Yury Nikulin | Marko M. Méakela

Quantitative measures’ of solution ro-
bustness in a parameterized multicrite-

ria zero-one linear programming prob-
lem

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 917, October 2008






=7

1

Quantitative measures of solution ro-
bustness in a parameterized multicrite-

ria zero-one linear programming prob-
lem

Yury Nikulin
University of Turku, Department of Mathematics
FI1-20014 Turku, Finland
yurni k@t u. fi

Marko M. Makela
University of Turku, Department of Mathematics

FI1-20014 Turku, Finland
makel a@ut u. fi

TUCS Technical Report
No 917, October 2008



Abstract

A multicriteria boolean programming problem with lineastéunctions in which
initial coefficients of the cost functions are subject totpdyations is considered.
For any optimal alternative, with respect to parameterjzaaciple of optimality
"from Condorcet to Pareto”, appropriate measures of théitgjuere introduced.
These measures correspond to the so-called stability andaay functions de-
fined earlier for optimal solutions of a generic multicri,ecombinatorial opti-
mization problem with Pareto and lexicographic optimaptynciples. Various
properties of such functions are studied and maximum nofmpsrturbations for
which an optimal alternative preserves its optimality aatewglated. To illustrate
the way how the stability and accuracy functions can be usatfiient tools for
post-optimal analysis, an application from the voting tlyes considered.

Keywords: Condorcet optimality, Pareto set, stability and accurpeyameteri-
zation, multicriteria optimization, voting principles



1 Introduction

The stability theory has its roots originating from the digiom of a well-posed
mathematical problem given by J. Hadamard in [8], who beliethat mathemat-
ical models of physical phenomena should include, amongrstithe property of
a solution to depend continuously on the data, in some redé®opology. In
optimization a question of stability of a problem ariseshia tase where the set of
feasible solutions (alternatives) and/or the objectiws{cfunction depend on pa-
rameters. The presence of such parameters in optimizatboielsis due to many
reasons, for instance inaccuracy of initial data, non-adeyg of models to real
processes, errors of numerical methods, errors of rourwfirgnd other factors.
Thus it appears to be important to allocate classes of prabie which small
changes of the input data lead to small changes of the rédudt problems with
such properties are called stable. It is obvious that matiynigation problems
arising in practice cannot be correctly formulated, anadlyand solved without
exploiting the results of the stability theory.

It is not very surprising that many researchers focus onyairaj various as-
pects of stability for large classes of optimization probée For example, one
can find a vast annotated bibliography for sensitivity anstymptimal analysis in
integer programming and combinatorial optimization peols$ in [7].

The main object while studying stability of multicriterigptimization prob-
lems is usually a set of optimal (sometimes referred to asiefii) solutions or
alternatives, i.e. the set of feasible solutions whichs$at given optimality prin-
ciple. In the case where the partial criteria of the problewvehequal importance,
the Pareto optimality principle (named after Vilfredo Rare’ho proposed it in
[14]), is more often used. Generally, a feasible solutioseiisl to be Pareto opti-
mal if there is no other feasible solution such that at leastits objective value
is getting better without deteriorating any other objeztralues.

If we relax the demand of non-worsening objectives in suclag thiat wors-
ening for some objective values is allowed but the numberbpéaives which
values are allowed to be deteriorated is restricted abowadyumber of objec-
tives with better values, then we get the concept of Condogémnality principle
(named after marquis de Condorcet who proposed it in [4]).

It is clear that the set of optimal solutions defined by Condboptimality
principle is a subset of the set of optimal solutions givernheyPareto optimality
principles, i.e. Pareto optimality principle gives moreddom for solutions to
become optimal compared to the Condorcet optimality ppieci

The frequently used tool of stability theory and post-optiranalysis is so-
called stability radius of some given optimal solution. Ingte objective opti-
mization, it gives an upper bound on a subset of problem petenmfor which this
solution remains optimal (see [7] and bibliography thexeifhere exist already
similar investigations in multiobjective case, where ttabgity radius defines ex-
treme level of problem parameter perturbations presemffigjency of the given
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solution. For example, in [6] one can find a large survey orsisgity analysis
of unconstrained vector integer linear programming, whieeestability radius is
a key object under investigation.

It is important to note that even in single objective casedfadility radius
does not provide us with any information about the qualita gfiven solution in
the case when problem data are outside of the stability negdome attempts to
study quality of the problem solution in this case are cotegtwith concepts of
stability and accuracy functions, which were originallpposed in [10] and [11]
for scalar combinatorial optimization problems. Latee tksults were extended
for the case of multicriteria combinatorial optimizatioroplems with Pareto and
lexicographic optimality principles in [12]. In [13], thensilar questions of sta-
bility and accuracy were investigated under the framewddame theory, more
precisely accuracy and stability functions for a coalitgame with bans, linear
payoffs, antagonistic strategies and parameterizediptenof optimality "from
Nash to Pareto” were studied.

In this paper, we give an extension of the concepts of stalaind accu-
racy functions under the parameterized optimality prilecifrom Condorcet to
Pareto”. The paper is organized as follows. In section 2, evenfilate a gen-
eral approach to post-optimal analysis using various Ggiadie measures. For a
given solution we introduce an appropriate absolute esa fanction represent-
ing deviation from optimality. Afterwards, we define the sled stability and
accuracy radii as extreme norms of perturbations of prolpi@rameters for which
the stability and accuracy functions are equal to zero. i@e& introduces two
traditional optimality principles (Condocet and Paretdimjality) and a parame-
terization of these principles. In section 4, we considerutioriteria Boolean
linear programming problem, and specify some particulaults about stability
and accuracy functions valid for this particular probleme @give formulae to
calculate values of both functions and corresponding rddiisection 5, an ex-
ample from voting theory is considered to illustrate the \waw the stability and
accuracy functions can be used as efficient tools for postrapanalysis. Final
remarks and conclusions appear in section 6.

2 Postoptimal analysis under general framework

We consider a general multiobjective optimization probiei m > 2 cost func-
tions representing the problem objectives. Iebe a finite set of feasible solu-
tions or alternatives: := {zy,...,z,}?, wheren denotes the problem size. To
avoid trivial cases, we assume that| > 2, and(0,0, ...,0)" &€ X.
For each solution € X, a vector of cost functions
f(C,x) = (fi(C,2), ..., fm(C,z))" — min. Q)

zeX

consists of individual cost function§(C, x), i € I,, := {1,2,...,m}. Without
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loss of generality, we assume thatC, =) are minimized on the set of feasible
solutionsX for each: € I,,. HereC = [¢;;] € R7™", whereR"*" is a set of
m x n matrices (problem input data) with all elements being pasit

Contrary to the single objective case where the conceptthapsolution is
unique, under multicriteria framework the concept of ogatitty may vary. The
concept of optimality is usually based on binary relaticgféercting preferability
of one solutions over others. In its turn, any binary relag@nerates a principle
of optimality (in other terminology, sometimes referredaashoice function).

To keep the general conceptual level of this section, wenass$hat some non-
empty set of non-dominated (w.r.t. some binary relatigrsolutions is searched
for multiobjective optimization problem (1).

E™C)={z" € X | v(C,z") =0},

where
v(Coa") ={re X: 2" <z}

Notice that in single objective case = 1, the set of nhon-dominated solutions
transforms into the set of optimal solutiofs(C).

In postoptimal analysis, we assume some efficient solutias faeund for the
problem with original input parameters, and we investigiagebehavior of this so-
lution under small changes (variations) of the input data.tRese purposes some
guantitative characteristics are used to express nunfigritaw far the solution
deviates from efficiency depending on a scale of variatigoroblem parameters.

Now assume that the set of feasible solutionss fixed, but the matrix of
input dataC' may vary or be estimated with errors. Moreover, we also assum
that for some originally specified matrix’ = [c);] € R’"*" we know an efficient
solutionz* € E™(C°).

The quality of the given solution* € E'(C°) in the problem with some
matrix C' € RY*" is evaluated based on the concepabs$olute error ™ (C, z*),
which in single objective casen(= 1) is defined as follows:

al(c«) ‘T*) = fl(cv {L'*) - IIIél)I(l fl(ca ‘T) (2)

The absolute error contains essential information abowtfaothe given so-
lution deviates from being efficient in a situation where mxa€’' represents the
problem input data. In a "true” multiobjective case (> 2), the expression for
the absolute errar™ (C, z*) crucially depends on properties of the binary relation
< which is used to definé&™(C'). We specify an explicit form™(C, z*) in the
next section.

Notice that sometimes, instead of the absolute error, ldgive analogue can
be used (see e.g. [10]). For example, the relative analeg(¢f, z*) is defined
in [11]. However, it may lead to practical limitations on aagse of the relative
error, because of possible severe computational diffesitfue to the presence of
the division operator.



In the following we are interested, in fact, in the maximuntueaof the er-
ror a™(C, z*) when the matrixC' belongs to some specified set which describes
possible absolute perturbations of the original mafrfx Two particular cases
are considered: In the first case we are interesteabgolute perturbations of
the elements of matrix’® and the quality of a given solution* € E™(C?) is
described by the so-called stability function. For a giverd p < ub the value
of the stability function is equal to the maximum absolut®eof a given situa-
tion under the assumption that none of elements'bére increased or decreased
by more tharp. The parametenb restricts admissible perturbations from above.
Typically, its value is set up to the value of minimal elemehthe original matrix
C°.

In the second case we deal witilative perturbations of the elements of
matrix C°. This leads to the concept of the accuracy function. Theevafithe
accuracy function for a givef € [0, 1) is equal to the maximum absolute error
of the solutionz* € E™(C") under the assumption that the elementgéfare
perturbed by no more than- 100% of their original values.

The two types of perturbations, absolute and relative,aedlégferent types of
input data uncertainty that may appear in the problem. Whéeabsolute pertur-
bations are usually specified by some global parameter whitdcts admissible
perturbation range valid for all elements, the relativetypdations incorporate
discrepancy in element ranges, i.e. the range of actualssiloie perturbations
depends on the nominal element range.

For a givenp € [0,¢(C")), whereq(C°) = min{c}; : i € I, j € I,,}, we
consider a set of admissible perturbed matrices in the daalbsolute perturba-
tions:

Q,(C%) :={CeR"™: |c;j — | < p, i € Ly, j € L} (3)
Forz* € E™(C?) andp € [0, ¢(C?)), the value of thetability function is defined
as follows:
0 ,.x . m *
S(C% z*, p) = cerg,ii(}éo)a (C,z").
In a similar way, for a given € [0, 1), we consider a set of admissible perturbed
matrices in the case of relative perturbations:
05(C%) ={C eRP": |cj—c;| <6, i € Ly, j € I} (4)
Forz* € E™(C°) andé € [0, 1), the value of theccuracy functionis defined as
follows:
A(C° 2*,8) := max a™(C,z").
CeBs(C)
It is easy to check thaf(C° 2%, p) > 0 for any p € [0,¢(C")) as well as
A(C° z*,6) > 0 for eachs € [0,1).

Observe that if we compare two optimal solutions from thenpof view of
their robustness on data perturbations or inaccuracy, shealler value of the
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stability or accuracy function for a given norm of data pdsaition is more prefer-
able. Thus, both defined functions may be used to evaluatpigdiy of solutions,
which are optimal in the original problem.

Sometimes, it is of special interest to know the extremeashfp andJ, for
which S(C°, z*,p) = 0 and A(CY, z*,5) = 0, respectively, because these val-
ues determine maximum norms of perturbations which preste property of a
given solution to be efficient. These values are analogotigeteo-called stability
and accuracy radii introduced earlier for single/multipblgective combinatorial
optimization problems (see e.g. [6]). Formally, the sigbibdius?°(C°, z*) and
the accuracy radiuB*(C?, z*) are defined in the following way:

R(C%,a") :=sup {p € [0,¢(C")) : S(C°,a",p) =0},

RA(C°, x*) :=sup {6 € [0,1) : A(C°,z*,8) = 0}.

If these radii are equal to zero, then this means that these¢ abitrary small
perturbations of the original matrix® such that the initially efficient solution*
loses its efficiency in the perturbed problem. Otherwisesemains efficient for
any problem with matrixC' € Q,(C°), p < R¥(C° z*) or C € ©5(C%), § <
RACO, x¥).

In the next section, we first formulate two traditional moitjective optimality
principles (Condocet and Pareto optimality). Afterwands, introduce a natural
parameterization of these principles to provide the degisiaker with more flex-
ible tool of expressing the compromise between conflictingctives.

3 Parameterizing "from Condorcet to Pareto”

As it has been already mentioned in introduction, in votimgptry two main rules
- majority and unanimity - are commonly in use. Applicatidriteese two rules as
binary relations of preference between two solutions, tvinas to be compared
pairwise, lead to the definitions of Condorcet and Paretar@lity principles,
respectively.

For anyz, 2’ € X andC € R}"*", we put

m*(C,x,2") = |{i € I, : fi(C,z) > f;(C,2")}];
m_(C,ZL’,QZ’/) = |{'l €Iy fz(Ca 1’) < fz(ca EL'/)}|;

m?(C,x,2') = |{i € I, fi(C,z) = f;(C,2")}|.
Obviously,

m*(C,z,2') +m~(C,z,2") + m°(C,z,2') = m. (5)
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The binary relations: < 2’ of a strict preference between two feasible solu-
tionsx andx’ (2’ is preferred tar) are given according to the formulae:
- Condorcet (majority) domination relation = <, '

m™(C,z,2") >m™ (C,z,2'); (6)
- Pareto (unanimity) domination relation = <, 2’
m*(C,z,2") > (m—1)-m (C,z,2). (7)

Note, that
m+ (C7 x? x/) > C : m_ <C7 x? x/)7

forall ¢ > m — 1, also defines the Pareto domination relatior., x’/, however
m — 1in (7) is the smallest integer value ¢fvhich may guarantee <. z’.
A solutionz* € X is calledCondorcet optimal if

:u(Ca IL'*) =0,

where
p(Cx") ={r e X: z* <, x}.

We will refer to the set of all Condorcet optimal solutionstlis Condorcet set
and denote it by\/™(C'). Respectively, a solution* € X is calledPareto opti-
mal if

7(C,z") =0,

where
m(C,z") ={r e X : 2" <, x}.

We will refer to the set of all Pareto optimal solutions asPlaeeto setand denote
it by P™(C). Notice thatP™(C) is always non-empty, since the set of feasible
solutions is finite (see e.g. [5]).

The Condorcet principle of optimality realizes the wellekm procedure of
decision-making by the majority of votes. It is easy to ustind that the binary
relation<,, is not always transitive, not even fat = 3. This is known as the
well-known Condorcet paradox of voting [4], which was coetpensively ana-
lyzed by Kenneth Arrow [1] based on the axiomatic approacthéomechanism
of collective decision-making [2].

In order to give a decision maker more flexibility in definingtionality one
can smooth the difference between Pareto and Condorcetalfiti principles by
introducing an integer parameteand defining the binary preference relation as
follows [2]:

- s-domination relation z <, 2’ :

m*(Cox,2") >s-m (C,x,2), s € I,_1. (8)
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The meaning of (8) in words can be formulated as follows:is preferred to
x if the number of objectives where has worse objective values (larger than
corresponding objective values of) is strictly bigger thans times number of
objectives where: has better objective values. In other words, in orde&ot to
be dominated by’ w.r.t. <,, the number of objectives far with worse objective
values should not exceedtimes the number of objectives with better values.
Obviously fors = 1, <, transforms into the Condorcet domination relatiep,
and fors = m — 1, <, becomes the Pareto domination relatiop

A solutionz* € X is calleds-optimal if

vs(C ") =10,

where
vs(Cox") :={z e X : 2% <, z}.

We will refer to the set of alk-optimal solutions as the-optimal setand denote it
by N7*(C). ltis clear thatNj*(C) = M™(C) andN]"_,(C) = P™(C). Clearly,
the setN!"(C') can be defined also by the following equivalent form:
NMO):={zeX: m"(C,x,2)) <s-m (C,x,2') Vo' € X}, se I,

s

Evidently, for anyC' € R"*" andm > 2, we have
M™(C) = N{"(C) € Nj'(C) € ... € N, (C) = P™(C) £ 0
with M?(C) = P%(C).

The parametes controls the ratio between the number of objectives with-"be
ter” and "worse” objective values in any pairwise companisd a pair of solu-
tions. Thes-domination binary relation gives more freedom to the denimaker,
since e.g. voting schemes can be represented by using ldti®mee.g. as in the
following example.

Example 1. Assume we have the following situation:
© members of a parliament (MPs) voting for a bill;

o C'is a matrix of preferences;; defines individual preferences oth MP

o the number of objectives represents the number of MPs.

o selection between two billsand z*;

o voting is without compromise, no option "abstain” is avdile, i.e.m®(C, z, ') =
0;

om™(C, z, z*) - amount of MPs voting "for:*”, i.e. voting "againstz”;
om~(C,z,z*) - amount of MPs voting "against*”, i.e. voting "for x”.

The situation, when the simple majority of votes (a half jpins vote) is needed
to pass the billz*, can be described by meansietiomination binary relation:
x <1 x*, i.e. the Condorcet optimality principle holds. If we assuimat one bill
is preferred over the other i£/3 of the total amount of MPs plus one vote for
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that bill, then a situation when the bilf* passes can be described by mean-of
domination binary relationz <, x*. In other words the parameterized optimality
principle is in use. Thus by means of introducing integerapagters, a decision
maker could define the so-called super majority or a qualifiegority principles
which guarantee for a proposal to gain a specified level oetgpsupport which
exceeds a simple majority in order to have effect. In somes;dsr example,
parliamentary procedure requires that any action that mégrahe rights of the
minority or constitutional regulations has a super majgniéquirement (e.g. two-
thirds, three-fourth, four-fifth majority etc). In case uger majority ratio results
in fractional number of votes the last is rounded off to thaimal larger integer,
otherwise one voice must be added to guarantee that the ityagclear in terms
of votes. This ends the example.

In what follows we will assume that the one or severaptimal solutions
have been detected, and concentrate on analyzing somg/quahsures of these
solutions with respect to small perturbations of the oadjmatrix of coefficients.

4 A Boolean linear programming problem

Now we would like to present the problem specific resultsyassg that individ-
ual cost functions are defined as linear functions, i.e.:

fi(C,z) == Ciz.

Here(; is i-th row of matrixC' = [¢;;] € RT™".
Assume also that the decision variables are binary, i.¢ Xha 211" \(, | X| >
2, is a finite set of feasible solutions. We call the problem ddifig N (C'), de-
fined in the previous section, am-criteria Boolean linear programming prob-
lem.
For any two fixed solutions* € N!*(C') andz € X, put the deviation mea-
sure
Yi(C, 2% z) = fi(C2") — filCx) = Ci(a™ — x), i € L.
Let us arrange all numbess(C, z*, x) in non-decreasing order:
7}71(0? Ilﬁ'*, Ilf) S 7]32 (Cv ZE'*, .CE') S S me(ca Ilﬁ'*, Ilf) (9)

W.l.0.g. we may assume that all inequalities in (9) are sttMhen coefficients
of objective functions change, then initialtyoptimal solution may lose its opti-
mality. We will evaluate the quality of this solution frometlpoint of view of its
robustness on possible data perturbations. Namely, foremgnatrixC' € R
andz* € N™(C"), we introduce the so-calleabsolute error (see also the previ-
ous section) of this solution:

@(Coa) = ma (", ) = max{ fy, (C,3%) = fy, (C,)} = max {Cy, (a7 — )},
(10)



wherek = (’?;T‘ll} is the least integer no less th@j%. Note thata™(C,z*) > 0
forall C € R7" andz* € N™(C"). The k-th element in ordering serves
as major indicator of-optimality, which helps to determine whether remains
s-optimal for matrixC' or not.

Obviously if s = m — 1, thenk = 1 and (10) transforms into

am_l(cv I*) = Tm (Cv I*> JJ),
wherep is objective ordering according to (9), i.e.

a"!(C,2") = maxmin { f;(C,2") — fi(C, )}, (11)
xeX 1€1Lm
whose relative analog was previously known in [12]. In thalaccase, i.e. for
m = 1, the Pareto set transforms into the set of optimal solutidiherefore the
absolute errou! (C, z*) converts into (2).

The use of relative error is evidently advantageous to tlkeeofisimple abso-
lute error, since the deviation from the optimal solutioomeasured taking into
account cost function ranges. However if the objectivesarenalized (i.e. their
ranges are already counted) the usage of absolute erromigutationally more
reasonable.

In the scalar case the equality(C, z*) = 0 gives necessary and sufficient
conditions thatr* € N!(C). But in the multicriteria case the situation is a bit
different.

Lemmal If z* € N*(C), thena™(C,z*) = 0 foranyC € R"™".

Indeed, for arbitraryC' € R andz* € N*(C), we havea™(C,z*) > 0. If
a™(C,z*) > 0, thenC,, z* — C,,x > 0. Due to ordering (9), we obtaii,,, z* —
Cp,x > 0foralli € I,\Ix, i.e.m™ (C,2*, z) > s-m~(C,z*,z). The last implies
thatz* ¢ N (C).

The equalitya™(C, z*) = 0 formulates in general only necessary condition
for z* to bes-optimal, i.e.a™(C, z*) = 0 does not guarantee that € N*(C).
Indeed, consider the following example.

Example 2.Letm =4,n =2,s =2, and

Ccl'=

— NN DN
N DN DN

Assume also thaX’ = {z!, 2%}, 2! = (1,0)7, 2* = (0,1)T. Then
f(Chah) = (2,2,2,1)7, f(C',2%) = (1,2,2,2)",
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mt(Ch 2t 2?) =1, m"(C, 2, 2%) =2, m™(C*, 2", 2°) = 1,
i.e. N} (CY) = {«', 2?}. Moreover, forz? € Ny (C') we calculate
Nn(Cha? zh) = =1, 1(Ch, 2% ") =0, 13(CY, 2% 2') = 0, u(C 2% 2') =1,
p=1(1,2,3,4),k =1,p; =1, anda*(C*, 2%) = 0.

If we consider matrix

=

[ )
N DN DN

then
f(C%ah)y = (2,1, 1, )7, f(C?%27%) = (1,2,2,2),

mt(C* 2t 2?) =1, m°(C? 2, 2%) =0, m™ (C? 2", 2%) = 3,
i.e. NJ(C?) = {«'}. Then forz* ¢ N}(C?) we calculate
1(C? 22, 2t) = =1, %(C? 22, 2') = 1, 13(C?, 2%, 2') = 1, 4(C? 2%, 2t) =1,
p=1(1,2,3,4),k=1,p, =1, anda*(C? 2?%) = 0. This ends the example.

But later we will show, that if the equality(C, z*) = 0 is valid for any matrix
in some open neighborhood 6F, i.e. there isp > 0 such that(C, z*) = 0 for
anyC, || C — CY ||< ¢, where|| - || denotes a norm ilR™*", then this equality
provides also a sufficient condition for the solutiohto belongN™(C?).

Now assume again that the set of feasible solutionsfixed, but the matrix of
input dataC' may vary or be estimated with errors. Moreover, we also asgbat
for some originally specified matri€® = [c%] e RT*" we know ans-optimal
solutionz* which is an element of the set efoptimal solutionsV™ (C?).

Let

Q(C%) :={C eR": |ejj — | < p, i € L, j € L},

O5(C%) :={C e R : |c;j — | <0- ¢, i € Ly, j € L}

13
Note that c{Q2,(C?)) = Q,(C°) as well as d©/,(C?)) = ©,(C°), whereQ,(C?)
and®,(C?) defined in (3) and (4), respectively.

Proposition 1 For z* € N™(C°), s € I,,_1, andp € [0,¢(C?)), we haver* €
N'(C) foranyC € Q,(C?) if and only if S(C°, z*, p) = 0.

Proof. Necessity.Let p € [0,q(C?)). If z* € N™(C), s € I,,_; for some
C € Q,(C?), then directly from the definition o;"(C'), we have that

mt(C 2", 2) <s-m (C,z*,z) Vo € X
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holds.
Using (5) we deduce

m< (s+1)-m (C,z*, ) + m°(C,2*, x) Vo € X,

then
m—1<(s+1)- (m_(C,x*,x)+m0(C,$*,x)> Vo e X,
and finally
Ml (G et w) + mO(C et )
P m ' x)+m (C,x", x
ie.

[ (Cox™) — £, (Cyz) <0 Vo e X,

wherek = [2=L]. Thena™(C,z*) = 0 for C € /(C°). Due to the arbitrary
choice of matrixC, what has been proven above is valid for &hy €, (C?).
Consider now the caseé € Q,(C?)\2,(C”). Let us show that in this case,
even ifz* losess-optimality for such matrix”, the absolute erroi™ (C, z*) is
still equal to0. Indeed, - due to continuity of objectives as linear func$ie we
get
fpk(Cv x*) - fpk(Cv x) =0 VreX

Thus,a™(C,z*) = 0 for C' € Q,(C?)\,(C?). Again, due to the arbitrary choice
of matrix C', what has been proven above is valid for @iy Q,(C°)\Q/(C°).
Combining the two cases, we g&t(C,z*) = 0 for anyC' € Q,(C?). The last
meansS(C?, x*, p) = 0.

Sufficiency.To prove that forp € [0,¢(C?)), S(C° z*, p) = 0 implies that
z* € NMC) for any C' € Q(C?), suppose thab(C?, z*, p) = 0, but there
exists a matrixC’ € Q/(C°), such that* ¢ N*(C’). We will show that such
assumption must lead to a contradiction. IndegdZ N!"(C’) means that there
existsz € X such that

mT(C', 2", 2) > s-m~(C', 2%, %),
ie.
fpk(clv 1'*) - fpk(clv :i') > 0.
Consider matrixC’ € R’"*" with elements

cy— it i =pp, 25 =0,
=1, (12)

J

~/

Gj=¢;+oif i=py, x
c;; otherwise,

where¢ > 0 is taken small enough to satisfy < Q;(CO) and not violate the
orderingp,. Now it is easy to see that

fpk(é/>x*) - fpk(é,>i) > 07

11



i.e.a(C’,z*) > 0, that impliesS(C?, z*, p) > 0. Thus we have a contradiction
which completes the proof.

Proposition 2 For z* € N™(C"), s € I,,_1, andd € [0,1), we haver* €
N (C) foranyC € ©4(C°) if and only if A(C?, z*,6) = 0.

The proof of proposition 2 is analogous to the proof of profas 1.

Thus, this positive value of the absolute error may be tceasea measure of
inefficiency ofx*.

For anyz € R™, we denote two normdinear norm || z ||; andChebyshev
norm || z |-

The following statements are true for any vectors’ € {0,1}", ¢ € R™

(e, 2 <l ¢lloo - I 2 Il (13)

Iz =2 =zl + | 2" I =2(z,2), (14)

where(-, -) is the scalar product of two vectors. Note, that the leftehaide of
equality (14) is the Hamming distance between Boolean veetand:'. It is easy
to prove equality (14) using induction (on the numbg{9].

For any twoz, * € X denote

Al® x) =l e —a" i=ll 2 [l + [ 2" [y =2(z,27).

The following theorem gives a formula for calculating vahfethe stability
function.

Theorem 1 For z* € N(C°) andp € [0, ¢(C")), the stability function can be
expressed by the formula:
S(C%, a7, p) = max {Cy (v — z) + pA(a", 2)}, (15)

wherep® = (p?, ..., p,) is objective ordering according to (9) specified for each
x € X and original matrixC®°.

Proof. Let T'(C?, z*, p) be the right-hand side of (15). We yield

0 ,.x o *\ * o
S(C% x*,p) = Celrg/z?u(}éo)a((],x )= Cergi%o)rz?gz_c {C) (" —2)} =

Cp (2" — )}
B il e =)

Note that the reordering of the two maximums is possibleesixids finite and
Q,(C") is compact.

For any fixedr € X, the maximunt,, (z* — z) overC € Q,(C?) is attained
when

c%—pifx-zO,ing,

J

cy; otherwise

12



Obviously,C* € Q,(C°). Then, taking into account that< p < ¢(C°), we
continue

* * _ 0 * * _ 0 .
r;t%z{{cpk(x JI)} - I;’leaj?: {Cpg(l’ .T) +pA(JZ‘ 737)} - F(C » L 7p)

This completes the proof.
As a corollary from theorem 1, we get the following resulta@erning Pareto
optimality (c.f. [12]):

Corollary 1 The stability function of* € P™(C?) can be expressed by the for-
mula
S(C° z*, p) = maxmin{CY (z* — x) + pA(z*, 1)} (17)

zeX i€ly,
To formulate the further results we need the following définis. For any two
solutionsz* € N*(C') andx € X, = # z* put
G(C 2" x) = fi(C,x) — fi(C,2") = Ci(x — %), i € L,.
Let us arrange all numbeyg(C, z*, ) in non-increasing order.
4 (Cy 2", x) > ¢, (Ci 2", 2) > ... > q,, (C, 2", x). (18)

Note that ordering (18) is identical to ordering (9), itBt, ---, D) = (71, «+o, Tin)-
Recall, that w.l.0.g. we assumed that all inequalities Jraf@ strict, and hence all
inequalities in (18) are also strict.

To prove the some further statements we will need the foligviact

Lemma 2 Letp = (p1, po, ..., pm) b€ the objective ordering specified by (9) and
r = (r,7e,...,7m) be the objective ordering specified by (18), both are spekifie
for the original matrixC°. Assume also that* € N™(C"), x € X andp > 0.
Then the inequality

0 * *
max {Cpg(x z) + pA(z*,x)} >0

is valid if and only if

> i _—
mer)?\lﬁ*} A(z*, x)
holds.

Proof. NecessitySuppose that
Iglea;({q?g (" —x) + pA(z™,2)} >0

is true. We will prove the necessity by contradiction. Assumat

C%(x — x*)
< min L

T eex\{zy Az, z)

13



Chz—a%) Ch (x—a) Oz — °)
p < k < k-1 < . < 4
Az, x) Az, x) A(x*, x)
i.e. due toA(z*, z) > 0 for anyz € X\{z*}, we obtain

0> ng(x*—x)+pA(x*, x) > ngil(ﬁ*—l')%-pﬁ(ﬂf*, ) > ... > C’S(l) (" —x)+pA(x™, )

for everyz € X\ {z*}.
Now recall that orderings® andp® are identical, and for ordering it is true
that
Cg(l)(x* —r)< ... < ng(x* —r)< ... < Cg%(x* — ),

i.e. sincep > 0 andA(z*, ) > 0 foranyz € X\{z*}, we get
0 * * 0 * * 0 * *
Cp(l)(x — )+ pA(x*,z) < ... < Cpg(x — )+ pA(”,z) < ... < Cp (7 — ) + pA(a”, x)
for everyzx € X\ {z*}.
Sincep € [0, ¢(C?)), we get

max ng(x* —x)+ pA(z*,z) = 0.

This contradiction ends the first part of the proof.
SufficiencyNow we assume that
' ng (x —a*)
> mm —F—FF
cex\{z*} A(z*, 1)
We will prove the sufficiency by contradiction again. Supptsat

max {CY(o" — @) + pA(", @)} <0
TEe k

ie.
Cfn)?(x* —z)+ pA(z*,z) < ... < Cfg(x* —z)+ pA(z*,x) <0, Ve X\{z"}.
Sincep € [0, ¢(C°)), we get

ng(m* — )+ pA(z*,z) <0, Voe X\{z"}.

and, hence, becaug®(z*,z) > 0 Vx € X\{z*}, and orderings® andp® are
identical, we derive

Cholz — %)
< —— e X\{z"}.
P> A([E*,ZIZ’) ; L E kvxe \{ZIZ’}
The last implies that
Cho(z — %)
p < min L

T eex\{or}  A(x* 1)
The obtained contradiction ends the proof of the secondgpateither completes
the entire proof of the lemma.

14



Theorem 2 For z* € N™(C"), the stability radius can be expressed by the for-
mula:

oo ' . ‘ Cfg(x—x*)
RS(C°, %) = min {g(C ),xer)?\l{r;*}m}, (19)

wherek = [Z-1] is the least integer no less thaf= and (r{,79,...,r0,) is

objective ordering according to (18).

Proof. If p = 0, thenS(C", 2*,0) = 0. Now consider non-trivial case > 0.
AssumeS(C°, z*, p) > 0. Using formula (15) specified by theorem 1, we derive
thatS(C°, z*, p) > 0 if and only if

Cgo(x* —x) + pA(x*, )
max —=

:L’EX COO
Py

> 0,
z—pllelh

wherep = (p{, 95, ..., %) is objective ordering specified by (9) for the original
matrix C°.
Due to lemma 2, the last inequality holds if and only if

i Oz =)
p=pi= mer)?\l{ri*} A(z*, x)
Thus, ifp < ¢(C?), then we get tha$(C?, z*, p) = 0 oninterval0, ). Otherwise
the stability function is equal to zero ¢t ¢(C?)). This ends the proof.
As corollaries from theorem 2, we get the following well-knoresults (c.f.

2], [12]):

Corollary 2 The stability radius of* € P™(C?) can be expressed by the formula

CP(x —a*)
s 0 o A 0 . I S
RS(C°,2") = min {¢(C ) D, e ) J

Corollary 3 The stability radius ofi* € M™(C") can be expressed by the for-
mula

C%(z — x*)
RS<CO,$*) = min {q<CO)7(E€r)?\1?’E*} ZZ(ZE* x) }7

whereg = |21 | is an integer part of2 and p® = (p!, ...,p",) is objective

ordering according to (9).

The following theorems, which give formulae for calculatimalues of the
accuracy function and accuracy radius, can be proven bpgyalith the proofs
of theorem 1 and 2.
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Theorem 3 For z* € N™(C°) and§ € [0,1), the accuracy function can be
expressed by the formula:

A(CO, z*,8) = rzgle%z_(ng(x* —z)+ 52 cggj|xj- — zjl.
JEIn

Theorem 4 For z* € N(C°) andé € [0,1), the accuracy radius can be ex-
pressed by the formula:

A0 | S
RA(C%, x™,6) :mln{l, min 5 - }
zeX\{z*} j; cmj|x]~ — xj|

5 Example

Consider the following example. Assume we have a group gbiee6 = {z!, 22, 23}
belonging to some community or organization. Assume alabttiere is a deci-
sion committee consisting ofi = 5 persons making an assessment of activity
within the group members and deciding whether to continusta membership
of every person in the group basedor- 3 evaluation criteria. For every person
ah = (a2, 24)", h e I3, 2 = 1if 2 does not satisfy-th evaluation criterion,
andz” = 0 otherwise. Let:' = (0,0,1)", 2* = (0,1,0)" andz® = (1,0,0)".
Eachi-th member of the decision committee € I,,) has own preferences ac-
cording to the importance of evaluation criteria, and hemea penalty costs?j

if some person does not megth evaluation criterion. The@® € R*" defines
the penalty cost matrix:

1 2 6
3 3 4
=13 23
3 35
2 4 6
Thus, the penalty costs received by every group member fr@rdécision

committee are the following:
f(C ") = (6,4,3,5,6)", f(C° 2% =(2,3,2,3,4)", f(C°,2%) = (1,3,3,3,2)".

The assessment is going according to the following ruleserfEmember of
the decision committee will independently evaluate attiof all persons in the
organization by specifying some penalty costs. The lessfaeatory performance
is demonstrated by the persons the higher penalty cost mgivée to them. As
a result of the entire assessment, a penalty cost vectosigiased to each per-
son. Each component of the vector represents the penaltyemesved by this
person from the corresponding member of the decision cot@eitAny person

16



Table 1: The objective orderingfor different pairsz* andz.

8

) Y

1,4
3,4,
1,5
5,1

=N =N

Y

Y

) Y

Y

828 8 8|8
W W NN ¥
N o= W =
DO D O
W W Ut W
S— e N

88 8 8

Y Y Y Y

o~~~

can be excluded from the organization if there is anothesqrem the organiza-
tion with better (in some sense) performance. Otherwigepdrson will keep the
membership within the organization. The pairwise compariand establishing
domination relations between the penalty vectors are usel@d¢ide whose per-
formance was better. One penalty vector will dominate thermbne in sense of
s-domination relations (8), where= 1,2, 3, 4. The person with non-dominated
penalty vector will keep the membership otherwise not.

If the penalty cost matrix is subject to uncertainty whichyrba the case when
the members of the decision group are not absolutely sunet &xact values of
penalty costs that should be given, then there is a risk forespeople to loose
their membership if some small changes in penalty costsare.dNe preliminary
calculate

Azt 2%) = A(2?, 2%) = A(2h, 2%) = 2.

When we compare different solutions we get various objeatideringg speci-
fied in Table 1.

To estimate this risk we evaluate the value of stability tiores according to
(15).

o NE(C?) = M(C) = (o), k=2,
S(CP, 2%, p) = max {0, 1 42p, —4+ zp}, pel0,1);
s=2
NI (C°) = {2?, 2%}, k=2,
S(C°, 2%, p) = max {O, 2p, -2+ Zp}, p€[0,1);
S(CP, 2%, p) = max {0, 1 42p, —4+ zp}, pel0,1);
s=3

Ni’?(co) - {127 xS}’ k= 17
S(C°, 2%, p) = max {0, —1+42p, —4 + Qp}, p€1[0,1);
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Figure 1:s = 1 : Stability functionS(C°, 23, p) for p € [0, 1).
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Figure 2:s = 2 : Stability functionsS(C?, 22, p) andS(C?, 23, p) for p € [0, 1).

S(C°, 23, p) = max {0, —2+4+2p, =5+ Qp}, p€0,1);

NI (C%) = N;(C°) = {a?, 27}, k=1,
S(C°, 2%, p) = max {0, —1+2p,—4+ Qp}, p€0,1);
S(C°, 2*, p) = max {0, —2+42p,—5+ Qp}, p€0,1).

Graphics forS(C?, 22, p) (continuous line) and(C?, 23, p) (dotted line) are
depicted in Figures 1 — 3. Now let us make a short analysiseofebults.

s = 1 There is only oné-optimal solutionz?. Its stability function is depicted
on Figure 1. This solution is stable for< p < 0.5.
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Figure 3: s = 3,4 : Stability functionsS(C?, 22, p) and S(C°, 23, p) for p €
[0, 1).

s =2 As one can see from the graphics (see Figurez2)js non-stable for
0 < p < 1, andz? is stable for0 < p < 0.5. Moreover, for0 < p < 1,
S(CY% 22, p) > S(C° 23, p). So, we may conclude that is more prefer-
able under the possible uncertainty of penalty cost matfix

s = 3,4 As one can see from the graphics (see Figurer3)s stable for0 <
p < 0.5, and2? is stable for0 < p < 1. Moreover, for0 < p < 1,
S(CY 22, p) > S(C°, 23, p). So, we may conclude that is more prefer-
able under the possible uncertainty of penalty cost matfix

6 Conclusions

The example in previous section suggests that small chamgesiccuracies in
estimating objective function coefficients may have sigaiiit influence on the set
of s-optimal solutions. Moreover, some solutions being ifligfiaptimal, cannot
be considered as stable, because very small changes ofdatautiestroy their
properties of being optimal.

The simplest measure of the stability of the optimum is &b#ity or accuracy
radius. But frequently, this measure is not sufficient tkrédoe solutions, among
multiple optimal solutions, which so often occur in muliieria optimization.
Therefore, calculating stability radii only may be not sti#fint to make a conclu-
sion about solution stability, so it is necessary to cakeutsome complementary
measures reflecting more information about solution bemawnder uncertainty.

The accuracy and stability functions describe the qualfity@ptimal solutions
in the problem with uncertain coefficients of objective ftions. The definitions
of these functions are directly connected with given oplitpgrinciple. Most
common optimality principles in voting theory, as Paretd &ondorcet optimal-
ity principles, may not fully cover all of the decision makmeferences. Some-
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times, introducing a parameterized version of optimalitpgiples may reflect the
desirable preference specific much better.

As possible continuation of the research within this topivould be interest-
ing to study whether the approach presented in this papebmaytended for the
case of non-linear objective functions and non-boolearmsaetvariables. Find-
ing efficient strategies to compute stability and accuramyctions for the prob-
lems with larger dimension may be also promising to studyalpical expres-
sions obtained in the present paper imply full enumeratioth® set of feasible
solutions whose cardinality may depend exponentially:o0150, these formulae
do not lead to the efficient (polynomial) way of calculatiihg tvalues of stability
and accuracy functions. The main focus could be given tauatiog reasonable
lower and upper bounds as well as getting good quality apmation by means
of ad-hoc heuristics. One more research possibility isudythe properties of
stability and accuracy functions for answering questiassthiis function con-
cave?”; "is the number of function segments polynomial wehpect ta:?”; "is
this function piece-wise linear?” etc. Having this questi@nswered positively,
one can exploit these facts to design an efficient compunaltjgrocedure similar
to [3].
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