
Ville Lukkarila

Sensitivity and topological mixing are unde-
cidable for reversible one-dimensional cellu-
lar automata

TUCS Technical Report

No 927, January 2009





Sensitivity and topological mixing are un-
decidable for reversible one-dimensional
cellular automata

Ville Lukkarila
Turku Centre for Computer Science

FI-20520 Turku

Finland

Department of Mathematics

University of Turku

FI-20014 Turku

Finland

E-mail: ville.lukkarila@utu.fi

This research has been supported by the Fund of Yrjö, Vilho and Kalle Väisälä.
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Abstract

It is shown by a reduction from the reversible Turing machine halting prob-
lem that sensitivity is undecidable even for reversible one-dimensional cel-
lular automata. With a few additional constructions, the undecidability
of topological mixing and the undecidability of topological transitivity fol-
low. Furthermore, sets of topologically mixing cellular automata and non-
sensitive cellular automata are recursively inseparable. It follows that De-
vaney’s chaos and Knudsen’s chaos are undecidable dynamical properties.
[This paper has been submitted to Journal of Cellular Automata in Septem-
ber 2008.]
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1 Introduction

Cellular automata are a simple formal model for the study of phenomena
caused by local interaction of finite objects. A cellular automaton consists
of a regular lattice of cells. Each cell has a state which is updated on
every time step according to some local rule which is the same for all the
cells in the lattice. The locally used update rule is simply called a local
rule. On every time step the next state of the cell is determined according
to its own previous state and the previous states of a finite number of its
neighbors. The state information of the entire lattice at any time step is
called a configuration of the cellular automaton.

The cellular automata were introduced by von Neumann to study bio-
logically motivated computation and self-replication [18]. The mathematical
study of cellular automata in symbolic dynamics was initiated by Hedlund
[9]. Although cellular automata may seem a simple model for computation,
they can exhibit very complex behavior. A well-known example of such
complex behavior is the Game-of-Life. Even though the rule according to
which the lattice is updated is quite simple in the Game-of-Life, some state
patterns interact in a somewhat complex manner. In fact, the Game-of-Life
has been shown to be computationally universal. In particular, any Turing
machine can be simulated with some cellular automaton in a natural way.

Cellular automata have been studied very extensively also as discrete
time dynamical systems. Injectivity, surjectivity, nilpotency, equicontinuity,
sensitivity to initial conditions, topological transitivity, topological mixing,
chaos, and different variants of expansivity are widely studied properties
of cellular automata. These properties have been studied also in the sense
of algorithmic decidability and undecidability. Nilpotency is an undecid-
able property even for one-dimensional cellular automata [10]. Injectivity
and surjectivity are known to be decidable for one-dimensional cellular au-
tomata but undecidable for two-dimensional cellular automata [11]. It was
mentioned in [6] that sensitivity, equicontinuity, transitivity, and ergodic-
ity are believed to be undecidable properties of cellular automata but no
proof was given. It was shown in [8] that equicontinuity and sensitivity are
undecidable for irreversible one-dimensional cellular automata. Recently it
was shown by Kari and Ollinger that equicontinuity is undecidable even for
reversible one-dimensional cellular automata [13].

In this paper it is shown that also sensitivity to initial conditions is an
undecidable property even for reversible one-dimensional cellular automata.
By modifying the construction even further, it is shown that topological
mixing and topological transitivity are undecidable properties even for re-
versible cellular automata. Due to the close relation between transitivity
and different definitions of chaotic behavior, it follows that chaotic behavior
is an undecidable property both according to the definition of Devaney [7]
and according to the definition of Knudsen [15].
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2 Cellular automata

Cellular automata are dynamical systems which update the variables on
an infinite d-dimensional lattice according to some function with a finite
number of arguments. Formally, a cellular automaton is a 4-tuple A =
(d,A,N, f), where d is the dimension, A is the state set, N = (−→x1, . . . ,

−→xn)
is the neighborhood vector consisting of vectors in Z

d and f : An → A is
the local rule. A configuration c ∈ AZ

d

is a mapping which assigns a unique
state for each cell location in Z

d. The cells in locations −→x + −→xi are called
neighbors of the cell in location −→x .

At every time step the new configuration c′ is determined by

c′(−→x ) = f(c(−→x + −→x1), . . . , c(
−→x + −→xn)), (1)

that is, the new state of the cell in location −→x is computed by applying the
local rule to its neighbors. The global rule F : AZ

d

→ AZ
d

is defined by
setting F (c) = c′ in the sense of equation 1.

A cellular automaton is said to be reversible if the global rule F has
an inverse mapping F−1. It can be shown that if the inverse mapping F −1

exists, it is a global rule of a cellular automaton, that is, it is defined by a
local rule. It is also known that F is reversible if, and only if, it is injective.
Furthermore, in the case of cellular automata injectivity of the global rule
implies surjectivity of the global rule [12].

The distance between two different configurations c and e can be defined
to be

d(c, e) =

(

1

2

)min{‖−→x ‖∞ | c(−→x )6=e(−→x )}

,

where ‖ · ‖∞ is the max-norm. Function d(·, ·) is also a metric thus mak-
ing the set of configurations a metric space. The balls in the metric are
called cylinders and they form a basis for the topology. Radius r cylinder
containing configuration c is the set

Cyl(c, r) =
{

e ∈ AZ
d

| c(−→x ) = e(−→x ) when ‖−→x ‖∞ ≤ − log2 r
}

For every radius r there are only finitely many cylinders and these cylinders
are by definition disjoint. Therefore, radius r cylinders form a partition
of the space of configurations. Hence, every cylinder is clopen because the
complement of every cylinder is a union of other cylinders with the same
radius.

In the one-dimensional case, one can define cylinders differently as sets

Cyl(w, k) =
{

c ∈ AZ | c(i + k) = w(i) when i ≤ |w| − 1
}

where w ∈ A∗ is a finite word and w(i − 1) denotes the ith letter of the
word. The word consisting of states in locations i through j (when i ≤ j)
in a configuration c is denoted by c[i, j].
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Pair (X,F ) is a dynamical system if X is a compact metric space and
F : X → X is a continuous mapping. In particular, d-dimensional cellular
automata are dynamical systems of the form (AZ

d

, F ).
A dynamical system (X,F ) is said to be periodic if there exists such a

positive integer p that F p(x) = x for every x ∈ X. The dynamical system
is said to be ultimately periodic if there exists such positive integers p0 and
p that F p0+p(x) = F p0(x) for every x ∈ X.

A point x ∈ X is an equicontinuity point of mapping F if for any ε > 0
there exists such δ > 0 that for any point y ∈ X and integer n ∈ N,

d(x, y) < δ =⇒ d(F n(x), F n(y)) < ε.

A dynamical system (X,F ) is equicontinuous if every point x ∈ X is an
equicontinuity point.

Theorem 2.1 ([2]). A cellular automaton is equicontinuous if, and only if,
it is ultimately periodic.

Definition 2.2. A word w ∈ A∗ is blocking if there exists such a sequence
of words (wn)∞n=0 that wn ∈ Ar and there exists such an integer i that
F n(Cyl(w, i)) ⊆ Cyl(wn, 0) for any n ∈ N.

Theorem 2.3 ([2]). Any equicontinuity point has an occurrence of a block-
ing word. Conversely, any point with infinitely many occurrences of blocking
words to the left and right of the origin is an equicontinuity point.

Definition 2.4. A dynamical system (X,F ) is sensitive to initial conditions
(or sensitive) if there exists such ε > 0 that for any x ∈ X and δ > 0 there
exists such a point y ∈ X that

0 < d(x, y) < δ and d(F n(x), F n(y)) ≥ ε

for some integer n ∈ N. If the constant ε exists, it is known as the sensitivity
constant.

For one-dimensional cellular automata sensitivity is equivalent to the
nonexistence of equicontinuity points.

Definition 2.5. A dynamical system (X,F ) is topologically transitive (or
transitive) if for all nonempty open subsets U and V of X there exists such
a positive integer n that F n(U) ∩ V 6= ∅.

Definition 2.6. A dynamical system (X,F ) has a dense orbit if there exists
such a point x ∈ X that for every point y ∈ X with any ε > 0 there exists
such an integer n ∈ N that d(F n(x), y) < ε.

It can be proved with a topological argumentation that a cellular au-
tomaton is topologically transitive if, and only if, it has a dense orbit. A
short introduction to transitivity in terms of symbolic dynamics can be found
in [17]. It is known that transitivity implies sensitivity [5].
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Definition 2.7. A dynamical system (X,F ) is topologically mixing (or
mixing) if for all nonempty open subsets U and V of X there exists such a
positive integer n0 that F n(U) ∩ V 6= ∅ for all n ≥ n0.

Topological mixing is an even stronger property than transitivity. Clearly,
a mixing dynamical system is transitive also.

Definition 2.8. Let P (F ) denote the set of periodic points of a dynamical
system (X,F ), that is,

P (F ) = {x ∈ X | ∃n ∈ N \ {0} : F n(x) = x}.

A dynamical system (X,F ) is said to have dense periodic points if P (F ) is a
dense subset of X, or equivalently, for any point x ∈ X and any positive real
number ε > 0 there exists such a periodic point y ∈ P (F ) that d(x, y) < ε.

Sometimes the denseness of periodic points is called regularity or topo-
logical regularity [4]. On the other hand, cellular automata, whose column
subshifts are sofic subshifts, are called regular [16] because the factor words
of the elements of a column subshift form a regular language in the sense
of formal languages. It is an open problem whether denseness of periodic
points is equivalent to surjectivity or not.

Definition 2.9 (Devaney’s chaos [7]). A dynamical system (X,F ) is said
to be chaotic according to Devaney’s definition if

1. it is topologically transitive,

2. it has dense periodic points and

3. it is sensitive to initial conditions.

In [4] the authors reviewed some of the properties of discrete time dy-
namical systems in terms of cellular automata. The authors discussed also
Knudsen’s definition of chaotic behavior with respect to cellular automata.

Definition 2.10 (Knudsen’s chaos [15]). A dynamical system (X,F ) is
said to be chaotic according to Knudsen’s definition if

1. it has a dense orbit and

2. it is sensitive to initial conditions.

In the case of reversible cellular automata, Devaney’s and Knudsen’s
definitions of chaos are equivalent because a reversible cellular automaton
has always dense periodic points and a cellular automaton is transitive if,
and only if, it has a dense orbit. As transitivity implies sensitivity, both
definitions of chaos are equivalent to transitivity in the reversible case.

A set A ⊆ Σ∗ is said to be recursive if there exist such an algorithm
that for a given word x ∈ Σ∗ it would return “1” if x ∈ A and “0” if
x 6∈ A. The set A is said to be recursively enumerable if there exists such
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a semi-algorithm that for a given word x it would return “1” if, and only
if, x ∈ A. Recursive enumerability of set A means that the elements of
A can be printed in some order, although it is not known in which order.
The problem of determining whether a given word belongs to a given set
A is said to be decidable if A is recursive and undecidable otherwise. Two
sets A and B are said to be recursively inseparable if there does not exist
such two disjoint recursive sets A′ and B′ that A ⊆ A′ and B ⊆ B′ [14].
In particular, if two sets are recursively inseparable, there does not exist
an algorithm that would distinguish the elements of the first set from the
elements of the second set.

3 Undecidability of sensitivity

In this section it is shown that sensitivity to initial conditions is an undecid-
able property for reversible one-dimensional cellular automata. The result
follows by constructing a cellular automaton which is sensitive if, and only
if, a given reversible Turing machine does not halt on an empty tape.

Theorem 3.1 ([1]). It is undecidable whether a given reversible Turing
machine halts when started on an empty tape and the initial state.

3.1 Concept of signals

In what follows, the concept of a signal is used frequently. Although it is a
very informal concept, formally a signal could be described as just a state
or a component of a state travelling a (piecewise) linear path. A signal has
speed, that is, a number of cells it travels per one time step and a direction
to which it moves.

Let |i − j| < |v|. If a signal with speed v > 0 in location i is said to
collide with or bounce off the cell in location j > i, its speed is changed
from v to −v and its new location is (j + 1) − (|v| − |i − j|). Similarly, if a
signal with speed v < 0 in location i bounces off the cell in location j < i,
its new location is (j−1)+(|v|−|i−j|). If the signal is located between two
cells whose distance is less than the velocity of the signal and both of which
it would bounce off, the same idea of changing the speed to the opposite
and computing the new location is applied repeatedly. If a signal, which
is located at cell i, does not have its path intersect any cells from which it
would bounce off in locations j, where |i − j| < |v|, then its new location is
simply i + v.

Geometrically speaking, if cell i occupies the unit interval [i − 1
2 , i + 1

2 ]
and a signal travelling to the right is represented by a line intersecting a
point (i, t) at time t with a slope of 1/v, the signal is reflected as a line with
respect to a vertical axis x = j + 1

2 . Similarly, a signal travelling to the left
as a line through a point (i, t) at time t with a slope of 1/v is reflected with
respect to a vertical axis x = j − 1

2 . The idea of signals is shown in Figure
1.
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I
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(a) A signal with speed
1 bounces back from a
cell to the right.

/
/

/
.

.

(b) A signal with speed
2 bounces back from a
cell to the left.

Figure 1: Examples of how signals are represented on a cellular automaton
and how they bounce back from certain cells.

The concept of signals is used in the following constructions because
that way the main ideas of the proofs can be expressed more efficiently.
The constructions are sufficiently complex in the sense that simply giving
complete description of the local rule is somewhat infeasible.

3.2 Outline of the construction

For each reversible Turing machine, the cellular automaton is constructed in
four layers. The construction is presented in this way to make it more read-
able. The local rule on each of these layers maps states of the neighborhood
into a new state component of the layer depending on the state components
of the particular layer and the earlier layers. That is, each layer has a single
purpose and its contents depend only on the contents of the layer itself and
the contents of the underlying layers in the previous configuration.

Layer 1. The configuration is split into areas on each of which the Turing
machine is simulated.

Layer 2. For each simulation area on layer 1, a signal is used to check the
validity of the initial tape configuration.

Layer 3. If the contents of layers 1 and 2 do not match a valid simulation,
signals are generated to forward this information.

Layer 4. If the signals of layer 3 collide with the simulation area border
signals, the border signals can be modified to let signals pass from
one side to another.

The construction is such that the cellular automaton consisting of only
the first three layers always has equicontinuity points. However, the fourth
layer is constructed in such a way that in the final construction blocking
word sequences exist if, and only if, certain states can be avoided in the
blocking word sequences of the cellular automaton consisting of the first
three layers.
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The idea of the construction is to use the first and the second layer to
simulate periodically a computation by a reversible Turing machine starting
on an empty tape. The Turing machine computation is simulated on the first
layer on a finite area. The configuration of the cellular automaton is divided
into areas on each of which the Turing machine computation is simulated
(on arbitrary input). The construction on the second layer is used to detect
whether the Turing machine simulation was started on a specific initial state
and an empty tape. The construction for the first layer is practically the
same as in [13] where equicontinuity of reversible cellular automata was
proven to be an undecidable property.

The third layer is used to forward information about the validity of
the computation. That is, if the first layer does not contain periodically a
simulation of a Turing machine computation started on an empty tape, a set
of signals is generated to spread this information. The signals symbolizing
a failed attempt to find a positive solution to the problem of Theorem 3.1
are restricted inside the particular simulation area of the Turing machine.
Therefore, each of the simulation areas is in fact a blocking word sequence
when layer 4 is not considered, because the contents of one simulation area
are unaffected by the contents of the other simulation areas. The rule which
is used on the third layer to draw the signals is determined locally by the
contents of the first and second layer.

A simulation error is said to be present in a cell, if the contents of the
first and second layer in the neighborhood of the cell are such that the
Turing machine simulation should be considered failed in the search for a
positive solution to the problem of Theorem 3.1. Then, on the third layer,
a different local rule is used depending on whether the cell has a simulation
error present or not.

The fourth layer contains three different kinds of signals. One of the
signal types is used to prevent the other two kinds of signals from crossing a
simulation area. However, if the simulation area contains a negative instance
to the problem of Theorem 3.1, the signals used as border signals can be
erased and the other two signal types can pass through the simulation area.
Therefore, the cellular automaton is sensitive if, and only if, the problem of
Theorem 3.1 has a negative answer. Eventually, the state set of the cellular
automaton is A1 ×A2 ×A3 ×A4, where Ai denotes the state components of
layer i.

3.3 Layer 1: representing Turing machine computation

Let Q be the state set of the Turing machine and let the initial state of
the Turing machine be denoted by q0. Let Γ denote the tape alphabet of
the Turing machine. Then the cell states representing the read-write head
reading a single tape letter are {N,H}×Q×Γ. The cell states representing
a single tape letter are {., /} × Γ.

Symbols N and H are used together with the state set Q to distinguish
which rule, the original Turing machine or its inverse, is used in the local
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rule of the cellular automaton. Therefore, the state set representing the
Turing machine on the first layer is

A1 = ({N,H} × Q × Γ) ∪ ({., /} × Γ).

Let sets {.} × Γ and {/} × Γ be denoted by TL and TR, respectively.
The elements of TL are used to represent the tape contents to the left from
the read-write head and the elements of TR are used to represent the tape
contents to the right from the read-write head. The elements of TL and
TR will be called left tape states and right tape states, respectively. Let ε
denote the empty tape symbol. Let H denote the set of states containing
the read-write head.

By associating each tape letter with either expression . or / the tape
is divided into areas where each read-write head occurrence is followed by
a certain number of elements of TL to the left and a certain number of
elements of TR to the right from the read-write head itself. Therefore, the
configuration is always partitioned into disjoint areas in each of which the
Turing machine is simulated on some configuration. Formally, a simulation
area in configuration c is a sequence of cell locations (n)j

n=i, where i ≤ j
and c(n) ∈ TL ⇒ c(n + 1) ∈ TL ∪ H ∪ TR, c(n) ∈ H ⇒ c(n + 1) ∈ TR and
c(n) ∈ TR ⇒ c(n + 1) ∈ TR for every n with i ≤ n ≤ j − 1 and c(i− 1) 6∈ TL

and c(j + 1) 6∈ TR. With this definition, a domain which does not contain a
state representing the read-write head is a simulation area. The rightmost
cell of a simulation area is called the right border of the simulation area.
Likewise, the leftmost cell of the simulation area is called the left border of
the simulation area. If the simulation area contains only one cell (in which
case it is in a state from H), the left border and the right border are the
same cell.

By labelling the cell states representing the different sides of the Turing
machine tape, the read-write heads are forced not to enter other simulation
areas. If the read-write head moves to the left, it labels the previous cell to
belong to the right side of the tape. Similarly, if the read-write head moves
to the right, it labels the previous cell to belong to the left side of the tape.
This way the simulation area maintains its constant width.

Expressions N and H are used to denote the application of the Turing
machine transition function as the local rule and the corresponding inverse
operation. By using values N and H together with the original states of
the Turing machine, the cellular automaton becomes reversible even if the
transition function of the Turing machine was only a partial function. Let
c ∈ AZ

1 and c(i) = (N, q, a). If the Turing machine move defined by pair (q, a)
cannot be executed, state (N, q, a) is replaced with state (H, q, a). That is,
state component N is replaced with H if δ(q, a) is undefined, δ(q, a) defines
a left move but c(i − 1) 6∈ TL or δ(q, a) defines a right move but c(i + 1) 6∈
TR. Similarly, if the inverse move cannot be executed, state (H, q, a) is
replaced with state (N, q, a). With this construction a halting computation
with the Turing machine always leads to a periodic computation with the
cellular automaton. In the peculiar case of the read-write head being located
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Figure 2: Labelling cells to represent either the left or the right side of the
Turing machine tape. The zig-zag arrows represent read-write heads. The
vertical double lines represent the borders between simulation areas.

between a right tape cell to the left and a left tape cell to the right, the read-
write head state (N, q, a) is constantly swapped with (H, q, a).

A read-write head is forced to be always present within a simulation area
by defining the alternative cases to be simulation errors. That is, if a cell
represents a left tape cell and the cell to its right represents a right tape cell,
the cell is defined to have a simulation error. Similarly, if the cell represents
a right tape cell and the cell to its left represents a left tape cell, the cell
has a simulation error. With these constraints, a missing read-write head is
always dealt with on the third layer.

3.4 Layer 2: verifying initial configuration

On the second layer, the validity of the Turing machine initial configuration
is verified. If the Turing machine does not erase the tape periodically and re-
enter the initial state, simulation errors are found present in the computation
and they will affect the computation on the third layer.

The existence of the empty initial configuration is determined by defining
signals which travel with twice the speed of the read-write head, that is, two
cells per time step. These signals will be called verification signals. They
simply bounce between the left border and the right border of the simulation
area without ever passing from one simulation area to another. The greater
speed of the signal is used to ensure that a verification signal intersects the
path of the read-write head only once during a pass from the left side border
to the right side border.

Let expressions I and J denote a verification signal moving to the right
and a verification signal moving to the left, respectively. The existence of
the verification signal is forced by using states . or /. States . and / tell
whether the verification signal is located to the right or to the left from
the cell, respectively. The idea is the same as on the first layer with the
read-write head. A verification signal moving to the right can move only
as far as there are states / to its right. The verification signal at location i
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Figure 3: Drawing a verification signal to verify the existence of an empty
tape configuration. The signal bounces between the borders of simulation
areas.

moving to the right (i.e. state I) bounces back from cell i if cell i + 1 has
value . or from cell i + 1 if cell i + 1 has value / and cell i + 2 has value
.. Similarly, a verification signal moving to the left can move only as far as
there are states . to its left. The verification signal at location i moving to
the left (i.e. state J) bounces back from cell i if cell i − 1 has value / or
from cell i − 1 if cell i − 1 has value . and cell i − 2 has value /. This way
the configuration is divided into disjoint, consecutive and continuous areas
on each of which a single verification signal bounces back and forth.

The state of a cell is changed from / to . or from . to / when the path
of the verification signal crosses with the cell. Assume that a verification
signal is contained in cell location i. Then the verification signal is replaced
with state . or /, if the verification signal can move to the right or left,
respectively. If the verification signal moves from cell location i to i + 2,
the state components of both cells i and i + 1 are replaced with value ..
Similarly, if the verification signal moves from cell location i to i − 2, the
state components of both cells i and i − 1 are replaced with value /.

Use of the verification signal is essentially the same method as dividing
the configuration into simulation areas on the first layer according to left
tape cells and right tape cells. Now the verification signal acts like the read-
write head on the first layer changing the state component which points
towards its location. The final state component set of the second layer is

A2 = {., /,I,J}.

To ensure that the areas where the verification signals bounce back and
forth are located exactly the same way as the simulation areas, the alterna-
tive case is defined to be a source of simulation errors. This can be done
by defining appearances of the state components pair / and . to be simu-
lation errors unless value / is located on the right border of a simulation
area and value . is located on the left border of another simulation area. If
a right border and a left border to its right both contain either value / or
., it is considered a simulation error. It is considered a simulation error, if
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(a) A simulation is executed unsuc-
cessfully: The verification signal in-
tersects the non-empty tape cells
(denoted by circles) before the read-
write head is able to erase them.

(b) A halting simulation is executed
successfully: The Turing machine
starts and halts periodically on an
empty tape and the verification sig-
nal intersects the read-write head
path only at the initial configura-
tion.

Figure 4: Pairing the Turing machine simulation and the verification signal
for the initial configuration. The solid arrow denotes the read-write head,
the gray area denotes non-empty tape cells and the dashed arrow denotes
the verification signal. The simulation area borders are denoted by vertical
double lines.

there are two verification signals side by side on top of the same simulation
are. Hence, unless the domain on which a verification signal moves back
and forth does not match a domain of a simulation area, simulation errors
occur.

It is also considered a simulation error, if the path of a verification signal
intersects with the path of a read-write head when the read-write head is
not in the initial state. Likewise, it is considered a simulation error, if the
verification signal intersects a cell which contains a different Turing machine
tape symbol than the empty tape symbol ε. Therefore, simulation errors
occur if the Turing machine simulation is not started on an empty tape with
the read-write head being in the initial state.

3.5 Layer 3: detecting incorrect cell state combinations

The third layer is used to react on the simulation errors detected on the
first two layers. This is done by introducing a new set of signals called error
signals. An error signal travels one cell either to the left or right per one
time step and it bounces back from a left or right simulation area border,
respectively. An error signal always travels a straight line unless it collides
with a simulation area border or there is a simulation error present in the
cell. In a cell where there is a simulation error present, the propagation of
error signals is determined according to a different rule. If there is no error
signal entering a cell which contains a simulation error, then two error signals

11



(a) At a location where no simulation error is present,
the error signals can intersect and propagate freely.

(b) At a location where simulation error is present, a
single error signal can propagate freely but two error
signals are either created or erased together.

Figure 5: The error signals are allowed to propagate freely if no simulation
error is encountered. If a simulation error is encountered, a single signal can
propagate freely but two signals are either created or erased.

are created, one of which travels to the left and another to the right. A single
error signal passes through a cell with a simulation error unchanged. If two
error signals enter a cell with a simulation error, both of them are erased.
An outline of these different cases is shown in Figure 5. It is shown in Figure
5(a) how error signals propagate when no simulation error is present and
in Figure 5(b) it is shown how error signals are modified when a simulation
error is present.

As explained already in the sections describing layers 1 and 2, occur-
rences of the following cell state combinations are defined to be simulation
errors:

1. A simulation area does not contain a state representing the read-write
head, that is, at two adjacent cells belonging to the same simulation
area the leftmost cell has binary value . (representing a left tape state)
and the rightmost cell has binary value / (representing a right tape
state) on layer 1.

2. A read-write head collides with a simulation area border on layer 1.

3. A verification signal intersects the path of the read-write head when
the tape is not empty or the read-write head is not in the initial state
on layer 1.

4. Of two adjacent cells belonging to the same simulation area one has
value . and the other has value / for the binary component of layer
2. That is, either the verification signal is missing or the areas on the
first two layers do not match.

5. Two verification signals are located in two neighboring cells on top of
the same simulation area, that is, the areas on the two layers do not
match.
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6. The binary component of layer 2 has value / on the left border, that
is, the areas on the two layers do not match.

7. The binary component of layer 2 has value . on the right border, that
is, the areas on the two layers do not match.

At these locations the error signals are modified according to Figure 5(b).
The cellular automaton consisting only of layers 1, 2 and 3 is equicon-

tinuous on all configurations containing only finitely long simulation areas.
This follows from the fact that the contents of one simulation area do not
affect another simulation area.

Using the error signals it would be possible to allow a new set of diag-
onally advancing signals to cross simulation area borders. That is, at the
location where an error signal bounces back from a simulation area border,
a signal of another type would be allowed to cross the border. However, this
is not enough to remove the blocking property of multiple simulation areas
next to each other. Namely, a signal crossing one simulation area border
might always “strangely” bounce back from the border of the next simula-
tion area where an error signal might not be present. This might happen,
for example, if adjacent simulation areas contain the same Turing machine
computation but in a different stage. For this reason, the blocking property
of the simulation area border should be more controlled and it should not
depend only on the error signals.

On the other hand, if reversibility was not a requirement, then the sim-
ulation area border could be permanently changed to a state which allows
information pass through it. Therefore, in the irreversible case, layer 4 would
not be needed in its current complexity.

Formally, the state component of the third layer can be presented by
elements of

A3 = {♦,I,J,�},

where different elements represent different combinations of left and right
moving error signals.

Let (AZ, F ) be the cellular automaton consisting of layers 1, 2 and 3.
That is, the state set is

A = A1 × A2 × A3,

and the global rule is defined as described is sections 3.3, 3.4 and 3.5. Now
the following theorem follows directly:

Theorem 3.2. Given a non-sensitive reversible one-dimensional cellular
automaton (AZ, F ) and a subset E ⊆ A of its state set, it is undecid-
able whether or not there exists such an equicontinuity point x ∈ AZ that
F n(x)(0) ∈ A \ E for every n ∈ N.

Proof. Let E be the set of states that contain error signals. By the construc-
tion of layers 1, 2 and 3 it is undecidable whether all finite simulation areas
will generate error signals. If error signals appear in a simulation area, then
they necessarily visit every cell of the simulation area according to the rules
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in Figure 5. Therefore, if the reversible Turing machine does not halt, every
cell in every finite simulation area will at some point contain error signals.

If the reversible Turing machine does halt, then a finite simulation area
exists on which no error signals appear and this area can be chosen to overlap
the origin.

An infinite simulation area might never contain an error signal if it con-
sists of, say, tape states of one side only. However, a configuration which
contains a one-way or two-way infinite simulation area cannot be an equicon-
tinuity point because the contents of the infinite simulation area can be cho-
sen to contain or not an error signal which travels through every cell of the
simulation area.

3.6 Layer 4: possible sensitivity

Now a new cellular automaton (BZ, G) is constructed by adding a new layer
to the cellular automaton (AZ, F ) of Theorem 3.2. The construction could
be done explicitly by using the construction (AZ, F ) but this is not necessary.

The new layer consists of states from set A4. That is, the state set A of
(AZ, F ) is replaced with

B = A × A4 = A1 × A2 × A3 × A4,

and the new global rule G is defined accordingly. The states E ×A4 will be
called error states (motivated by Theorem 3.2) in the new cellular automa-
ton.

Layer 4 consists of adding three different types of signals on top of cellular
automaton (AZ, F ). One of these signal types is a vertical signal, which will
be used to either block or let the other two signal types to pass. The signals
will be defined in such a way that a vertical signal can remain in a blocking
state indefinitely if, and only if, the answer to the question of Theorem 3.2
is positive.

The three signal types used on the new layer will be called border signals
and activation signals of type 1 and type 2. A detailed description of the
interaction of these signal types is shown in Figures 6 and 7. An active
border signal is represented by a double vertical line and an inactive border
signal is represented by a single vertical line. An activation signal of type
1 is represented by a dashed arrow and an activation signal of type 2 is
represented by a dotted arrow.

A border signal is a signal which travels only vertically. It is represented
by using a ternary component in every cell with one of the values ♦, � and
�. An absent border signal is represented by value ♦ whereas a present
border signal is represented by values � and �. The border signal is said
to be inactive or active if the component has value � or �, respectively.
The main idea is that an active border signal blocks the propagation of
activation signals indefinitely if the cell does not enter an error state. If a
cell i containing a border signal is in such a state that it blocks activation
signals, then a signal coming from the left bounces back from the cell i and a
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Figure 6: The interaction of different signal types when the cell containing
the border signal is not in an error state.

Figure 7: The interaction of different signal types when the cell containing
the border signal is in an error state.
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signal coming from the right bounces back from the cell i +1. For example,
let two border signals be located in cells i and j with i < j and assume
that the signals are in an active state and the cells i and j do not enter
error states. Then activation signals located in between the cells i and j will
bounce back and forth between the cells i + 1 and j.

An activation signal of type 1 is a signal which travels to the left or to
the right one cell per one time step. An activation signal of type 2 is a signal
which travels to the left or to the right two cells per one time step. The
activation signals are used to change the states of border signals. The state
of a border signal is changed if, and only if, the cell is in an error state and
there is a single type 1 activation signal coming either from the left or from
the right and a type 2 activation signal coming from the right. Let a cell
in location i contain a border signal. If the cell i is in an error state and
the cell i + 1 contains a type 2 activation signal moving to the left, a type
1 activation signal moving to the right in the cell i bounces back from cell i
and the state of the border signal is changed. If the type 1 activation signal
is moving to the left in the cell i+1, it bounces back from cell i+1 and the
state of the border signal is changed.

Formally, the state component of the fourth layer is expressed by ele-
ments of

A4 = {♦,�,�} × {♦,I,J,�} × {♦,I,J,�},

where the sets represent different signal types and their elements represent
different combinations of a particular signal type.

A detailed description of the local rule for the signals can be found in
Figures 6 and 7. The description of the local rule can be summarized as a
following list of rules:

1. Any type of activation signal travels through an inactive border signal
if no error state is present.

2. Any type of activation signal bounces off an active border signal if no
error state is present.

3. A type 1 activation signal travels through any border signal if the cell
is in an error state and no type 2 activation signal is coming from the
right.

4. A type 2 activation signal always travels through any border signal if
the cell is in an error state.

5. The state of the border signal is changed if, and only if, there is a
single activation signal of type 1 coming either from the left or from
the right and an activation signal of type 2 coming from the right. In
this case the type 1 activation signal bounces back.
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3.7 Undecidability

In this section it is concluded that the cellular automaton constructed in
previous sections is sensitive to initial conditions if, and only if, the given
reversible Turing machine does not halt on an empty tape. This follows
from the fact that the contents of a simulation area which contains a halting
Turing machine simulation can be used to construct a blocking word.

Recall that the cellular automaton (BZ, G) was constructed in section
3.6 by adding an additional layer of signals to the cellular automaton (AZ, F )
of section 3.5.

Lemma 3.3. If the question of Theorem 3.2 has a positive answer for the
cellular automaton (AZ, F ), then the cellular automaton (BZ, G) has a block-
ing word.

Proof. Let cA ∈ AZ be such a configuration that F n(cA)(0) ∈ A\E for every
n ∈ N. Then, by the definition of an equicontinuity point, there exists such
a positive integer k that the word w = cA[−k, k] is a blocking word and for
every configuration c ∈ AZ with c[−k, k] = w condition F n(c)(0) ∈ A \ E
holds.

Define word wB,� ∈ B∗ by setting

wB,�(i) = (w(i),♦,♦,♦) if 0 ≤ i < k,
wB,�(i) = (w(i),�,♦,♦) if i = k and
wB,�(i) = (w(i),♦,♦,♦) if k < i ≤ |w| − 1.

Now word wB,�wB,� is a blocking word for the cellular automaton (BZ, G).
This follows from the fact that active border signals (i.e. values �) in the
centers of words wB,� can never be changed inactive.

Lemma 3.4. If the question of Theorem 3.2 has a negative answer for the
non-sensitive cellular automaton (AZ, F ), then for the cellular automaton
(BZ, G) and any word u ∈ B∗ there exists such a configuration c ∈ Cyl(u, 0)
and such a positive integer t+u that the configuration Gt(c) does not contain
any active border signals for any t ≥ t+u .

Proof. Let w ∈ A∗ be again a blocking word for the cellular automaton
(AZ, F ). The blocking word exists because (AZ, F ) is non-sensitive. Define
word wB,♦ ∈ B∗ of the same length by setting

wB,♦(i) = (w(i),♦,♦,♦)

whenever 0 ≤ i < |w|. The word wB,♦ is defined so that it does not contain
any border signals.

Then the configuration c ∈ BZ is constructed by first defining configu-
ration cn (where n is the number of border signals contained in the word u)
so that

cn(i) = wB,♦((i + 1) mod |wB,♦|) if i < 0,
cn(i) = u(i) if 0 ≤ i < |u| and
cn(i) = wB,♦((i − |u|) mod |wB,♦|) if |u| ≤ i.
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That is, configuration cn is such that word u is located in the origin and
word wB,♦ repeatedly appears to the left and to the right of the occurrence
of the word u. Moreover, all the border signals are located within domain
[0, |u|−1]. Let the border signals be located in locations b1, b2, . . . , bn where
bi < bi+1, 0 ≤ b1 and bn < |u|. Also, every cell of cn (and its modifications)
will eventually enter an error state.

Second, the configuration cn is modified iteratively so that all the border
signals are changed inactive. Assume that ck is such a configuration and tk
is such a time that Gt(ck) has neither active border signals nor activation
signals in locations (bk, bn], and further, all activation signals to the left of
cell b1 are moving to the left and all activation signals to the right of cell bn

are moving to the right for every integer t ≥ tk. That is, after tk time steps
bk is the rightmost cell containing an active border signal. Furthermore,
it is assumed that no activation signals pass through it to the right after
time step tk without a modification to the the initial configuration. Now the
configuration ck is modified (in two steps) further to produce configuration
ck−1 where cell bk−1 contains the rightmost active border after tk−1 > tk
time steps.

Recall that a border signal state is changed if, and only if, the cell con-
taining the border signal is in an error state, there is a single type 1 activation
signal coming either from the left or from the right and a type 2 activation
signal coming from the right intersects the border signal at the same time.

1. Let a > |u| be such an integer that Gtk+a(ck)(bk) is an error state.
First, an activation signal of type 1 moving to the left is placed to the
location bk + tk + a+1 if, and only if, there is no type 1 signal coming
from the left. That is, either an activation signal coming from the
left is located in the cell bk at time step tk + a or an activation signal
coming from the right is located in the cell bk + 1 at time step tk + a.

Second, an activation signal of type 2 is set to be located in the cell
bk+2(tk+a)+1. These two different activation signals meet the border
signal in cell bk and together change it inactive. Integer a may need
to be greater than |u| to make sure that an added activation signal of
any type does not hit any earlier stage border signals in cells bi, where
i > k, while they are still in an active state.

2. A band of e (i.e. sufficiently many) cells in the locations [bk + 2(tk +
a)+2, bk +2(tk +a)+1+e] are set not to contain any activation signals
of type 2 moving to the left. Then the type 1 activation signal that was
used to change the border signal in the cell bk and all the activation
signals contained between the border signals in the cells bk−1 and bk

and moving to the right (at time step tk + a) can move beyond the
last border signal in the cell bn without changing the already inactive
border signals back to active. Any activation signal moving to the left
(at time step tk +a) either crosses the border signal in cell bk−1 (when
it changes inactive or enters an error state) while moving to the left
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or collides with it and starts moving to the right. In any case, due
to finiteness of u, in a finite number of time steps all the activation
signals of type 1 or 2 that would cross the border signal in cell bk−1

while moving to the right have also done so. Within this time there
should be no type 2 activation signals coming from the right.

Clearly, e can be chosen to be a finite positive integer because word u
contains only finitely many activation signals bouncing back and forth
between the border signals.

Let the modified configuration (produced from ck) be denoted by ck−1. Now,
for some positive integer tk−1 > tk configuration Gt(ck−1) contains neither
active border signals nor activation signals in locations (bk−1, bn], and fur-
ther, all activation signals to the left of cell b1 are moving to the left and
all activation signals to the right of cell bn are moving to the right for every
integer t ≥ tk−1 and no activation signals meet with border bk−1 when it
enters an error state. Now this iterative procedure is repeated n times to
change the state of each border signal inactive and to allow enough time
pass for all the activation signals to move beyond all the border signals.
Eventually this procedure gives the configuration c = c0.

Assume that the active border signals in the configuration c are erased
in t+u time steps. Then only 2t+u + |u| cells to the left and right of word u
contain activation signals. That is, the configuration c was chosen in such a
way that the activation signals appear only in the locations shown in Figure
8(a). Then for some positive integer t+u configurations Gt(c) do not contain
any active border signals for t ≥ t+u .

An example on the usage of the activation signals to change the border
signals inactive is shown in Figure 9. The state of a border signal is changed
if the cell containing the border signal enters an error state and there is a
single activation signal of type 1 coming either from the left or from the
right and an activation signal of type 2 coming from the right.

Because the signal interaction on layer 4 is almost identical for both the
forward rule and the inverse rule, a similar lemma holds for the inverse rule
also. The only difference is that because an activation signal of type 2 has the
“activation property” only when it is coming from the right, the iterative
process places the required signals to the left from the word occurrence
instead of placing them to the right when working with the inverse rule. To
say it more practically, the set of rules in Figure 7 is invariant with respect
to a rotation by 180 degrees. For the inverse rule, the locations of the signals
of layer 4 are shown in Figure 8(b).

Lemma 3.5. If the question of Theorem 3.2 has a negative answer for the
non-sensitive cellular automaton (AZ, F ), then for the cellular automaton
(BZ, G) and any word u ∈ B∗ there exists such a configuration c ∈ Cyl(u, 0)
and such a positive integer t−u that the configuration G−t(c) does not contain
any active border signals for any t ≥ t−u .

19



|u|2t+u + |u|2t+u + |u|

t+u

(a) All active border signals contained in u can be
changed inactive after t

+
u applications of the forward rule

by choosing the contents of the 2t
+
u + |u| cells to its left

and to its right.

|u|2t−u + |u|2t−u + |u|

t−u

(b) All active border signals contained in u can be
changed inactive after t

−

u applications of the inverse rule
by choosing the contents of the 2t

−

u + |u| cells to its left
and to its right.

Figure 8: If the question of Theorem 3.2 has a negative answer, all border
signals contained in the word u can be changed inactive in a finite number
of time steps. Double lines represent the locations between which active
border signals may appear. Hash fill with positive slope and hash fill with
negative slope represent the possible locations for activation signals of type
1 and type 2, respectively.
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Figure 9: Any finite number of border signals can be changed to inactive
state in which they can remain indefinitely long if every cell containing a
border signal will enter an error state. Error states in the cells containing
border signals are denoted by circles.
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Theorem 3.6. The cellular automaton (BZ, G) is sensitive if, and only if,
the question of Theorem 3.2 has a negative answer for the cellular automaton
(AZ, F ).

Proof. If the answer to the question of Theorem 3.2 is positive, then there
exists an equicontinuity point for the cellular automaton (AZ, F ) with a cell
that does not enter an error state ever. Then, according to Lemma 3.3,
there exists a blocking word for the cellular automaton (BZ, G). Hence, the
cellular automaton (BZ, G) is not sensitive.

If the answer to the question of Theorem 3.2 is negative, then the cellular
automaton (BZ, G) is sensitive by Lemma 3.4, because at some point border
signals no longer block activation signals.

Undecidability of sensitivity now follows from Theorem 3.2.

Corollary 3.7. It is undecidable whether a given reversible one-dimensional
cellular automaton is sensitive.

4 Undecidability of topological mixing and tran-

sitivity

In this section it is described how the cellular automaton constructed in
section 3 can be modified in such a way that it will be topologically mixing
and topologically transitive if, and only if, the original cellular automaton
(of section 3) is sensitive. The idea is to modify the cellular automaton in
such a way that unless the original cellular automaton has a blocking word
sequence, the contents of a simulation area (and actually any finite pattern
in the original cellular automaton) can be shifted freely to the left and to
the right. The shift effect is achieved by adding new states, called shift
signals, that advance diagonally and do not affect the computation with the
original states but act as a “filling” material. However, the computation
with the original states does affect the propagation of the shift signals. To
be precise, if a left shift signal encounters an active border signal (as defined
in section 3.6), it is changed to a right shift signal. Similarly, if a right shift
signal encounters an active border signal, it is changed to a left shift signal.
Therefore, the modified cellular automaton (with shift signals) is mixing if,
and only if, blocking words do not exist for the original cellular automaton
(BZ, G).

4.1 Shift signals

Let the cellular automaton constructed in section 3 be again denoted by
(BZ, G). The state set is modified in such a way that the modified cellu-
lar automaton is topologically mixing if, and only if, the original cellular
automaton is sensitive.

First, the state set B is swapped to the cartesian product BN for some
N > r, where r is the radius of the original local rule g. Because type 2
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activation signals move with a speed of two cells per one time step, the value
of r is at least 2. The value of N is not fixed until the proofs of Lemmas
4.3 and 4.4 where the reason for using a certain value for N is also seen.
The local rule is modified accordingly by considering the N -tuples of states
to form a single configuration consisting of the original states in a natural,
sequential way. In terms of symbolic dynamics, the cellular automaton,

which is modified this way, could be denoted by ((BN )
Z
, γN ◦ G ◦ γ−1

N )
using the notation in [17]. The mapping γN rearranges the cell structure by
replacing every N consecutive cells with a vector containing the states as
elements.

The goal of this change is to reduce the effective radius of the local rule.
That is, the Nth iteration of the new local rule has radius r. In the modified
cellular automaton N consecutive cells from the original cellular automaton
(BZ, G) occupy a single cell in the new cellular automaton.

Second, the state set BN is extended with additional states I and J.
State I represents a left shift signal and state J represents a right shift
signal. The left shift signals and the right shift signals, together called shift
signals, are empty place holders which are used to shift the location of states
belonging to the original state set. A left shift signal can travel three cells
to the right per one time step (as shown in Figure 10(a)) and a right shift
signal can travel three cells to the left per one time step (as shown in Figure
10(b)).

The shift signals are not allowed to appear on arbitrarily many consecu-
tive cells. The state J signifying a right shift signal can be located only on
cells at locations i, where i mod 3 = 1. Similarly, the state I signifying a left
shift signal can be located only on cells at locations i, where i mod 3 = 2.
Therefore, at least the cells in locations i, where i mod 3 = 0, are in states
from the original state set. With these constraints, the original local rule
can be used to compute the next configuration from the original states found
between the shift signals. At least every third cell does not contain a shift
signal and therefore the radius of the new local rule remains finite.

The collisions of the shift signals are defined differently from the descrip-
tion given in section 3.1. This follows from the fact that the shift signals
form a disjoint subset of the state set and their locations are restricted. If a
shift signal does not encounter an active border signal, it travels a straight
path as shown in Figure 11(a). If a shift signal encounters an active border
signal, it is swapped to a shift signal travelling to the opposite direction (as
shown in Figure 11(b)). In other words, a shift travels a straight path if,
and only if, it does not bounce back from an active border signal. If the
shift signal encounters an active border signal, it is bounced back.

However, because shift signals are restricted to only certain locations
whereas a border signal can be located anywhere, it needs to be clarified
where a left signal is swapped to a right signal and vice versa. In short, a
left shift signal that would intersect with an active border signal is replaced
with a right shift signal in the first possible location to the left of the border
signal. Similarly, a right shift signal that would intersect with an active
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1 2 3 4 5 6 I

1 2 3 I 4 5 6
I 1 2 3 4 5 6

(a) A left shift signal is
used to move states of the
original state set to the
left.

J 1 2 3 4 5 6

1 2 3 J 4 5 6

1 2 3 4 5 6 J

(b) A right shift signal is
used to move states of the
original state set to the
right.

1 2 J 3 4 5 6 7 8 I 9 10

1 2 3 4 5 J I 6 7 8 9 10

1 2 3 I 4 5 6 7 J 8 9 10
I 1 2 3 4 5 6 7 8 9 10 J

(c) The possible locations for the shift sig-
nals are restricted so that they can intersect
while preserving the number of cells in the
original states.

Figure 10: Use of the shift signals. Both shift signals work as a filling
material moving elements of the original state set. For simplicity, the states
of the original state set are denoted only by the numbers of their relative
positions.

border signal is replaced with a left shift signal in the first possible location
to the right of the border signal. The case of the left shift signal is shown in
Figure 11(c). The collisions are defined in a similar way to right shift signals.
If the shift signal is located between two active border signals whose distance
is less than the shift signal’s movement amount, then the new location and
movement direction is determined repeatedly in a natural way.

To enforce the constraint on the locations of shift signals, the state set
of the cellular automaton is further modified from BN to

C = BN ×
(

BN ∪ {J}
)

×
(

BN ∪ {I}
)

and the new local rule is defined accordingly. Let the new global rule be
denoted by H. Then the new cellular automaton is (CZ,H), which was
constructed by first joining consecutive cells to form N -tuples and second
by adding the shift signals.

In terms of the original cellular automaton (BZ, G), on every time step
a shift signal shifts N states to the left or to the right by N cells.

4.2 Undecidability

In this section it is shown that the cellular automaton constructed in pre-
vious sections is topologically mixing if, and only if, the given reversible
Turing machine does not halt on an empty tape.
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I
I

I
I

(a) A shift signal can travel through
an inactive border signal.

I
I

I
J

J
J

(b) A shift signal bounces back from
an active border signal.

I
I

J
J

I
I

J
J

I
I

J
J

J

(c) The different cases of a left shift signal bouncing back.

Figure 11: Shift signals travel a straight path if, an only if, they do not
encounter active border signals.

If the given reversible Turing machine halts, it is possible to construct a
blocking word which cannot be moved with the shift signals in the cellular
automaton constructed in section 4.1. To be exact, if the Turing machine
halts, there can exist a border signal which always remains in the active
state. Then the shift signals simply bounce away from the border signal
without moving it and the cellular automaton is not even sensitive.

If the Turing machine does not halt, no blocking word sequence exists
and eventually all simulation areas can be moved to the left and to the right
at will (by modifying the initial configuration). If the Turing machine does
not halt, all the active border signals in a finite segment can be changed to
inactive border signals. Once all the border signals are in inactive state, the
contents of any finite segment can be shifted to the left or to the right by
setting sufficiently many shift signal states to the initial configuration.

Lemma 4.1. Suppose the question of Theorem 3.2 has a negative answer
for the cellular automaton (AZ, F ). Then for the cellular automaton (CZ,H)
and any word u ∈ C∗ there exists such a configuration c ∈ Cyl(u, 0) and a
positive integer t+u that for any t ≥ t+u the configuration H t(c) does not
contain any active border signals.

Proof. The proof is similar to that of Lemma 3.4. The shift signals only
disperse away from the location of the word u when all the active border
signals have been changed inactive.

Similarly, Lemma 4.2 follows.

Lemma 4.2. Suppose the question of Theorem 3.2 has a negative answer
for the cellular automaton (AZ, F ). Then for the cellular automaton (CZ,H)
and any word u ∈ C∗ there exists such a configuration c ∈ Cyl(u, 0) and a
positive integer t−u that for any t ≥ t−u the configuration H−t(c) does not
contain any active border signals.
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m

u

v

cu[−`1 − `2, k + `1 + 2`2] G−m(cv)[−`1 − 2`2, k + `1 + `2]

`2 `2`2 k + 2`1 `2 `2 k + 2`1 `2

Figure 12: The configuration constructed in the proof of Lemma 4.3. The
areas denoted by solid and line fill do not contain border signals. Activation
signals are not found on the areas denoted by line fill.

u

v

d

t+u

t+u

t+u +
⌈

1
3 |u| +

1
3d + 1

3 |v|
⌉

Figure 13: The shift signals originating from the word u pass through the
future domain of word v in t+u +

⌈

1
3 |u| +

1
3d + 1

3 |v|
⌉

time steps. The solid
gray areas denote the locations in which the shift signals may appear.

Lemma 4.3. Let u ∈ C∗ and v ∈ C∗ be two words of equal length k and as-
sume that the question of Theorem 3.2 has a negative answer for the cellular
automaton (AZ, F ) so that the value t = max(t+u , t−v ) exists. Then there ex-
ists such a positive integer m0 and a configuration cm ∈ CZ for any positive
integer m ≥ m0 that

1. cm ∈ Cyl(u, 0),

2. Hm(cm) ∈ Cyl(v, 4dt/N e + 3k + 4drm/Ne) and

3. H i(cm) does not contain any active border signals for i ∈ [t, (m − t)].

The idea of the proof is to place the words u and v with a suitable
distance so that the contents of one word does not affect the contents of
another. That is, the activation signals dispersing away from word u do not
have time to reach the position of word v in the “condensed” cell structure.

Proof. Let `1 = 2dt/Ne + k, `2 = drm/Ne and ` = `1 + 2`2, where k is the
length of words u and v and r is the radius of the cellular automaton (BZ, G).
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Multiple N`1 = 2Ndt/Ne + Nk gives an upper bound for the number of
states from B which need to be redefined around the words to change the
active border signals inactive. That is, `1 is the equivalent bound of the new
cell structure to the bounds “2t+u + |u|” and “2t−u + |u|” in Figures 8(a) and
8(b). The bound `2 is simply chosen in a suitable way to have enough space
between the two words.

Let cu and cv be the configurations constructed with the method of the
proof of Lemma 4.1 and its analogy for the inverse rule, respectively. Let
d = 2`1 + 4`2. That is,

d = 4dt/Ne + 2k + 4drm/Ne

and it is the distance between the domain of u and the future domain of v.
Then, the configuration cm is constructed by first setting

cm(i) = cu(i) if i < k + `, and
cm(i) = G−m(cv)(i − d) if k + ` ≤ i.

Second, those shift signals which are to be eventually located within word v
are placed to suitable locations in the initial configuration.

However, a shift signal exiting one word must not affect the formation
of the second word. Therefore, the number of time steps m is bounded from
below by equation

m ≥ t+u +

⌈

1

3
|u| +

1

3
d +

1

3
|v|

⌉

+ t−v

which comes from the fact that after
⌈

1
3 |u| +

1
3d + 1

3 |v|
⌉

time steps the left
shift signals (which have slope 1

3) exiting the domain of word u have passed
through the future domain of word v as shown in Figure 13. Because d =
2`1 + 4`2, it follows it would be sufficient to have condition

t+u +

⌈

1

3
k +

1

3
(2(2dt/N e + k) + 4(drm/Ne)) +

1

3
k

⌉

+ t−v

≤ t +
1

3
k +

1

3
d(4t/N + 2 + 2k + 4rm/N + 4)e +

1

3
k + t + 3

≤
4

3
k +

1

6
m + 3t + 6 ≤ m,

where N = 8r, hold. The previous inequality would hold if

m −
1

6
m ≥

4

3
k + 3t + 6

which would hold if m ≥ 2k + 3t + 6. Therefore, it can be chosen that
m0 = 2k + 3t + 6.

Finally, no active border signals appear in the time window [t, (m − t)]
because the activation signals originally found in the configuration cu do
not have enough time to meet with the border signals located in the word
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≤ |u| + d + su + sv

du

1
3 |u|

v

1
3 |v|

Figure 14: To have words u and v in the same position, at most |u| +
d + su + sv left shift signals are required. This shift effect can be achieved
in |u| + d + su + sv +

⌈

1
3 max(|u|, |v|)

⌉

time steps, where d is the distance
between the occurrences of the word u and the word v without adding any
shift signals to the initial configuration. Expressions su and sv denote the
number of shift signals contained in u and v, respectively.

v. Similarly, the signals that change the border signals inactive in cv do not
have enough time to meet with the border signals located in the word u.
This follows from the fact that the distance even from the “seam” location to
either one of the words is N(`1 +2`2) > 4m in terms of the old cell structure
where a type 2 activation signal (i.e. the fastest signal that possibly matters)
travels with a speed of two cells per one time step. In short, no active border
signals are generated in other locations than in the domains of u and v and
none on the interval [t, (m − t)] because the words are chosen to appear far
enough from each other.

Lemma 4.4. Let u ∈ C∗ and v ∈ C∗ be two words of equal length k and
assume that the question of Theorem 3.2 has a negative answer for the cellu-
lar automaton (AZ, F ) so that the value t = max(t+u , t−v ) exists. Then there
exists such a positive integer n0 and a configuration cn ∈ CZ for any positive
integer n ≥ n0 that

1. cn ∈ Cyl(u, 0) and

2. Hn(cn) ∈ Cyl(v, 0).

Proof. Let c be the configuration given by Lemma 4.3 and which therefore
depends on integer m = n. The configuration cn is constructed by modifying
configuration c by adding shift signals between the states in c. Let `1 =
2dt/Ne+ k, `2 = drn/Ne and ` = `1 + 2`2, where k is the length of words u
and v and r is the radius of the cellular automaton (BZ, G). Let the number
of shift signals contained in word u and v be su and sv, respectively. The
distance between the word occurrences is again d = 2`1 + 4`2.
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An upper bound for the number s of left shift signals required to shift
the word v to appear in the original domain of word u is given by condition

s ≤ k + d + su + sv

= k + 2`1 + 4`2 + su + sv

= k + 2(2dt/N e + k) + 4drm/Ne + su + sv

≤ k + 4t/N + 4 + 2k + 4rn/N + 4 + su + sv

≤ 5k + 4t/N + 4rn/N + 8.

The number s of shift signals is restricted only by equation

n ≥ t +

⌈

1

3
k

⌉

+ s + t

which follows from the time window enforced by the appearance of the active
border signals as shown in Figure 14. The coefficient 1

3 follows from the fact
that a left shift signal has slope 1

3 . However, the equation holds if

n ≥ t + k + 5k + 4t/N + 4rn/N + 8 + t = 6k + 2t + 4t/N + 4rn/N + 8.

By fixing the constant N to have value 8r as already in the proof of Lemma
4.3, it follows from the previous equation that the shift signals can be used
if n ≥ 12k + 6t + 16 and if the constraint m0 of Lemma 4.3 holds also. Now
the bound n0 is given by

n0 = 12k + 6t + 8 ≥ max(12k + 6t + 16, 2k + 3t + 6).

For any n ≥ n0 the new configuration can be constructed by modifying
the configuration given by Lemma 4.3 by adding sufficiently many left shift
signals to the left of the cell in the location −3t.

Theorem 4.5. For reversible one-dimensional cellular automata, the sets
of topologically mixing and non-sensitive cellular automata are recursively
inseparable.

Proof. Assume that the question of Theorem 3.2 has a negative answer for
the cellular automaton (AZ, F ). Then, by Lemma 4.4, the cellular automa-
ton (CZ,H) is topologically mixing.

Assume that the answer to the question of Theorem 3.2 is positive. Then
the blocking word constructed in the proof of Lemma 3.3 can be modified
to be used in the new cell structure of the cellular automaton (CZ,H). The
word remains blocking because shift signals simply turn away from states in
C containing active border signals from B as vector elements. Hence, the
cellular automaton is not sensitive to initial conditions.

Corollary 4.6. The following dynamical properties are undecidable for re-
versible one-dimensional cellular automata:

1. sensitivity to initial conditions,
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2. topological mixing and

3. topological transitivity.

Because a reversible cellular automaton has dense periodic points, the
cellular automaton of Theorem 4.5 is chaotic if, and only if, it is transitive.
Because transitivity was shown to be undecidable in the reversible case, the
undecidability of Devaney’s chaos follows.

Corollary 4.7. It is undecidable whether a given reversible one-dimensional
cellular automaton is chaotic according to Devaney.

A cellular automaton is transitive if, and only if, it has a dense orbit.
Transitivity was seen to be an undecidable property, so undecidability of
Knudsen’s chaos follows. In particular, in the case of reversible cellular
automata, Devaney’s and Knudsen’s definitions of chaos are equivalent.

Corollary 4.8. It is undecidable whether a given reversible one-dimensional
cellular automaton is chaotic according to Knudsen.

5 Conclusions

It was shown that sensitivity to initial conditions, topological mixing and
topological transitivity are undecidable properties for reversible one-dimen-
sional cellular automata. The cellular automaton construction in the reduc-
tion was such that the cellular automaton is either topologically mixing or
non-sensitive. Therefore the sets of topologically mixing cellular automata
and non-sensitive cellular automata are recursively inseparable. It was pre-
viously known that sensitivity is undecidable for irreversible cellular au-
tomata. However, no undecidability results regarding topological mixing or
topological transitivity were known previously even for irreversible cellular
automata. Sensitivity, topological mixing and topological transitivity are
known to be decidable for linear cellular automata over Zm [3].

Because the set of periodic points of a reversible cellular automaton is
dense, undecidability of Devaney’s chaos followed from the simultaneous
undecidability of transitivity and sensitivity. Because a one-dimensional
cellular automaton is chaotic with respect to Knudsen’s definition if, and
only if, it is transitive, undecidability of Knudsen’s chaos followed also.
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