress has been made on the closure properties of the
languages generated by Boolean grammars. This is the question of whether
applications of certain operations to these languages always yield languages
generated by Boolean grammars. Boolean grammars are trivially closed un-
der Boolean operations and concatenation, since all these operations are in-
cluded in their formalism. The same can be said with respect to star, which
can be expressed by iterating a single nonterminal, as in the context-free
case. Unlike the context-free languages, the languages generated by Boolean
grammars are not closed under homomorphisms: in fact, all recursively enu-
merable languages can be obtained as homomorphic images of languages
generated by a subclass of Boolean grammars, the linear conjunctive gram-
mars [2, 10]. The closure under non-erasing homomorphisms remains an
open problem.

Among the standard operations on languages are inverse homomorphisms
and the more general inverse gsm mappings. These are pre-images of lan-
guages under mappings M : Σ∗ → Γ∗ implemented by deterministic trans-
ducers (generalized sequential machines, gsm). The pre-image of a language
L ⊆ Γ∗ is defined as M−1(L) = {w ∈ Σ∗ | M(w) ∈ L}. It is known from
Ginsburg and Rose [3] that context-free languages are closed under inverse
gsm mappings. This argument was adapted to unambiguous context-free
languages by Ginsburg and Ullian [4]. More accessible proofs of these results
based upon pushdown automata were given by Harrison [5]. An examination
of this argument shows that it also applies to linear context-free languages,
which are consequently closed under inverse gsm mappings. The aforemen-
tioned linear conjunctive languages are closed under this operation by an
argument due to Ibarra and Kim [7] done in terms of trellis automata [1].

This paper investigates the closure of Boolean grammars under inverse
gsm mappings. It is established that for every Boolean grammar G over an al-

1

phabet Γ and for every gsm mapping M : Σ∗ → Γ∗, the language M−1(L(G))
of pre-images of words generated by G is generated by a Boolean gram-
mar. Since no automaton representation for Boolean grammars is known,
the grammar for M−1(L(G)) is constructed directly from G. Furthermore, if
the Boolean grammar G is unambiguous [13], then the constructed grammar
for M−1(L(G)) is unambiguous as well, and if G does not use negation (that
is, it is a conjunctive grammar [9]), then negation can be eliminated in the
constructed grammar.

Thus four language families are shown to be closed under inverse gsm
mapping: these are languages generated by Boolean grammars, unambigu-
ous Boolean grammars conjunctive grammars and unambiguous conjunctive
grammars. As a direct corollary, these families are also seen to be closed
under inverse homomorphism.

2 Definition of Boolean grammars

Definition 1 ([11]). A Boolean grammar is a quadruple G = (Σ, N, P, S),
where Σ and N are disjoint finite nonempty sets of terminal and nonterminal
symbols respectively; P is a finite set of rules of the form

A → α1& . . . &αm&¬β1& . . . &¬βn, (1)

where m+n > 1, αi, βi ∈ (Σ∪N)∗; S ∈ N is the start symbol of the grammar.

For each rule (1), the terms αi and ¬βj (for all i, j) are called conjuncts,
positive and negative respectively. A conjunct with any sign is denoted ±γ.
Occasionally conjuncts will be written together with the left-hand sides of
the rules from which they originate, as A → αi, A → ¬βj or A → ±γ. The
entire right-hand side of a rule (1) will sometimes be denoted by ϕ, and the
whole rule by A → ϕ.

A Boolean grammar is called a conjunctive grammar [9], if negation is
never used, that is, n = 0 for every rule (1). It is a context-free grammar
if neither negation nor conjunction are allowed, that is, m = 1 and n = 0
for each rule. Another important particular case of Boolean grammars is
formed by linear conjunctive grammars, in which every conjunct is of the
form A → uBv or A → w, with u, v, w ∈ Σ∗, A ∈ N . Linear conjunctive
grammars are equal in power to linear Boolean grammars with conjuncts
A → ±uBv or A → w, as well as to trellis automata, also known as one-way
real-time cellular automata [1, 10].

Intuitively, a rule (1) of a Boolean grammar can be read as follows: every
string w over Σ that satisfies each of the syntactical conditions represented
by α1, . . . , αm and none of the syntactical conditions represented by β1, . . . ,
βm therefore satisfies the condition defined by A. Though this is not yet a
formal definition, this understanding is sufficient to construct grammars.

2

Example 1. The following grammar generates the language {anbncn |n > 0}:
S → AB&DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

This grammar, which is actually conjunctive, represents this language as
an intersection of two context-free languages:

{anbncn | n > 0}︸ ︷︷ ︸
L(S)

= {aibjck | j = k}︸ ︷︷ ︸
L(AB)

∩{aibjck | i = j}︸ ︷︷ ︸
L(DC)

A related non-context-free language can be specified by inverting the sign
of one of the conjuncts in this grammar.

Example 2. The following Boolean grammar generates the language
{ambncn |m,n > 0,m 6= n}:

S → AB&¬DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

This grammar is based upon the following representation.

{anbmcm |m,n > 0,m 6= n}︸ ︷︷ ︸
L(S)

= {aibjck | j = k and i 6= j} = L(AB) ∩ L(DC)

Example 3. The following Boolean grammar generates the language
{ww | w ∈ {a, b}∗}:

S → ¬AB&¬BA&C
A → XAX | a
B → XBX | b
C → XXC | ε
X → a | b

According to the intuitive semantics of Boolean grammars described
above, the nonterminals A, B, C and X generate context-free languages

L(A) = {uav | u, v ∈ {a, b}∗, |u| = |v|},
L(B) = {ubv | u, v ∈ {a, b}∗, |u| = |v|}.

Then

L(AB) = {uavxby | u, v, x, y ∈ {a, b}∗, |u| = |x|, |v| = |y|},

3

in other words, L(AB) is the set of all strings of even length with a mismatch
a on the left and b on the right (in any position). Similarly,

L(BA) = {ubvxay | u, v, x, y ∈ {a, b}∗, |u| = |x|, |v| = |y|}

specifies the mismatch formed by b on the left and a on the right. Then the
rule for S specifies the set of strings of even length without such mismatches:

L(S) = L(AB) ∩ L(BA) ∩ {aa, ab, ba, bb}∗ = {ww | w ∈ {a, b}∗}.

A formal definition of the language generated by a Boolean grammar.
can be given in several different ways [8, 11], which ultimately yield the same
class of languages. We shall use the most straightforward of these definitions,
which begins with the interpretation of a grammar as a system of equations
with formal languages as unknowns:

Definition 2. Let G = (Σ, N, P, S) be a Boolean grammar. The system
of language equations associated with G is a resolved system of language
equations over Σ in variables N , in which the equation for each variable
A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(2)

Each instance of a symbol a ∈ Σ in such a system defines a constant language
{a}, while each empty string denotes a constant language {ε}. A solution
of such a system is a vector of languages (. . . , LC , . . .)C∈N , such that the
substitution of LC for C, for all C ∈ N , turns each equation (2) into an
equality.

Now the following restriction is imposed upon these equations, so that
their solutions can be used to define the languages generated by grammars:

Definition 3. Let G = (Σ, N, P, S) be a Boolean grammar, let (2) be the as-
sociated system of language equations. Suppose that for every finite language
M ⊂ Σ∗ (such that for every w ∈ M all substrings of w are also in M) there
exists a unique vector of languages (. . . , LC , . . .)C∈N (LC ⊆ M), such that a
substitution of LC for C, for each C ∈ N , turns every equation (2) into an
equality modulo intersection with M .

Then, for every A ∈ N , the language LG(A) is defined as LA, while the
language generated by the grammar is L(G) = LG(S) = LS.

There exists an unambiguous subclass of Boolean grammars, which gen-
eralizes unambiguous context-free grammars.

Definition 4. A Boolean grammar G = (Σ, N, P, S) is unambiguous if

4

I. Different rules for every single nonterminal A generate disjoint lan-
guages, that is, for every string w there exists at most one rule

A → α1& . . . &αm&¬β1& . . . &¬βn,

such that w ∈ LG(α1) ∩ . . . ∩ LG(αm) ∩ LG(β1) ∩ . . . ∩ LG(βn).

II. All concatenations are unambiguous, that is, for every conjunct A →
±s1 . . . s` and for every string w there exists at most one factorization
w = u1 . . . u`, such that ui ∈ LG(si) for all i.

While the languages generated by Boolean grammars can be recognized in
cubic time [11] and no better upper bound is known, unambiguous Boolean
grammars allow square-time parsing [13]. However, no proofs of inherent
ambiguity of any languages generated by Boolean grammars are known. It
is known that all linear conjunctive languages have unambiguous grammars.

The relation between the families of languages generated by Boolean
grammars (Bool), conjunctive grammars (Conj) and linear conjunctive gram-
mars (LinConj), their unambiguous variants (UnambBool and UnambConj), as
well as other common families of formal languages, is shown in Figure 1
[13]. The rest of the classes in the figure are regular (Reg), linear context-
free (LinCF), context-free (CF) and deterministic context-sensitive languages
(DetCS).

Figure 1: The hierarchy of language families.

The following normal form for Boolean grammars, which generalizes
Chomsky normal form for the context-free grammars, is known.

Definition 5. A Boolean grammar G = (Σ, N, P, S) is in the binary normal
form if every rule in P is of the form

A → B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε (m > 1, n > 0)

A → a

S → ε (only if S does not appear in right-hand sides of rules)

Every grammar of this form is well-defined in the sense of Definition 3,
as well as according to other definitions of Boolean grammars [8, 11].

5

Proposition 1 ([11, 13]). For every Boolean grammar there exists and can be
effectively constructed a Boolean grammar in the binary normal form gener-
ating the same language. Furthermore, if the given grammar is unambiguous,
then so is the constructed grammar.

Definition 6 (Ginsburg and Rose [3]; Harrison [5]). A (deterministic) gen-
eralized sequential machine (gsm) is a septuple M = (Σ, Γ, Q, q0, δ, λ, F),
where

Σ is a finite nonempty input alphabet,

Γ is a finite nonempty output alphabet,

Q is a finite nonempty set of states,

q0 ∈ Q is the start state,

δ : Q× Σ → Q is the transition function,

λ : Q× Σ → Γ∗ is the output function, and

F ⊆ Q is the set of final states.

The functions δ and λ are extended to Q×Σ∗ in the usual way, as δ(q, ε) =
q, δ(q, aw) = δ(δ(q, a), w) and as λ(q, ε) = ε, λ(q, aw) = λ(q, a)λ(δ(q, a), w).
A gsm M computes a partial function M : Σ∗ → Γ∗, where M(w) = λ(q0, w)
and δ(q0, w) ∈ F .

We are interested in the inverse image under this partial mapping M ,
that is, for a language L ⊆ Γ∗ we have the inverse image M−1(L) = {w ∈
Σ∗ |M(w) ∈ L}.

3 Closure under inverse gsm mappings

Theorem 1. For every generalized sequential machine M implementing a
function M : Σ∗ → Γ∗ and for every Boolean (conjunctive, unambiguous
Boolean, unambiguous conjunctive) grammar G over Γ there exists and can be
effectively constructed a Boolean (conjunctive, unambiguous Boolean, unam-
biguous conjunctive) grammar over Σ generating the language M−1(L(G)).

3.1 The form of a gsm

Our construction requires separating the transitions that output ε, since
these are handled differently from those that output something non-empty.
In order to do this, we will assume that the state set of M is divided into
two separate sets Qε and Q¬ε, such that

δ(q, a) ∈
{

Qε, if λ(q, a) = ε
Q¬ε, if λ(q, a) 6= ε.

6

This can be done by duplicating the original state set Q into two disjoint
sets Qε = {qε | q ∈ Q} and Q¬ε = {q¬ε | q ∈ Q} and defining for all q ∈ Q

λ(qε, a) = λ(q¬ε, a) = λ(q, a)

and

δ(qε, a) = δ(q¬ε, a) =

{
δ(q, a)ε, if λ(q, a) = ε
δ(q, a)¬ε, if λ(q, a) 6= ε.

Final states are the duplicates of states in F , denoted by Fε and F¬ε, and as
the start state we choose q0

¬ε. Now the gsm always remembers (in its current
state) whether the previous symbol read had an empty or non-empty image.
This property will be used in the below construction.

3.2 Construction of the grammar

Let Σ and Γ be finite alphabets, let M = (Σ, Γ, Qε ∪ Q¬ε, q
0, δ, λ, F) be a

generalized sequential machine as defined above. Assume that λ(q, a) 6= ε
for some q ∈ Q and a ∈ Σ; otherwise M−1(L(G)) = {w ∈ Σ∗ |M(w) = ε} if
ε ∈ L(G) and M−1(L(G)) = ∅ if ε /∈ L(G), and either language is regular.

Let G = (Γ, N, P, S) be a Boolean grammar in the binary normal form
without a rule S → ε. The case of the empty word can be handled using the
equality M−1(L(G) ∪ {ε}) = M−1(L(G)) ∪ {w ∈ Σ∗ | M(w) = ε}. Now a
grammar G′ = (Σ, N ′, P ′, S ′) for the language M−1(L(G)) is constructed as
follows.

The set of nonterminals of G′ is N ′ = N ′
1 ∪N ′

2 ∪ T ′ ∪ {S ′}, where S ′ is a
distinguished start symbol. The subset T ′ is defined as

T ′ = {Tq,q′ | q ∈ Q, q′ ∈ Q} ∪ {T̃q | q ∈ Q},
These nonterminals should generate the languages LG′(Tq,q′) = {w ∈
Σ∗ | δ(q, w) = q′, λ(q, w) = ε} and LG′(T̃q) = {a ∈ Σ | λ(q, a) 6= ε}Σ∗.
These languages are regular, so there obviously exists an unambiguous linear
context-free grammar generating them. We omit the explicit construction of
the corresponding set of rules.

Turning to the sets of nonterminals N ′
1 and N ′

2, let us first define two sets
of margins:

suff = {x | x a proper suffix of some λ(q, a), q ∈ Q, a ∈ Σ} and

pref = {y | y a proper prefix of some λ(q, a), q ∈ Q, a ∈ Σ}.
Now the set of nonterminals contains quintuples

N ′
1 = {(x, q, A, q′, y) | x ∈ suff, q ∈ Qε ∪Q¬ε, A ∈ N, q′ ∈ Q¬ε, y ∈ pref}

and sextuples

N ′
2 = {(x, q, B, C, q′, y) | x ∈ suff, q ∈ Qε∪Q¬ε, B, C ∈ N, q′ ∈ Q¬ε, y ∈ pref},

7

where BC or ¬BC appears as a conjunct in P . Each of these nonterminals
should generate a word w if and only if δ(q, w) = q′ and xλ(q, w)y ∈ LG(A)
in the first case and xλ(q, w)y ∈ LG(BC) in the second case. Such words
will be generated by different types of rules, depending on q, q′ and w.

The rules

P ′
ε = {(x, q, A, q, y) → ε | (x, q, A, q, y) ∈ N ′

1; xy ∈ LG(A)}
are the only rules for nonterminals in N ′

1 that generate ε, which will be stated
in Lemma 3. Note that xy 6= ε in any such rule because ε /∈ LG(A) for every
A ∈ N .

The rules

P ′
1 = {(ε, q, A, δ(q, a), ε) → a | λ(q, a) ∈ Γ; A → λ(q, a) ∈ P}

correspond to rules of the form A → a in P .
The rules

P ′
0 = {(x, q, A, q′, y) → a(x, δ(q, a), A, q′, y) | (x, q, A, q′, y) ∈ N ′

1; λ(q, a) = ε}
generate the words that begin with a symbol with an empty image when the
mapping starts from q.

For every nonterminal (x, q, B, C, q′, y) ∈ N ′
2 the set P ′ contains a rule

(x, q, B, C, q′, y) → α&¬ε for each α belonging to any of the following four
sets:

{(x′, q, C, q′, y) | x = x′′x′ : x′′ ∈ L(B), x′ ∈ Σ+}, (3a)

{(x, q, B, q′′, ε)(ε, q′′, C, q′, y) | q′′ ∈ Q¬ε}, (3b)

{(x, q, B, q′′, y′)Tq′′,q′′′a(x′, δ(q′′′, a), C, q′, y) | x′, y′ ∈ Γ+; a ∈ Σ; λ(q′′′, a) = y′x′},
(3c)

{(x, q, B, q′, y′) | y = y′y′′ : y′ ∈ Σ+, y′′ ∈ L(C)}. (3d)

In the case of q ∈ Qε and x ∈ LG(B), the set (3b) also contains a conjunct

(ε, q, C, q′, y), (3b′)

Similarly, if q ∈ Qε, then the set (3c) also has the conjuncts

{Tq,q′′′a(x′, δ(q′′′, a), C, q′, y) | x′, y′ ∈ Γ+; a ∈ Σ; λ(q′′′, a) = y′x′; xy′ ∈ LG(B)}.
(3c′)

These sets of conjuncts correspond to different factorizations of xλ(q, w)y
into LG(B) · LG(C), as illustrated in Figure 2.

For all ϕ = B1C1& . . . &BmCm&¬D1E1& . . . &¬DnEn&¬ε appearing as
the right-hand side of a rule in P we write

(x, q, ϕ, q′, y) = &
16i6m

(x, q, Bi, Ci, q
′, y)& &

16j6n
¬(x, q, Dj, Ej, q

′, y)&T̃q

8

Figure 2: Factorizations of xλ(q, w)y.

Now we can define

P ′
long = {(x, q, A, q′, y) → (x, q, ϕ, q′, y) | A → ϕ ∈ P}.

P ′
S = {S ′ → (ε, q0

¬ε, S, q, ε)Tq,f | q ∈ Q¬ε; f ∈ F}

P ′ = P ′
0 ∪ P ′

1 ∪ P ′
ε ∪ P ′

long ∪ P ′
S.

It should be noted that these sets of rules are disjoint. Furthermore, if the
original grammar G is conjunctive, then no new negations are added, except
for the conjuncts ¬ε. The latter can be replaced by positive conjuncts C,
where C generates the regular language Σ+. So, in this case the constructed
grammar G′ is conjunctive as well.

3.3 Correctness of the construction

First we have to prove that the grammar G′ defines a language under the
chosen semantics of strongly unique solution.

Lemma 1. The system of equations corresponding to G′ has a strongly unique
solution.

Proof. Let K be a subword-closed language, it has to be proved that the so-
lution modulo K is unique. The proof is induction on |K|. The nonterminals
Tq,q′ and Tq generate regular languages, and thus can be assumed to have a
unique solution modulo every language. The uniqueness of the solutions for
S ′ follow from the uniqueness of solutions for nonterminals in N ′

1 and T ′,
since S ′ doesn’t appear in the right side of any rule.

9

Induction basis: K = {ε}. For nonterminals in N ′
1, the unique solution

modulo K has (x, q, A, q′′, y) = {ε} if q = q′ and xy ∈ LG(A) (according to
a rule from P ′

ε) and (x, q, A, q′′, y) = ∅ otherwise (since the rules from P ′
1

and P ′
long cannot generate ε, the latter due to a conjunction with T̃q). For all

(x, q, B, C, q′, y) ∈ N ′
2 the unique solution is (x, q, B,C, q′, y) = ∅, because

all rules for these nonterminals contain a conjunction with ¬ε.
Induction hypothesis: The solution modulo K ′ is unique.
Induction step: Let K = {w} ∪ K ′, where w /∈ K ′, but all subwords

of w are in K ′. Suppose that the solution modulo K is not unique. Then
there are two different solutions L and L′, such that w ∈ LX and w /∈ L′X
for some X ∈ N ′

1 ∪ N ′
2. Choose a nonterminal with minimal margins |xy|.

First let X = (x, q, A, q′, y) ∈ N ′
1. Now if w is generated by a rule in P ′

1,
then it would be in L′(x,q,A,q′,y) by the same rule. If it were generated by

a rule (x, q, A, q′, y) → a(x, δ(q, a), A, q′, y) from P ′
0, then w = aw′, with

w′ ∈ L(x,δ(q,a),A,q′,y). Since w′ ∈ K ′, it follows that w′ ∈ L′(x,δ(q,a),A,q′,y) and
w ∈ L′(x,q,A,q′,y). If w is generated by a rule in P ′

long, then the solutions differ

on a nonterminal (x, q, B, C, q′, y) ∈ N ′
2. There are four possible types of

rules (x, q, B,C, q′, y) → α&¬ε:

(3a) If α = (x′, q, C, q′, y), then |x′y| < |xy| and L(x′,q,C,q′,y) = L′(x′,q,C,q′,y) by
the choice of X.

(3b) In the case α = (x, q, B, q′′, ε)(ε, q′′, C, q′, y) we have that w ∈
L(x,q,B,q′′,ε)L(ε,q′′,C,q′,y) and w /∈ L′(x,q,B,q′′,ε)L

′
(ε,q′′,C,q′,y). So w = uv, with

u ∈ L(x,q,B,q′′,ε) and v ∈ L(ε,q′′,C,q′,y).

If u = ε, then, by the induction hypothesis, ε ∈ L′(x,q,B,q′′,ε). Then
ε must be generated by a rule from P ′

ε, and therefore x 6= ε by the
construction of these rules. In addition, v = w ∈ L(ε,q′′,C,q′,y), and
therefore w /∈ L′(ε,q′′,C,q′,y) (because otherwise w ∈ L′X). Since x 6= ε

and |ε · y| < |xy|, Y = (ε, q′′, C, q′, y) is a nonterminal with smaller
margins with w ∈ LY \ L′Y , which contradicts the choice of X. The
case of v = ε is symmetrical.

If u, v 6= ε, then u, v ∈ K ′ and by the induction hypothesis w = uv ∈
L′(x,q,B,q′′,ε)L

′
(ε,q′′,C,q′,y).

If α = (ε, q, C, q′, y), then x ∈ LG(B) by the construction, and thus
x 6= ε. Then L(ε,q,C,q′,y) = L′(ε,q,C,q′,y) by the induction hypothesis.

(3c) If α = (x, q, B, q′′, y′)Tq′′,q′′′a(x′, δ(q′′′, a), C, q′, y), then w = utav, with
u ∈ L(x,q,B,q′′,y′), t ∈ LTq′′,q′′′ and v ∈ L(x′,δ(q′′′,a),C,q′,y). Since u, t, v ∈ K ′,
by the induction hypothesis w ∈ L′(x,q,B,q′′,y′)L

′
Tq′′,q′′′

aL′(x′,δ(q′′′,a),C,q′,y).

In the case α = Tq,q′′′a(x′, δ(q′′′, a), C, q′, y) we have w = tav, with
t ∈ LTq,q′′′ and v ∈ L(x′,δ(q′′′,a),C,q′,y), where t, v ∈ K ′. By the induction
hypothesis, w ∈ L′Tq,q′′′

aL′(x′,δ(q′′′,a),C,q′,y).

10

(3d) Finally if α = (x, q, B, q′, y′), then |xy′| < |xy| and L(x,q,B,q′,y′) =
L′(x,q,B,q′,y′) as in (3a).

Lemma 2. If w ∈ LG′
(
(x, q, A, q′, y)

)
or w ∈ LG′

(
(x, q, B, C, q′, y)

)
, then

δ(q, w) = q′.

Proof. Induction on lexicographically ordered pairs (|w|, |xy|).
Basis: w = ε. Then w is generated by a rule from P ′

ε, and hence w = ε,
q = q′ and δ(q, ε) = q.

Induction step: Let w be generated by a rule from P ′
1. Then w = a and

q′ = δ(q, w) by definition.
If w is generated by a rule from P ′

0, then w = aw′, with w′ ∈
LG′

(
(x, δ(q, a), A, q′, y)

)
. Then, by the induction hypothesis, δ(δ(q, a), w′) =

q′, and thus δ(q, w) = q′.
Finally we have the possibility that w is generated by a rule in P ′

long. The
right-hand side has a positive conjunct (x, q, B, C, q′, y) and thus w ∈ LG′(α)
for some (x, q, B, C, q′, y) → α&¬ε. There are four possible types of conjuncts
α.

In the cases (3a) and (3d), α consists of a single nonterminal with shorter
margins and the same states. Then, by the induction hypothesis, δ(q, w) = q′.

In the case (3b) α = (x, q, B, q′′, ε)(ε, q′′, C, q′, y) or α = (ε, q, C, q′, y).
In the first case w = uv with u ∈ LG′

(
(x, q, B, q′′, ε)

)
and v ∈

LG′
(
(ε, q′′, C, q′, y)

)
. If both u and v are non-empty, then, by the induction

hypothesis, δ(q, u) = q′′ and δ(q′′, v) = q′, so δ(q, w) = q′. Otherwise suppose
u = ε, then it is generated by a rule from P ′

ε, so x 6= ε by the construction
of P ′

ε. Then w ∈ LG′
(
(ε, q, C, q′, y)

)
with |εy| < |xy|, and so δ(q, w) = q′ by

the induction hypothesis. This is the case with α = (ε, q, C, q′, y) also.
In the case (3c) w = utav or w = tav, with u ∈ LG′

(
(x, q, B, q′′, y′)

)
,

t ∈ LG′(Tq′′,q′′′) and v ∈ LG′
(
(x′, δ(q′′′, a), B, q′, y)

)
. Since |u|, |v| < |w|, the

induction hypothesis asserts that δ(q, u) = q′′ and δ(δ(q′′′, a), v) = q′. By
definition of Tq′′,q′′′ also δ(q′′, t) = q′′′. Combining these we get δ(q, w) = q′.
This completes the proof of the last case.

Next we will prove that w ∈ LG′
(
(x, q, A, δ(q, w), y)

)
if and only if

xλ(q, w)y ∈ LG(A). Let us first prove results for words generated by rules in
P ′

ε, P ′
0 and P ′

1.

Lemma 3. ε ∈ LG′
(
(x, q, A, q′, y)

)
if and only if q = q′ and xy ∈ LG(A). In

this case ε can only be generated by a rule in P ′
ε.

Proof. The rules in P ′
0, P ′

1 or in any P ′
long can’t generate ε, so that ε ∈

LG′
(
(x, q, A, q′, y)

)
if and only if it is generated by a rule in P ′

ε. Existence of
this rule is equivalent to q = q′ and xy ∈ LG(A).

Lemma 4. If w ∈ LG′
(
(x, q, A, q′, y)

)
, then xλ(q, w)y 6= ε.

11

Proof. If w = ε, then, by Lemma 3, xy ∈ LG(A). Since G is in the normal
form and LG(A) ⊆ Σ+, xy 6= ε and the claim follows.

Assume w 6= ε. By Lemma 2, δ(q, w) = q′, and q′ ∈ Q¬ε by the construc-
tion of N ′

1. Now λ(q, w) 6= ε.

Lemma 5. If a ∈ Σ, λ(q, a) = ε and w ∈ Σ∗, then aw ∈ LG′
(
(x, q, A, q′, y)

)
if and only if w ∈ LG′

(
(x, δ(q, a), A, q′, y)

)
. In this case aw can only be

generated by a rule in P ′
0.

Proof. Suppose aw is generated by a rule for (x, q, A, q′, y). The rules in P ′
ε

and P ′
1 clearly don’t generate such words, and in the rules of P ′

long there

is a conjunct T̃q, with aw /∈ T̃q. Therefore, w is generated by a rule
(x, q, A, q′, y) → a(x, δ(q, a), A, q′, y) in P ′

0, with w ∈ LG′
(
(x, δ(q, a), A, q′, y)

)
.

Conversely, if w ∈ LG′
(
(x, δ(q, a), A, q′, y)

)
, then aw ∈ LG′

(
(x, q, A, q′, y)

)
by a rule (x, q, A, q′, y) → a(x, δ(q, a), A, q′, y).

Lemma 6. If a ∈ Σ, λ(q, a) ∈ Γ, then a ∈ LG′
(
(ε, q, A, q′, ε)

)
if and only if

λ(q, a) ∈ LG(A). In this case a can only be generated by a rule in P ′
1.

Proof. Suppose a is generated by (ε, q, A, q′, ε). Rules in P ′
ε only gener-

ate ε and any word generated by a rule in P ′
0 begins with a symbol with

an empty image. If it were generated by a rule in P ′
long, then it would

be in LG′
(
(ε, q, B, C, q′, ε)

)
for some B,C, such that BC is a conjunct in

some long rule for A in G. There are no rules of the form (3a) or (3d)
for (ε, q, B, C, q′, ε), and the rules of the form (3c) can’t generate a, since
|λ(q, a)| = 1, while the definition of (3c) requires the image of a to be of
length at least 2. Also a cannot be generated by a rule of the form (3b′),
because there is no such rule for x = ε (since ε /∈ LG(B)). So a would have to
be in LG′

(
(ε, q, B, δ(q, u), ε)(ε, δ(q, u), C, q′, ε)

)
, and one of (ε, q, B, δ(q, u), ε)

and (ε, δ(q, u), C, q′, ε) would generate ε, which is impossible by Lemma 3.
Thus a is generated by a rule in P ′

1. Then λ(q, a) ∈ LG(A) by the construction
of P ′

1.
Conversely, if λ(q, a) ∈ LG(A), then there is a rule (ε, q, A, q′, ε) → a in

P ′
1 and thus a ∈ LG′

(
(ε, q, A, q′, ε)

)
.

Let us then continue proving the main result. We will do this by induction
on the length of xλ(q, w)y ∈ Γ∗, since the rules in P ′ correspond to rules in
P in a natural way. We will start with the basis:

Lemma 7. Let q ∈ Q, q′ ∈ Q¬ε, x ∈ pref, y ∈ suff and w ∈ Σ∗ with
|xλ(q, w)y| 6 1. Then w ∈ LG′

(
(x, q, A, q′, y)

)
if and only if xλ(q, w)y ∈

LG(A) and δ(q, w) = q′.

Proof. First consider the case of δ(q, w) ∈ Qε. Then δ(q, w) 6= q′. By
Lemma 2, this implies w /∈ LG′

(
(x, q, A, q′, y)

)
. Thus both sides of the equiv-

alence are false. So it can be assumed that δ(q, w) ∈ Q¬ε.

12

Consider the case of λ(q, w) = ε. If w 6= ε, then δ(q, w) ∈ Qε by the
construction of the gsm, which contradicts the above assumption. Then
w = ε and the statement holds by Lemma 3.

In the remaining case of x = y = ε and |λ(q, w)| = 1, the proof is an
induction on |w|.
Basis: w = a ∈ Σ. Then the statement holds by Lemma 6.

Induction step: Let w = bw′a, with b, a ∈ Σ. Then λ(δ(q, bw′), a) 6= ε
because δ(q, bw′a) ∈ Q¬ε. It follows that the whole output on w comes
from a and, in particular, λ(q, b) = ε. Therefore, by Lemma 5, bw′a ∈
LG′

(
(ε, q, A, q′, ε)

)
if and only if w′a ∈ LG′

(
(ε, δ(q, b), A, q′, ε)

)
, which,

by the induction hypothesis, is equivalent to λ(δ(q, b), w′a) ∈ LG(A)
and δ(δ(q, b), w′a) = q′. This is in turn equivalent to λ(q, w) ∈ LG(A)
and δ(q, w) = q′.

Lemma 8. Let k > 2 be a natural number. Assume that for all x̃ ∈ pref,
ỹ ∈ suff, q̃ ∈ Q and w̃ ∈ Σ∗ with |x̃λ(q̃, w̃)ỹ| < k it holds that w̃ ∈
LG′

(
(x̃, q̃, Ã, q̃′, ỹ)

)
if and only if x̃λ(q̃, w̃)ỹ ∈ LG(Ã) and δ(q̃, w̃) = q̃′.

Let w 6= ε and |xλ(q, w)y| = k. Then:

1. Let (x, q, B, C, q′, y) ∈ N ′
2 and consider the rules for this nonterminal.

(a) w is generated by a rule (x, q, B, C, q′, y) → (x′, q, C, q′, y)&¬ε
if and only if δ(q, w) = q′ and there exists a factorization
xλ(q, w)y = z1z2 with z1 ∈ LG(B), z2 ∈ LG(C) and |z1| < |x|.

(b) w is generated by a rule (x, q, B,C, q′, y) →
(x, q, B, q′′, ε)(ε, q′′, C, q′, y)&¬ε (or in the case q ∈ Qε and x ∈
LG(B) possibly by a rule (x, q, B, C, q′, y) → (ε, q, C, q′, y)&¬ε)
if and only if δ(q, w) = q′ and there exists a factoriza-
tion xλ(q, w)y = z1z2 with z1 ∈ LG(B), z2 ∈ LG(C) and
|z1| = |xλ(q, u)| for some prefix u of w.

(c) w is generated by a rule (x, q, B,C, q′, y) →
(x, q, B, q′′, y′)Tq′′,q′′′a(x′, δ(q′′′, a), C, q′, y)&¬ε (or in the
case q ∈ Qε and xy′ ∈ LG(B) possibly by a rule
(x, q, B, C, q′, y) → Tq,q′′′a(x′, δ(q′′′, a), C, q′, y)&¬ε) if and only if
δ(q, w) = q′ and there exists a factorization xλ(q, w)y = z1z2 with
z1 ∈ LG(B), z2 ∈ LG(C) and |xλ(q, u)| < |z1| < |xλ(q, ua)|, for
some u ∈ Σ∗ and a ∈ Σ, such that ua is a prefix of w.

(d) w is generated by a rule (x, q, B, C, q′, y) → (x, q, B, q′, y′)&¬ε
if and only if δ(q, w) = q′ and there exists a factorization
xλ(q, w)y = z1z2 with z1 ∈ LG(B), z2 ∈ LG(C) and |xλ(q, w)| <
|z1|.

2. w ∈ LG′
(
(x, q, B, C, q′, y)

)
if and only if xλ(q, w)y ∈ LG(BC) and

δ(q, w) = q′.

13

3. Let A → ϕ be a rule in P . Then w ∈ LG′
(
(x, q, ϕ, q′, y)

)
if and only

if xλ(q, w)y ∈ LG(ϕ) and δ(q, w) = q′ and the first letter of w has
non-empty image. If in this case w ∈ LG′

(
(x, q, A, q′, y)

)
, then it can

be generated only by a rule in P ′
long.

Proof. 1. (a) Let w ∈ LG′
(
(x′, q, C, q′, y)

)
. Then x = x′′x′, with x′′ ∈

LG(B). Now |x′| < |x| and thus |x′λ(q, w)y| < k. Then, by
assumption, x′λ(q, w)y ∈ LG(C). So z1 = x′′ and z2 = x′λ(q, w)y
is a correct factorization. In addition, δ(q, w) = q′ by Lemma 2.

Conversely, if there is such a factorization, then z1 ∈ LG(B), x =
z1x

′ and x′λ(q, w)y = z2 ∈ LG(C). Now |x′λ(q, w)y| < k and by
the assumption w ∈ LG′

(
(x′, q, C, q′, y)

)
.

(b) If w ∈ LG′
(
(x, q, B, q′′, ε)(ε, q′′, C, q′, y)

)
, then it can be fac-

torized as w = uv, with u ∈ LG′
(
(x, q, B, q′′, ε)

)
and v ∈

LG′
(
(ε, q′′, C, q′, y)

)
. By Lemma 4, this is only possible if

xλ(q, u) 6= ε and λ(q′′, v)y 6= ε. Then |xλ(q, u)|, |λ(q′′, v)y| < k, so,
by the assumption, z1 = xλ(q, u) ∈ LG(B) and z2 = λ(q′′, v)y ∈
LG(C). By Lemma 2 twice, δ(q, u) = q′′ and δ(q′′, v) = q′,
which implies δ(q, w) = q′. Then λ(q, w) = λ(q, u)λ(δ(q, u), v) =
λ(q, u)λ(q′′, v), and therefore z1z2 = xλ(q, w)y is the requested
factorization.

In the case w ∈ LG′
(
(ε, q, C, q′, y)

)
, we have the factorization z1 =

x = xλ(q, ε) and z2 = λ(q, w)y.

Conversely let z1 = xλ(q, u) for some prefix u of w. Now
if it is the case that q ∈ Qε and z1 = x, then w is gener-
ated by the rule (x, q, B,C, q′, y) → (ε, q, C, q′, y)&¬ε. Other-
wise let q′′ = δ(q, u), we can assume q′′ ∈ Q¬ε. Then z2 =
λ(q′′, v)y, where w = uv. Now the assumption applies, and
u ∈ LG′

(
(x, q, B, q′′, ε)

)
and v ∈ LG′

(
(ε, q′′, C, q′, y)

)
. Hence,

w ∈ LG′
(
(x, q, B, q′′, ε)(ε, q′′, C, q′, y)

)
.

(c) If w ∈ LG′
(
(x, q, B, q′′, y′)Tq′′,q′′′a(x′, δ(q′′′, a), C, q′, y)

)
, then w =

u′tav, where u′ ∈ LG′
(
(x, q, B, q′′, y′)

)
, t ∈ LG′(Tq′′,q′′′) and

v ∈ LG′
(
(x, δ(q′′′, a), C, q′, y)

)
. We have xλ(q, u′)y′ ∈ LG(B) and

x′λ(δ(q′′′, a), v)y ∈ LG(C) by the assumption, and λ(q′′, t) = ε
and λ(q′′′, a) = y′x′ by definition. By Lemma 2, q′′ = δ(q, u), and
therefore q′′′ = δ(q′′, t) = δ(q, u′t) by the definition of Tq′′,q′′′ . Com-
bining these we obtain z1 = xλ(q, u′t)y′, z2 = x′λ(δ(q′′′, a), v)y′

and |xλ(q, u′t)| < |z1| < |xλ(q, u′ta)|. Setting u = u′t, this satis-
fies the condition.

In the case w ∈ LG′
(
Tq,q′′′a(x′, δ(q′′′, a), C, q′, y)

)
we get w = tav,

with t ∈ LG′(Tq,q′′′) and v ∈ LG′
(
(x, δ(q′′′, a), C, q′, y)

)
. We obtain

z1 = xλ(q, t)y′, z2 = x′λ(δ(q′′′, a), v)y′ and |xλ(q, t)| < |z1| <
|xλ(q, ta)|. Then u = t and the condition of the lemma is met.

14

Conversely, let |xλ(q, u)| < |z1| < |xλ(q, ua)|, for some u ∈ Σ∗

and a ∈ Σ, such that w = uav.

If it is the case that q ∈ Qε and λ(q, u) = ε, then u ∈ LG′(Tq,q′′′),
where q′′′ = δ(q, u), by definition. Now z1 = xy′ for some proper
prefix y′ of λ(q′′′, a) = y′x′ and z2 = x′λ(δ(q′′′, a), v)y. By the
assumption, v ∈ LG′

(
(x, δ(q′′′, a), C, q′, y)

)
, and so w is generated

by the rule (x, q, B, C, q′, y) → Tq,q′′′a(x′, δ(q′′′, a), C, q′, y)&¬ε.

Otherwise let u′ be the longest prefix of u, such that δ(q, u′) ∈
Q¬ε. Now u = u′t, with λ(δ(q, u′), t) = ε and w = u′tav.
Then z1 = xλ(q, u′)y′ and z2 = x′λ(δ(q, uta), v)y, where
λ(δ(q, ut), a) = y′x′ is the image of a which is split between z1

and z2. Now, by the assumption, u′ ∈ LG′
(
(x, q, B, δ(q, u), y′)

)
and v ∈ LG′

(
(x′, δ(q, uta), C, δ(q, w), y)

)
, and by definition t ∈

LG′(Tδ(q,u),δ(q,ut)).

(d) Now |z2| < |y| and we have a symmetric situation to the first case
of (3a).

2. Let w ∈ LG′
(
(x, q, B, C, q′, y)

)
. Then it is generated by a rule

(x, q, B, C, q′, y) → α, where α is one of the conjuncts (3a)-(3d). In
all of these cases we get, by the first part, a factorization xλ(q, w)y =
z1z2 ∈ LG(B)LG(C) and δ(q, w) = q′ by Lemma 2. If conversely
xλ(q, w)y ∈ LG(BC), then it has a factorization xλ(q, w)y = z1z2 ∈
LG(B)LG(C), and it is of one of the types in the first part, and thus w
is generated by one of the rules.

3. The fact that the first symbol of w has a non-empty image is equiv-
alent to w ∈ T̃q, and since (x, q, ϕ, q′, y) contains a conjunction with

T̃q, this can be assumed. By definition, xλ(q, w)y ∈ LG(ϕ) is equiva-
lent to xλ(q, w)y ∈ LG(BiCi) for all i and xλ(q, w)y /∈ LG(DjEj) for
all j. By the second part of the Lemma, this is again equivalent to
w ∈ LG′

(
(x, q, Bi, Ci, q

′, y)
)

for all i and w /∈ LG′
(
(x, q, Dj, Ej, q

′, y)
)

for all j, which, with the assumption w ∈ T̃q, is equivalent to w ∈
LG′

(
(x, q, ϕ, q′, y)

)
.

Suppose then that w ∈ LG′
(
(x, q, A, q′, y)

)
. First w 6= ε, so it can’t be

generated by a rule in P ′
ε. It can’t be generated by a rule from P ′

0, since
it begins with a symbol that has a non-empty image. And it can’t be
generated by a rule in P ′

1, because otherwise x = y = ε, w = a ∈ Σ
and |xλ(q, w)y| = 1 against the assumption. Thus w is generated by a
rule in P ′

long.

Now we are ready to prove the statement on the correspondence between
words over Σ∗ generated by nonterminals in N ′

1 and word over Γ∗ generated
by the original grammar.

15

Lemma 9. Let x ∈ suff, y ∈ pref, w ∈ Σ∗, q ∈ Q and q′ ∈ Q¬ε. Then
w ∈ LG′

(
(x, q, A, q′, y)

)
if and only if xλ(q, w)y ∈ LG(A) and δ(q, w) = q′.

Proof. Induction on lexicographically ordered pairs (|xλ(q, w)y|, |w|).
Basis: If |xλ(q, w)y| 6 1, then the statement holds by Lemma 7 and if

w = ε, then the statement holds by Lemma 3.
Induction step: If the first symbol of w 6= ε has an empty image, then

w = aw′, with λ(q, a) = ε and λ(q, w) = λ(δ(q, a), w′). By Lemma 5,
aw′ ∈ LG′

(
(x, q, A, q′, y)

)
is equivalent to w′ ∈ LG′

(
(x, δ(q, a), A, q′, y)

)
. Now,

by the induction hypothesis, w′ ∈ LG′
(
(x, δ(q, a), A, q′, y)

)
if and only if

xλ(δ(q, a), w′)y ∈ LG(A) and δ(δ(q, a), w′) = q′. The statement holds, since
xλ(q, w)y = xλ(δ(q, a), w′)y.

In the remaining case w 6= ε, |xλ(q, w)y| > 1 and the first symbol of w
has a non-empty image. Since |xλ(q, w)y| > 1, the statement xλ(q, w)y ∈
LG(A) is equivalent to the existence of a long rule A → ϕ in P , such that
xλ(q, w)y ∈ LG(ϕ). By the induction hypothesis and by Lemma 8, this is
equivalent to w ∈ LG′

(
(x, q, ϕ, δ(q, w), y)

)
for some long rule A → ϕ ∈ P .

If the latter holds, then w ∈ LG′
(
(x, q, A, q′, y)

)
, which proves the lemma

in one direction. Conversely, assume w ∈ LG′
(
(x, q, A, q′, y)

)
and consider

the possible rule by which it can be generated. It cannot be a rule from P ′
ε

because w 6= ε. No rule from P ′
1 is applicable since they require |xλ(q, w)y| =

1, and neither are the rules from P ′
0 which generate words with empty image

of the first symbol. Therefore, w is generated by a rule in P ′
long. Let this

be a rule (x, q, A, q′, y) → (x, q, ϕ, q′, y), where A → ϕ ∈ P . By Lemma 2,
q′ = δ(q, w), and hence w ∈ LG′

(
(x, q, ϕ, δ(q, w), y)

)
, which completes the

proof.

Finally we can complete the proof for the correctness of the constructed
grammar.

Lemma 10. LG′(S
′) = {w ∈ Σ∗ |M(w) ∈ LG(S)}.

Proof. Assume M(w) = λ(q0
¬ε, w) ∈ LG(S). Then δ(q0

¬ε, w) ∈ F . Let w =
w′t, where w′ is the longest prefix of w with δ(q0

¬ε, w
′) = q′ ∈ Q¬ε; such

a w′ exists since δ(q0
¬ε, ε) ∈ Q¬ε. Now λ(q0

¬ε, w
′) = λ(q0

¬ε, w) and applying
Lemma 9 to this, one obtains w′ ∈ LG′

(
(ε, q0

¬ε, S, q′, ε)
)
. At the same time,

λ(q′, t) = ε, and so t ∈ LG′(Tq′,δ(q′,t)). Then w ∈ LG′(S
′) by a rule S ′ →

(ε, q0
¬ε, S, q′, ε)Tq′,δ(q′,t).
Conversely, let w ∈ LG′(S

′). Now w is generated by a rule S ′ →
(ε, q0

¬ε, S, q, ε)Tq,f , that is, w = w′t for some w′ ∈ LG′
(
(ε, q0

¬ε, S, q, ε)
)

and
t ∈ LG′(Tq,f). Then, by the definition of Tq,f , λ(q, t) = ε and hence
M(w) = λ(q0

¬ε, w
′). Finally, λ(q0

¬ε, w
′) ∈ LG(S) by Lemma 9, which shows

that M(w) ∈ LG(S).

This proves Theorem 1 for Boolean grammars of the general form, as well
as for conjunctive grammars.

16

3.4 Unambiguousness

The next step is to show that in fact the given construction preserves un-
ambiguity. So through this section we assume that the grammar G is unam-
biguous and will prove that also G′ is unambiguous. Let us first prove that
the factorizations are unique.

Lemma 11. Let factorizations of words produced by conjuncts in G be
unique. Then the factorizations of words produced by conjuncts in G′ are
unique as well.

Proof. The only conjuncts that have multiple nonterminals are
(ε, q0

¬ε, S, q, ε)Tq,f and those in (3b) and (3c). If w ∈ LG′
(
(ε, q0

¬ε, S, q, ε)Tq,f

)
,

then w = w′t with δ(f, w′) = q ∈ Q¬ε and λ(δ(q, w′a), t) = ε is the
unique factorization. Any different factorization would have either t with a
nonempty image (which would contradict the definition of Tq,f) or w′ with a
last symbol that has an empty image (hence q would be in Qε, which is not
possible by the definition of N ′

1).
If w ∈ LG′

(
(x, q, B, q′′, ε)(ε, q′′, C, q′, y)

)
would yield two factorizations

w = u1v1 = u2v2, then by Lemma 9 xλ(q, u1), xλ(q, u2) ∈ LG(B) and
xλ(q, u1) = xλ(q, u2) by the unambiguity of G. We can assume by sym-
metry that u1 is a prefix of u2. If u1 were a proper prefix of u2, then λ(q, u1)
would be a proper prefix of λ(q, u2), since δ(q, u2) ∈ Q¬ε. Thus u1 = u2.

Let u1t1av1 and u2t2av2 be two factorizations of w ∈
LG′

(
(x, q, B, q′′, y′)Tq′′,q′′′a(x′, δ(q′′′, a), C, q′, y)

)
, with u1, u2 ∈

LG′
(
(x, q, B, q′′, y′)

)
, t1, t2 ∈ LG′(Tq′′,q′′′) and v1, v2 ∈

LG′
(
(x, δ(q′′′, a), C, q′, y)

)
. By Lemma 9, xλ(q, u1)y

′, xλ(q, u2)y
′ ∈ LG(B)

and x′λ(δ(q′′′, a), u1)y, x′λ(δ(q′′′, a), v2)y ∈ LG(C). Since G is unambiguous,
z1 = xλ(q, u1)y

′ = xλ(q, u2)y
′. Again we can assume that u1 is a prefix of

u2. We conclude that u1 = u2 by the same argument as above. In both of
the factorizations a is the first symbol after u1 and u2 with a non-empty
image, so u1t1a = u2t2a and the factorizations are the same.

The case of w ∈ LG′
(
Tq,q′′′a(x′, δ(q′′′, a), C, q′, y)

)
is handled in the same

way without ui.

Let us then prove that different rules generate disjoint languages. Let us
start from the nonterminals in N ′

1.

Lemma 12. Let w ∈ LG′
(
(x, q, A, q′, y)

)
. There is only one rule that gener-

ates w.

Proof. If w = ε, then it is generated by a rule in P ′
ε by Lemma 3. If w begins

with a symbol that has an empty image, then it is generated by a rule in P ′
0

by Lemma 5. If w = a ∈ Σ, x = y = ε and the image λ(q, a) ∈ Γ, then it is
generated by a rule in P ′

1 by Lemma 6.
In the remaining case |xλ(q, w)y| > 2 and by Lemma 8(part 3) it is

generated by a rule in P ′
long, say (x, q, A, q′, y) → (x, q, ϕ, q′, y). If it was

17

generated also by a rule (x, q, A, q′, y) → (x, q, ψ, q′, y) with ϕ 6= ψ, then, by
Lemma 8(part 3), xλ(q, w)y ∈ LG(ϕ) and xλ(q, w)y ∈ LG(ψ), where A → ϕ
and A → ψ are rules in P , contradicting the unambiguity of G.

Lemma 13. The rules for (x, q, B, C, q′, y) generate disjoint languages.

Proof. Let w ∈ LG′
(
(x, q, B, C, q′, y)

)
. Then xλ(q, w)y ∈ LG(BC) by the

second claim of Lemma 8, and it has a factorization xλ(q, w)y = z1z2 with
z1 ∈ LG(B) and z2 ∈ LG(C). Since G is unambiguous, this factorization is
unique.

Consider the cutting point of this factorization, which can be either inside
of x or y, or inside the image of w; in the latter case it can be between images
of symbols or in the middle of an image of a symbol. Lemma 8(part 1) lists
these four cases, and each of them corresponds to a different type (3a)-(3d)
of rules for (x, q, B, C, q′, y). It remains to be proven that no two different
rules of one type can generate w.

(3a) Suppose w is generated by a rule (x, q, B, C, q′, y) → (x′, q, C, q′, y)&¬ε
of the type (3a). Then x = x′′x′ and x′′ ∈ LG(B). Two different
conjuncts of this type have different x′′ and thus yield different factor-
izations.

(3b) Let w be generated by a rule (x, q, B, C, q′, y) →
(x, q, B, q′′, ε)(ε, q′′, C, q′, y)&¬ε for some q′′, that is, it can be factor-
ized as w = uv, with u ∈ LG′

(
(x, q, B, q′′, ε)

)
, v ∈ LG′

(
(ε, q′′, C, q′, y)

)
and q′′ = δ(q, u). If w can be generated by another rule of type (3b),
(x, q, B, C, q′, y) → (x, q, B, q̃′′, ε)(ε, q̃′′, C, q′, y)&¬ε, then at the same
time w = ũṽ, with ũ ∈ LG′

(
(x, q, B, q̃′′, ε)

)
, ṽ ∈ LG′

(
(ε, q̃′′, C, q′, y)

)
and q̃′′ = δ(q, ũ).

If u = ũ, then q′′ = q̃′′ and the rule is actually the same. Assume
u is shorter than ũ. Since q̃′′ ∈ Q¬ε by the definition of N ′

1. Then
the last symbol of ũ has a non-empty image, and therefore xλ(q, u) is
shorter than xλ(q, ũ). So two different factorizations of xλ(q, w)y into
LG(B) · LG(C) are obtained, which cannot be the case because G is
unambiguous.

Suppose w is generated by the rule (x, q, B, C, q′, y) →
(ε, q, C, q′, y)&¬ε from (3b′), which is only possible if q ∈ Qε

and x ∈ LG(B). Then λ(q, w)y ∈ LG(C) by Lemma 9. Suppose some
rule of the form (x, q, B,C, q′, y) → (x, q, B, q′′, ε)(ε, q′′, C, q′, y)&¬ε
generates w as well. Then w = uv, with u ∈ LG′

(
(x, q, B, q′′, ε)

)
and

v ∈ LG′
(
(ε, q′′, C, q′, y)

)
. By Lemma 9 twice, xλ(q, u) ∈ LG(B) and

λ(q′′, v)y ∈ LG(C). The image of u, λ(q, u), is non-empty because
q ∈ Qε and δ(q, u) = q′′ ∈ Q¬ε, and thus |x| < |xλ(q, u)|. Now
x · λ(q, w)y and xλ(q, u) · λ(q′′, v)y are two different factorizations of
the same word into LG(B) · LG(C), contradicting the assumption that
G is unambiguous.

18

(3c) Suppose w is generated by two distinct rules of the form (3c), namely by
(x, q, B, C, q′, y) → (x, q, B, q′′, y′)Tq′′,q′′′a(x′, δ(q′′′, a), C, q′, y)¬ε and by
(x, q, B, C, q′, y) → (x, q, B, q̃′′, ỹ′)Tq̃′′,q̃′′′ ã(x̃′, δ(q̃′′′, ã), C, q′, y)¬ε Then,
on one hand, w = utav, with u ∈ LG′

(
(x, q, B, q′′, y′)

)
, t ∈ LG′(Tq′′,q′′′)

and v ∈ LG′
(
(x′, δ(q′′′, a), C, q′, y)

)
, and on the other hand, w =

ũt̃ãṽ, where ũ ∈ LG′
(
(x, q, B, q′′, ỹ′)

)
, t̃ ∈ LG′(Tq̃′′,q̃′′′) and ṽ ∈

LG′
(
(x̃′, δ(q̃′′′, ã), C, q′, y)

)
.

Now ũ ∈ LG′
(
(x, q, B, q̃′′, ỹ′)

)
and, by Lemma 9, xλ(q, u)y′, xλ(q, ũ)ỹ′ ∈

LG(B), and thus z1 = xλ(q, u)y′ = xλ(q, ũ)ỹ′. If u 6= ũ, then one of
them is a proper prefix of the other, say |u| < |ũ|. In this case |uta| 6
|ũ|, since a is the first symbol after u with a non-empty image and
δ(q, ũ) ∈ Q¬ε, and hence |xλ(q, uta)| 6 |xλ(q, ũ)ỹ′|. At the same time,
|xλ(q, u)y′| < |xλ(q, uta)|, because y′ is a proper prefix of the image of
a. Combining these, xλ(q, u)y′ is strictly shorter than xλ(q, ũ)ỹ′, which
is a contradiction. It follows that u = ũ. Furthermore, since a and ã
are the first symbols after u and ũ with non-empty images, also t = t̃,
a = ã and v = ṽ. Then the two rules are the same.

Consider the possibility of w being generated at the same time
by a rule from (3c′) and by another rule from (3c). Then
q ∈ Qε by the construction of (3c′). Let (x, q, B, C, q′, y) →
Tq,q′′′a(x′, δ(q′′′, a), C, q′, y)¬ε and (x, q, B, C, q′, y) →
(x, q, B, q̃′′, ỹ′)Tq̃′′,q̃′′′ ã(x̃′, δ(q̃′′′, ã), C, q′, y)¬ε be two such rules,
that us, w = tav = ũt̃ãṽ with tav ∈ LG′

(
Tq,q′′′a(x′, δ(q′′′, a), C, q′, y)

)
and ũt̃ãṽ ∈ LG′

(
(x, q, B, q̃′′, ỹ′)Tq̃′′,q̃′′′ ã(x̃′, δ(q̃′′′, ã), C, q′, y)

)
. Since

q ∈ Qε and δ(q, ũ) = q̃′′ ∈ Q¬ε, ũ is non-empty and ends with
a symbol with a non-empty image. The first such symbol in the
factorization tav is a, and hence ta is a prefix of ũ. From this it
follows that |xy′| < |xλ(q, ũ)ỹ′|. These are the first components of the
factorizations of xλ(q, w)y into LG(B) · LG(C) corresponding to these
two rules, and their distinctness contradicts the unambiguity of G.

The remaining case is when w is generated by two rules of the
form (3c′), (x, q, B, C, q′, y) → Tq,q′′′a(x′, δ(q′′′, a), C, q′, y)¬ε and
(x, q, B, C, q′, y) → Tq,q̃′′′ ã(x̃′, δ(q̃′′′, ã), C, q′, y)¬ε. Then w = tav = t̃ãṽ,
where both a is known to be the first symbol of w with a non-empty
image, and the same is known with respect to ã. Therefore, t = t̃,
which implies q′′′ = q̃′′′ and a = ã, and hence the two rules must be the
same.

(3d) Symmetric to the first case.

Lemma 14. If G is unambiguous, then so is G′.

Proof. In addition to the above lemmata, it remains to consider the start
symbol S ′ and two rules S ′ → (ε, q0

¬ε, S, q, ε)Tq,f and S ′ → (ε, ˜q0¬ε, S, q̃, ε)Tq̃,f̃

19

generating w. There are two corresponding factorizations w = w′t = w̃′t̃. In
both of these the states δ(q, w′) = q and δ(q, w̃′) = q̃ are the last ones in Q¬ε,
so q = q̃ and the rules are the same. And the proof of unambiguity of G′ is
finished.

This completes the proof of Theorem 1.

4 Conclusion

All known closure properties of Boolean grammars and their subfamilies are
given in Table 1. The bottom right corner of the table has been established
in this paper. The closure properties of the unambiguous families remain to
be studied. In addition, it remains unknown whether conjunctive languages
are closed under complementation.

∪ ∩ ∼ · ∗ R h hε-free h−1 gsm−1

Reg + + + + + + + + + +
UnambCF − [4] − − [6] − [4] ? + + [4] + [4] + [4] + [4]
LinCF + − − − − + + + + + [5]
CF + − − + + + + + + + [3]
LinConj + + + [10] − − [10] + − − + [2] + [7]
UnambConj ? + ? ? ? + − ? + +
UnambBool + + + ? ? + − ? + +
Conj + + ? + + + − ? + +
Bool + + + + + + − ? + +

Table 1: Closure properties of Boolean grammars, compared to other classes.

Acknowledgements

Research supported by the Academy of Finland under grant 118540.

References

[1] K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata”, I–II,
International Journal of Computer Mathematics, 15 (1984), 195–212
and 16 (1984), 3–22.

[2] K. Culik II, J. Gruska, A. Salomaa, “Systolic trellis automata: stability,
decidability and complexity”, Information and Control, 71 (1986) 218–
230.

20

[3] S. Ginsburg, G. Rose, , “Operations which preserve definability in lan-
guages”, Journal of the ACM, 10:2 (1963), 175–195.

[4] S. Ginsburg, J. Ullian, “Preservation of unambiguity and inherent am-
biguity in context-free languages”, Journal of the ACM, 13:3 (1966),
364–368.

[5] M. A. Harrison, Introduction to formal language theory, Addison-Wesley,
1978.

[6] T. N. Hibbard, J. Ullian, “The independence of inherent ambiguity from
complementedness among context-free languages”, Journal of the ACM,
13:4 (1966), 588–593.

[7] O. H. Ibarra, S. M. Kim, “Characterizations and computational com-
plexity of systolic trellis automata”, Theoretical Computer Science, 29
(1984), 123–153.

[8] V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “Well-founded seman-
tics for Boolean grammars”, Developments in Language Theory (DLT
2006, Santa Barbara, USA, June 26–29, 2006), LNCS 4036, 203–214.

[9] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages
and Combinatorics, 6:4 (2001), 519–535.

[10] A. Okhotin, “On the equivalence of linear conjunctive grammars to
trellis automata”, RAIRO Informatique Théorique et Applications, 38:1
(2004), 69–88.

[11] A. Okhotin, “Boolean grammars”, Information and Computation, 194:1
(2004), 19–48.

[12] A. Okhotin, “Nine open problems for conjunctive and Boolean gram-
mars”, Bulletin of the EATCS, 91 (2007), 96–119.

[13] A. Okhotin, “Unambiguous Boolean grammars”, Information and Com-
putation, 206 (2008), 1234–1247.

21

http://doi.acm.org/10.1145/321160.321167�
http://dx.doi.org/10.1145/321341.321345�
http://dx.doi.org/10.1145/321341.321345�
http://dx.doi.org/10.1145/321356.321366�
http://dx.doi.org/10.1145/321356.321366�
http://dx.doi.org/10.1016/0304-3975(84)90015-X�
http://dx.doi.org/10.1016/0304-3975(84)90015-X�
http://dx.doi.org/10.1007/11779148_19�
http://dx.doi.org/10.1007/11779148_19�
http://dx.doi.org/10.1051/ita:2004004�
http://dx.doi.org/10.1051/ita:2004004�
http://www.edpsciences.org/ita�
http://dx.doi.org/10.1016/j.ic.2004.03.006�
http://dx.doi.org/10.1016/j.ic.2008.03.023�

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978–952–12–2147–7
ISSN 1239-1891

