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Abstract

A multicriteria boolean programming problem with linear cost functions in which
initial coefficients of the cost functions are subject to perturbations is considered.
For any optimal alternative, with respect to parameterizedprinciple of optimality
”from Condorcet to Pareto”, appropriate measures of the quality are introduced.
These measures correspond to the so-called stability and accuracy functions de-
fined earlier for optimal solutions of a generic multicriteria combinatorial opti-
mization problem with Pareto and lexicographic optimalityprinciples. Various
properties of such functions are studied and maximum norms of perturbations for
which an optimal alternative preserves its optimality are calculated. To illustrate
the way how the stability and accuracy functions can be used as efficient tools for
post-optimal analysis, an application from the voting theory is considered.

Keywords: Condorcet optimality, Pareto set, stability and accuracy,parameteri-
zation, multicriteria optimization, voting principles



1 Introduction

The stability theory has its roots originating from the definition of a well-posed
mathematical problem given by J. Hadamard in [8], who believed that mathemat-
ical models of physical phenomena should include, among others, the property of
a solution to depend continuously on the data, in some reasonable topology. In
optimization a question of stability of a problem arises in the case where the set of
feasible solutions (alternatives) and/or the objective (cost) function depend on pa-
rameters. The presence of such parameters in optimization models is due to many
reasons, for instance inaccuracy of initial data, non-adequacy of models to real
processes, errors of numerical methods, errors of roundingoff and other factors.
Thus it appears to be important to allocate classes of problems in which small
changes of the input data lead to small changes of the result.The problems with
such properties are called stable. It is obvious that many optimization problems
arising in practice cannot be correctly formulated, analyzed and solved without
exploiting the results of the stability theory.

It is not very surprising that many researchers focus on analyzing various as-
pects of stability for large classes of optimization problems. For example, one
can find a vast annotated bibliography for sensitivity and post-optimal analysis in
integer programming and combinatorial optimization problems in [7].

The main object while studying stability of multicriteria optimization prob-
lems is usually a set of optimal (sometimes referred to as efficient) solutions or
alternatives, i.e. the set of feasible solutions which satisfy a given optimality prin-
ciple. In the case where the partial criteria of the problem have equal importance,
the Pareto optimality principle (named after Vilfredo Pareto who proposed it in
[14]), is more often used. Generally, a feasible solution issaid to be Pareto opti-
mal if there is no other feasible solution such that at least one its objective value
is getting better without deteriorating any other objective values.

If we relax the demand of non-worsening objectives in such a way that wors-
ening for some objective values is allowed but the number of objectives which
values are allowed to be deteriorated is restricted above bythe number of objec-
tives with better values, then we get the concept of Condorcet optimality principle
(named after marquis de Condorcet who proposed it in [4]).

It is clear that the set of optimal solutions defined by Condorcet optimality
principle is a subset of the set of optimal solutions given bythe Pareto optimality
principles, i.e. Pareto optimality principle gives more freedom for solutions to
become optimal compared to the Condorcet optimality principle.

The frequently used tool of stability theory and post-optimal analysis is so-
called stability radius of some given optimal solution. In single objective opti-
mization, it gives an upper bound on a subset of problem parameters for which this
solution remains optimal (see [7] and bibliography therein). There exist already
similar investigations in multiobjective case, where the stability radius defines ex-
treme level of problem parameter perturbations preservingefficiency of the given
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solution. For example, in [6] one can find a large survey on sensitivity analysis
of unconstrained vector integer linear programming, wherethe stability radius is
a key object under investigation.

It is important to note that even in single objective case thestability radius
does not provide us with any information about the quality ofa given solution in
the case when problem data are outside of the stability region. Some attempts to
study quality of the problem solution in this case are connected with concepts of
stability and accuracy functions, which were originally proposed in [10] and [11]
for scalar combinatorial optimization problems. Later, the results were extended
for the case of multicriteria combinatorial optimization problems with Pareto and
lexicographic optimality principles in [12]. In [13], the similar questions of sta-
bility and accuracy were investigated under the framework of game theory, more
precisely accuracy and stability functions for a coalitiongame with bans, linear
payoffs, antagonistic strategies and parameterized principle of optimality ”from
Nash to Pareto” were studied.

In this paper, we give an extension of the concepts of stability and accu-
racy functions under the parameterized optimality principle ”from Condorcet to
Pareto”. The paper is organized as follows. In section 2, we formulate a gen-
eral approach to post-optimal analysis using various quantitative measures. For a
given solution we introduce an appropriate absolute error as a function represent-
ing deviation from optimality. Afterwards, we define the so called stability and
accuracy radii as extreme norms of perturbations of problemparameters for which
the stability and accuracy functions are equal to zero. Section 3 introduces two
traditional optimality principles (Condocet and Pareto optimality) and a parame-
terization of these principles. In section 4, we consider a multicriteria Boolean
linear programming problem, and specify some particular results about stability
and accuracy functions valid for this particular problem. We give formulae to
calculate values of both functions and corresponding radii. In section 5, an ex-
ample from voting theory is considered to illustrate the wayhow the stability and
accuracy functions can be used as efficient tools for post-optimal analysis. Final
remarks and conclusions appear in section 6.

2 Postoptimal analysis under general framework

We consider a general multiobjective optimization problemwith m ≥ 2 cost func-
tions representing the problem objectives. LetX be a finite set of feasible solu-
tions or alternativesx := {x1, ..., xn}

T , wheren denotes the problem size. To
avoid trivial cases, we assume that|X| ≥ 2, and(0, 0, ..., 0)T 6∈ X.

For each solutionx ∈ X, a vector of cost functions

f(C, x) := (f1(C, x), ..., fm(C, x))T −→ min
x∈X

. (1)

consists of individual cost functionsfi(C, x), i ∈ Im := {1, 2, ..., m}. Without
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loss of generality, we assume thatfi(C, x) are minimized on the set of feasible
solutionsX for eachi ∈ Im. HereC = [cij ] ∈ R

m×n
+ , whereR

m×n
+ is a set of

m × n matrices (problem input data) with all elements being positive.
Contrary to the single objective case where the concept of optimal solution is

unique, under multicriteria framework the concept of optimality may vary. The
concept of optimality is usually based on binary relations reflecting preferability
of one solutions over others. In its turn, any binary relation generates a principle
of optimality (in other terminology, sometimes referred asa choice function).

To keep the general conceptual level of this section, we assume that some non-
empty set of non-dominated (w.r.t. some binary relation≺) solutions is searched
for multiobjective optimization problem (1).

Em(C) = {x∗ ∈ X | ν(C, x∗) = ∅},

where
ν(C, x∗) := {x ∈ X : x∗ ≺ x}.

Notice that in single objective casem = 1, the set of non-dominated solutions
transforms into the set of optimal solutionsE1(C).

In postoptimal analysis, we assume some efficient solution was found for the
problem with original input parameters, and we investigatethe behavior of this so-
lution under small changes (variations) of the input data. For these purposes some
quantitative characteristics are used to express numerically how far the solution
deviates from efficiency depending on a scale of variation ofproblem parameters.

Now assume that the set of feasible solutionsX is fixed, but the matrix of
input dataC may vary or be estimated with errors. Moreover, we also assume
that for some originally specified matrixC0 = [c0

ij ] ∈ R
m×n
+ we know an efficient

solutionx∗ ∈ Em(C0).
The quality of the given solutionx∗ ∈ E1(C0) in the problem with some

matrixC ∈ R
1×n
+ is evaluated based on the concept ofabsolute error am(C, x∗),

which in single objective case (m = 1) is defined as follows:

a1(C, x∗) = f1(C, x∗) − min
x∈X

f1(C, x). (2)

The absolute error contains essential information about how far the given so-
lution deviates from being efficient in a situation where matrix C represents the
problem input data. In a ”true” multiobjective case (m ≥ 2), the expression for
the absolute erroram(C, x∗) crucially depends on properties of the binary relation
≺ which is used to defineEm(C). We specify an explicit formam(C, x∗) in the
next section.

Notice that sometimes, instead of the absolute error, its relative analogue can
be used (see e.g. [10]). For example, the relative analog ofa1(C, x∗) is defined
in [11]. However, it may lead to practical limitations on a usage of the relative
error, because of possible severe computational difficulties due to the presence of
the division operator.
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In the following we are interested, in fact, in the maximum value of the er-
ror am(C, x∗) when the matrixC belongs to some specified set which describes
possible absolute perturbations of the original matrixC0. Two particular cases
are considered: In the first case we are interested inabsolute perturbations of
the elements of matrixC0 and the quality of a given solutionx∗ ∈ Em(C0) is
described by the so-called stability function. For a given0 ≤ ρ ≤ ub the value
of the stability function is equal to the maximum absolute error of a given situa-
tion under the assumption that none of elements ofC0 are increased or decreased
by more thanρ. The parameterub restricts admissible perturbations from above.
Typically, its value is set up to the value of minimal elementof the original matrix
C0.

In the second case we deal withrelative perturbations of the elements of
matrix C0. This leads to the concept of the accuracy function. The value of the
accuracy function for a givenδ ∈ [0, 1) is equal to the maximum absolute error
of the solutionx∗ ∈ Em(C0) under the assumption that the elements ofC0 are
perturbed by no more thanδ · 100% of their original values.

The two types of perturbations, absolute and relative, reflect different types of
input data uncertainty that may appear in the problem. Whilethe absolute pertur-
bations are usually specified by some global parameter whichreflects admissible
perturbation range valid for all elements, the relative perturbations incorporate
discrepancy in element ranges, i.e. the range of actual admissible perturbations
depends on the nominal element range.

For a givenρ ∈ [0, q(C0)), whereq(C0) = min{c0
ij : i ∈ Im, j ∈ In}, we

consider a set of admissible perturbed matrices in the case of absolute perturba-
tions:

Ωρ(C
0) := {C ∈ R

m×n
+ : |cij − c0

ij | ≤ ρ, i ∈ Im, j ∈ In}. (3)

Forx∗ ∈ Em(C0) andρ ∈ [0, q(C0)), the value of thestability function is defined
as follows:

S(C0, x∗, ρ) := max
C∈Ωρ(C0)

am(C, x∗).

In a similar way, for a givenδ ∈ [0, 1), we consider a set of admissible perturbed
matrices in the case of relative perturbations:

Θδ(C
0) := {C ∈ R

m×n
+ : |cij − c0

ij | ≤ δ · c0
ij , i ∈ Im, j ∈ In}. (4)

Forx∗ ∈ Em(C0) andδ ∈ [0, 1), the value of theaccuracy function is defined as
follows:

A(C0, x∗, δ) := max
C∈Θδ(C0)

am(C, x∗).

It is easy to check thatS(C0, x∗, ρ) ≥ 0 for any ρ ∈ [0, q(C0)) as well as
A(C0, x∗, δ) ≥ 0 for eachδ ∈ [0, 1).

Observe that if we compare two optimal solutions from the point of view of
their robustness on data perturbations or inaccuracy, thensmaller value of the
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stability or accuracy function for a given norm of data perturbation is more prefer-
able. Thus, both defined functions may be used to evaluate thequality of solutions,
which are optimal in the original problem.

Sometimes, it is of special interest to know the extreme values ofρ andδ, for
which S(C0, x∗, ρ) = 0 andA(C0, x∗, δ) = 0, respectively, because these val-
ues determine maximum norms of perturbations which preserve the property of a
given solution to be efficient. These values are analogous tothe so-called stability
and accuracy radii introduced earlier for single/multipleobjective combinatorial
optimization problems (see e.g. [6]). Formally, the stability radiusRS(C0, x∗) and
the accuracy radiusRA(C0, x∗) are defined in the following way:

RS(C0, x∗) := sup {ρ ∈ [0, q(C0)) : S(C0, x∗, ρ) = 0},

RA(C0, x∗) := sup {δ ∈ [0, 1) : A(C0, x∗, δ) = 0}.

If these radii are equal to zero, then this means that there exist arbitrary small
perturbations of the original matrixC0 such that the initially efficient solutionx∗

loses its efficiency in the perturbed problem. Otherwise,x∗ remains efficient for
any problem with matrixC ∈ Ωρ(C

0), ρ < RS(C0, x∗) or C ∈ Θδ(C
0), δ <

RA(C0, x∗).
In the next section, we first formulate two traditional multiobjective optimality

principles (Condocet and Pareto optimality). Afterwards,we introduce a natural
parameterization of these principles to provide the decision maker with more flex-
ible tool of expressing the compromise between conflicting objectives.

3 Parameterizing ”from Condorcet to Pareto”

As it has been already mentioned in introduction, in voting theory two main rules
- majority and unanimity - are commonly in use. Application of these two rules as
binary relations of preference between two solutions, which has to be compared
pairwise, lead to the definitions of Condorcet and Pareto optimality principles,
respectively.

For anyx, x′ ∈ X andC ∈ R
m×n
+ , we put

m+(C, x, x′) := |{i ∈ Im : fi(C, x) > fi(C, x′)}|;

m−(C, x, x′) := |{i ∈ Im : fi(C, x) < fi(C, x′)}|;

m0(C, x, x′) := |{i ∈ Im : fi(C, x) = fi(C, x′)}|.

Obviously,

m+(C, x, x′) + m−(C, x, x′) + m0(C, x, x′) = m. (5)
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The binary relationsx ≺ x′ of a strict preference between two feasible solu-
tionsx andx′ (x′ is preferred tox) are given according to the formulae:
- Condorcet (majority) domination relation x ≺µ x′:

m+(C, x, x′) > m−(C, x, x′); (6)

- Pareto (unanimity) domination relation x ≺π x′:

m+(C, x, x′) > (m − 1) · m−(C, x, x′). (7)

Note, that
m+(C, x, x′) > ζ · m−(C, x, x′),

for all ζ ≥ m − 1, also defines the Pareto domination relationx ≺π x′, however
m − 1 in (7) is the smallest integer value ofζ which may guaranteex ≺π x′.

A solutionx∗ ∈ X is calledCondorcet optimal if

µ(C, x∗) = ∅,

where
µ(C, x∗) := {x ∈ X : x∗ ≺µ x}.

We will refer to the set of all Condorcet optimal solutions astheCondorcet set
and denote it byMm(C). Respectively, a solutionx∗ ∈ X is calledPareto opti-
mal if

π(C, x∗) = ∅,

where
π(C, x∗) := {x ∈ X : x∗ ≺π x}.

We will refer to the set of all Pareto optimal solutions as thePareto setand denote
it by P m(C). Notice thatP m(C) is always non-empty, since the set of feasible
solutions is finite (see e.g. [5]).

The Condorcet principle of optimality realizes the well-known procedure of
decision-making by the majority of votes. It is easy to understand that the binary
relation≺µ is not always transitive, not even form = 3. This is known as the
well-known Condorcet paradox of voting [4], which was comprehensively ana-
lyzed by Kenneth Arrow [1] based on the axiomatic approach tothe mechanism
of collective decision-making [2].

In order to give a decision maker more flexibility in defining optimality one
can smooth the difference between Pareto and Condorcet optimality principles by
introducing an integer parameters and defining the binary preference relation as
follows [2]:
- s-domination relation x ≺s x′ :

m+(C, x, x′) > s · m−(C, x, x′), s ∈ Im−1. (8)
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The meaning of (8) in words can be formulated as follows:x′ is preferred to
x if the number of objectives wherex has worse objective values (larger than
corresponding objective values ofx′) is strictly bigger thans times number of
objectives wherex has better objective values. In other words, in orderx not to
be dominated byx′ w.r.t.≺s, the number of objectives forx with worse objective
values should not exceeds times the number of objectives with better values.
Obviously fors = 1, ≺s transforms into the Condorcet domination relation≺µ,
and fors = m − 1, ≺s becomes the Pareto domination relation≺π.

A solutionx∗ ∈ X is calleds-optimal if

νs(C, x∗) = ∅,

where
νs(C, x∗) := {x ∈ X : x∗ ≺s x}.

We will refer to the set of alls-optimal solutions as thes-optimal setand denote it
by Nm

s (C). It is clear thatNm
1 (C) = Mm(C) andNm

m−1(C) = P m(C). Clearly,
the setNm

s (C) can be defined also by the following equivalent form:

Nm
s (C) := {x ∈ X : m+(C, x, x′) ≤ s · m−(C, x, x′) ∀ x′ ∈ X}, s ∈ Im−1.

Evidently, for anyC ∈ R
m×n
+ andm ≥ 2, we have

Mm(C) = Nm
1 (C) ⊆ Nm

2 (C) ⊆ ... ⊆ Nm
m−1(C) = P m(C) 6= ∅

with M2(C) = P 2(C).

The parameters controls the ratio between the number of objectives with ”bet-
ter” and ”worse” objective values in any pairwise comparison of a pair of solu-
tions. Thes-domination binary relation gives more freedom to the decision maker,
since e.g. voting schemes can be represented by using this relation e.g. as in the
following example.

Example 1.Assume we have the following situation:
⋄ members of a parliament (MPs) voting for a bill;
⋄ C is a matrix of preferences,Ci defines individual preferences ofi-th MP
⋄ the number of objectivesm represents the number of MPs.
⋄ selection between two billsx andx∗;
⋄ voting is without compromise, no option ”abstain” is available, i.e.m0(C, x, x′) =
0;
⋄ m+(C, x, x∗) - amount of MPs voting ”forx∗”, i.e. voting ”againstx”;
⋄ m−(C, x, x∗) - amount of MPs voting ”againstx∗”, i.e. voting ”for x”.
The situation, when the simple majority of votes (a half plusone vote) is needed
to pass the billx∗, can be described by means of1-domination binary relation:
x ≺1 x∗, i.e. the Condorcet optimality principle holds. If we assume that one bill
is preferred over the other if2/3 of the total amount of MPs plus one vote for
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that bill, then a situation when the billx∗ passes can be described by means of2-
domination binary relation:x ≺2 x∗. In other words the parameterized optimality
principle is in use. Thus by means of introducing integer parameters, a decision
maker could define the so-called super majority or a qualifiedmajority principles
which guarantee for a proposal to gain a specified level or type of support which
exceeds a simple majority in order to have effect. In some cases, for example,
parliamentary procedure requires that any action that may alter the rights of the
minority or constitutional regulations has a super majority requirement (e.g. two-
thirds, three-fourth, four-fifth majority etc). In case if super majority ratio results
in fractional number of votes the last is rounded off to the minimal larger integer,
otherwise one voice must be added to guarantee that the majority is clear in terms
of votes. This ends the example.

In what follows we will assume that the one or severals-optimal solutions
have been detected, and concentrate on analyzing some quality measures of these
solutions with respect to small perturbations of the original matrix of coefficients.

4 A Boolean linear programming problem

Now we would like to present the problem specific results, assuming that individ-
ual cost functions are defined as linear functions, i.e.:

fi(C, x) := Cix.

HereCi is i-th row of matrixC = [cij] ∈ R
m×n
+ .

Assume also that the decision variables are binary, i.e. that X ⊆ 2{0,1}n

\∅, |X| ≥
2, is a finite set of feasible solutions. We call the problem of findingNm

s (C), de-
fined in the previous section, anm-criteria Boolean linear programming prob-
lem.

For any two fixed solutionsx∗ ∈ Nm
s (C) andx ∈ X, put the deviation mea-

sure
γi(C, x∗, x) := fi(C, x∗) − fi(C, x) = Ci(x

∗ − x), i ∈ Im.

Let us arrange all numbersγi(C, x∗, x) in non-decreasing orderp :

γp1
(C, x∗, x) ≤ γp2

(C, x∗, x) ≤ ... ≤ γpm(C, x∗, x). (9)

W.l.o.g. we may assume that all inequalities in (9) are strict. When coefficients
of objective functions change, then initiallys-optimal solution may lose its opti-
mality. We will evaluate the quality of this solution from the point of view of its
robustness on possible data perturbations. Namely, for a given matrixC ∈ R

m×n
+

andx∗ ∈ Nm
s (C0), we introduce the so-calledabsolute error (see also the previ-

ous section) of this solution:

am(C, x∗) := max
x∈X

γpk
(C, x∗, x) = max

x∈X
{fpk

(C, x∗)−fpk
(C, x)} = max

x∈X
{Cpk

(x∗ − x)},

(10)
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wherek = ⌈m−1
s+1

⌉ is the least integer no less thanm−1
s+1

. Note thatam(C, x∗) ≥ 0

for all C ∈ R
m×n
+ andx∗ ∈ Nm

s (C0). The k-th element in orderingp serves
as major indicator ofs-optimality, which helps to determine whetherx∗ remains
s-optimal for matrixC or not.

Obviously ifs = m − 1, thenk = 1 and (10) transforms into

am−1(C, x∗) = γp1
(C, x∗, x),

wherep is objective ordering according to (9), i.e.

am−1(C, x∗) = max
x∈X

min
i∈Im

{fi(C, x∗) − fi(C, x)}, (11)

whose relative analog was previously known in [12]. In the scalar case, i.e. for
m = 1, the Pareto set transforms into the set of optimal solutions. Therefore the
absolute errora1(C, x∗) converts into (2).

The use of relative error is evidently advantageous to the use of simple abso-
lute error, since the deviation from the optimal solution ismeasured taking into
account cost function ranges. However if the objectives arenormalized (i.e. their
ranges are already counted) the usage of absolute error is computationally more
reasonable.

In the scalar case the equalitya1(C, x∗) = 0 gives necessary and sufficient
conditions thatx∗ ∈ N1

s (C). But in the multicriteria case the situation is a bit
different.

Lemma 1 If x∗ ∈ Nm
s (C), thenam(C, x∗) = 0 for anyC ∈ R

m×n
+ .

Indeed, for arbitraryC ∈ R
m×n
+ andx∗ ∈ Nm

s (C), we haveam(C, x∗) ≥ 0. If
am(C, x∗) > 0, thenCpk

x∗ − Cpk
x > 0. Due to ordering (9), we obtainCpi

x∗ −
Cpi

x > 0 for all i ∈ Im\Ik, i.e.m+(C, x∗, x) > s ·m−(C, x∗, x). The last implies
thatx∗ 6∈ Nm

s (C).
The equalityam(C, x∗) = 0 formulates in general only necessary condition

for x∗ to bes-optimal, i.e.am(C, x∗) = 0 does not guarantee thatx∗ ∈ Nm
s (C).

Indeed, consider the following example.

Example 2.Letm = 4, n = 2, s = 2, and

C1 =









2 1
2 2
2 2
1 2









.

Assume also thatX = {x1, x2}, x1 = (1, 0)T , x2 = (0, 1)T . Then

f(C1, x1) = (2, 2, 2, 1)T , f(C1, x2) = (1, 2, 2, 2)T ,
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m+(C1, x1, x2) = 1, m0(C1, x1, x2) = 2, m−(C1, x1, x2) = 1,

i.e.N4
2 (C1) = {x1, x2}. Moreover, forx2 ∈ N4

2 (C1) we calculate

γ1(C
1, x2, x1) = −1, γ2(C

1, x2, x1) = 0, γ3(C
1, x2, x1) = 0, γ4(C

1, x2, x1) = 1,

p = (1, 2, 3, 4), k = 1, p1 = 1, anda4(C1, x2) = 0.
If we consider matrix

C2 =









2 1
1 2
1 2
1 2









,

then
f(C2, x1) = (2, 1, 1, 1)T , f(C2, x2) = (1, 2, 2, 2)T ,

m+(C2, x1, x2) = 1, m0(C2, x1, x2) = 0, m−(C2, x1, x2) = 3,

i.e.N4
2 (C2) = {x1}. Then forx2 6∈ N4

2 (C2) we calculate

γ1(C
2, x2, x1) = −1, γ2(C

2, x2, x1) = 1, γ3(C
2, x2, x1) = 1, γ4(C

2, x2, x1) = 1,

p = (1, 2, 3, 4), k = 1, p1 = 1, anda4(C2, x2) = 0. This ends the example.

But later we will show, that if the equalitya(C, x∗) = 0 is valid for any matrix
in some open neighborhood ofC0, i.e. there isφ > 0 such thata(C, x∗) = 0 for
anyC, ‖ C − C0 ‖< φ, where‖ · ‖ denotes a norm inRm×n, then this equality
provides also a sufficient condition for the solutionx∗ to belongNm

s (C0).
Now assume again that the set of feasible solutionsX is fixed, but the matrix of

input dataC may vary or be estimated with errors. Moreover, we also assume that
for some originally specified matrixC0 = [c0

ij] ∈ R
m×n
+ we know ans-optimal

solutionx∗ which is an element of the set ofs-optimal solutionsNm
s (C0).

Let

Ω′
ρ(C

0) := {C ∈ R
m×n
+ : |cij − c0

ij | < ρ, i ∈ Im, j ∈ In},

Θ′
δ(C

0) := {C ∈ R
m×n
+ : |cij − c0

ij | < δ · c0
ij, i ∈ Im, j ∈ Im}.

Note that cl(Ω′
ρ(C

0)) = Ωρ(C
0) as well as cl(Θ′

ρ(C
0)) = Θρ(C

0), whereΩρ(C
0)

andΘρ(C
0) defined in (3) and (4), respectively.

Proposition 1 For x∗ ∈ Nm
s (C0), s ∈ Im−1, andρ ∈ [0, q(C0)), we havex∗ ∈

Nm
s (C) for anyC ∈ Ω′

ρ(C
0) if and only ifS(C0, x∗, ρ) = 0.

Proof. Necessity.Let ρ ∈ [0, q(C0)). If x∗ ∈ Nm
s (C), s ∈ Im−1 for some

C ∈ Ω′
ρ(C

0), then directly from the definition ofNm
s (C), we have that

m+(C, x∗, x) ≤ s · m−(C, x∗, x) ∀x ∈ X

10



holds.
Using (5) we deduce

m ≤ (s + 1) · m−(C, x∗, x) + m0(C, x∗, x) ∀x ∈ X,

then
m − 1 < (s + 1) ·

(

m−(C, x∗, x) + m0(C, x∗, x)
)

∀x ∈ X,

and finally
m − 1

s + 1
< m−(C, x∗, x) + m0(C, x∗, x)

i.e.
fpk

(C, x∗) − fpk
(C, x) ≤ 0 ∀x ∈ X,

wherek = ⌈m−1
s+1

⌉. Thenam(C, x∗) = 0 for C ∈ Ω′
ρ(C

0). Due to the arbitrary
choice of matrixC, what has been proven above is valid for anyC ∈ Ω′

ρ(C
0).

Consider now the caseC ∈ Ωρ(C
0)\Ω′

ρ(C
0). Let us show that in this case,

even if x∗ losess-optimality for such matrixC, the absolute erroram(C, x∗) is
still equal to0. Indeed, - due to continuity of objectives as linear functions - we
get

fpk
(C, x∗) − fpk

(C, x) = 0 ∀x ∈ X.

Thus,am(C, x∗) = 0 for C ∈ Ωρ(C
0)\Ω′

ρ(C
0). Again, due to the arbitrary choice

of matrix C, what has been proven above is valid for anyC ∈ Ωρ(C
0)\Ω′

ρ(C
0).

Combining the two cases, we getam(C, x∗) = 0 for anyC ∈ Ωρ(C
0). The last

meansS(C0, x∗, ρ) = 0.
Sufficiency.To prove that forρ ∈ [0, q(C0)), S(C0, x∗, ρ) = 0 implies that

x∗ ∈ Nm
s (C) for any C ∈ Ω′

ρ(C
0), suppose thatS(C0, x∗, ρ) = 0, but there

exists a matrixC ′ ∈ Ω′
ρ(C

0), such thatx∗ 6∈ Nm
s (C ′). We will show that such

assumption must lead to a contradiction. Indeed,x∗ 6∈ Nm
s (C ′) means that there

existsx̂ ∈ X such that

m+(C ′, x∗, x̂) > s · m−(C ′, x∗, x̂),

i.e.
fpk

(C ′, x∗) − fpk
(C ′, x̂) ≥ 0.

Consider matrixC̃ ′ ∈ R
m×n
+ with elements

c̃′ij =











c′ij − φ if i = pk, x∗
j = 0,

c′ij + φ if i = pk, x∗
j = 1,

c′ij otherwise,

(12)

whereφ > 0 is taken small enough to satisfỹC ′ ∈ Ω′
ρ(C

0) and not violate the
orderingpk. Now it is easy to see that

fpk
(C̃ ′, x∗) − fpk

(C̃ ′, x̂) > 0,

11



i.e. a(C̃ ′, x∗) > 0, that impliesS(C0, x∗, ρ) > 0. Thus we have a contradiction
which completes the proof.

Proposition 2 For x∗ ∈ Nm
s (C0), s ∈ Im−1, and δ ∈ [0, 1), we havex∗ ∈

Nm
s (C) for anyC ∈ Θ′

δ(C
0) if and only ifA(C0, x∗, δ) = 0.

The proof of proposition 2 is analogous to the proof of proposition 1.
Thus, this positive value of the absolute error may be treated as a measure of

inefficiency ofx∗.
For anyz ∈ R

m, we denote two norms:linear norm ‖ z ‖1 andChebyshev
norm ‖ z ‖∞.

The following statements are true for any vectorsz, z′ ∈ {0, 1}n, c ∈ R
n:

|〈c, z〉| ≤‖ c ‖∞ · ‖ z ‖1, (13)

‖ z − z′ ‖1=‖ z ‖1 + ‖ z′ ‖1 −2〈z, z′〉, (14)

where〈·, ·〉 is the scalar product of two vectors. Note, that the left-hand side of
equality (14) is the Hamming distance between Boolean vectorsz andz′. It is easy
to prove equality (14) using induction (on the numbern) [9].

For any twox, x∗ ∈ X denote

∆(x∗, x) :=‖ x − x∗ ‖1=‖ x ‖1 + ‖ x∗ ‖1 −2〈x, x∗〉.

The following theorem gives a formula for calculating valueof the stability
function.

Theorem 1 For x∗ ∈ Nm
s (C0) andρ ∈ [0, q(C0)), the stability function can be

expressed by the formula:

S(C0, x∗, ρ) = max
x∈X

{C0
p0

k
(x∗ − x) + ρ∆(x∗, x)}, (15)

wherep0 = (p0
1, ..., p

0
m) is objective ordering according to (9) specified for each

x ∈ X and original matrixC0.

Proof. Let Γ(C0, x∗, ρ) be the right-hand side of (15). We yield

S(C0, x∗, ρ) = max
C∈Ωρ(C0)

a(C, x∗) = max
C∈Ωρ(C0)

max
x∈X

{Cpk
(x∗ − x)} =

max
x∈X

max
C∈Ωρ(C0)

{Cpk
(x∗ − x)}.

Note that the reordering of the two maximums is possible since X is finite and
Ωρ(C

0) is compact.
For any fixedx ∈ X, the maximumCpk

(x∗ − x) overC ∈ Ωρ(C
0) is attained

when

c∗ij =











c0
ij − ρ if x∗

j = 0, i ≥ p0
k,

c0
ij + ρ if x∗

j = 1, i ≥ p0
k,

c0
ij otherwise.

(16)

12



Obviously,C∗ ∈ Ωρ(C
0). Then, taking into account that0 ≤ ρ < q(C0), we

continue

max
x∈X

{C∗
pk

(x∗ − x)} = max
x∈X

{C0
p0

k
(x∗ − x) + ρ∆(x∗, x)} = Γ(C0, x∗, ρ).

This completes the proof.
As a corollary from theorem 1, we get the following results concerning Pareto

optimality (c.f. [12]):

Corollary 1 The stability function ofx∗ ∈ P m(C0) can be expressed by the for-
mula

S(C0, x∗, ρ) = max
x∈X

min
i∈Im

{C0
i (x

∗ − x) + ρ∆(x∗, x)}. (17)

To formulate the further results we need the following definitions. For any two
solutionsx∗ ∈ Nm

s (C) andx ∈ X, x 6= x∗ put

qi(C, x∗, x) := fi(C, x) − fi(C, x∗) = Ci(x − x∗), i ∈ Im.

Let us arrange all numbersqi(C, x∗, x) in non-increasing orderr:

qr1
(C, x∗, x) ≥ qr2

(C, x∗, x) ≥ ... ≥ qrm(C, x∗, x). (18)

Note that ordering (18) is identical to ordering (9), i.e.(p1, ..., pm) = (r1, ..., rm).
Recall, that w.l.o.g. we assumed that all inequalities in (9) are strict, and hence all
inequalities in (18) are also strict.

To prove the some further statements we will need the following fact

Lemma 2 Let p = (p1, p2, ..., pm) be the objective ordering specified by (9) and
r = (r1, r2, ..., rm) be the objective ordering specified by (18), both are specified
for the original matrixC0. Assume also thatx∗ ∈ Nm

s (C0), x ∈ X andρ > 0.
Then the inequality

max
x∈X

{C0
p0

k
(x∗ − x) + ρ∆(x∗, x)} > 0

is valid if and only if

ρ > min
x∈X\{x∗}

C0
r0

k

(x − x∗)

∆(x∗, x)

holds.

Proof. Necessity. Suppose that

max
x∈X

{C0
p0

k
(x∗ − x) + ρ∆(x∗, x)} > 0

is true. We will prove the necessity by contradiction. Assume that

ρ ≤ min
x∈X\{x∗}

C0
r0

k

(x − x∗)

∆(x∗, x)
,

13



i.e.

ρ ≤
C0

r0

k

(x − x∗)

∆(x∗, x)
≤

C0
r0

k−1

(x − x∗)

∆(x∗, x)
≤ ... ≤

C0
r0

1

(x − x∗)

∆(x∗, x)
∀x ∈ X\{x∗},

i.e. due to∆(x∗, x) > 0 for anyx ∈ X\{x∗}, we obtain

0 ≥ C0
r0

k
(x∗−x)+ρ∆(x∗, x) ≥ C0

r0

k−1

(x∗−x)+ρ∆(x∗, x) ≥ ... ≥ C0
r0

1

(x∗−x)+ρ∆(x∗, x)

for everyx ∈ X\{x∗}.
Now recall that orderingsr0 andp0 are identical, and for orderingp0 it is true

that
C0

p0

1

(x∗ − x) ≤ ... ≤ C0
p0

k
(x∗ − x) ≤ ... ≤ C0

p0
m
(x∗ − x),

i.e. sinceρ > 0 and∆(x∗, x) > 0 for anyx ∈ X\{x∗}, we get

C0
p0

1

(x∗ − x) + ρ∆(x∗, x) ≤ ... ≤ C0
p0

k
(x∗ − x) + ρ∆(x∗, x) ≤ ... ≤ C0

p0
m
(x∗ − x) + ρ∆(x∗, x)

for everyx ∈ X\{x∗}.
Sinceρ ∈ [0, q(C0)), we get

max
x∈X

C0
p0

k
(x∗ − x) + ρ∆(x∗, x) = 0.

This contradiction ends the first part of the proof.
Sufficiency.Now we assume that

ρ > min
x∈X\{x∗}

C0
p0

k

(x − x∗)

∆(x∗, x)
.

We will prove the sufficiency by contradiction again. Suppose that

max
x∈X

{C0
r0

k
(x∗ − x) + ρ∆(x∗, x)} ≤ 0,

i.e.

C0
r0

1

(x∗ − x) + ρ∆(x∗, x) ≤ ... ≤ C0
r0

k
(x∗ − x) + ρ∆(x∗, x) ≤ 0, ∀x ∈ X\{x∗}.

Sinceρ ∈ [0, q(C0)), we get

C0
r0

k
(x∗ − x) + ρ∆(x∗, x) ≤ 0, ∀x ∈ X\{x∗}.

and, hence, because∆(x∗, x) > 0 ∀x ∈ X\{x∗}, and orderingsr0 andp0 are
identical, we derive

ρ ≤
C0

p0

i
(x − x∗)

∆(x∗, x)
, i ∈ Ik ∀x ∈ X\{x∗}.

The last implies that

ρ ≤ min
x∈X\{x∗}

C0
p0

k

(x − x∗)

∆(x∗, x)
.

The obtained contradiction ends the proof of the second partand either completes
the entire proof of the lemma.

14



Theorem 2 For x∗ ∈ Nm
s (C0), the stability radius can be expressed by the for-

mula:

RS(C0, x∗) = min
{

q(C0), min
x∈X\{x∗}

C0
r0

k

(x − x∗)

∆(x∗, x)

}

, (19)

wherek = ⌈m−1
s+1

⌉ is the least integer no less thanm−1
s+1

and (r0
1, r

0
2, ..., r

0
m) is

objective ordering according to (18).

Proof. If ρ = 0, thenS(C0, x∗, 0) = 0. Now consider non-trivial caseρ > 0.
AssumeS(C0, x∗, ρ) > 0. Using formula (15) specified by theorem 1, we derive
thatS(C0, x∗, ρ) > 0 if and only if

max
x∈X

C0
p0

k

(x∗ − x) + ρ∆(x∗, x)

C0
p0

k

x − ρ ‖ x ‖1

> 0,

wherep = (p0
1, p

0
2, ..., p

0
m) is objective ordering specified by (9) for the original

matrixC0.
Due to lemma 2, the last inequality holds if and only if

ρ > ρ̃ := min
x∈X\{x∗}

C0
r0

k

(x − x∗)

∆(x∗, x)
.

Thus, ifρ̃ ≤ q(C0), then we get thatS(C0, x∗, ρ) = 0 on interval[0, ρ̃). Otherwise
the stability function is equal to zero on[0, q(C0)). This ends the proof.

As corollaries from theorem 2, we get the following well-known results (c.f.
[2], [12]):

Corollary 2 The stability radius ofx∗ ∈ P m(C0) can be expressed by the formula

RS(C0, x∗) = min
{

q(C0), min
x∈X\{x∗}

max
i∈Im

C0
i (x − x∗)

∆(x∗, x)

}

.

Corollary 3 The stability radius ofx∗ ∈ Mm(C0) can be expressed by the for-
mula

RS(C0, x∗) = min
{

q(C0), min
x∈X\{x∗}

C0
p0

q
(x − x∗)

∆(x∗, x)

}

,

whereq = ⌊m+1
2

⌋ is an integer part ofm+1
2

and p0 = (p0
1, ..., p

0
m) is objective

ordering according to (9).

The following theorems, which give formulae for calculating values of the
accuracy function and accuracy radius, can be proven by analogy with the proofs
of theorem 1 and 2.
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Theorem 3 For x∗ ∈ Nm
s (C0) and δ ∈ [0, 1), the accuracy function can be

expressed by the formula:

A(C0, x∗, δ) = max
x∈X

C0
p0

k
(x∗ − x) + δ

∑

j∈In

c0
p0

kj|x
∗
j − xj |.

Theorem 4 For x∗ ∈ Nm
s (C0) and δ ∈ [0, 1), the accuracy radius can be ex-

pressed by the formula:

RA(C0, x∗, δ) = min
{

1, min
x∈X\{x∗}

C0
r0

k

(x − x∗)
∑

j∈In

c0
rkj|xj − x∗

j |

}

.

5 Example

Consider the following example. Assume we have a group of peopleX = {x1, x2, x3}
belonging to some community or organization. Assume also that there is a deci-
sion committee consisting ofm = 5 persons making an assessment of activity
within the group members and deciding whether to continue orstop membership
of every person in the group based onn = 3 evaluation criteria. For every person
xh = (xh

1 , x
h
2 , x

h
3)

T , h ∈ I3, xh
j = 1 if xh

j does not satisfyj-th evaluation criterion,
andxh

j = 0 otherwise. Letx1 = (0, 0, 1)T , x2 = (0, 1, 0)T andx3 = (1, 0, 0)T .
Eachi-th member of the decision committee (i ∈ Im) has own preferences ac-
cording to the importance of evaluation criteria, and henceown penalty costsc0

ij

if some person does not meetj-th evaluation criterion. ThenC0 ∈ R
m×n
+ defines

the penalty cost matrix:

C0 =













1 2 6
3 3 4
3 2 3
3 3 5
2 4 6













.

Thus, the penalty costs received by every group member from the decision
committee are the following:

f(C0, x1) = (6, 4, 3, 5, 6)T , f(C0, x2) = (2, 3, 2, 3, 4)T , f(C0, x3) = (1, 3, 3, 3, 2)T .

The assessment is going according to the following rules. Every member of
the decision committee will independently evaluate activity of all persons in the
organization by specifying some penalty costs. The less satisfactory performance
is demonstrated by the persons the higher penalty cost may begiven to them. As
a result of the entire assessment, a penalty cost vector is associated to each per-
son. Each component of the vector represents the penalty cost received by this
person from the corresponding member of the decision committee. Any person
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Table 1: The objective orderingp for different pairsx∗ andx.
x∗ x p
x2 x1 (1, 4, 5, 2, 3)
x2 x3 (3, 4, 2, 1, 5)
x3 x1 (1, 5, 4, 2, 3)
x3 x2 (5, 1, 2, 4, 3)

can be excluded from the organization if there is another person in the organiza-
tion with better (in some sense) performance. Otherwise, the person will keep the
membership within the organization. The pairwise comparison and establishing
domination relations between the penalty vectors are used to decide whose per-
formance was better. One penalty vector will dominate the other one in sense of
s-domination relations (8), wheres = 1, 2, 3, 4. The person with non-dominated
penalty vector will keep the membership otherwise not.

If the penalty cost matrix is subject to uncertainty which may be the case when
the members of the decision group are not absolutely sure about exact values of
penalty costs that should be given, then there is a risk for some people to loose
their membership if some small changes in penalty costs are done. We preliminary
calculate

∆(x1, x2) = ∆(x2, x3) = ∆(x1, x3) = 2.

When we compare different solutions we get various objective orderingsp speci-
fied in Table 1.

To estimate this risk we evaluate the value of stability functions according to
(15).

s = 1
N5

1 (C0) = M5
1 (C0) = {x3}, k = 2,

S(C0, x3, ρ) = max
{

0,−1 + 2ρ,−4 + 2ρ
}

, ρ ∈ [0, 1);

s = 2
N5

2 (C0) = {x2, x3}, k = 2,

S(C0, x2, ρ) = max
{

0, 2ρ,−2 + 2ρ
}

, ρ ∈ [0, 1);

S(C0, x3, ρ) = max
{

0,−1 + 2ρ,−4 + 2ρ
}

, ρ ∈ [0, 1);

s = 3
N5

3 (C0) = {x2, x3}, k = 1,

S(C0, x2, ρ) = max
{

0,−1 + 2ρ,−4 + 2ρ
}

, ρ ∈ [0, 1);
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Figure 1:s = 1 : Stability functionS(C0, x3, ρ) for ρ ∈ [0, 1).
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Figure 2:s = 2 : Stability functionsS(C0, x2, ρ) andS(C0, x3, ρ) for ρ ∈ [0, 1).

S(C0, x3, ρ) = max
{

0,−2 + 2ρ,−5 + 2ρ
}

, ρ ∈ [0, 1);

s = 4

N5
4 (C0) = N5

4 (C0) = {x2, x3}, k = 1,

S(C0, x2, ρ) = max
{

0,−1 + 2ρ,−4 + 2ρ
}

, ρ ∈ [0, 1);

S(C0, x3, ρ) = max
{

0,−2 + 2ρ,−5 + 2ρ
}

, ρ ∈ [0, 1).

Graphics forS(C0, x2, ρ) (continuous line) andS(C0, x3, ρ) (dotted line) are
depicted in Figures 1 – 3. Now let us make a short analysis of the results.

s = 1 There is only one1-optimal solutionx3. Its stability function is depicted
on Figure 1. This solution is stable for0 ≤ ρ ≤ 0.5.
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Figure 3: s = 3, 4 : Stability functionsS(C0, x2, ρ) andS(C0, x3, ρ) for ρ ∈
[0, 1).

s = 2 As one can see from the graphics (see Figure 2),x2 is non-stable for
0 < ρ ≤ 1, andx3 is stable for0 ≤ ρ ≤ 0.5. Moreover, for0 ≤ ρ < 1,
S(C0, x2, ρ) ≥ S(C0, x3, ρ). So, we may conclude thatx3 is more prefer-
able under the possible uncertainty of penalty cost matrixC0.

s = 3, 4 As one can see from the graphics (see Figure 3),x2 is stable for0 ≤
ρ ≤ 0.5, andx3 is stable for0 ≤ ρ < 1. Moreover, for0 ≤ ρ < 1,
S(C0, x2, ρ) ≥ S(C0, x3, ρ). So, we may conclude thatx3 is more prefer-
able under the possible uncertainty of penalty cost matrixC0.

6 Conclusions

The example in previous section suggests that small changesor inaccuracies in
estimating objective function coefficients may have significant influence on the set
of s-optimal solutions. Moreover, some solutions being initially optimal, cannot
be considered as stable, because very small changes of inputdata destroy their
properties of being optimal.

The simplest measure of the stability of the optimum is its stability or accuracy
radius. But frequently, this measure is not sufficient to rank the solutions, among
multiple optimal solutions, which so often occur in multicriteria optimization.
Therefore, calculating stability radii only may be not sufficient to make a conclu-
sion about solution stability, so it is necessary to calculate some complementary
measures reflecting more information about solution behavior under uncertainty.

The accuracy and stability functions describe the quality of s-optimal solutions
in the problem with uncertain coefficients of objective functions. The definitions
of these functions are directly connected with given optimality principle. Most
common optimality principles in voting theory, as Pareto and Condorcet optimal-
ity principles, may not fully cover all of the decision makerpreferences. Some-
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times, introducing a parameterized version of optimality principles may reflect the
desirable preference specific much better.

As possible continuation of the research within this topic,it would be interest-
ing to study whether the approach presented in this paper maybe extended for the
case of non-linear objective functions and non-boolean decision variables. Find-
ing efficient strategies to compute stability and accuracy functions for the prob-
lems with larger dimension may be also promising to study. Analytical expres-
sions obtained in the present paper imply full enumeration of the set of feasible
solutions whose cardinality may depend exponentially onn. So, these formulae
do not lead to the efficient (polynomial) way of calculating the values of stability
and accuracy functions. The main focus could be given to calculating reasonable
lower and upper bounds as well as getting good quality approximation by means
of ad-hoc heuristics. One more research possibility is to study the properties of
stability and accuracy functions for answering questions ”is this function con-
cave?”; ”is the number of function segments polynomial withrespect ton?”; ”is
this function piece-wise linear?” etc. Having this questions answered positively,
one can exploit these facts to design an efficient computational procedure similar
to [3].
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