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Abstract

It is shown that equations X = ϕ(X), in which the unknown X is a set
of natural numbers and ϕ uses operations of union, intersection and addi-
tion S + T = {m + n | m ∈ S, n ∈ T}, can simulate systems of equations
Xi = ϕi(X1, . . . , Xn) with 1 6 i 6 n, in the sense that the solution of
a system is encoded in the solution of an equation. This implies undecid-
ability of some properties of one-nonterminal conjunctive grammars over a
unary alphabet. In a relatively similar way, equations ϕ(X) = ψ(X) can
simulate systems of such equations with multiple variables, which implies
computational universality of their least and greatest solutions, as well as
undecidability of their basic decision problems. In both constructions it is
sufficient to use only singleton constants.
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1 Introduction

This paper is concerned with systems of equations, in which the unknowns
are sets of natural numbers, while the left- and right-hand sides use Boolean
operations, as well as element-wise addition of sets defined as S + T = {m +
n | m ∈ S, n ∈ T}. On one hand, such equations can be regarded as
a generalization of integer expressions, introduced in the seminal paper by
Stockmeyer and Meyer [12] and later systematically studied by McKenzie
and Wagner [7]. On the other hand, these equations are a particular case of
language equations defined over a unary (one-letter) alphabet.

Language equations, which have formal languages as unknowns, have
recently received much attention [6]. Their most well-known kind are systems
of the form 




X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

(*)

in which the right-hand sides ϕi may contain union and concatenation of
languages, as well as singleton constants. These equations, first proposed
by Ginsburg and Rice [1], provide the most natural semantics for context-
free grammars. If intersection is further allowed, then systems (*) repre-
sent conjunctive grammars, which are a natural extension of the context-free
grammars introduced and studied by Okhotin [8, 10].

The expressive power of conjunctive grammars over a unary alphabet has
been realised only recently, once Jeż [2] constructed a grammar for the non-
regular language {a4n | n > 0}. This grammar can be equally regarded as
a system of four equations over sets of numbers, using union, intersection
and addition, and one of the questions raised by Jeż [2] was how many vari-
ables are necessary to obtain any non-periodic solution. This question was
answered by Okhotin and Rondogiannis [11], who constructed a single uni-
variate equation X = ϕ(X) with a non-periodic solution, as well as presented
a class of sets of numbers that are not representable by any such equations.

The first result of this paper, given in Section 3, generalizes the con-
struction of Okhotin and Rondogiannis [11]. It will be shown that for every
unary conjunctive grammar, the languages generated by all of its nontermi-
nal symbols can be encoded together in a single unary language generated
by a one-nonterminal conjunctive grammar. This construction implies that
some undecidability and complexity results for unary conjunctive grammars
due to Jeż and Okhotin [3, 4] hold already for one-variable grammars.

The other contribution of this paper concerns more general systems of
equations of the form





ϕ1(X1, . . . , Xm) = ψ1(X1, . . . , Xm)
...

ϕ`(X1, . . . , Xm) = ψ`(X1, . . . , Xm)

(**)
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Language equations of this form using concatenation and union were shown
to be computationally complete by Okhotin [9], essentially assuming that the
alphabet contains at least two letters. This result has recently been remade
for equations over sets of numbers (that is, for language equations over a
unary alphabet) by Jeż and Okhotin [5].

It is natural to ask, how many variables and equations in (**) are nec-
essary to attain computational universality. In Section 4 it will be shown
that every system (**) can be encoded in a single univariate equation
ϕ(X) = ψ(X) using ultimately periodic constants. This construction is
improved in Section 5 to use singleton constants only. It follows that all
known undecidable properties of such systems [5] are possessed already by
equations ϕ(X) = ψ(X).

2 Conjunctive grammars and systems of

equations

Definition 1 (Okhotin [8]). A conjunctive grammar is a quadruple G =
(Σ, N, P, S), in which Σ and N are disjoint finite non-empty sets of terminal
and nonterminal symbols respectively; P is a finite set of grammar rules, each
of the form

A → α1& . . . &αn (where A ∈ N , n > 1 and α1, . . . , αn ∈ (Σ ∪N)∗)

while S ∈ N is a nonterminal designated as the start symbol.

The semantics of conjunctive grammars may be defined either by term
rewriting [8], or, equivalently, by a system of language equations. This paper
uses the latter approach:

Definition 2 ([10]). Let G = (Σ, N, P, S) be a conjunctive grammar. The
associated system of language equations is the following system in variables
N :

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi (for all A ∈ N)

Let (. . . , LA, . . .) be its least solution and denote LG(A) := LA for each A ∈
N . Define L(G) := LG(S).

The existence of a least solution with respect to componentwise inclusion
follows from the basic fixpoint theory.

The question of whether conjunctive grammars can generate any non-
regular unary languages has been an open problem for some years [10], un-
til recently solved by Jeż [2], who constructed a grammar for the language
{a4n | n > 0}. Let us reformulate this grammar as the following resolved
system of four equations over sets of numbers:
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Example 1 (Jeż [2]). The system




X1 =
(
(X2 + X2) ∩ (X1 + X3)

) ∪ {1}
X2 =

(
(X6 + X2) ∩ (X1 + X1)

) ∪ {2}
X3 =

(
(X6 + X6) ∩ (X1 + X2)

) ∪ {3}
X6 =

(
(X3 + X3) ∩ (X1 + X2)

)

has least solution Xi = {i · 4n | n > 0}, for i = 1, 2, 3, 6.

Sets of this kind can be conveniently specified by regular expressions for
the corresponding sets of base-k notations of numbers, which in this case are
10∗, 20∗, 30∗ and 120∗, respectively. In the following, some parentheses in
the right-hand sides of equations shall be omitted, and the following default
precedence of operations shall be assumed: addition has the highest prece-
dence, followed by intersection, and then by union with the least precedence.

The construction in Example 1 essentially uses all four variables, and
there seems to be no apparent way to replicate it using a single variable.
However, this was achieved in the following example:

Example 2 (Okhotin, Rondogiannis [11]). The univariate equation

X =
(
11+X+X ∩ 22+X+X

) ∪ (
1+X+X ∩ 9+X+X

)∪
∪(

7+X+X ∩ 12+X+X
) ∪ (

13+X+X ∩ 14+X+X
) ∪ {56, 113, 181}

has the unique solution

S = {4n−8|n > 3}∪{2·4n−15|n > 3}∪{3·4n−11|n > 3}∪{6·4n−9|n > 3}.
This equation is actually derived from Example 1, and its solution encodes

the values of all four sets in Example 1. Each of the four components in S
represents one of the variables in Example 1 with a certain offset (8, 15, 11
and 9).

Note that the set from Example 2 is exponentially growing. It is known
that unary conjunctive grammars can generate a set that grows faster than
any given recursive set:

Proposition 1 (Jeż, Okhotin [3]). For every recursively enumerable set of
natural numbers S there exists a system Xi = ϕi(X1, . . . , Xn) over sets of
natural numbers with the least solution Xi = Si, such that the growth function
of S1 is greater than that of S at any point.

On the contrary, for univariate equations it has been proved that if a set
grows faster than exponentially (for example, {n! | n > 1}), then it is not
representable:

Proposition 2 (Okhotin, Rondogiannis [11]). Let S = {n1, n2, . . . , ni, . . .}
with 0 6 n1 < n2 < . . . < ni < . . . be an infinite set of numbers, for
which lim infi→∞ ni

ni+1
= 0. Then S is not the least solution of any equation

X = ϕ(X).
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However, even though one-nonterminal conjunctive grammars cannot
generate all unary conjunctive languages, it will now be demonstrated that
they can represent a certain encoding of any conjunctive language.

3 One-nonterminal conjunctive grammars

The goal is to simulate an arbitrary conjunctive grammar over {a} by a
conjunctive grammar with a single nonterminal symbol. The construction
formalizes and elaborates the intuitive idea of Example 2, making it provably
work for any grammar.

The first step towards the construction is a small refinement of the known
normal form for unary conjunctive grammars. It is known that every conjunc-
tive language over every alphabet can be generated by a conjunctive grammar
in the binary normal form, with all rules of the form A → B1C1& . . . &BnCn

with n > 1 or A → a. The following stronger form is required by the below
construction.

Lemma 1. For every conjunctive grammar G = (Σ, N, P, S) there exists a
conjunctive grammar G′ = (Σ, N ′, P ′, S ′) generating the same language, in
which every rule is of the form A → a with a ∈ Σ or

A → B1C1& . . . &BnCn (with n > 2),

in which the sets {B1, C1}, . . . , {Bn, Cn} are pairwise disjoint.

Proof. If there is a rule with no intersection, that is, A → α for some non-
terminal A and α ∈ (N ∪ Σ)∗, it can be replaced by a trivial intersection
A → α&α.

Let m be the greatest number of conjuncts in the rules in P . Define m
copies of every nonterminal: N ′ = N × {1, . . . , m}. Replace every rule

A → B1C1& . . . &B`C`

with

(A, i) → (B1, 1)(C1, 1)& . . . &(B`, `)(C`, `).

For every rule A → a in the original grammar, define a new rule (A, i) → a.
Let S ′ = (S, 1) be the new start symbol. The resulting grammar generates
the same language.

Theorem 1. For every unary conjunctive grammar G =
({a}, {A1, . . . , Am}, P, A1) of the form given in Lemma 1 there exist
numbers 0 < d1 < . . . < dm < p depending only on m and an equation

X = ϕ(X)

4



over a set of natural numbers X, with a unique solution S =
⋃m

i=1 Si, where
Si = {np − di | an ∈ LG(Ai)}. The size of ϕ is polynomial in the size of
G, and this equation is associated to a certain one-nonterminal conjunctive
grammar.

Let p = 4m+2 and let di = p
4

+ 4i for every nonterminal Ai. For every
number t ∈ {0, . . . , p}, the set {np− t | n > 0} is called track number t. The
goal of the construction is to represent each set Si in the track di. The rest
of the tracks should be empty.

For every rule Ai → α, where α = Aj1Ak1& . . . &Aj`
Ak`

, consider the
following expression over sets of numbers:

ϕi,α(X) =
⋂̀
t=1

X + X + (djt + dkt − di).

Define the following equation:

X =
⋃

Ai→α∈P

ϕi,α(X) ∪
⋃

Ai→a∈P

{p− di}

Now the task is to prove that the unique solution of this equation is S =
⋃

i Si,
where Si = {np− di | an ∈ LG(Ai)}.

Each time X appears in the right-hand side of the equation, it is used
in the context of an expression ϕi,α(X). The proof of the theorem is based
upon the following property of these expressions.

Lemma 2. Let i, j, k, ` ∈ {1, . . . , m} with {i, j} ∩ {k, `} = ∅. Then

(S + S + di + dj)∩(S + S + dk + d`) = (Si + Sj + di + dj)∩(Sk + S` + dk + d`) .

Proof. As addition is distributive over union and union is distributive over
intersection,

(S + S + di + dj) ∩ (S + S + dk + d`) =

=
⋃

i′,j′
(Si′ + Sj′ + di + dj) ∩

⋃

k′,j′
(Sk′ + S`′ + dk + d`) =

=
⋃

i′,j′,k′,j′
(Si′ + Sj′ + di + dj) ∩ (Sk′ + S`′ + dk + d`)

It is sufficient to prove that if {i′, j′} 6= {i, j} or {k′, `′} 6= {k, `}, then the
intersection is empty. Consider any such intersection

(Si′ + Sj′ + di + dj) ∩ (Sk′ + S`′ + dk + d`) =

({np | an ∈ L(Ai′)} − di′ + {np | an ∈ L(Aj′)} − dj′ + di + dj)∩
({np | an ∈ L(Ak′)} − dk′ + {np | an ∈ L(A`′)} − d`′ + dk + d`) ,
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and suppose it contains any number, which must consequently be equal to
di + dj − di′ − dj′ modulo p and to dk + d` − dk′ − d`′ modulo p. As each dt

satisfies p
2

> dt > p
4
, both offsets are between −p

2
and p

2
, and therefore they

must be equal to each other:

di + dj − di′ − dj′ = dk + d` − dk′ − d`′ .

Equivalently, di + dj + dk′ + d`′ = dk + d` + di′ + dj′ , and since each dt is
defined as p

4
+ 4t, this holds if and only if

4i + 4j + 4k′ + 4`′ = 4k + 4` + 4i′ + 4j′ .

Consider the largest of these eight numbers, let its value be d. Without
loss of generality, assume that it is on the left-hand side. Then the left-hand
side is greater than d. On the other hand, if no number on the right-hand
side is d, then the sum is at most 4 · d

4
= d. Thus at least one number on

the right-hand side must be equal to d as well. Removing those two numbers
and giving the same argument for the sum of 3, 2 and 1 summands yields
that

{di, dj, dk′ , d`′} = {dk, d`, di′ , dj′}.
Then, by the assumption that {i, j} ∩ {k, `} = ∅,

{di, dj} = {di′ , dj′} and {dk′ , d`′} = {dk, d`},

and since the addition is commutative,

i = i′, j = j′, k = k′ and ` = `′.

Therefore,

(S + S + di + dj) ∩ (S + S + dk + d`) =⋃

i′,j′,k′,j′
(Si′ + Sj′ + di + dj) ∩ (Sk′ + S`′ + dk + d`) =

(Si + Sj + di + dj) ∩ (Sk + S` + dk + d`) ,

which completes the proof.

Proof of Theorem 1. Let P = P1 ∪ P0, where P0 contains rules of the form
Ai → a, while P1 consists of multiple-conjunct rules. The equation is strict
and thus has a unique solution in the set of positive natural numbers, so it
is enough to show that S is a solution, that is,

S =
⋃

Ai→α∈P1

ϕi,α(S) ∪
⋃

Ai→a∈P0

{p− di}
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Consider each rule Ai → α ∈ P1 with α = Aj1Ak1& . . . &AjtAkt . Then

ϕi,α(S) =
⋂̀
t=1

(djt + dkt − di) + S + S =
⋂̀
t=1

(djt + dkt − di) + Sjt + Skt

by Lemma 2, and it is easy to calculate that

⋂̀
t=1

(djt + dkt − di) + Sjt + Skt = {np− di | an ∈ L(α)}.

Calculating further,

⋂̀
t=1

(djt + dkt − di) + Sjt + Skt =

⋂̀
t=1

(djt + dkt − di) + {pnj − djt | anj ∈ L(Ajt)}+ {pnk − dkt | ank ∈ L(Akt)} =

⋂̀
t=1

{p(nj + nk)− di | anj ∈ L(Ajt), a
nk ∈ L(Akt)} =

⋂̀
t=1

{np− di | an ∈ L(Ajt) · L(Akt)} =

{np− di | an ∈ L(α)}.
Similarly for Ai → a ∈ P0,

{p− di} = {np− di | an ∈ L({a})}.
Altogether,

⋃
Ai→α∈P1

ϕi,α(S) ∪
⋃

Ai→a∈P0

{p− di} =

⋃
i

( ⋃
Ai→α∈P1

ϕi,α(S) ∪
⋃

Ai→a∈P0

{p− di}
)

=

⋃
i

( ⋃
Ai→α∈P1

{np− di | an ∈ L(α)} ∪ {np− di | an ∈ L(a)}
)

=

⋃
i

⋃

Ai→β∈P

{np− di | an ∈ L(β)}.

Since (. . . , L(Ai), . . .) is the solution of the associated system of language
equations, L(Ai) =

⋃
Ai→β∈P L(β), and hence the latter expression equals

⋃
i

{np− di | an ∈ L(Ai)} =
⋃
i

Si = S,

which completes the proof.
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Corollary 1. For every unary conjunctive language L ⊆ a+ there exist num-
bers p > d > 1 and a conjunctive grammar G = ({a}, {S}, P, S), such that
L(G) ∩ (ap)∗ap−d = {anp−d | an ∈ L}.

The first implication of this result concerns the complexity of unary con-
junctive grammars, as well as the complexity of the general membership
problem. Assume that a number n is always described by its binary nota-
tion, that is, it uses space log n. The following is known:

Proposition 3 (Jeż, Okhotin [4]). There exists a EXPTIME-complete set of
numbers S ⊆ N, such that the language L = {an | n ∈ S} of unary notations
of numbers from S is generated by a conjunctive grammar.

The problem stated as “Given a unary conjunctive grammar G and a
number n in binary, determine whether an ∈ L(G)” is EXPTIME-complete.

To show that both results still hold for one-nonterminal unary conjunctive
grammars, it is sufficient to take the grammar generating L and to transform
it according to Theorem 1.

Theorem 2. There exists a EXPTIME-complete set of numbers S ⊆ N, such
that the language L = {an|n ∈ S} is generated by a one-nonterminal conjunc-
tive grammar. The general membership problem for one-nonterminal unary
conjunctive grammars with input encoded in binary is EXPTIME-complete.

Proof. This problem clearly belongs to this complexity class, as it is decidable
in exponential time in more general case of systems of such equations [4,
Th. 4.1].

Hardness follows from Theorem 1 as follows. It is known [4, Th. 4.1] that
there exists a system of equations Xi = ϕi(X1, . . . Xk) with a least solution
(S1, . . . Sk), in which S1 is an EXPTIME-hard set.

By Theorem 1 one can efficiently construct an equation Y = ψ(Y ) with
a least solution S and numbers p, d > 1 such that n ∈ S1 if and only if
pn − d ∈ S. Hence the general membership problem for a system of equa-
tions polynomially reduces to the general membership problem for a single
equation.

Let us now consider the decidability of basic properties of one-nonterminal
unary conjunctive grammars. In the case of multiple nonterminals, most
basic problems are undecidable:

Proposition 4 (Jeż, Okhotin [3]). For every fixed unary conjunctive lan-
guage L0 ⊆ a∗, the problem of whether a given conjunctive grammar over
{a} generates the language L0 is co-RE-complete.

However, for one-nonterminal grammars such a problem is decidable at
least for L0 = ∅ and L0 = a∗. Decision procedures are given by the following
necessary and sufficient conditions of emptiness and fullness.
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Theorem 3. Let G = ({a}, {S}, P, S) be a one-nonterminal conjunctive
grammar over a unary alphabet. Then:

1. L(G) 6= ∅ if and only if S → an ∈ P for some n > 0;

2. L(G) = a∗ if and only if there is a rule S → a`1Sk1& . . . &a`mSkm with
ki > 1 and ki + `i > 2 for all i, such that a6maxi `i,1 ⊆ L(G).

Proof. The case of emptiness is clear; the criterion actually holds for one-
nonterminal conjunctive grammars over any alphabet.

Let us check the characterization of grammars generating a∗.
⇐© Let the grammar contain such a rule. Then an ∈ L(G) is proved by

induction on n. The basis, n 6 `i and n 6 1, is given. For the induction
step, consider n > 2 with n > `i for all i. For every i-th conjunct of the
selected rule, consider two cases. If `i = 0, then ki > 2 and 0, 1, n−1 ∈ L(G)
by the induction hypothesis, so an ∈ LG(Ski). If `i > 1 and ki > 1, then
0, n − `i ∈ L(G) by the induction hypothesis and hence an ∈ LG(a`iSki).
Therefore, the rule generates an.

⇒© Suppose the condition does not hold. If there is any rule of the given
form, then L(G) does not contain some string in a6maxi `i,1, and hence L(G) 6=
a∗.

Consider the case when there are no such rules, that is, that every rule is
of the form S → a`1Sk1& . . . &a`mSkm with ki = 0 or ki+`i 6 1 for some i. In
other words, every rule is of the form S → a`& . . . or of the form S → S& . . ..
All rules of the latter form may be eliminated without changing the language
generated by the grammar, and each of the rest of the rules generates at most
one string. Therefore, the grammar generates a finite language and hence
L(G) 6= a∗.

The same method can be elaborated to characterize equality to any given
finite or co-finite language. By this characterization, both problems are
clearly decidable. However, the more general problem of equivalence of two
grammars is undecidable.

Theorem 4. The equivalence problem for one-nonterminal unary conjunc-
tive grammars is undecidable.

Proof. The proof is by reduction from the equivalence problem for unary
conjunctive grammars with multiple nonterminals. Two grammars are com-
bined into one, the construction of Theorem 1 is applied, and then the start
symbols of the two grammars are exchanged and the construction is applied
again. The two resulting one-nonterminal grammars are equivalent if and
only if the original grammars generate the same language.

Before approaching the equivalence problem for one-nonterminal conjunc-
tive grammars, let us establish the undecidability of the following technical
problem:
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Claim 1. The problem of testing whether for a given conjunctive grammar
G = ({a}, N, P, S) with two designated nonterminals S and S ′, LG(S) =
LG(S ′), is undecidable.

It is known that the problem of whether two unary conjunctive grammars
generate the same language is undecidable. Let G1 = ({a}, P1, N1, S1) and
G2 = ({a}, P2, N2, S2) be any two conjunctive grammars over {a}. Assume,
without loss of generality, that N1 ∩ N2 = ∅. Construct a new conjunc-
tive grammar G = ({a}, P1 ∪ P2, N1 ∪ N2, S1). Then LG(S1) = L(G1) and
LG(S2) = L(G2), and therefore testing the equality of LG(S1) and LG(S2)
solves the equivalence problem for G1 and G2.

Now this technical problem may be easily reduced to the equivalence
problem for one-nonterminal conjunctive grammars over {a}. Let a grammar
G = ({a}, {A1, A2, . . . , Am}, P, A1) be given, and assume without loss of
generality that it is of the form required in Lemma 1; it is asked whether
LG(A1) = LG(A2). Construct a one-nonterminal unary conjunctive grammar
G′ that encodes G according to Theorem 1, with

L(G′) = {anp−d1 | an ∈ LG(A1)} ∪ {anp−d2 | an ∈ LG(A2)}∪
∪

⋃
i>3

{anp−di | an ∈ LG(Ai)}.

Next, the same transformation is applied to the grammar G =
({a}, {A2, A1, A3, . . . , Am}, P, A2), with nonterminals A1 and A2 exchanged.
The values of p, d1, . . . , dm are the same, as they depend only on m, so the
generated language is

L(G′′) = {anp−d2 | an ∈ LG(A1)} ∪ {anp−d1 | an ∈ LG(A2)}∪
∪

⋃
i>3

{anp−di | an ∈ LG(Ai)}.

Clearly, the two languages are the same if and only if LG(A1) = LG(A2).

4 Equations ϕ(X) = ψ(X)

with ultimately periodic constants

Now consider unresolved equations over sets of numbers in which both the
left- and right-hand side may contain any expressions. It has recently been
established that such equations are computationally complete:

Theorem 5 (Jeż, Okhotin [5]). The family of sets of natural numbers rep-
resentable by unique (least, greatest) solutions of systems of equations of the
form ϕi(X1, . . . , Xm) = ψi(X1, . . . , Xm) with union, intersection and addi-
tion, is exactly the family of recursive sets (r.e. sets, co-r.e. sets, respec-
tively).
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The goal of this section is to replicate this result using a unique equation
with a unique variable. This is achieved by taking an arbitrary system of
equations and encoding it in the way similar to Theorem 1:

Theorem 6. For every system of equations over sets of numbers
Ej(Y1, . . . , Ym) = Fj(Y1, . . . , Ym) with j ∈ {1, . . . , `}, in which every expres-
sion Ej and Fj is of the form

Yi ∩ Yi′ or Yi ∪ Yi′ or Yi + Yi′ or {1},
there exist numbers 0 6 d1 < . . . < dm < p and an equation

ϕ(X) = ψ(X)

using singleton constants and the constant {kp | k > 0}, such that a set S
is its solution if and only if S =

⋃`
i=1{kp − di | k ∈ Si} for some solution

(S1, . . . , Sm) of the original system.

The numbers di are offsets of tracks for X, and the statement of the lemma
already specifies that S is split into tracks like in the proof of Theorem 1.
That is, each set Si is represented in a track S ∩ {kp − di | k > 1}. For
each variable Yi, a unique offset di is assigned. Define T = {0, . . . , p − 1} \
{d1, . . . , dm}; each t-th track with t ∈ T should be empty.

The set ϕ(S) = ψ(S) is as well split into tracks of its own, which are not
directly related to the tracks of S. The tracks of ϕ(S) = ψ(S) correspond
to equations of the original system. A track {kp− ej | k > 1} with a unique
offset ej is assigned to an equation number j.

Let p = 2(m + ` + 3). Then di and ej can be defined so that

• 1 < di < p
2
− 1 and 1 < ej < p

2
− 1 for all i and j;

• variable offsets are greater than equation offsets, that is, di > ej for all
i, j.

Define the following expression used to extract the track t from the set
X:

ft(X) =

{
X ∩ {kp | k > 0}, if t = 0
X ∩ ({kp | k > 0}+ (p− t)

)
, if 1 6 t 6 p− 1

Provided that X ⊆ N, this definition is equivalent to ft(X) = X∩{kp−t|k >
0}.

Define the encoding of the system into a single equation. First the left-
and right-hand sides of each equation are to be translated. For every expres-
sion E as in the statement, define ϕE as follows:

ϕj,{1}(X) = {p− ej}
ϕj,Xi+Xi′ (X) = fdi

(X) + fdi′ (X) + (di + di′ − ej)

ϕj,Xi∪Xi′ (X) =
(
fdi

(X)+(di − ej)
) ∪ (

fdi′ (X)+(di′ − ej)
)

ϕj,Xi∩Xi′ (X) =
(
fdi

(X)+(di − ej)
) ∩ (

fdi′ (X)+(di′ − ej)
)

11



Next, these translated expressions are used to define a single equation:

⋃̀
j=1

ϕj,Ej
(X) =

⋃̀
j=1

ϕj,Fj
(X) ∪

⋃

t∈{0,...,p−1}
t/∈{d1,...,dm}

(
ft(X) + t + 1

)
(1)

Its left-hand side and the first big union on its right-hand side encode the
equations of the original system, while the second big union on the right
ensures that there is no “garbage” on any other track of X.

Before proceeding with the main proof, let us state some technical prop-
erties of this construction. The constructed expressions ϕj,Ej

simulate the
original expressions Ej as follows:

Lemma 3. Let S ⊆ N and S1, . . . , Sm ⊆ N satisfy

S =
m⋃

i=1

{kp− di | k ∈ Si} (2)

Let Ej be an expression. Then ϕj,Ej
(S) = {kp − ej | k ∈ Ej(S1, . . . , Sm)}.

The same correspondence holds for Fj.

Proof. Since the defnitions of Ej and Fj are similar, it is enough to consider
Ej. Suppose that Ej(X1, . . . , Xm) = Xi ∪ Xi′ . The value of ϕj,Ej

(S) is
calculated as follows:

ϕj,Xi∪Xi′ (S) = [fdi
(S) + di − ej] ∪ [fdi′ (S) + di′ − ej] =[

(S ∩ {kp− di | k > 0}) + di − ej

] ∪ [
(S ∩ {kp− di′ | k > 0}) + di′ − ej

]
=

{kp− di + di − ej | k ∈ Si} ∪ {kp− di′ + di′ − ej | k ∈ Si′} =

{kp− ej | k ∈ Si} ∪ {kp− ej | k ∈ Si′} = {kp− ej | k ∈ Si ∪ Si′}.

Similar calculations yield

ϕj,{1}(S) = {p− ej},
ϕj,Xi∩Xi′ (S) = {kp− ej | k ∈ Si ∩ Si′},
ϕj,Xi+Xi′ (S) = {kp− ej | k ∈ Si + Si′}.

It follows that the equations formed from the new expressions simulate
the original equations:

Lemma 4. Let S ⊆ N and S1, . . . , Sm ⊆ N satisfy (2). Then, for every j,
Ej(S1, . . . , Sm) = Fj(S1, . . . , Sm) if and only if ϕj,Ej

(S) = ϕj,Fj
(S).
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Proof. By Lemma 3,

ϕj,Ej
(S) = {pk − ej | k ∈ Ej(S1, . . . , Sm)}

and
ϕj,Fj

(S) = {pk − ej | k ∈ Fj(S1, . . . , Sm)}.
Thus an equality

Ej(S1, . . . , Sm) = Fj(S1, . . . , Sm)

holds if and only if
ϕj,Ej

(S) = ϕj,Fj
(S).

Then the original system of equations is represented by the following
system of m + 1 equations:

Lemma 5. Let a system of equations

Ej(X1, . . . , Xm) = Fj(X1, . . . , Xm) for j = 1, . . . , `

be as in Theorem 6, denote T = {0, . . . , p − 1} \ {d1, . . . , dm}, and let Ct ⊆
{kp − t | k > 0}, for all t ∈ T , be any constant sets. Then a system of
equations

X ∩ {kp− t | k > 0} = Ct for t ∈ T (3)

ϕj,Ej
(X) = ϕj,Fj

(X) for j = 1, . . . , ` (4)

has a solution S if and only if

S =
⋃
t∈T

Ct ∪
m⋃

i=1

{kp− di | k ∈ Si} (5)

for some solution (S1, . . . , Sm) of the original system.

Proof. Let (S1, . . . , Sm) be a solution of the original system, construct the
set S as in (5). Then S clearly satisfies (3), and also it meets the assump-
tions of Lemma 4. Then, since every j-th equation Ej = Fj is satisfied by
(S1, . . . , Sm), it follows by Lemma 4 that S satisfies the j-th equation (4).

Suppose now that S satisfies (3)–(4). Then, for every t ∈ T ,

S ∩ {kp− t | k > 0} = Ct,

by (3). Let Si = {k | kp− di ∈ S}. Then S is obtained from Si as in (5). It
remains to show that (S1, . . . , Sm) is a solution of the first system, that is,

Ej(S1, . . . , Sm) = Fj(S1, . . . , Sm).

13



for each j. This follows from Lemma 4, as by (4)

ϕj,Ej
(X) = ϕj,Fj

(X) for j = 1, . . . , `

and by Lemma 4 this implies

Ej(S1, . . . , Sm) = Fj(S1, . . . , Sm) for j ∈ {1, . . . , `}.

Note that the actual equation (1) mixes the statements (3,4) in a single
equality. Showing that they are indeed equivalent yields the proof of the
theorem.

Proof of Theorem 6. Assume that S is a solution of (1) and consider inter-
sections of both sides of (1) with {kp + 1 | k > 0}. Since by Lemma 3
ϕj,Ej

(S) ⊆ {kp− j |k > 0}, there is ∅ on the left-hand side, and for the same
reason the first big union in the right-hand side vanishes. Thus the equation
turns into

∅ = ∅ ∪
⋃
t∈T

(
S ∩ {kp− t | k > 0}) + t + 1,

and therefore
S ∩ {kp− t | k > 0} = ∅ for t ∈ T. (6)

Consider the intersection of (1) with the set {kp − ej | k > 0}. As by
Lemma 3, ϕj′,E(S) ⊆ {kp − ej′ | k > 1} then on the left-hand side only
ϕj,Ej

(S) remains and on the right-hand side only ϕj,Fj
(S), as for each t ∈ T :

ft(S) + t + 1 ⊆ {kp + 1 | k > 0}. Thus we obtain a system of equations

ϕj,Ej
(S) = ϕj,Fj

(S) for j = 1, . . . , ` (7)

Hence every solution S also satisfies this system (6)–(7).
Conversely, consider any S satisfying both (6) and (7). Then S clearly

satisfies the original equation, as it is obtained as a union of sides of (6) (with
additional + t + 1 at both sides of the equation for t) and (7).

As (6) and (7) satisfy the assumptions of Lemma 5 with constants

Ct = ∅ for t ∈ T,

every solution of the original equation is of the form

S =
m⋃

i=1

{kp− di | k ∈ Si}

for some solution S1, . . . , Sm of the system

Ej(X1, . . . , Xm) = Fj(X1, . . . , Xm) for j = 1, . . . , `,

which completes the proof of the theorem.
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5 Equations ϕ(X) = ψ(X)

with singleton constants

The construction from the previous section will now be refined by eliminating
infinite periodic constants from the equation: that is, only singleton constants
will be used.

Theorem 7. For every system of equations Ej(Y1, . . . , Ym) = Fj(Y1, . . . , Ym)
with j ∈ {1, . . . , `}, in which every expression Ej and Fj is as in Theorem 6,
there exist numbers 0 6 d1 < . . . < dm < p and an equation λ(X) = ρ(X)
using singleton constants, such that a set S ⊆ N is its solution if and only if

S = {kp, kp + p
2

+ 1 | k > 0} ∪
m⋃

i=1

{kp− di | k ∈ Si}

for some solution (S1, . . . , Sm) of the original system.

The definitions and the assumptions on di and ej are as in Theorem 6.
Similarly to previous section, denote the set of offsets of unused tracks by

T = {0, . . . , p− 1} \ {0, d1, . . . , dm, p
2
− 1}.

The equation (1) defined there actually uses only one infinite constant,
{kp|k > 0}. In the new construction it is possible to extract infinite constants
from any solution S using the following expressions:

π(X) = X ∩ (X + p
2
− 1)

π′(X) = X ∩ (X + p
2

+ 1)

Indeed, from the intended form of solutions stated in the theorem, π(S) =
{kp | k > 1} and π′(S) = {kp− (p

2
− 1) | k > 1}.

Using these subexpressions, the expressions ft(X) from the previous con-
struction will be replaced by the following:

f ′t(X) =

{
X ∩ (π′(X) + p

2
− 1− t) for 0 6 t 6 p

2
− 1(

X ∩ (π(X) + p− t)
)
∪

(
X ∩ {p− t}

)
for p

2
6 t 6 p− 1

The goal is to construct such an equation that f ′i(S) = fi(S) for each of
its solutions S, which will allow reusing parts of the construction and the
proof from Theorem 6. In particular, the expressions ϕ′j,E are defined in
the same way as ϕj,E in Theorem 6, this time using f ′i(X) instead of fi(X).
Furthermore, define the following three new expressions:

ψ(X) = {p
2

+ 1} ∪ (π′(X) + p
2
− 1) ∪ (π(X) + p

2
+ 1)

ψ′(X) = π(X) ∪ π′(X)

θ(X) =
⋃̀
j=1

(
f ′ej

(X) + ej − 1
) ∪

⋃

t∈T\{e1,...,e`}
f ′t(X)
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The expressions ψ(X) and ψ′(X) are used to generate the sets {kp | k >
1} ∪ {kp − (p

2
− 1) | k > 1}. The expression θ(X) deals with the “garbage”

in the same way as the second part of the right-hand side of (1).
Now the new equation is constructed the follows:

ψ(X) ∪
⋃̀
j=1

(
ϕ′j,Ej

(X) + p
)

= ψ′(X) ∪
⋃̀
j=1

(
ϕ′j,Fj

(X) + p
) ∪ θ(X) (8)

The main technical property of this equation is that in each of its solutions
the tracks 0 and p

2
−1 are full, while all tracks besides these two and d1, . . . , dm

are empty.

Lemma 6. If S is a solution of (8), then

{kp | k > 0} ⊆ S,

{kp− (p
2
− 1) | k > 1} ⊆ S,

S ∩ {kp− t | k > 1} = ∅ (for all t ∈ T )

Proof. Let us adopt the following terminology for any deviations from this
rule. For any set of numbers S0, a number n ∈ S0 is said to be extra if
n = kp − t for t ∈ T . A number n is missing if n /∈ S0 and n = kp − t for
t ∈ {0, p

2
− 1}. Then it has to be proved that there cannot be any extra or

missing numbers in any solution of the equation (6).
The proof begins with the following technical claim:

Claim 1. Let S0 ⊆ N be any set that has no extra numbers. Then, for every
expression E ∈ {Ej, Fj} in every j-th equation, it holds that ϕ′j,E(S0) ⊆
{kp− ej | k > 1}.
Proof. The main step towards establishing the claim is showing that, under
the assumptions, π′(S0) ⊆ {kp− (p

2
− 1) | k > 1}.

Consider any n ∈ π′(S0) = S0 ∩ (S0 + (p
2

+ 1)). Then n ∈ S0 and
n′ = n− p

2
− 1 ∈ S0. Let n = kp− t, then, as there are no extra numbers in

S0, t and (t + p
2

+ 1 mod p) must be in {0, d1, . . . , dm, p
2
− 1}, which is only

possible if t = p
2
− 1. Hence n = kp− (p

2
− 1) and n′ = (k− 1)p, which shows

that
π′(S0) = S0 ∩ (S0 + (p

2
+ 1)) ⊆ {kp− (p

2
− 1) | k > 0}.

Then the definition of f ′di
can be expanded as

f ′di
(S0) = S0 ∩ (π′(S0) + p

2
− 1− di) ⊆ π′(S0) + p

2
− 1− di ⊆

⊆ {kp− (p
2
− 1) | k > 1}+ p

2
− 1− di = {kp− di | k > 1},

and therefore, for an expression E = Xi ∩Xi′ ,

ϕ′j,E(S0) = f ′di
(S0) + di − ej ∩ f ′di′

(S0) + di′ − ej ⊆
f ′di

(S0) + di − ej = {kp− di | k > 1}+ di − ej = {kp− ej | k > 1}.
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Similar calculations can be made for E = Xi ∪ Xi′ , E = Xi + Xi′ and
E = {1}.

Let S be any solution of the equation. The first claim is that there are
no extra or missing numbers in S that are smaller than p.

Claim 2. It holds that 0, p
2

+ 1 ∈ S and p− t /∈ S for all t ∈ T .

Proof. Consider a number n < p appearing on the left-hand side of (8)
under the substitution X = S. Then n ∈ ψ(S), as the rest of the left-hand
side cannot produce any number less than p. As ψ(S) is a union of three
subexpressions, consider each of them. First suppose that n ∈ π(S) + p

2
+ 1,

that is, n− p
2
− 1 ∈ π(S). Then, by the definition of π, n− p

2
− 1 ∈ S + p

2
− 1,

and so n > p. Next, suppose that n ∈ π′(S) + p
2
− 1. Then n− p

2
+ 1 ∈ π′(S)

and thus, by the definition of π′, n − p
2

+ 1 ∈ S + p
2

+ 1, and again n > p.
The only remaining possibility is n = p

2
+ 1.

Therefore, the only number smaller than p that appears on the right-
hand side is p

2
+ 1. Based on this fact, it will be shown which small numbers

must belong to S in order to obtain p
2
+ 1 on the right-hand side, and which

may not belong to S, as they would produce other small numbers on the
right-hand side.

First, note that the only number n′ 6 p
2

that may be in S is 0, as otherwise
n′ would be in S ∩ (p − t) for some p

2
6 t 6 p − 1, which is a part of θ(S),

and clearly n′ does not occur on the left-hand side.
Let us now consider how the number p

2
+ 1 is obtained on the right-hand

side. Every number in ϕ′j,Fj
(S) + p for any j is at least p and hence is of no

concern. Consider now θ(S). Suppose that p
2
+ 1 ∈ θ(S). Then it belongs to

one of the subexpressions in θ(S). Suppose that p
2

+ 1 ∈ f ′ej
(S) + ej − 1 for

some j. Let n′ ∈ f ′ej
(S) be such that p

2
+1 = n′+(ej−1). Then n′ > p−ej by

the definition of f ′ej
(S), and hence p

2
−1 = n′+(ej−1) > p−1, a contradition.

Suppose p
2
+1 ∈ f ′t(S) for t ∈ T \{e1, . . . , e`}. According to the definition

of f ′t(S), there are two cases. If 0 6 t 6 p
2
− 1, then p

2
+1 ∈ π′(X)+ p

2
− 1− t

and hence t + 2 ∈ π′(X), which implies that t − p
2

+ 1 ∈ S. This is only
possible if t = p

2
− 1, which is not an appropriate value of t. In the second

case of p
2

6 t 6 p− 1, p
2

+ 1 ∈ f ′t(S) means that p
2

+ 1 ∈ (π(S)∪ {0}) + p− t
and hence t ∈ (π(S) ∪ {0}) + p

2
− 1. As t is not p

2
− 1, t− p

2
+ 1 must be in

π(S) and hence in S, which is impossible because 1 6 t− p
2

+ 1 6 p
2
.

The number p
2
+1 also cannot be in S∩ (p− t) for any t ∈ T \{e1, . . . , e`},

because t = p
2
− 1 is excluded from the set.

The only remaining possibility is p
2

+ 1 ∈ ψ′(S), that is, p
2

+ 1 ∈ π(S) ∪
π′(S). If p

2
+1 ∈ π(S) = S∩ (S + p

2
−1), then 2 ∈ S, which is not the case, as

it is smaller than p
2
+ 1. Thus p

2
+ 1 ∈ π′(S) = S ∩ (S + p

2
+ 1), and therefore

0, p
2

+ 1 ∈ S, as desired.
The only thing left to show is that for each t ∈ T , the number p− t is not

in S. If t > p
2
, this has already been proved above. Suppose that p − t ∈ S
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for any t ∈ T with t < p
2

and t /∈ {e1, . . . , e`}. Then p− t ∈ π′(S) + p
2
− 1− t

because p
2

+ 1 ∈ π′(S), and hence p− t ∈ f ′t(S) ⊆ θ(S) is on the right-hand
side. However, there is no corresponding number on the left-hand side, which
is a contradiction.

Finally, suppose p−ej ∈ S for some j. Then, as 0, p
2
+1 ∈ S, p

2
+1 ∈ π′(S)

and accordingly

p− ej = (p
2

+ 1) + (p
2
− 1− ej) ∈ π′(S) + p

2
− 1− ej = f ′ej

(S).

Therefore, p− ej + ej − 1 = p− 1 ∈ θ(S), and thus, again, p− 1 must appear
on the right-hand side, which is a contradiction.

In order to show that there are no missing or extra numbers, suppose
there are any such numbers. Then there is the smallest among them. It will
now be proved that for every such number there is a smaller missing or extra
number, that is, there cannot be the smallest among them.

Claim 3. Let n /∈ S be the least missing number. Then there exists a number
n′ < n that is extra.

Proof. Let n be the least missing number. If it is of the form n = kp, then
n > p, since 0 ∈ S by Claim 2. The numbers n − p and n − p

2
+ 1 are

in S, because, by assumption, there are no missing numbers less than n.
Therefore, n− p

2
+ 1 ∈ π′(S) and hence n = (n− p

2
+ 1) + p

2
− 1 ∈ ψ(S), that

is, n belongs to the left-hand side.
A similar analysis applies for n = kp− p

2
+1. By Claim 2, n > 3p

2
+1, since

there are no missing numbers less than p. The numbers n− p and n− p
2
− 1

must be in S, because they are smaller than the least missing number. Then
n− p

2
− 1 ∈ π(S) and, accordingly, n = (n− p

2
− 1) + p

2
+ 1 ∈ ψ(S).

In both cases, since n appears on the left-hand side, it should also appear
on the right-hand side. Consider the subexpression in which n is obtained.

First suppose that n ∈ ϕ′j,Fj
(S) + p for some j, and define the finite set

S0 = S ∩ {n′ | n′ 6 n− p}. Then n ∈ ϕ′j,Fj
(S0) + p, because the membership

of numbers larger than n− p in the argument does not influence the value of
this expression. If S0 contains an extra number n′, this establishes the claim,
as n′ < n. So suppose, for the sake of a contradiction, that S0 contains no
extra numbers. Thus ϕ′j,Fj

(S0) + p ⊆ {kp− ej | k > 2} by Claim 1. It follows
that n ∈ {kp − ej | k > 2}, which contradicts the form of missing numbers.
Hence S0 contains an extra number.

Suppose that n ∈ ψ′(S), then n ∈ π(S) ∪ π′(S), but as π(S) ⊆ S and
π′(S) ⊆ S then n ∈ S and this is not possible, as n is a missing number. For
the same reason n cannot belong to the second part of θ(S), as f ′t(S) ⊂ S
by the definition of f ′t(X).

Therefore, n must belong to the first part of θ(S). Then there exists
equation number j, such that n ∈ f ′ej

(S) + ej − 1. This implies n ∈ π′(S) +
p
2
− 2, from whence it follows that n − p

2
+ 2 ∈ S. To see that this is the
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promised extra number in S, consider two cases of n: if n = kp, then n− p
2
+2

belongs to track p
2
−2 ∈ T , and if n = kp− p

2
+1, then n− p

2
+2 = kp−p+3

is in track p− 3 ∈ T .

Claim 4. If n ∈ S is the least extra number, then there exists a number
n′ < n that is missing.

Proof. As it has already been shown that there are no extra numbers smaller
than p, and p cannot be an extra number, assume n > p.

Let n = kp − t and suppose there are no missing numbers smaller than
n. Then it can be inferred that n ∈ f ′t(S). If 0 < t < p

2
− 1, then n+ t− (p

2
−

1), n + t− p ∈ S (as they are smaller than n). Hence n + t− (p
2
− 1) ∈ π′(S)

and thus n =
(
n + t − (p

2
− 1)

)
+ p

2
− 1 − t ∈ f ′t(S). The second case is

that p
2

6 t < p. Since there are no missing numbers smaller than n, then
n + t − p, n + t − p − (p

2
− 1) ∈ S. Thus n + t − p ∈ π(S) and hence

n = n + t− p + (p− t) ∈ f ′t(S). The rest of the proof is split into two cases
depending on t.

Let t ∈ T\{e1, . . . , e`}. Then n ∈ f ′t(S) ⊆ θ(S). Therefore, n is present on
the left-hand side, and so it should appear on the right-hand side. Consider
the expressions on the right-hand side from which n is obtained.

If n ∈ ψ(S), then, in particular, n ∈ S+p. But this means that n−p ∈ S,
which is a contradiction, as n was supposed to be the smallest extra number.

If n ∈ f ′ej
(S) + p for some j. Let S0 = S ∩ {n′′ | n′′ 6 n − p}. Then

n ∈ f ′ej
(S0)+p. Since there are no extra numbers in S0, by Claim 1, f ′ej

(S0)+p
contains only numbers on the equation tracks, and thus n /∈ f ′ej

(S0) + p.
Contradiction.

Consider the other case of n = kp− ej for some j. Since n ∈ f ′ej
(S), the

number n′ = n + ej − 1 is in θ(S), hence n′ is on the right-hand side. Note,
that there is no extra number smaller than n′ − p

2
.

Suppose that n′ ∈ ψ(S). Then, in particular n′ ∈ S + p. But this means
that n′ − p is an extra number, which is a contradiction, there is no extra
number smaller than n′ − p

2
. Thus n′ is not in ψ(S).

Suppose that n′ ∈ f ′ej
(S)+ p for some ej. Let S0 = S ∩{n′′ |n′′ 6 n′− p}.

Then n′ ∈ f ′ej
(S0) + p. There are no extra numbers in S0. Then by Claim 1

f ′ej
(S0) + p contains only numbers on the equation tracks, and thus n′ /∈

f ′ej
(S0) + p. Contradiction.

Hence, by Claim 2, Claim 3 and Claim 4, there are no missing and extra
numbers. Then the first and second inclusions in the statement of Lemma 6
hold, as they state that there are no missing numbers. The third inclusion
states that there is no extra numbers, which completes the proof of Lemma 6.

The above lemma has established the basic structure of any solution S,
which must contain all numbers in tracks 0 and p

2
−1 and no elements of any

tracks besides these two and the tracks d1, . . . , dm ∈ {2, . . . , p
2
− 2}. Because
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of this, S can be shifted and intersected with itself to obtain a certain periodic
set. This is what is done in the expressions π and π′:

Lemma 7. If S is a solution of (8), then

π(S) = {kp | k > 1}
π′(S) = {kp− (p

2
− 1) | k > 1}

Proof. The proof is based upon Lemma 6, which assures that if n = kp− t ∈
S, then t ∈ {0, d1, . . . , dm, p

2
− 1}.

Consider any n ∈ π(S) = S∩(S+(p
2
−1)). Then n ∈ S and n− p

2
+1 ∈ S.

Let n = kp− t, then t and (t + p
2
− 1 mod p) ∈ {0, d1, . . . , dm, p

2
− 1}, which

is only possible if t = 0. Hence n = kp and n′ = kp − (p
2
− 1), which shows

that S ∩ (S + (p
2
− 1)) ⊆ {kp | k > 0}.

Conversely, let n = kp for some k > 1. Then n, n − (p
2
− 1) ∈ S by

Lemma 6, and thus n ∈ π(S).
A similar calculation can be done for the second equality. If n ∈ π′(S) =

S ∩ (S + (p
2

+ 1)), then n ∈ S and n− (p
2

+ 1) ∈ S. By the same argument,
n = −(p

2
− 1) (mod p), and hence it belongs to the given set. In the other

direction, if n = kp− (p
2
− 1) for some k > 1, then n ∈ S and n− (p

2
+ 1) =

(k − 1)p ∈ S by Lemma 6, which shows that n ∈ π′(S).

Now the values of the auxiliary expressions ψ(X), ψ′(X) and θ(X) can
be determined by direct calculations based on the result of Lemma 7:

Lemma 8. If π(S) = {kp | k > 1} and π′(S) = {kp− (p
2
− 1) | k > 1}, then

ψ(S) = ψ′(S) = {kp | k > 0} ∪ {kp− (p
2
− 1) | k > 1},

f ′t(S) = ft(S) (for all t ∈ {0, . . . , p− 1}),
θ(S) = ∅,

ϕ′j,E(S) = ϕj,E(S) (1 6 j 6 `, E ∈ {Ej, Fj}).
Proof. Using Lemma 7, the following direct calculations are carried out:

ψ(S) = {p
2

+ 1} ∪ (π′(S) + p
2
− 1) ∪ (π(S) + p

2
+ 1) =

= {p
2

+ 1} ∪ ({kp− (p
2
− 1) | k > 1}+ p

2
− 1) ∪ ({kp | k > 1}+ p

2
+ 1) =

= {kp | k > 1} ∪ {kp + p
2

+ 1 | k > 0}.
Similarly,

ψ′(S) = π(S) ∪ π′(S) = {kp− p
2
− 1 | k > 1} ∪ {kp | k > 1}.

Consider now f ′t(S). For 0 6 t 6 p
2
− 1,

f ′t(S) = S ∩ (π′(S) + p
2
− 1− t) =

= S ∩ ({kp− (p
2
− 1) | k > 1}+ p

2
− 1− t) =

= S ∩ ({kp− t | k > 1} = ft(S),
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and for p
2

6 t 6 p− 1, similarly,

f ′t(S) = S ∩ (π(S) + p− t) ∪ S ∩ ({p− t}) =

=
(
S ∩ ({kp | k > 1}+ p− t)

) ∪ (
S ∩ {p− t}) =

= S ∩ {kp− t | k > 1} = ft(S).

The value of θ(S) is calculated as

θ(S) =
⋃̀
j=1

(
f ′ej

(S) + ej − 1
) ∪

⋃

t∈T\{e1,...,e`}
f ′t(S) =

⋃̀
j=1

(
fej

(S) + ej − 1
) ∪

⋃

t∈T\{e1,...,e`}
ft(S) =

⋃̀
j=1

∅ ∪
⋃

t∈T\{e1,...,e`}
∅ = ∅.

As ϕ′ is defined analogously to ϕ, with ft(X) replaced by f ′t(X), and as it
has already been proved that f ′t(S) = ft(S), it follows that ϕ′j,E(S) = ϕj,E(S)
for E ∈ {Ej, Fj}.

The proof of Theorem 7 is generally similar to the proof of Theorem 6,
though there are more details to consider. Roughly speaking, once Lemma 7
Lemma 8 determine the values of the auxiliary expressions and establish the
equality of ϕ′ with the earlier expression ϕ, Lemma 5 from the previous
section becomes applicable, and it yields the equivalence.

Theorem 7. Suppose S satisfies the equation (8). Then, by Lemma 6, it
satisfies the following system of equations as well:

X ∩ {kp, kp + p
2

+ 1 | k > 0} = {kp, kp + p
2

+ 1 | k > 0} (9)

X ∩ {kp− t | k > 0} = ∅ for t ∈ T (10)

Let us substitute S into (8) and intersect both of its sides with the set
{kp− ej | k > 0}. According to Lemma 8,

ψ(S) ∩ {kp− ej | k > 0} = ψ(S)′ ∩ {kp− ej | k > 0} = θ(S) = ∅.

On the other hand, by Lemma 8 and by Lemma 3,

ϕ′j,E(S) = ϕj,E(S) ⊆ {kp− ej | k > 1}. (11)

This gives the following equality:

ϕj,Ej
(S) + p = ϕj,Fj

(S) + p (for j = 1, . . . , `). (12)
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Then (9,10,12) satisfy the assumptions of Lemma 5 with constants

C0 = {kp | k > 0}
Cp

2
−1

= {kp− (p
2
− 1) | k > 0}

Ct = ∅ for t ∈ T,

and the lemma states that S is of the form

S = {kp, kp + p
2

+ 1 | k > 0} ∪
m⋃

i=1

{kp− di | k ∈ Si},

where (S1, . . . , Sm) is a solution of the original system.
Conversely, assume that (S1, . . . , Sm) is a solution of the original system,

and let

S = {kp, kp + p
2

+ 1 | k > 0} ∪
m⋃

i=1

{kp− di | k ∈ Si}.

Then S satisfies (9,10,12) by Lemma 5. Under these premises, π(S) and
π′(S) can be calculated in the same way as in Lemma 7, resulting in

π(S) = {kp | k > 1} and π′(S) = {kp− (p
2
− 1) | k > 1}.

Then, by Lemma 8,

ψ(S) = ψ′(S) (13)

θ(S) = ∅, (14)

ϕ′j,E(S) = ϕj,E(S) (1 6 j 6 `, E ∈ {Ej, Fj}). (15)

Now it can be verified that a substitution X = S turns (8) into an equal-
ity:

ψ(S) ∪
⋃̀
j=1

(ϕ′j,Ej
(S)) = ψ(S) ∪

⋃̀
j=1

(ϕj,Ej
(S)) ∪∅ =

= ψ′(S) ∪
⋃̀
j=1

(ϕj,Fj
(S)) ∪ θ(S) = ψ′(S) ∪

⋃̀
j=1

(ϕ′j,Fj
(S)) ∪ θ(S)

by (11), (13), (14) and (15). Hence S is a solution.

Now the known constructions of systems of equations reprensenting re-
cursive, r.e. and co-r.e. sets by their unique, least and greatest solutions are
immediately extended to univariate equations:

Corollary 2. For every recursive (r.e., co-r.e.) set S0 ⊆ N there exist
numbers 0 6 d < p and an equation ϕ(X) = ψ(X) using union, intersection,
addition and singleton constants, such that its unique (least, greatest) solution
S satisfies S ∩ {kp− d | k > 1} = {kp− d | k ∈ S0}.
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In particular, there exists an equation ϕ(X) = ψ(X) with an r.e.-complete
least solution, as well as one with a co-r.e.-complete greatest solution.

Another implication is that all decision problems about the cardinality of
the set of solutions have the same complexity for systems and for univariate
equations.

Corollary 3. The problem of whether an equation ϕ(X) = ψ(X) us-
ing union, intersection, addition and singleton constants has solutions (a
unique solution, finitely many solutions) is co-r.e.-complete (Π2-complete,
Σ3-complete, respectively).
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