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Abstract

Various type of optimal solutions of multiobjective optimization problems
can be characterized by means of different cones. We consider here five
different optimality principles which are very common in multiobjective op-
timization: efficiency, weak and proper Pareto optimality, strong and lexico-
graphic optimality. The five optimality concepts can be characterized with
the help of different geometrical concepts. The usage of contingent cone,
normal cone and cone of feasible directions is a natural choice in the case
of convex optimization. In nonconvex case two additional types of cones are
helpful - tangent cone and cone of local feasible directions. Provided the par-
tial objectives are not necessarily convex, we derive necessary and sufficient
geometrical optimality conditions for strongly efficient and lexicographically
optimal solutions by using the above-mentioned cones. Combining new re-
sults with previously known ones about efficiency, weak and proper Pareto
optimality, we derive two general schemes reflecting structural properties and
interconnections of the five optimality principles.

Keywords: Multiple criteria, strong efficiency, lexicographic optimality,
tangent cone, contingent cone, normal cone.



1 Introduction

The major goal in multiobjective optimization is to find a compromise be-
tween several conflicting objectives which is best-fit to the needs of a decision
maker. This compromise is usually refereed to as an optimality principle.
Various mathematical definitions of the optimality principle can be derived
in several different ways depending on the needs of the solution approaches
used. Moreover, sometimes the use of one definition may be advantageous
to the other due to computational complexity reasons.

The usage of contingent cone, normal cone and cone of feasible directions
is a natural choice in the case of convex optimization [16]. In nonconvex
optimization two additional types of cones are proved to be helpful - tangent
cone and cone of local feasible directions [2]. The guaranteed property of
convexity of these cones assures that they can be efficiently used to over-
come some difficulties which appear in nonconvex case. Provided the partial
objectives are not necessarily convex, the new results concerning some struc-
tural properties of strongly efficient and lexicographically optimal solutions
are obtained using the geometrical cone characterization approach. These
results are combined with the results previously known for the sets of effi-
cient, weakly and proper Pareto optimal solutions. As a result, we derive
two general schemes reflecting structural properties and interconnections of
five different optimality concepts: weakly and properly Pareto optimality,
efficiency and strongly efficiency as well as lexicographic optimality. Notice
that similar results were obtained earlier for convex case in [10].

A solution is Pareto optimal if improvement in some objectives can only
be obtained at the expense of some other objective(s). This traditional con-
cept is also known as efficiency, non-dominance or non-inferiority. It reflects
the equilibrium situation for many problems in economics, sociology and
game theory (see e.g. [1], [3], [11]). The set of weakly Pareto optimal solu-
tions contains the Pareto optimal solutions together with solutions where all
the objectives cannot be improved simultaneously.

On the other hand, Pareto optimal solutions can be divided into properly
and improperly Pareto optimal ones. The set of improperly Pareto optimal
solutions represents a set of efficient points with certain abnormal or irregular
properties. To eliminate such anomalous efficient points, various concepts of
Proper pareto optimality have been introduced in literature. Comprehensive
analysis of various concepts of proper Pareto optimality can be found in e.g.
[3], [11]. Henceforth we use only one of the concepts, which is according to
Henig [5]. This concept uses a convex cone, which interior part must contain
an inverse of standard ordering cone, to prohibit tradeoffs towards directions
within the cone. It generalizes many well-known concepts of proper Pareto
optimality and appears to be very useful in nonconvex optimization.

Strong efficiency is generally referred to the solutions which deliver op-
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timality to each objective. Despite feasibility of such solutions is rare, they
provide an important information on the lower bound for each objective in
the Pareto optimal set. The most well-known application of the strong ef-
ficiency is the usage of the so-called ideal and utopian points as a reference
point in compromise programming and other methods which main goal is to
optimize distance measure from the reference point to the feasible set. Strong
efficiency also plays a crucial role in many other multiobjective methods and
algorithms (see e.g. [7]).

Lexicographic optimality principle is generally applied to the situation
where objectives have no equal importance anymore but ordered according
to their significance. A rigid arrangements of partial criteria with respect
to importance is often used for a wide spectrum of important optimiza-
tion problems, for example problems of stochastic programming, problems
of axiomatic systems of utility theory and so on [3], [15]. Observe also that
any scalar constrained optimization problem may be transformed to uncon-
strained bicriteria lexicographic problem by using as first criterion some exact
penalty function for problem constraints, and an original objective function
as a second constraint.

As it was already mentioned above, the five optimality concepts can be
characterized with the help of different geometrical concepts. Sometimes, ex-
ploiting geometrical characterization may be advantageous to using straight-
forward definitions of optimality due to potential decrease of computational
efforts needed. The choice of particular geometrical tool (which cone to use)
first of all depends on what type of optimization problem - convex or noncon-
vex - we deal with. In this paper, we report about new results on character-
ization optimality for two well-known classes of optimality which are strong
efficiency and lexicographic optimality. This will lead to a more global view
at structural properties of five well-know optimality principles in nonconvex
case. The results are summarized in two interconnected schemes. The results
are compared to those obtained earlier for the convex optimization case.

In what follows, we introduce the problem formulation as well as some
well-known results in Section 2. The new results concerning the set of
strongly efficient solutions are given in Section 3. The lexicographic opti-
mality is a subject of throughout research in Section 4. In section 5, we
compare the similarity and difference of the results obtained in convex and
nonconvex cases. The paper is concluded in Section 6.

2 Problem Formulation and Preliminaries

We consider general multiobjective optimization problems of the following
form:

min
x∈S

{f1(x), f2(x), . . . , fk(x)}, (1)
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with the continuous objective functions fi : Rn → R for all i ∈ Ik :=
{1, . . . , k}.

The decision vector x belongs to the nonempty feasible set S ⊂ Rn. The
image of the feasible set is denoted by Z ⊂ Rk, i.e. Z := f(S) and it is
supposed not necessarily to be convex. Elements of Z are termed objective
vectors and they are denoted by z = f(x) = (f1(x), f2(x), . . . , fk(x))T . Ad-
ditionally, we assume f(B(x; ε)) to be open for all x ∈ S and ε > 0, where
B(x; ε) is an open ball with radius ε and center x.

The Problem (1) is said to be convex if the objective functions fi for all
i ∈ Ik and the feasible set S are convex.

The sum of two sets A and E is defined by A+E = {a+e | a ∈ A, e ∈ E}.
The interior, closure, convex hull and complement of a set A are denoted by
int A cl A, conv A and AC , respectively.

A set A is a cone if λx ∈ A whenever x ∈ A and λ > 0. We denote
the negative orthant of Rk by Rk

−
= {d ∈ Rk | di ≤ 0 for every i ∈ Ik}.

The positive orthant Rk
+, the standard ordering cone, is defined respectively.

Note, that Rk
−

and Rk
+ are closed convex cones.

In what follows, the notation z < y for z, y ∈ Rk means that zi < yi for
every i ∈ Ik and, correspondingly, z ≤ y stands for zi ≤ yi for every i ∈ Ik.

Simultaneous optimization of several objectives for multiobjective opti-
mization problem is not a straightforward task. Contrary to the the single
objective case, the concept of optimality is not unique in multiobjective cases.

Below we give traditional definitions of two well-known and most funda-
mental principles of optimality.

Weak Pareto optimality. An objective vector z∗ ∈ Z is weakly Pareto optimal
if there does not exist another objective vector z ∈ Z such that zi < z∗i
for all i ∈ Ik.

Pareto optimality or efficiency. An objective vector z∗ ∈ Z is Pareto optimal
or efficient if there does not exist another objective vector z ∈ Z such
that zi ≤ z∗i for all i ∈ Ik and zj < z∗j for at least one index j.

Next we define the sets of globally weakly Pareto, Pareto and properly
Pareto optimal solutions by using the opposite of the standard ordering cone.
It is trivial to verify that the definitions of weak Pareto optimality and effi-
ciency formulated above are equivalent to those following below.

Definition 1 The globally weakly Pareto optimal set is

GWP (Z) := {z ∈ Z | (z + int Rk
−
) ∩ Z = ∅},

the globally Pareto optimal set is

GP (Z) := {z ∈ Z | (z + Rk
−
\ {0}) ∩ Z = ∅},
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and the globally properly Pareto optimal set is defined as

GPP (Z) := {z ∈ Z | (z + C \ {0}) ∩ Z = ∅}

for some convex cone C such that Rk
−
\ {0} ⊂ int C.

The corresponding local concepts are defined in the following. Naturally,
in a convex case, local and global concepts are equal.

Definition 2 The locally weakly Pareto optimal set with z = f(x) ∈ Z is
given as

LWP (Z) =
⋃

δ>0

{

z ∈ Z | (z + int Rk
−
) ∩ Z ∩ f(B(x; δ)) = ∅

}

,

the locally Pareto optimal set as

LP (Z) =
⋃

δ>0

{

z ∈ Z | (z + Rk
−
\ {0}) ∩ Z ∩ f(B(x; δ)) = ∅

}

,

and the locally properly Pareto optimal set as

LPP (Z) =
⋃

δ>0

{

z ∈ Z | (z + C \ {0}) ∩ Z ∩ f(B(x; δ)) = ∅
}

for some convex cone C such that Rk
−
\ {0} ⊂ int C.

Notice that the concept of proper Pareto optimality originates from the
idea of prohibiting an unbounded trade-off between objectives but preserving
the requirement of Pareto optimality. This limitation can be imposed either
analytically or geometrically that will lead to slightly different concepts of
proper Pareto optimality. We used the definition of global proper Pareto
optimality given by Henig in [5], since his definition uses geometrical char-
acterization with help of convex ordering cone. He also defined local proper
Pareto optimality which differs from Definition 2. Our approach is motivated
by analogy with the general treatment of local optimality [12].

Obviously we have the following relationships between the different grades
of Pareto optimality – see Fig. 1.

Next we define several geometrical basic cones (see e.g. [16]).

Definition 3 The contingent cone of a set Z ⊂ Rk at z ∈ Z is defined as

Kz(Z) := {d ∈ Rk | there exist tj ց 0 and dj → d such that z + tjdj ∈ Z}.

The cone of globally feasible directions of a set Z ⊂ Rk at z ∈ Z is denoted
by

Dz(Z) := {d ∈ Rk | there exists t > 0 such that z + td ∈ Z}.

4



GPP (Z) ⊂ GP (Z) ⊂ GWP (Z)
⋂ ⋂ ⋂

LPP (Z) ⊂ LP (Z) ⊂ LWP (Z)

Figure 1: Collection of the relationships between local and global weak,
proper Pareto optimality and efficiency.

Figure 2: Nonconvex contingent cone Kz(Z).

The definitions of contingent cones Kz(Z) and cones of globally feasi-
ble directions Dz(Z) are equally valid for both convex and nonconvex sets.
Note, however, that the cone convexity, which holds for convex sets, is not
guaranteed in nonconvex case (see Fig. 2).

In nonconvex case, the cone of feasible directions Dz(Z) does not describe
the shape of Z locally. Thus, we introduce a cone of locally feasible directions,
which reflects the shape of Z locally.

Definition 4 The cone of locally feasible directions of a set Z ⊂ Rk at z ∈ Z

is denoted by

Fz(Z) = {d ∈ Rk | there exists t > 0 such that z+τd ∈ Z for all τ ∈ (0, t]}.

The following definition provides local regularity condition for Z at z ∈ Z.

Definition 5 The set Z is called locally regular at z ∈ Z if Fz(Z) = Kz(Z).

Note that, under convexity assumption, for any z ∈ Z we have cl Fz(Z) =
Kz(Z) (see e.g. [17]), i.e. local regularity defines a bit stronger requirement
on a local structure of a set than the convexity assumption.

For nonconvex cases, Clarke [2] has defined a convex tangent cone in the
following way.
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Definition 6 The tangent cone of a set Z ⊂ Rk at z ∈ Z is given by the
formula

Tz(Z) = {d ∈ Rk | for all tj ց 0 and zj → z with zj ∈ Z,

there exists dj → d with zj + tjdj ∈ Z}.

The following basic relations can be derived from the definitions of the
concepts used and from [4], [9], [17].

Lemma 1 For the cones Kz(Z), Dz(Z), Tz(Z) and Fz(Z) we have the fol-
lowing

a) Kz(Z) and Tz(Z) are closed and Tz(Z) is convex.

b) 0 ∈ Kz(Z) ∩ Dz(Z) ∩ Tz(Z) ∩ Fz(Z).

c) Z ⊂ z + Dz(Z).

d) cl Fz(Z) ⊂ Kz(Z) ⊂ cl Dz(Z).

e) Tz(Z) ⊂ Kz(Z) ⊂ cl Dz(Z).

f) If Z is convex, then cl Fz(Z) = Tz(Z) = Kz(Z) = cl Dz(Z).

Let us point out once again that contingent cones can be nonconvex in
which case their polar cones are irrelevant, in other words, Kz(Z)◦ = {0}
independently of Z.

Even though contingent cones are generally nonconvex, their convexity is
guaranteed under special circumstances.

Definition 7 The set Z is called tangentially regular at z ∈ Z if Tz(Z) =
Kz(Z).

Trivially, we can see that e.g. convex sets are always tangentially regular.
The normal cone of Z at z ∈ Z is the polar cone of the tangent cone,

that is,

Nz(Z) := Tz(Z)◦ = {y ∈ Rk | yTd ≤ 0 for all d ∈ Tz(Z)}.

Due to polarity and tangent cone convexity, the cone Nz(Z) is always convex
and contains zero.

The results related to the three optimality concepts (efficiency, weak and
proper Pareto optimality) and different cones in case Z is nonconvex are
collected in Fig. 3 (for details and proofs see [12]), where symbol ∗ denotes
those cases for which tangent regularity must be held.

To make the global picture of properties depicted in Fig. 3 even more
complete, we present here two more results related to global proper and
local Pareto optimality, which were not mentioned in [12].

The first results specifies the necessary and sufficient condition for global
proper Pareto optimality.
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Nz(Z) ∩ int R
k
−
6= ∅

m∗

z ∈ GPP (Z) ⇒ z ∈ LPP (Z) ⇔ Kz(Z) ∩ R
k
−
\ {0} = ∅

⇓ ⇓ ⇓

Dz(Z) ∩ R
k
−
\ {0} = ∅ ⇔ z ∈ GP (Z) ⇒ z ∈ LP (Z) ⇒ Fz(Z) ∩ R

k
−
\ {0} = ∅

⇓ ⇓ ⇓

Dz(Z) ∩ int R
k
−

= ∅ ⇔ z ∈ GWP (Z) ⇒ z ∈ LWP (Z) ⇒ Kz(Z) ∩ int R
k
−

= ∅

m∗

Nz(Z) ∩R
k
−
\ {0} 6= ∅

Figure 3: Collection of nonconvex results.

Theorem 1 The vector z ∈ GPP (Z) if and only if

cl Dz(Z) ∩ Rk
−
\{0} = ∅.

Proof. Necessity. Assume z ∈ GPP (Z). We will prove by contradiction.
Suppose that cl Dz(Z)∩Rk

−
\{0} 6= ∅, i.e. there exists d ∈ cl Dz(Z)∩Rk

−
\{0}.

On the one hand, since d ∈ cl Dz(Z), there exists di ∈ Dz(Z) such that
di → d. This implies that for any i there exists λi > 0 such that z+λidi ∈ Z.
On the other hand, since d ∈ Rk

−
\{0} ⊂ int C and di → d, there exists m > 0

such that di ∈ int C ⊂ C\{0} for all i ≥ m. Since C is a cone and λi > 0, we
get λidi ∈ C\{0} for all i ≥ m. The last implies z + λidi ∈ z + C\{0}, and
since z+λidi ∈ Z, we get z+λidi ∈ (z+C\{0})∩Z, i.e. (z+C\{0})∩Z 6= ∅.
Thus z 6∈ GPP (Z). The obtained contradiction proves the necessity.

Sufficiency. Assume that cl Dz(Z) ∩ Rk
−
\{0} = ∅. By Theorem 2.1 in

[6], there exists a convex cone C such that Rk
−
\{0} ⊂ int C and (C\{0}) ∩

Dz(Z) = ∅. By Lemma 1, we have Z ⊂ z + Dz(Z). This means that
(z + C\{0}) ∩ Z = ∅, and thus z ∈ GPP (Z). This ends the proof.

As it was proved in [12], emptiness of Fz(Z) ∩ Rk
−
\ {0} is a necessary

condition of local Pareto optimality. In [12] (Fig. 3, p.243), a counterexample
showing that the necessary condition above is not sufficient for local Pareto
optimality was given. That counterexample contains some inaccuracy, so
we present here another counterexample showing that sufficiency does not
hold (see Fig. 4, where Fz(Z) = {z} and z 6∈ LP (Z)). Nevertheless, under
assumption of local regularity, sufficiency can be proved, so we have the
following result.

Theorem 2 If Fz(Z) ∩ Rk
−
\ {0} = ∅ and Z is locally regular at z, then

z ∈ LP (Z).
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Figure 4: Counterexample for local Pareto optimality.

Proof. Let

Fz(Z) ∩ Rk
−
\ {0} = ∅. (2)

We will prove by contradiction. Assume that z = f(x) 6∈ LP (Z). Then for
any δ > 0, there exists d ∈ Rk

−
\{0} such that z +d ∈ Z∩f(B(x; δ)). Due to

objectives continuity, the last implies that there exist tj ց 0, dj ∈ Rk
−

and
d∗ ∈ Rk

−
such that dj → d∗ and z + tjdj ∈ Z, i.e. d∗ ∈ Kz(Z), and hence

d∗ ∈ Fz(Z) due to local regularity. This contradicts (2).
In what follows we extend the results of [12] by introducing two other

optimality principles - strong efficiency and lexicographic optimality. We
present geometrical cone characterization for them and incorporate the ob-
tained results into two interrelated schemes.

3 Strong Efficiency

Let us first define the concept of global strong optimality.

Definition 8 The globally strongly efficient set is defined as

GSE(Z) := {z ∈ Z | (z + (Rk
+)C) ∩ Z = ∅}.

Globally strongly efficient solutions are sometimes called also ideal solu-
tions. This is due to fact that

GSE(Z) =

k
⋂

i=1

arg min
x∈S

fi(x).

The corresponding local concept is defined in the following.
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GSE(Z) ⊂ GPP (Z) ⊂ GP (Z) ⊂ GWP (Z)
⋂ ⋂ ⋂ ⋂

LSE(Z) ⊂ LPP (Z) ⊂ LP (Z) ⊂ LWP (Z)

Figure 5: Collection of the relationships between local and global strong,
weak, proper Pareto optimality and efficiency.

Definition 9 The locally strongly efficient set with z = f(x) is defined as

LSE(Z) :=
⋃

δ>0

{

z ∈ Z | (z + (Rk
+)C) ∩ Z ∩ f(B(x; δ)) = ∅

}

.

Clearly we have the following relationships between the different grades
of optimality – see Fig. 5.

In this section we derive similar geometrical necessary and sufficient op-
timality conditions presented in previous section also for strongly efficient
solutions.

Since the cone of feasible directions Dz(Z) contains global information, it
can be used to characterize global strong efficiency even in a nonconvex case.
Thus, we have the following result, which is similar to the results obtained
in [10] for convex case.

Note 1 (c.f. [10]) The vector z ∈ GSE(Z) if and only if

Dz(Z) ∩Rk
+ = Dz(Z)

The second necessary and sufficient condition for global strong efficiency
by means of contingent cones, which has been proved in [10] for convex case, is
transformed into the following necessary condition for local strong efficiency
in nonconvex case.

Theorem 3 If z ∈ LSE(Z), then

Kz(Z) ∩ Rk
+ = Kz(Z).

Proof. Let z = f(x) ∈ LSE(Z). Then there exists δ > 0 such that

(z + (Rk
+)C) ∩ Z ∩ f(B(x; δ)) = ∅. (3)

Let us suppose that Kz(Z) ∩ Rk
+ 6= Kz(Z), i.e. there exists d ∈ Kz(Z) such

that d 6∈ Rk
+. Then it follows from the definition of Kz(Z) that there exists

tj ց 0 and dj → d such that z + tjdj ∈ Z.
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Since d 6∈ Rk
+ and dj → d, there exists j1 such that dj 6∈ Rk

+ for all
j ≥ j1. Since tj > 0, we have tjdj 6∈ Rk

+ for all j ≥ j1, i.e. tjdj ∈ (Rk
+)C for

all j ≥ j1. On the other hand, since tj ց 0 and dj → d and the objective
functions are continuous, there exists j2 such that z + tjdj ∈ f(B(x; δ)) for
all j ≥ j2. Recall that z + tjdj ∈ Z. Let us define m = max{j1, j2}. Then
we have

z + tmdm ∈ (z + (Rk
+)C) ∩ Z ∩ f(B(x; δ)),

which is contradiction to (3).

Theorem 4 If z ∈ LSE(Z), then

Nz(Z) ∩Rk
−

= Rk
−
.

Proof. The result follows directly from the result of Theorem 3 and obser-
vation that Tz(Z) ⊂ Kz(Z).

Notice also that if Z is tangentially regular at z ∈ Z, then

Nz(Z) ∩ Rk
−

= Rk
−

implies
Kz(Z) ∩ Rk

+ = Kz(Z).

The results related to the four optimality concepts and different cones
in case Z is nonconvex are collected in Table 1, where the tangent (local)
regularity assumption is noted by ∗ (∗∗).

4 Lexicographic Optimality

We start by giving a standard definition of the concept of lexicographic opti-
mality (see e.g. [11]). An objective vector z∗ ∈ Z is lexicographically optimal
if for any other objective vector z ∈ Z one of the following two conditions
holds:
1) z = z∗

2) ∃ i ∈ Ik : (z∗i < zi) ∧ (∀j ∈ Ii−1 : z∗j = zj), where I0 = ∅.

Next we will give one more equivalent definition of the lexicographic op-
timality: an objective vector z∗ ∈ Z is lexicographically optimal if

{

z ∈ Z | zi < z∗i , i = min{j ∈ Ik | zj 6= z∗j }
}

= ∅.

Note that the lexicographic optima may be obtained as a result of the
solution of single objective (scalar) problems sequence

L(i) = min{zi | z ∈ L(i−1)},
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where i ∈ Ik, L(0) = Z, and zi denotes i-th objective. Thus L(k) will con-
stitute the set of lexicographically optimal solutions which we define below
by using the complement of the lexicographic cone. It is simple to verify
that all definitions are equivalent and referred to the following concept of
lexicographic optimality.

Definition 10 The globally lexicographically optimal set is

GLO(Z) = {z ∈ Z | (z + (Ck
lex)

C) ∩ Z = ∅},

where the lexicographic cone is

Ck
lex := {0} ∪ {d ∈ Rk | ∃ i ∈ Ik such that di > 0 and dj = 0 ∀ j < i}.

Emphasize the following properties of the lexicographic cone [8]:

a) Ck
lex is pointed, i.e. l(Ck

lex) = Ck
lex ∩−Ck

lex = {0};

b) Ck
lex is not correct, i.e. cl Ck

lex + Ck
lex\l(C

k
lex) 6⊂ Ck

lex;

c) Ck
lex is not strictly supported, i.e. Ck

lex\l(C
k
lex) is not contained in an open

homogeneous half space.

Some more properties of Ck
lex can be easily verified:

d) Ck
lex is neither closed nor open;

e) (Ck
lex)

∗

:= {y ∈ Rk | yTd ≥ 0 for all d ∈ Ck
lex} = R+;

f) (Ck
lex)

◦

:= {y ∈ Rk | yT d ≤ 0 for all d ∈ Ck
lex} = R−.

Definition 11 The locally lexicographically optimal set with z = f(x) is

LLO(Z) =
⋃

δ>0

{

z ∈ Z | (z + (Ck
lex)

C) ∩ Z ∩ f(B(x; δ)) = ∅
}

.

It is evident that we have the following relationships between the different
optimality principles – see Fig. 6.

However, nothing can be said in general case about the relation of GLO(Z)
and GPP (Z) nor LLO(Z) and LPP (Z) (see [10]).

Now we will formulate the main results concerning lexicographic optimal-
ity characterization by means of different cones.

Again, as in previous section, the cone Dz(Z), which contains global
information about feasibility, can be directly used to characterize global lex-
icographic optimality even in a nonconvex case. Thus, we have the following
result, which is similar to the results obtained in [10] for convex case.
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GSE(Z) ⊂ GLO(Z) ⊂ GP (Z) ⊂ GWP (Z)
⋂ ⋂ ⋂ ⋂

LSE(Z) ⊂ LLO(Z) ⊂ LP (Z) ⊂ LWP (Z)

Figure 6: Collection of the relationships between local and global efficiency,
strong efficiency, lexicographic and weak Pareto optimality.

Note 2 (c.f. [10]) The vector z ∈ GLO(Z) if and only if

Dz(Z) ∩ Ck
lex = Dz(Z)

The necessary condition for local lexicographic optimality in nonconvex
case can be obtained if we replace the cone of globally feasible directions
Dz(Z) with the cone of locally feasible directions Fz(Z), The condition will
become also sufficient under assumption of local regularity, i.e. we get the
following result.

Theorem 5 If z ∈ LLO(Z), then

Fz(Z) ∩ Ck
lex = Fz(Z).

Proof. Let z = f(x) ∈ LLO(Z). Then there exists δ > 0 such that

(z + (Ck
lex)

C) ∩ Z ∩ f(B(x; δ)) = ∅. (4)

Let us suppose that Fz(Z)∩Ck
lex 6= Fz(Z). Then there exists d ∈ Fz(Z) such

that d 6∈ Ck
lex, i.e. d ∈ (Ck

lex)
C . Then it follows from the definition of Fz(Z)

that there exists t > 0 such that z + τd ∈ Z for all τ ∈ (0, t].
Since τ > 0 and due to the definition of lexicographic cone, we have τd 6∈

Ck
lex, i.e. τd ∈ (Ck

lex)
C . On the other hand, the continuity of the objective

functions implies that there exists τ̃ > 0 such that z + τ̃ d ∈ f(B(x; δ)). This
contradicts (4) and ends the proof.

The results related to the four optimality concepts involving lexicographic
optimality and different cones in case Z is nonconvex are collected in Table. 2,
where the tangent (local) regularity assumption is noted by ∗ (∗∗).

Sometimes, the lexicographic optimality principle is defined in more gen-
eral way in order to reflect all possible objective orderings. This will lead
to the so-called generalized lexicographic optimality concept which we define
below.

Definition 12 The global generalized lexicographic set GGLO(Z) defined
by all k! permutations of objectives is:

GGLO(Z) :=
⋃

s∈Sk

GLOs(Z),
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where

GLOs(Z) :=
{

z ∈ Z |
(

z = z∗
)

∨

(

∃i ∈ Ik : (z∗si
< zsi

) ∧ (∀j ∈ Isi−1 : z∗sj
= zsj

)
)

}

,

and Sk is a set of all k! permutations of the numbers 1, 2, ..., k.

The elements of the set GLOs(Z) are called lexicographic optima with re-
spect to permutation s of objective order. Notice that GLOs(Z) = GLO(Z)
if s is identity permutation, i.e. s = (s1, s2, ..., sk) = (1, 2, ..., k). The ele-
ments of the set GGLO(Z) are called global generalized lexicographic optima.
It is easy to see that any global generalized lexicographic optimum belongs
to the Pareto set, i.e. the following chain of inclusions holds

GSE(Z) ⊂ GLO(Z) ⊂ GGLO(Z) ⊂ GP (Z) ⊂ GWP (Z).

The corresponding local concepts is defined in the following.

Definition 13 The local generalized lexicographic optimum set is defined as

LGSE(Z) :=
⋃

δ>0

{

z ∈ Z |
⋃

s∈Sk

(

z + (Ck
lex)

C ∩ Z ∩ f(B(x; δ))
)

s
= ∅

}

for some δ > 0. Here ()s means that f(B(x; δ)) and Ck
lex are taken respectively

for each s ∈ Sk.

Using Theorem 5 and Note 2, we obtain the following straightforward
results.

Corollary 1 Let Z ⊂ Rk, then

GGLO(Z) =
⋃

s∈Sk

{

z ∈ Z |
(

Dz(Z) ∩ Ck
lex = Dz(Z)

)

s

}

,

where ()s means that Dz(Z) and Ck
lex are taken respectively for each s ∈ Sk.

Corollary 2 Let Z ⊂ Rk, then

LGLO(Z) ⊂
⋃

s∈Sk

{

z ∈ Z |
(

Fz(Z) ∩ Ck
lex = Fz(Z)

)

s

}

.

13



5 Similarity and difference between convex

and nonconvex cases

Now we shortly analyze the similarity and difference between the results
in two cases - convex and nonconvex. Here we would like to emphasize
two tendencies about the ways how the results are modified while loosing
convexity.

The first tendency is that some conditions, which are necessary and suffi-
cient conditions for optimality in convex case, are transformed into necessary
but not sufficient conditions for local optimality in nonconvex case for those
principles where standard ordering cone is used in the definitions. For ex-
ample, the condition Kz(Z) ∩ int Rk

−
= ∅, being a necessary and sufficient

condition in convex case for weak Pareto optimality, becomes only necessary
condition for local weak Pareto optimality. The counterexample in Fig. 7
shows that this condition is not sufficient for local weak Pareto optimality
anymore. The same is also true with the condition Kz(Z) ∩ Rk

+ = Kz(Z),
which is necessary and sufficient for strong efficiency in convex case, is also
necessary but not sufficient for local strong efficiency in nonconvex case. The
counterexample illustrating this fact is presented in Fig. 8. The loss of suffi-
ciency can be explained by the fact that the above-mentioned conditions use
the contingent cone, which may have ”bad” directions towards no feasibility.

In the case with proper Pareto optimality, replacement of the cone of
globally feasible direction Dz(Z) with the contingent cone Kz(Z) is possible
without loss of sufficiency due to the efficiency definition specific that uses a
convex cone with inverse of the standard ordering cone as a part of interior.
An appropriate choice of the convex cone makes possible to eliminate those
”bad” directions, which appeared after replacement Dz(Z) with Kz(Z). The
condition Rk

−
\ {0} ⊂ int C, which was put in the definition of proper

Pareto optimality, will guarantee that elimination is always possible, and
this actually implies that the sufficiency always holds in the case of proper
Pareto optimality.

The second tendency is that the usage of the cone of locally feasible direc-
tions Fz(Z) instead of the cone of globally feasible directions Dz(Z) allows
to formulate only necessary conditions for local optimality in Pareto and
lexicographic cases similar to the conditions which exploit Dz(Z) in convex
case. Sufficiency in general case is not guaranteed, but it can be achieved in
Pareto case by imposing some regularity rules, which actually creates local
convexity towards some directions but keep the remaining areas irregular,
i.e. non-convex. Similar to the situation where the tangent regularity as-
sumption is used to prove sufficient conditions operating with normal cones,
the local regularity is used to prove the sufficient conditions which involves
the usage of the cone of locally feasible directions. To investigate if the the
assumptions of tangent regularity and local regularity could be weaken is an

14



Figure 7: Counterexample for local weak Pareto optimality.

Figure 8: Counterexample for local strong efficiency.

interesting direction for continuation research in this area.

6 Concluding Remarks

Additionally to previously known cone characterizations of three optimality
principles - efficiency, weakly and proper Pareto optimality, we have charac-
terized two other optimality concepts - strongly efficiency and lexicographic
optimality in terms of intersections of different cones in nonconvex case. The
results were collected and summarized in two figures illustrating the inter-
connections between different optimality principles. The aim was to point
out the differences and similarities between the five optimality principles as
well as between convex and nonconvex cases. As a possible continuation of
the research in the area, it seems to be interesting to check if some of the
results of the paper can be specified more precisely for some classes of prob-
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lems with non-convex functions but which are still possessing good properties
similar to convexity (see e.g. [14], [18], [19]). For example, the class of invex
functions could become the first promising candidate. The other potential
direction is to consider various generalized optimality principles which are
given by means of either some ordering cone or parameterization.
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Dz(Z) ∩ Rk
+ = Dz(Z) ⇔ z ∈ GSE(Z) ⇒ z ∈ LSE(Z) ⇒ Kz(Z) ∩Rk

+ = Kz(Z) ∗ ⇔ Nz(Z) ∩ Rk
−

= Rk
−

⇓ ⇓ ⇓ ⇓ ⇓∗

cl Dz(Z) ∩ Rk
−
\{0} = ∅ ⇔ z ∈ GPP (Z) ⇒ z ∈ LPP (Z) ⇔ Kz(Z) ∩Rk

−
\ {0} = ∅ ∗ ⇔ Nz(Z) ∩ int Rk

−
6= ∅

⇓ ⇓ ⇓ ⇓
Dz(Z) ∩ Rk

−
\ {0} = ∅ ⇔ z ∈ GP (Z) ⇒ z ∈ LP (Z) ∗∗ ⇔ Fz(Z) ∩Rk

−
\ {0} = ∅ ⇓∗

⇓ ⇓ ⇓ ⇓
Dz(Z) ∩ int Rk

−
= ∅ ⇔ z ∈ GWP (Z) ⇒ z ∈ LWP (Z) ⇒ Kz(Z) ∩ int Rk

−
= ∅ ∗ ⇔ Nz(Z) ∩ Rk

−
\ {0} 6= ∅

Table 1: Collection of the relationships in nonconvex case with proper Pareto optimality.

Dz(Z) ∩ Rk
+ = Dz(Z) ⇔ z ∈ GSE(Z) ⇒ z ∈ LSE(Z) ⇒ Kz(Z) ∩Rk

+ = Kz(Z) ∗ ⇔ Nz(Z) ∩ Rk
−

= Rk
−

⇓ ⇓ ⇓ ⇓
Dz(Z) ∩ Ck

lex = Dz(Z) ⇔ z ∈ GLO(Z) ⇒ z ∈ LLO(Z) ⇒ Fz(Z) ∩ Ck
lex = Fz(Z)

⇓ ⇓ ⇓ ⇓ ⇓∗

Dz(Z) ∩ Rk
−
\ {0} = ∅ ⇔ z ∈ GP (Z) ⇒ z ∈ LP (Z) ∗∗ ⇔ Fz(Z) ∩ Rk

−
\ {0} = ∅

⇓ ⇓ ⇓ ⇓
Dz(Z) ∩ int Rk

−
= ∅ ⇔ z ∈ GWP (Z) ⇒ z ∈ LWP (Z) ⇒ Kz(Z) ∩ int Rk

−
= ∅ ∗ ⇔ Nz(Z) ∩Rk

−
\ {0} 6= ∅

Table 2: Collection of the relationships in nonconvex case with lexicographic optimality.
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