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Abstract

It is shown that every conjunctive language is generated by a conjunctive
grammar of a special form, in which every nonterminal A has at most one
rule of the general form A → α1& . . . &αn, while the rest of the rules for
A must be of the type A → w, where w is a terminal string. For context-
free grammars, a similar property does not hold (S. A. Greibach, W. Shi,
S. Simonson, “Single tree grammars”, 1992).

Keywords: conjunctive grammars, single tree grammars, normal form, lan-
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1 Introduction

Context-free grammars are the most obvious mathematical model of syntax,
which represents inductive definition of a set of strings. This is done using one
Boolean operation: the disjunction, which is implicit in having multiple rules
for one nonterminal symbol. These natural expressive means, together with
efficient parsing algorithms, make context-free grammars the most practically
used method of defining formal languages.

As conjunction of syntactical conditions is not expressible in context-free
grammars, this model can be extended by allowing an explicit conjunction
in the formalism of rules. The resulting extension is known as conjunctive
grammars [8], it maintains the principle of defining a language inductively
and still allows efficient parsing algorithms. At the same time, using conjunc-
tion in addition to disjunction considerably increases the expressive power of
the model. Besides being able to represent many standard examples of non-
context-free languages, such as { anbncn | n > 0 } and {wcw | w ∈ {a, b}∗ }
[8], conjunctive grammars are notable for their non-trivial expressive power
over a one-letter alphabet, studied by Jeż [4] and by Jeż and Okhotin [5, 6].
This work, in particular, led to unexpected strong results on equations over
sets of numbers [7].

This paper continues the investigation of the power of Boolean operations
in context-free grammars with a subclass of conjunctive grammars, in which
the disjunction can be used only in the form of disjunction with a terminal
string. In other words, each nonterminal A may have only one rule referring
to other nonterminals, while the rest of its rules must be of the form A →
w, where w is a terminal string. The same restriction on the context-free
grammars has been studied by Greibach et al. [3] under the name of single
tree grammars. These grammars have quite a limited expressive power; in
particular, they cannot generate the language of all palindromes. The latter
language, as shown by Reitwießner [10] is not even in the union closure of
single tree grammars. This means that unrestricted use of disjunction is
essential for context-free grammars.

Similarly to single tree grammars, one can expect conjunctive grammars
restricted to use disjunction only with terminal strings to be much weaker
than conjunctive grammars of the general form. However, the results of this
paper contrast this intuition, and it is shown that in fact every conjunc-
tive grammar can be effectively transformed to an equivalent grammar with
restricted disjunction. Unrestricted disjunction is thus redundant in conjunc-
tive grammars. The form with restricted disjunction may thus be regarded
as a normal form for conjunctive grammars.

The proof of this result is based upon another normal form for conjunctive
grammars, the odd normal form, in which every nonterminal other than the
start symbol generates only strings of odd length. In Section 3 it is shown
how to transform every conjunctive grammar to this form. The main result
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of the paper, that every conjunctive language can be generated by a conjunc-
tive grammar with restricted disjunction, is obtained in Section 4. Finally,
the question of eliminating ε-rules in conjunctive grammars with restricted
disjunction is addressed in Section 5: though it is not determined whether
this is always possible, a construction of ε-free restricted conjunctive gram-
mars for a subfamily of conjunctive languages including all regular languages
is given.

2 Conjunctive grammars

Let us define the main operations on languages used in this paper. These
are, first of all, Boolean operations: union, intersection and complementation
L = Σ∗ \ L, as well as concatenation: K · L = KL = {uv | u ∈ K, v ∈ L }.
The quotient of a language with a singleton is defined as follows: for all
L ⊆ Σ∗ and u ∈ Σ∗, the languages u−1L := {w | uw ∈ L} and Lu−1 :=
{w | wu ∈ L} are the left and right quotients of L with u, respectively. This
operation is extended to languages as K−1L := { v | ∃u ∈ K : uv ∈ L } and
LK−1 := {u | ∃v ∈ K : uv ∈ L } for K,L ⊆ Σ∗.

Definition 1 (Okhotin [8]). A conjunctive grammar is a quadruple G =
(Σ, N, P, S), in which Σ and N are disjoint finite nonempty sets of terminal
and nonterminal symbols, respectively; P is a finite set of rules, each of the
form

A → α1& . . . &αn (with A ∈ N , n > 1 and α1, . . . , αn ∈ (Σ ∪N)∗) (1)

and S ∈ N is a nonterminal designated as the start symbol.

Informally, a rule (1) states that if a string is generated by each αi, then
it is generated by A. This semantics can be formalized using term rewriting,
which generalizes Chomsky’s string rewriting.

Definition 2 ([8]). Given a grammar G, consider terms over concatenation
and conjunction with symbols from Σ∪N as atomic terms. The relation =⇒
of immediate derivability on the set of terms is defined as follows:

• Using a rule A → α1& . . . &αn, a subterm A ∈ N of any term ϕ(A)
can be rewritten as ϕ(A) =⇒ ϕ(α1& . . . &αn).

• A conjunction of several identical strings can be rewritten by one such
string: ϕ(w& . . . &w) =⇒ ϕ(w), for every w ∈ Σ∗.

The language generated by a term ϕ is LG(ϕ) = {w | w ∈ Σ∗, ϕ =⇒∗ w }.
The language generated by the grammar is L(G) = LG(S) = {w | w ∈ Σ∗,
S =⇒∗ w}.
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An equivalent definition can be given using language equations. This def-
inition generalizes the well-known characterization of the context-free gram-
mars by equations, due to Ginsburg and Rice [1].

Definition 3. For every conjunctive grammar G = (Σ, N, P, S), the associ-
ated system of language equations is a system of equations in variables N ,
in which each variable assumes the value of a language over Σ, and which
contains the following equation for every variable A:

A =
⋃

A→α1&...&αm∈P

m⋂
i=1

αi (for all A ∈ N) . (2)

Each occurrence of a symbol a ∈ Σ in such a system defines a constant
language {a}, while each empty string denotes a constant language {ε}. A
solution of a system is a vector of languages (. . . , LC , . . .)C∈N , such that the
substitution of LC for C, for all C ∈ N , turns each equation (2) into an
equality.

Every such system has at least one solution, and among them a least
solution with respect to componentwise inclusion. This solution consists of
exactly the languages generated by the nonterminals of the original conjunc-
tive grammar: (. . . , LG(C), . . .)C∈N .

Let us give some examples of conjunctive grammars. Every language
representable as an intersection of finitely many context-free languages, such
as { anbncn | n > 0 }, can be straightforwardly specified using conjunction
for the start symbol. It is more interesting to construct a grammar for a
language not in the intersection closure of the context-free languages, such
as the following.

Example 1 (Okhotin [8]). The conjunctive grammar

S → C&D
C → aCa | aCb | bCa | bCb | c
D → aA&aD | bB&bD | cE
A → aAa | aAb | bAa | bAb | cEa
B → aBa | aBb | bBa | bBb | cEb
E → aE | bE | ε

generates the language {wcw | w ∈ {a, b}∗ }. In particular, L(D) = {uczu |
u, z ∈ {a, b}∗ }.

The rules for D match a single symbol in the left part to the corresponding
symbol in the right part using A or B, and the recursive reference to aD or bD
makes the remaining symbols be compared in the same way. The intersection
with the language {ucv | u, v ∈ {a, b}∗, |u| = |v| } generated by C completes
the grammar.
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Example 2 (Jeż [4]). The following conjunctive grammar with the start
symbol A1 generates the language { a4n | n > 0 }:

A1 → A2A2&A1A3 | a
A2 → A6A2&A1A1 | aa
A3 → A6A6&A1A2 | aaa
A6 → A3A3&A1A2

Each nonterminal Ai generates the language { ai·4n | n > 0 }.
A generalization of the Chomsky normal form for conjunctive grammars

is known.

Definition 4 (Binary normal form [8]). A conjunctive grammar G =
(Σ, N, P, S) is in the binary normal form if every rule in P is of the form

A → B1C1& . . . &BnCn (n > 1, Bi, Ci ∈ N)

A → a

S → ε (only if S does not appear in right-hand sides of rules)

Every conjunctive grammar can be effectively transformed to a conjunc-
tive grammar in the binary normal form generating the same language [8]. In
particular, this normal form is used to obtain a simple generalization of the
Cocke–Kasami–Younger parsing algorithm to conjunctive grammars, which
still works in time O(n3) [8].

For context-free grammars, there is another important normal form: the
Greibach normal form [2], in which every rule is either A → aα with α ∈
(Σ ∪ N)∗, or A → ε. This definition naturally carries on to conjunctive
grammars. It can be said that a conjunctive grammar G = (Σ, N, P, S) is in
Greibach normal form if every rule in P is of the form

A → aα1& . . . &aαn (n > 1, αi ∈ N∗) or

A → ε.

However, it is not known whether every conjunctive grammar can be trans-
formed to this form.

Let us establish an entirely new normal form for conjunctive grammars,
which will be crucial for the subsequent constructions.

3 The odd normal form

The odd normal form for conjunctive grammars proposed in this section has
the following main property: every nonterminal (possibly except the start
symbol) may only generate strings of odd length. As the parity of the length
of strings is going to play an important role in all constructions below, let
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us introduce the notation Even := (Σ2)∗ and Odd := Σ(Σ2)∗ (where Σ is
the implicitly assumed alphabet) for the sets of all strings of even and odd
length, respectively.

Definition 5 (Odd normal form). A conjunctive grammar G = (Σ, N, P, S)
is said to be in odd normal form if all rules in P are of the form

A → a with A ∈ N , a ∈ Σ, or

A → B1a1C1 & . . . & BnanCn with n > 1, A,Bi, Ci ∈ N , ai ∈ Σ

If S does not occur in the right-hand sides of the rules, then the following
two types of rules, called even rules, are also allowed:

S → aA with a ∈ Σ, A ∈ N

S → ε

Note that if there are no even rules in a grammar in odd normal form, then
it generates a subset of Odd. Thus even rules are needed for some languages,
but regardless of whether they are used, the main part of the grammar op-
erates on odd strings only. The main step towards the transformation to the
odd normal form is taking an arbitrary grammar in binary normal form and
representing its operation on all strings using only odd strings.

Lemma 1. For every conjunctive grammar G = (Σ, N, P, S) in binary nor-
mal form there exists and can be effectively constructed a conjunctive gram-
mar G′ := (Σ, N ′, P ′, S ′) in odd normal form without even rules, in which
the set of nonterminals is N ′ := (Σ∪ {ε})×N × (Σ∪ {ε}) and the language
generated by each nonterminal (x,A, y), denoted xAy, is

LG′(xAy) = x−1LG(A)y−1 ∩Odd,

where A ∈ N and x, y ∈ Σ ∪ {ε}. The start symbol is S ′ := εSε, and hence
L(G′) = L(G) ∩Odd.

Proof. It can be assumed that G does not contain the rule S → ε, since the
languages x−1LG(S)y−1 ∩ Odd consist of strings of length at least one, and
hence the membership of ε in L(G) does not affect them.

The grammar G′ is constructed as follows. For every rule

A → B(1)C(1)& . . . &B(n)C(n) ∈ P,

each nonterminal xAy with x, y ∈ Σ ∪ {ε} in the new grammar G′ has all
possible rules of the form

xAy → xα
(1)
y & . . . &xα

(n)
y
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such that for every i = 1, . . . , n,

xα
(i)
y ∈{xB

(i)
a · a · εC

(i)
y | a ∈ Σ} ∪ (3a)

{xB
(i)
ε · a · aC

(i)
y | a ∈ Σ} ∪ (3b)

{xB
(i)
ε | y ∈ LG(C(i))} ∪ (3c)

{εC
(i)
y | x ∈ LG(B(i))}. (3d)

Additionally, for every xAy ∈ N ′ and a ∈ Σ with xay ∈ LG(A), the new
grammar contains the rule

xAy → a. (4)

It is easy to check that no nonterminal in G or G′ generates the empty string
and that all strings generated by nonterminals in N ′ have odd length.

Now it is claimed that for each xAy ∈ N ′ and for every w ∈ Σ∗,

w ∈ LG′(xAy) if and only if xwy ∈ LG(A) and w ∈ Odd.

The proof in each direction is by induction on the length of w, and inside
this induction there is another induction on |xy|.

⇒© Let w ∈ LG′(xAy); it has to be proved that xwy ∈ LG(A). The proof
will be done by induction on the length of w. More precisely, for each string,
the statement is first proved for nonterminals with shorter indices. This
means that the induction is actually on 3|w|+ |xy|).

Induction basis |w| = 1. If w ∈ LG′(xAy) with |w| = 1, then w is either
generated directly by a rule of type (4) (in which case the assertion ob-
viously holds), or it can be generated via a “long” rule. Note that such
a rule must consist entirely of unit conjuncts of the form (3c) and (3d),
since all other conjuncts generate longer strings (as no nonterminal in

G′ generates the empty string). So let xAy → xα
(1)
y & . . .& xα

(n)
y be this

rule.

If x = y = ε, there cannot be conjuncts of type (3c) or (3d), since
ε /∈ LG(B(i)), LG(C(i)). So in this case, w can only be generated by a
“short” rule, and there is nothing left to prove.

If |x| = 1 and y = ε, then there cannot be conjuncts of type (3c)), and
there is a rule A → B(1)C(1)& . . . &B(n)C(n) ∈ P such that for every
i = 1, . . . , n it holds that x ∈ LG(B(i)) and xα

(i)
y = εC

(i)
y = εC

(i)
ε As

w ∈ εC
(i)
y this means that w ∈ LG(C(i)), as we already proved. Then,

of course, xwy = xw ∈ LG(B(i)C(i)) and thus xwy ∈ LG(A).

The case for x = ε and |y| = 1 is symmetric, so let |x| = |y| = 1. In
this case, similarly there is a rule A → B(1)C(1)& . . . &B(n)C(n) ∈ P
in which, for every i-th conjunct, x ∈ LG(B(i)) and xα

(i)
y = εC

(i)
y ,

or y ∈ LG(C(i)) and xα
(i)
y = xB

(i)
ε . Fix now i and, without loss of
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generality, assume the first of these two cases. We already proved that
if w ∈ LG′(εC

(i)
y ), then wy ∈ LG(C(i)), so xwy ∈ LG(B(i)C(i)). As this

holds for all i, we get xwy ∈ LG(A) and the induction basis is complete.

Induction step. Let n > 1 and assume that the assertion holds for all w
with |w| 6 n. Let w ∈ LG′(xAy) for some xAy ∈ N ′ and |w| = n + 1.

Since |w| > 1, there must be a rule xAy → xα
(1)
y & . . . & xα

(n)
y and

w ∈ LG′(xα
(i)
y ) for all i = 1, . . . , n. Now fix i and consider the form of

xα
(i)
y .

Assume it is of the form (3a), that is, xα
(i)
y = xB

(i)
a · a · εC

(i)
y for some

a ∈ Σ. Then there are strings u ∈ LG′(xB
(i)
a ), v ∈ LG′(εC

(i)
y ) such that

w = uav. Since 1 6 |u|, |v| 6 |w| − 2 = n− 1, we have xua ∈ LG(B(i))
and vy ∈ LG(C(i)) by induction and thus xwy ∈ LG(B(i)C(i)). The

second case, xα
(i)
y = xB

(i)
ε · a · aC

(i)
y , works analogously.

Now there are the cases (3c) and (3d) left and we assume without

loss of generality that x 6= ε and xα
(i)
y = εC

(i)
y . This implies that

w ∈ LG′(εC
(i)
y ). Since εC

(i)
y always has shorter indices than xAy, we

get wy ∈ LG(C(i)) by induction. Since x ∈ LG(B(i)), we finally have
xwy ∈ LG(B(i)C(i)).

In all four cases, we got xwy ∈ LG(B(i)C(i)). Since this holds for all
i ∈ {1, . . . , n}, we get xwy ∈ LG(A), which was asserted.

⇐© The other direction is now proved by induction on |w| for xwy ∈ LG(A)
(and again the statement is first proved for smaller |xy| if the string length
|w| is the same).

Induction basis |w| = 1. The induction basis is clear by the rules (4).

Induction step. Assume that all four statements hold for |w| 6 n and
n > 1.

Let now xwy ∈ LG(A), w ∈ Odd and |w| = n + 2. Since |xwy| >
|w| > 3, there must be a rule A → B(1)C(1)& . . . &B(n)C(n) ∈ P such
that w ∈ LG(B(i)C(i)) for all i = 1, . . . , n. By the construction, there
can be multiple rules in P ′ that correspond to this rule. We now argue
that for every i = 1, . . . , n, we can find a suitable conjunct xα

(i)
y that

generates w. For this, fix i again. Then there must be strings u, v ∈ Σ∗

such that xu ∈ LG(B(i)), vy ∈ LG(C(i)) and xwy = xuvy. Note that
since w has odd length, either u or v has odd length. Without loss of
generality, assume that |v| is odd. Since |v| is strictly smaller than |w|
(no nonterminal generates the empty string) we get |v| ≤ |w| − 2 = n

and thus v ∈ LG′(C
(i)
y ) by induction. For u there are two cases.
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• If x 6= ε, then it can be that u = ε and thus x = xu ∈ LG(B(i)).

In this case, εC
(i)
y is a possible ith conjunct xα

(i)
y (cf. rule (3d)).

Since v ∈ LG′(C
(i)
y ), we get w = uv = v ∈ LG′(C

(i)
y ) = LG′(xα

(i)
y ).

• If u 6= ε, then u = u′a for some a ∈ Σ and xu′a ∈ LG(B(i)) and

thus u′ ∈ LG′(xB
(i)
a ) by induction (|u′| 6 |w| − 2 = n and it is

odd). This means that w = u′av ∈ LG′(xB
(i)
a · a · C(i)

y ), so this is

a possible conjunct xα
(i)
y .

Now we showed that for every i = 1, . . . , n, there is a legal conjunct

xα
(i)
y in the respective rule for xAy in P ′ that generates w, which implies

that w ∈ LG′(xAy).

The grammar G′ constructed above is not yet in the odd normal form,
because it may contain so-called unit conjuncts, that is, rules of the form
A → . . . &B& . . .. The known procedure for eliminating such conjuncts [8] is
a sequence of substitutions of the bodies of all rules for B inside a rule A →
. . . &B& . . .. Accordingly, once these substitutions are done, the grammar
G′ will contain conjuncts of the form (3a) and (3b), while all conjuncts of
the form (3c) and (3d) will be eliminated. Then G′ will be in the odd normal
form.

The grammar constructed in Lemma 1 generates the odd subset of the
given language. However, it actually encodes the entire information defined
in the original grammar, and using the “even rules” allowed in the odd normal
form one can generate the original language as it is.

Theorem 1. For every conjunctive grammar there exists and can be effec-
tively constructed a conjunctive grammar in odd normal form generating the
same language.

Proof. Let L ⊆ Σ∗ be conjunctive. Since every conjunctive language can
be generated by a conjunctive grammar in binary normal form (which can
be obtained effectively), there is, by Lemma 1, a conjunctive grammar G =
(Σ, N, P, S) in odd normal form wihout even rules, such that for all a ∈ Σ,

LG(S) = L ∩Odd and LG(aSε) = a−1L ∩Odd.

The grammar G′ := (Σ, N ∪ {S ′}, P ′, S ′) with a new nonterminal S ′ and

P ′ := P ∪ {S ′ → ϕ | S → ϕ ∈ P} ∪ {S ′ → aaSε | a ∈ Σ} ∪ {S ′ → ε | ε ∈ L}
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is in odd normal form (with even rules) and generates L:

LG′(S
′) = LG(S) ∪

⋃
a∈Σ

aLG(aSε) ∪ (L ∩ {ε})

= (L ∩Odd) ∪
⋃
a∈Σ

a(a−1L ∩Odd) ∪ (L ∩ {ε})

= (L ∩Odd) ∪
⋃
a∈Σ

(aa−1L ∩ aOdd) ∪ (L ∩ {ε})

= (L ∩Odd) ∪ (L ∩ ΣOdd) ∪ (L ∩ {ε})
= L

If L ∩ Even = ∅, that is, if L does not contain strings of even length,
then LG′(aSε) = ∅ for every a ∈ Σ. Unfortunately, checking this property
is undecidable in the general case, but if this property holds, then the even
rules can be removed without changing the generated language.

Some corollaries can be inferred. The first one concerns Greibach normal
form for conjunctive grammars. As already mentioned, it is unknown whether
every conjunctive grammar can be transformed to that form. However, The-
orem 1 straightforwardly implies a transformation to Greibach normal form
for grammars over a one-letter alphabet.

Corollary 1 (Unary Greibach normal form). For every conjunctive gram-
mar over a unary alphabet there exists and can be effectively constructed a
conjunctive grammar in Greibach normal form generating the same language.

Indeed, since concatenation of languages over {a} is commutative, each
term BaC in an odd normal form grammar can be equivalently replaced by
aBC.

The second consequence of Theorem 1 is actually quite obvious, but nev-
ertheless it is new:

Theorem 2. Conjunctive languages are effectively closed under quotient with
letters, and hence under quotient with finite languages.

Proof. Let L ⊆ Σ∗ be conjunctive and fix a ∈ Σ. By Lemma 1, there is a
conjunctive grammar G = (Σ, N, P, S), which contains nonterminal symbols
Sa and bSa for all b ∈ Σ that generate the languages

LG(Sa) = La−1 ∩Odd and LG(bSa) = b−1La−1 ∩Odd.

Construct the grammar G′ = (Σ, N ∪ {S ′}, P ∪P ′, S ′) with the following
additional rules:

S ′ → Sa

S ′ → bbSa (for all b ∈ Σ)

S ′ → ε (if a ∈ L(G))

Then we have L(G′) = L(G)a−1. The construction for a−1L is symmetric.
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4 Restricted conjunctive grammars

Now let us define a restricted subfamily of conjunctive grammars that will
be studied in this paper.

Definition 6. A restricted conjunctive grammar is a conjunctive grammar in
which every nonterminal may have at most one rule not of the form A → w,
with w ∈ Σ∗. In other words, the rules for every nonterminal A are of the
form:

A → α1& . . . &αn | w1 | . . . | wm (n > 1, m > 0, αi ∈ (Σ ∪N)∗, wj ∈ Σ∗)

A context-free grammar satisfying this restriction is known as a single
tree grammar, see Greibach et al. [3].

The grammar in Example 2 is restricted conjunctive, while the grammar
in Example 1 is not. The next example illustrates the key expressive power
of these grammars.

Example 3. The following restricted conjunctive grammar generates the set
of palindromes of odd length over {a, b}:

S → AB&O | a | b

A → aSa | ε

B → bSb | ε

O → OOO | a | b

Here the nonterminal O generates the set Odd, and hence S may generate
only strings of odd length. Then the rule S → AB&O generates

(aSa∪{ε})(bSb∪{ε})∩Odd = (aSabSb∪aSa∪bSb∪{ε})∩Odd = aSa∪bSb,

that is, it is equivalent to two rules S → aSa and S → bSb. Thus the set of
odd-length palindromes is generated inductively, starting from a and b.

This representation of the union of two languages actually works in the
general context, as long as both languages consist of strings of odd length.
As in the above example, it is sufficient to add the empty string to both
languages, concatenate them and then filter out the strings of even length.
This gives a way to simulate every conjunctive grammar in which every non-
terminal generates a subset of Odd. Since grammars in odd normal form
have this property and every conjunctive grammar can be transformed to
this form, the following statement can be proved.

Lemma 2. For every conjunctive grammar generating a subset of Odd ⊆
Σ∗ there exists and can be effectively constructed a restricted conjunctive
grammar generating the same language.
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Proof. Assume that the conjunctive grammar G is in odd normal form with-
out even rules (by Theorem 1). The first goal is to transform it so that
for every nonterminal A there is either a unique rule of an arbitrary form
A → α1& . . . &αn, or two rules A → B | C. During this transformation, the
property that L(A) ⊆ Odd for every nonterminal A should be retained.

Let A → r1 | r2 | . . . | rn be the rules for the nonterminal A. Of course,
L(ri) ⊆ Odd for all i. If n > 2, then the rules for A are replaced with
A → B | C, where B and C are two new nonterminals with the rules B →
r1 | r2 | . . . | rn−1 and C → rn. Observe that iterative application of this
transformation results in a grammar G′ = (Σ, N, P, S) that generates the
same language as G, still has L(A) ⊆ Odd for all A ∈ N , and furthermore,
for every nonterminal A ∈ N there is either a unique rule of an arbitrary
form or two rules A → B | C.

Next, construct a restricted conjunctive grammar G′′ = (Σ, N ∪ N ′ ∪
{O}, P ′, S), in which N ′ = {A′ | A ∈ N } is a disjoint copy of N , O is a new
nonterminal, and P ′ contains the following rules:

A′ → A | ε (for all A ∈ N)

A → α1& . . . &αn&O (if A → α1& . . . &αn is the unique rule for A in P )

A → B′C ′&O (if A → B | C are the rules for A in P )

O → OOO

O → a (for all a ∈ Σ)

Here it obviously that LG′(O) = Odd, LG′(A) ⊆ Odd and LG′(A
′) = LG′(A)∪

{ε} for every A ∈ N . Assume now that the nonterminal A has the rule
A → B′C ′&O in P ′. Then

LG′(A) =
(
LG′(B) ∪ {ε})(LG′(C) ∪ {ε}) ∩Odd

=
(
LG′(B)LG′(C) ∪ LG′(B) ∪ LG′(C) ∪ {ε}) ∩Odd

= LG′(B) ∪ LG′(C).

This means that the rule A → B′C ′&O can be equivalently replaced by the
rules A → B | C. One then gets a grammar obtained from G′ by changing
every rule A → α1& . . . &αn (where this is the only rule for A) to A →
α1& . . . &αn&O and adding the rules for O (rules of the type A → B |C stay
the same by the above equation, and the nonterminals A′ are superfluous).
Since the nonterminals in G′ produce only subsets of Odd, this conjunction
with O does not change the generated language and the lemma is proved.

Lemma 2 can be used to construct a restricted conjunctive grammar
for the language containing all odd strings belonging to a given conjunctive
language L and no even strings. In order to get the whole language L later,
it is useful to generate all even strings: this will be a superset of L, which
could be intersected with some other languages to obtain L. The addition of
all even strings is performed in the following lemma.
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Lemma 3. For every conjunctive language L ⊆ Σ∗, the language (L∩Odd)∪
Even is generated by a restricted conjunctive grammar.

Proof. Let G = (Σ, N, P, S) be a restricted conjunctive grammar generating
the language L∩Odd, which is given by Lemma 2. Construct a new grammar
G′ with the following rules:

S ′ → AB&C | ε
A → S
A → a (a ∈ Σ)
B → O | ε

C → CC
C → w (w ∈ (Σ ∩ L) ∪ Σ2 ∪ Σ3)
O → OOO
O → a (a ∈ Σ)

This concatenation AB generates the following language:
(
(L ∩Odd) ∪ Σ

) · (Odd ∪ {ε}) = (Even \ {ε}) ∪ (L ∩Odd) ∪ Σ

Its intersection with L(C) = (Σ+ \{ a ∈ Σ | a /∈ L }) produces (Even\{ε})∪
(L ∩Odd), and taking the rule S ′ → ε into account, the grammar generates
Even ∪ (L ∩Odd).

The above construction cannot be used symmetrically to obtain the lan-
guage (L ∩ Even) ∪ Odd directly. However, the method of Lemma 3 can be
elaborated to generate the following superset of L:

Lemma 4. For every conjunctive language L ⊆ Σ∗ and for every symbol
a ∈ Σ, the language (L ∩ aOdd) ∪ aOdd is generated by some restricted
conjunctive grammar.

Proof. Let L be a conjunctive language over Σ and let a ∈ Σ. Define La :=
a(a−1L ∩ Odd): these are all even strings in L that start with a, that is,
La = L ∩ aOdd. Define the following three languages:

L1 = {ε} ∪ (Σ \ {a})Σ∗,

L2 = La ∪ {ε},
L3 = Odd ∪ {ε}.

Each of these languages has a restricted conjunctive grammar. It is not dif-
ficult to construct such grammars for L1 and L3. For L2, since L is conjunc-
tive, the language a−1L∩Odd is conjunctive by Theorem 2, and therefore, by
Lemma 2, there is a restricted conjunctive grammar generating this language.
This grammar can be easily modified to generate L2.

Now consider the concatenation of these three languages:

L1L2L3 =
({ε} ∪ La ∪ (Σ \ {a})Σ∗La ∪ (Σ \ {a})Σ∗) · (Odd ∪ {ε}) =

=
({ε} ∪ La ∪ (Σ \ {a})Σ∗) · (Odd ∪ {ε}) =

= {ε} ∪ La ∪ (Σ \ {a})Σ∗ ∪Odd ∪ LaOdd︸ ︷︷ ︸
⊆Odd

∪ (Σ \ {a})Σ∗Odd︸ ︷︷ ︸
⊆(Σ\{a})Σ∗

=

= La ∪Odd ∪ (Even \ aΣ∗) = La ∪ aOdd = (L ∩ aOdd) ∪ aOdd.

12



Using this equation, it suffices to construct a restricted conjunctive gram-
mar for each of the three languages (ε∪ (Σ\{a})Σ∗), (La∪ ε) and (Odd∪ ε),
which will now be done.

1. ε ∪ (Σ \ {a})Σ∗: Observe the restricted conjunctive grammar G :=
(Σ, {S, A, X}, S, P ) with P containing the rules S → AX, S → ε,
A → b (for all b ∈ Σ\{a}), X → XX, X → v (for all v ∈ Σ∪{ε}). The
nonterminals produce the following languages: LG(X) = Σ∗, LG(A) =
Σ \ {a} and LG(S) = ε ∪ (Σ \ {a})Σ∗. So the grammar produces the
desired language.

2. Odd∪ ε: This language is obviously generated by a restricted conjunc-
tive grammar with the rules S → O | ε, O → OOO, O → a for every
a ∈ Σ.

From this, using the grammars for L1, L2 and L3, it is easy to construct
a restricted conjunctive grammar for the desired language.

It remains to intersect |Σ|+1 languages constructed in Lemmata 3 and 4
to obtain a grammar for any conjunctive language L containing ε. This gives
the main result of this paper:

Theorem 3. Every conjunctive language is generated by a restricted con-
junctive grammar.

Proof. Let L ⊆ Σ∗ be any conjunctive language. Then, by Lemmata 3 and 4,
there are restricted conjunctive grammars for the languages (L∩Odd)∪Even
and (L∩aOdd)∪aOdd for any a ∈ Σ. The intersection of these languages is

(
(L ∩Odd) ∪ Even

) ∩
⋂
a∈Σ

(
(L ∩ aOdd) ∪ aOdd

)
= L ∪ {ε}.

If ε ∈ L, this immediately gives a restricted conjunctive grammar for L.
Otherwise, if ε /∈ L, then a subsequent conjunction with a nonterminal rep-
resenting Σ+ yields the required grammar.

5 Restricted conjunctive grammars without

ε-rules

The above simulation of an arbitrary conjunctive grammar by a conjunctive
grammar with restricted disjunction essentially uses rules of the form A → ε,
known as ε-rules. On the other hand, it is known that conjunctive gram-
mars of the general form do not need ε-rules, and a transformation to the
binary normal form leads to their elimination. This raises the question of
whether restricted conjunctive grammars without ε-rules are as powerful as
conjunctive grammars of the general form.
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First of all, this stronger restriction on conjunctive grammars still gives a
non-trivial family. For instance, the important grammar over a unary alpha-
bet given in Example 2 is of this form. Grammars for interesting languages
over larger alphabets can be constructed as well.

Example 4. The following restricted conjunctive grammar generates the set
of all palindromes:

S → XSX&T | a | b | aa | bb
T → AB&CD&XXE
E → XE | a | b
X → a | b

A → bE | a | b
B → Ea | a | b
C → aE | a | b
D → Eb | a | b

In particular, L(E) = Σ+, L(A) = bΣ∗ ∪ {a}, L(B) = Σ∗a ∪ {b}, L(C) =
aΣ∗ ∪ {b}, L(D) = Σ∗b ∪ {a}, and L(T ) = aΣ+a ∪ bΣ+b.

Consider the intersection L(AB) ∩ L(CD) used in the rule for T :

(bΣ∗ ∪ {a})(Σ∗a ∪ {b}) ∩ (aΣ∗ ∪ {b})(Σ∗b ∪ {a}) =

=
(
bΣ∗a ∪ bΣ∗b ∪ aΣ∗a ∪ {ab}) ∩ (

aΣ∗b ∪ aΣ∗a ∪ bΣ∗b ∪ {ba}) =

= aΣ∗a ∪ bΣ∗b ∪ {ab, ba},

and the subsequent intersection with the set of all strings of length at least 3
produces the intended language aΣ+a∪bΣ+b. Finally, the rule S → XSX&T
generates the language

{a, b}S{a, b} ∩ (aΣ∗a ∪ bΣ∗b) = aSa ∪ bSb,

and hence operates as if two rules S → aSa and S → bSb. This is enough to
generate all palindromes inductively, starting from the base set {a, b, aa, bb}.
Lemma 5. The family of languages generated by restricted conjunctive gram-
mars without ε-rules is closed under union with finite sets, concatenation and
intersection.

Proof. The closure under concatenation and under intersection is obvious.
For the union with finite sets, let F ⊆ Σ+ be finite and let G = (Σ, N, P, S)
be a restricted conjunctive grammar without ε-rules. The grammar (Σ, N ∪
{S ′}, P ∪ {S ′ → S} ∪ {S ′ → w | w ∈ F}, S ′) with the new nonterminal S ′ is
restricted, does not contain ε-rules and obviously generates L(G) ∪ F .

Lemma 6. Any finite and co-finite language can be generated by a restricted
conjunctive grammar without ε-rules.

Proof. Since the empty set can obviously be generated by such a grammar
and the respective class of languages is closed under union with finite sets by
Lemma 5, we get the first part of the assertion.
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Let now L ⊆ Σ+ be co-finite. Then there is some k ≥ 1 such that
L ∩ ΣkΣ+ = ΣkΣ+ and there exists a finite set F such that L = ΣkΣ+ ∪
F . Obviously, ΣkΣ+ can be generated by a restricted conjunctive grammar
without ε-rules. Since L is the union of ΣkΣ+ with the finite set F , there is
also a restricted conjunctive grammar without ε-rules for L after Lemma 5.

The following theorem exhibits a significant subfamily of conjunctive
grammars that can be simulated by restricted conjunctive grammars without
ε-rules. This form generalizes deterministic Greibach normal form.

Theorem 4. Let G = (Σ, N, P, S) be a conjunctive grammar without ε-rules,
in which there is a disjoint partition of its nonterminals N = NS ∪NL ∪NR

into simple, left and right nonterminals, respectively, such that:

• for every A ∈ NL and for every a ∈ Σ there is at most one rule
A → aα1& . . . &aαn with n > 1 and αi ∈ N+, and all complex rules
for A are of this form;

• for every A ∈ NR and for every a ∈ Σ there is at most one rule
A → α1a& . . . &αna with n > 1 and αi ∈ N+, and all complex rules
for A are of this form;

• every A ∈ NS has at most one complex rule.

Then there exists (and can be effectively constructed) a restricted conjunctive
grammar without ε-rules that generates the same language.

For instance, the grammar in Example 1 can be easily transformed to
fit this statement with NL = {D,A, B} and NR = ∅. Therefore, there is a
restricted conjunctive grammar without ε-rules for {wcw | w ∈ {a, b}∗ }.

Proof. Let G = (Σ, N, P, S) be a conjunctive grammar of the stated form.
Construct a grammar G′ := (Σ, N ′, P ′, S) such that

N ′ := N∪{Aa | A ∈ NR ∪NL, a ∈ Σ}
∪{Xa | a ∈ Σ} ∪ {aX | a ∈ Σ} ∪ {T} ∪N2

(where N2 is a set of auxiliary nonterminals that will not be explicitly de-
scribed) and the set P ′ contains the following rules. Simple nonterminals
have the same rules as in P :

A → α1& . . . &αn (A ∈ NS, A → α1& . . . &αn ∈ P )

A → w (A → w ∈ P, w ∈ Σ+)
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Left and right nonterminals have the following rules:

A → T& &
a∈Σ

(Xa · Aa) (A ∈ NL)

A → T& &
a∈Σ

(Aa · aX) (A ∈ NR)

A → w (A → w ∈ P, w ∈ Σ+)

A → w (w ∈ LG(A), |w| = 2),

that is, all simple rules from P are are retained, all two-symbol strings are ex-
plicitly generated, and the unique long rule is simulated by the nonterminals
Aa as follows:

Aa → b (A ∈ NR ∪NL, a, b ∈ Σ)

Aa → α1& . . . &αn (A ∈ NR ∪NL, a ∈ Σ;

if A → aα1& . . . aαn ∈ P or A → α1a& . . . αna ∈ P )

Additionally, the rules for the nonterminals Xa and aX (for every a ∈ Σ)
and T are constructed so that LG′(Xa) = {a} ∪ (Σ \ {a})Σ∗, LG′(aX) =
{a} ∪ Σ∗(Σ \ {a}) and LG′(T ) = Σ+ \ Σ2. This can be done by Lemmata 5
and 6 using the additional nonterminals from the set N2.

Note that because of the restrictions on G, there is at most one complex
rule for every nonterminal A ∈ N ′, and thus G′ is of the restricted form
without ε-rules. The correctness of the construction is stated as follows:

For every A ∈ N and a ∈ Σ it holds that

1. LG′(Aa) =





Σ ∪
n⋂

i=1

LG(αi)
if P contains a rule A → aα1& . . . &aαn

or A → α1a& . . . &αna with n > 1, αi ∈
N+

Σ otherwise.

(provided that A /∈ NS)

2. LG′(A) = LG(A) for all A ∈ N .

The claim is verified by showing that these languages form the least so-
lution of the system of language equations corresponding to G′. Note that
no nonterminal in G′ generates the empty string and G′ does not contain
unit conjuncts. Then the system of language equations corresponding to G′

is known to have a unique ε-free solution, which is the least solution of the
system. Since the above languages and the previously mentioned languages
generated by T , Xa and aX do not contain ε, it only remains to verify these
solutions by substitution.

For every A ∈ NR ∪ NL and a ∈ Σ, consider the equation for Aa in the
system corresponding to G′. If there are no complex rules for A in G, then
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the only rules for Aa in G′ are the rules Aa → b for all b ∈ Σ. so the equation
for Aa is of the form

Aa =
⋃

b∈Σ

{b},

which is turned to an equality Σ = Σ under the given substitution.
Assume that there is a rule A → aα1& . . . aαn (or A → α1a& . . . αna) in

G. Then G′ contains an additional rule Aa → α1& . . . &αn with αi ∈ N+,
and accordingly the equation for Aa is

Aa =
n⋂

i=1

αn ∪
⋃

b∈Σ

{b}.

Under the substitution B = LG(B) for each B ∈ N , the right-hand side of
this equation has the value

⋂n
i=1 LG(αi) ∪ Σ, and thus the equality holds.

The equation for any A ∈ NS in G′ is the same as in G, and thus the
substitution B = LG(B) for all B ∈ N turns it into an equality. Consider
the equation for any left nonterminal A ∈ NL in G′, which is of the form

A =
(
T ∩

⋂
a∈Σ

Xa · Aa

)
∪

⋃
A→w∈P

{w} ∪
⋃

w∈Σ2∩LG(A)

{w}

Under the substitution Xa = {a} ∪ (Σ \ {a})Σ∗ and Aa = LA,a for any LA,a

with Σ ⊆ LA,a ⊆ Σ+, the subexpression
⋂

a∈Σ Xa · Aa evaluates to

⋂
a∈Σ

[{a} ∪ (Σ \ {a})Σ∗]LA,a =
⋂
a∈Σ

[
aLA,a ∪ (Σ \ {a})Σ∗LA,a

]
=

=
⋂
a∈Σ

[
aLA,a ∪ (Σ \ {a})Σ+

]
=

⋃
a∈Σ

aLA,a.

Let ΣA ⊆ Σ be the set of all terminal symbols a, for which there is a long
rule A → aαa,1& . . . &aαa,na ∈ P . Now the first part of the right-hand side

of the equation for A in G′, i.e.
(
T ∩⋂

a∈Σ Xa · Aa

)
, under the substitution

T = Σ+ \ Σ2, Xa = {a} ∪ (Σ \ {a})Σ∗ for all a ∈ Σ, Aa = Σ ∪⋂na

i=1 LG(αa,i)
for a ∈ ΣA and Aa = Σ for a ∈ Σ \ ΣA evaluates to

(
(Σ+ \ Σ2) ∩ (

(Σ \ ΣA)Σ ∪
⋃

a∈ΣA

a
(
Σ ∪

na⋂
i=1

LG(αa,i)
)))

=

=
( ⋃

a∈ΣA

na⋂
i=1

aLG(αa,i)
) \ Σ2.

Thus the value of the entire right-hand side of the equation for A in G′ is

( ⋃
a∈ΣA

na⋂
i=1

aLG(αa,i)
) \ Σ2 ∪ {w | A → w ∈ P } ∪ (

LG(A) ∩ Σ2
)

= LG(A).

17



The case of right nonterminals is handled symmetrically.
This shows, in particular, that the least solution of the system corre-

sponding to G′ has S = LG(S), that is, LG′(S) = LG(S), which proves the
theorem.

Corollary 2. Every regular language L ⊆ Σ+ is restricted conjunctive with-
out ε-rules.

Proof. Let L ⊆ Σ+ be regular via the deterministic finite automaton
A = (Σ, Q, q0, δ, F ). Then the grammar G := (Σ, N, P, S) with N = {Aq |
q ∈ Q }, P = {Aq → aAδ(q,a) | q ∈ Q, a ∈ Σ} ∪ {Aq → a | δ(q, a) ∈ F}
and S = Aq0 generates L and is in the form required by Theorem 4. Then
the theorem implies that there is a restricted conjunctive grammar without
ε-rules for L.

The exact expressive power of conjunctive grammars with restricted dis-
junction and without ε-rules is left as an open question to study. In particu-
lar, it would be interesting to investigate it in the case of a unary alphabet:
perhaps they can generate all unary conjunctive languages. For larger al-
phabets, these grammars likely generate a proper subfamily of conjunctive
languages.
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