Anton Tarasyuk | Elena Troubitsyna | Linas Laibinis

Reliability Assessment in Event-B

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 932, June 2009

1

Reliability Assessment in Event-B

Anton Tarasyuk
Abo Akademi University, Department of Information Techogies
Joukahaisenkatu 3-5 A, FIN-20520 Turku, Finland
anton. tarasyuk@bo. fi

Elena Troubitsyna
Abo Akademi University, Department of Information Techogies
Joukahaisenkatu 3-5 A, FIN-20520 Turku, Finland
el ena. troubi t syna@bo. fi

Linas, Laibinis
Abo Akademi University, Department of Information Techogies
Joukahaisenkatu 3-5 A, FIN-20520 Turku, Finland
i nas. | ai bi ni s@bo.fi

TUCS Technical Report
No 932, June 2009

Abstract

Formal methods are indispensable for ensuring depentyadfitomplex software-
intensive systems. In particular, the B Method and its reegtension Event-B
have been successfully used in the development of severgllea safety-critical
systems. However, they are currently not supporting gteivie assessment of
dependability attributes that is often required for cgitify safety-critical systems.
In this paper we demonstrate how to integrate reliabiligegasment into Event-B
development. This work shows how to conduct probabiliggeasment of system
reliability at the development stage rather than at the @mgntation level. This
allows the developers to chose the design alternative ffeasdhe most optimal
solution from the reliability point of view.

Keywords: Reliability assessment; formal modelling; Markov pro@sssefine-
ment; probabilistic model checking

TUCS Laboratory
Distributed Systems Laboratory

1 Introduction

Formal verification techniques provide us with rigorous @ogverful methods
for establishing correctness of complex systems. The a@gin expressiveness,
usability and automation of these techniques enable tlsgrini the design of
wide range of complex dependable systems. For instanc® Method [2] and
its extension Event-B [1] provide us with a powerful frameivéor developing
systems correct-by-construction. The top-down develoyirparadigm based on
stepwise refinement adopted by these frameworks has prsvewnith in several
industrial projects [16, 4].

While developing system by refinement, we start from an abssystem spec-
ification and, in a number of refinement steps, introduce #sreld implementa-
tion decisions. While approaching the final implementativa decrease the ab-
straction level and reduce non-determinism inherentlggmein the abstract spec-
ifications. In general, an abstract specification can beeéfin several different
ways because usually there are several ways to resolveitdeterminism. These
refinement alternatives are equivalent from the correstpest of view, i.e., they
faithfully implement functional requirements. Yet theyght be different from
the point of view of non-functional requirements, e.g.jaellity, performance
etc. Early quantitative assessment of various desigmaltiees is certainly use-
ful and desirable. However, within the current refinemeatrfeworks we cannot
perform it. In this paper we propose an approach to overcgihis problem.

We propose to integrate stepwise development in Event-B pribbabilistic
model checking [11] to enable reliability assessment diyed the development
stage. Reliability is a probability of system to functionr@ztly over a given
period of time under a given set of operating conditions P19,14]. Obviously, to
assess reliability of various design alternatives, we rieedodel their behaviour
stochastically. In this paper we demonstrate how to augimemt-deterministic)
Event-B models with probabilistic information and then wert them into the
form amenable to probabilistic verification. Reliabilis/expressed as a property
that we verify by probabilistic model checking. To illusesour approach, we
assess reliability of refinement alternatives that modiémint fault tolerance
mechanisms.

We believe that our approach can facilitate the processw#ldping depend-
able systems by enabling evaluation of design alternaivesrly development
stages. Moreover, it can also be used to demonstrate theysteam adheres to the
desired dependability levels, for instance, by provingisiaally that the proba-
bility of a catastrophic failure is acceptably low. This &pation is especially
useful for certifying safety-critical systems.

The remainder of the paper is structured as follows. In 88@iwe give a
brief overview of our modelling formalism — the Event-B framork. In Section 3
we give an example of refinement in Event-B. In Section 4 weatestrate how to
augment Event-B specifications with probabilistic infotiroa and convert them

1

into specifications of the PRISM model checker [15]. In Sath we define how
to assess reliability via probabilistic verification anadwmare the results obtained
by model checking with algebraic solutions. Finally, in 8@t 6 we discuss the
obtained results, overview the related work and proposesstinections for the
future work.

2 Modelling and Refinement in Event-B

The B Method is an approach for the industrial developmeritigiily depend-
able software. The method has been successfully used inetredoppment of
several complex real-life applications [16, 4]. Event-Biglan extension of the
B Method [2] to model parallel, distributed and reactiveteyss. The Rodin
platform [18] provides automated tool support for modejland verification (by
theorem proving) in Event-B. Currently Event-B is used ie U project De-
ploy [6] to model several industrial systems from automstrailway, space and
business domains.

Event-B uses the Abstract Machine Notation [17] for conding and veri-
fying system models. An abstract machine encapsulateddtes (he variables)
of a model and defines operations on its state. A simple abstrachine has the
following general form:

MACHINE AM
VARIABLES v
INVARIANTS I
EVENTS

it

evty

evty

The machine is uniquely identified by its namé@/. The state variables of the
machinep, are declared in th¢ARIABLES clause and initialised imit event.
The variables are strongly typed by constraining predgcatenvariants/ given
in the INVARIANTS clause. The invariant is usually defined as a conjunction
predicates and the predicates defining the properties afytstem that should be
preserved during system execution.

The dynamic behaviour of the system is defined by the set ofiatevents
specified in th&eVENTS clause. An event is defined as follows:

evt = when g then S end

where the guard is conjunction of predicates over the state variablesnd the
action$S is an assignment to the state variables.

2

The guard defines the conditions under which the action caxéeuted, i.e.,

when the event isnabled If several events are enabled then any of them can be

chosen for execution non-deterministically. If none of évents is enabled then
the system deadlocks.

In general, the action of an event is a composition of vagiasisignments ex-
ecuted simultaneously (simultaneous execution is derasgyl Variable assign-
ments can be either deterministic or non-deterministie déterministic assign-
ment is denoted as := F(v), wherex is a state variable anfi(v) expression
over the state variableas The non-deterministic assignment can be denoted
x:€ Sorz:| Qv '), whereS is a set of values an@(v, ') is a predicate. As a
result of non-deterministic assignmentgets any value fron$ or it obtains such
avaluez’ thatQ(v, 2’) is satisfied.

The semantics of Event-B events is defined using so callentdeafiter pred-
icates [17]. Itis a variation of the weakest preconditiomaatics [5]. A before-
after predicate describes a relationship between themmysti@tes before and af-
ter execution of an event. The formal semantics providesitts avfoundation
for establishing correctness of Event-B specifications.vé@iofy correctness of
a specification we need to prove that its initialization aliéeents preserve the
invariant.

The formal semantics also establishes a basis for systememaint — the pro-
cess of developing systems correct by construction. The lagesa underlying for-
mal stepwise development by refinement is to design thermsysiglementation
gradually, by a number of correctness preserving stepedo@finements The
refinement process starts from creating an abstract, aibi@itplementable, spec-
ification and finishes with generating executable code. Tkermediate stages
yield the specifications containing a mixture of abstracthamatical constructs
and executable programming artifacts.

Assume that the refinement machiA@/’ is a result of refinement of the ab-
stract machined M:

MACHINE AM MACHINE AM'
VARIABLES v VARIABLES o'
INVARIANTS [INVARIANTS I’
EVENTS — | EVENTS

it - inat’

evty evt)

evty evth

as

The machined M’ might contain new variables and events as well as replace the

abstract data structures &M with the concrete ones. The invariants 4fi/’
— I’ — define not only the invariant properties of the refined molet also the
connection between the state spaced of andAM'. For a refinement step to be

3

valid, every possible execution of the refined machine maisespond (vid’) to
some execution of the abstract machine. To demonstratewhishould prove that
init’ is a valid refinement ofnit, each event ofiM’ is a valid refinement of its
counterpart irAM and that the refined specification does not introduce adhditio
deadlocks.

In the next section we illustrate modelling and refinemerniEwent-B by an
example.

3 Example of Refinement in Event-B

Control and monitoring systems constitute a large classpeddable systems.
Essentially, the behaviour of these systems is periodidedd, a control system
periodically executes a control cycle that consists of irgadensors and setting
actuators. The monitoring systems periodically performase measurements.
Due to faults (e.g., caused by random hardware failures)tatgy present in any
system, the system can fail to perform its functions. In gaper we focus on
modelling fail-safe systems, i.e., the systems that shwindgpoon occurrence of
failure.
In general, the behaviour of such system can be represestsitoavn in the

specification below.

MACHINE System
VARIABLES res
INVARIANTS
invy i res € BOOL
EVENTS
nit =
begin
res:=TRUFE
end
output =
when
res=TRUFE
then
res :€ BOOL
end

For the sake of simplicity, we omit the detailed modellinglo# system func-
tionality. The variableres abstractly models success or failure to perform the
required functions at each iteration. Each iteration ofdyem corresponds to
the execution of the evewt:tput. If no failure has occurred then, as a result of
the non-deterministic assignment, the variahle obtains the valu§' RUE. In
this case the next iteration can be executed. However, iftadehas occured then
res obtains the valué’ALS E and the system deadlocks.

4

In the initial specification we have deliberately abstrdcasvay from mod-
elling system components and their failures. In the nextesfient step we intro-
duce explicit representation of system components anddatre fault tolerance
mechanisms. These mechanisms allow the system to perfeffiomittions even
in the presence of certain faults [19]. Fault tolerance isllg achieved by intro-
ducing redundancy into the system design. The redundancpeaither static
or dynamic. When static redundancy is used, the redundampaoents work in
parallel the main ones. In dynamic redundancy activatiothefredundant com-
ponents occurs only after the main ones have failed.

Refining a system by introducing the fault tolerance medmrasiis a rather
standard model transformation frequently performed indbaeelopment of de-
pendable systems. Next we show by examples how to introdageus fault
tolerance mechanisms by refinement.

Module
T
Input Output
Module Voter [—>
T T
Module

Figure 1. A Triple Modular Redundancy Arrangement

Triple Modular Redundancy (TMR) [19] is a well-known mecisan based
on static redundancy. The general principle is to tripgcatsystem module and
introduce the majority voting to obtain a single result of tmodule, as shown
in Figure 1. Such an arrangement allows us to mask failur@ssofigle module.
TMR can be introduced into a system specification by refinemes explained
below. We introduce variables,, m, andmgs to model the results produced by
the redundant modules. The variaple:se models the phases of TMR execution
— first reading the results produced by the modules and thimgvo

5

MACHINE Systempar sunchr =
REFINES System hen
VARIABLES
Tesymlam27m3apha‘se flagl _ O/\flagl _O/\flagg -0

flagy, flaga, flags phase = reading

INVARIANTS then .
. phase := voting
invy_3:my,ma,ms € {0,1} end
invy : phase € {reading, voting} voter . 2
ok =

Z.'I'L'U5“7 : fla’glafZG’QQafZG’QB S {071} .
invg : mit+mo+mg >1=res=TRUFE refinesoutput

when
EVENTS res = TRUFE A phase = voting N\

my+mg+ms3 > 1

moduleor, = then
when phase := reading ||
my = 1A flagi = 1 A phase = readin, T
thell’l flag, p g flagr :== 1| flaga := 11| flags :=1
end
er:dl :€4{0,1} || flagy :=0 voter . =
~ refinesoutput
module fqijed, =
when when
_ B _ . res = TRUE A phase = voting N\
my1 = 0A flagy = 1 A phase = reading My 4 g +ms < 1
then
flagy =0 then
g1 = res:= FALSE
end
o end

The modules work in parallel. In our specification it is refigetby the fact that all
the events modelling module behaviour are enabled simediagly. Each event
disables itself after being executed once. When all the nesdtcomplete their
execution, the evenynchr enables the events modelling voting. Let us observe
that the invariant

mi+ms+msg>1=res=TRUFE

relates the abstract and refined systems, i.e, it requiatshé correct output can
be produced only if no more than one module has failed.

Fault

detector l
Module
Input Output
Switch ——>
Spare
S —

Figure 2: A Standby Spare Arrangement

6

In general, we can introduce any fault tolerance mechanigmetinement.
Below we show other alternatives. For instance, insteade®TMR arrangement
we can introduce a standby spare mechanism shown in Figule this mech-
anism, every result produced by an active (main) module éxlkdd by a fault
detector. If an error is detected then the result produceth&yailed module is
ignored and the system switches to accepting the resultiipeal by the spare.
The spare can biegot meaning that the main module and spare work in parallel. In
this case the switch to spare happens almost instantly. @dre slso can beold,
i.e., the spare is in the standby mode and is activated otdy tfe main module
fails.

Below we present an excerpt from the specification that refthe System
specification to model dynamic redundancy. Here the valueand out of the
variablephasecorrespond to the valuesading andvoting in the TMR specifica-
tion. The additional execution phaget is introduced to model failure detection.
The events that model the behaviour at this phase for thegaoe sarrangement
are presented below.

EVENTS

detectionoy, =
when
m1 = 1 A phase = det
then
phase := out A m := my
flagr := 1A flags :=1
end
detection,y, =
when
mq1 = 0 A mg = 1A phase = det
then
phase == out A m :=mag A flags :=1
end
detection,o, =
when
m1 =0 A mo =0 A phase = det
then
phase ;= out A'm =0
end

The output can be produced successfully if at least one reddattions correctly.
If an error is detected then the system switches the failediubecoff.

Finally, we can also introduce a hybrid arrangement, whimmlgines static
and dynamic redundancy, as shown in Figure 3. The systemsvesrk MR until
a failure of a module occurs. Then the system activates theesp "replace” the

7

——

Disagreement
detector

f

Module

Module
Input

Switch

Output
Module Voter —>

Spare

Figure 3: TMR with a Spare Arrangement

failed module. The full Event-B specifications of this ané firevious arrange-
ments can be found in Appendix.

Let us observe that any specification described above isid refinement
of our abstract specificatiofiystem. However, even though the fault tolerance
mechanisms were introduced to increase system religbiigycannot evaluate
which of the specifications is more optimal from the point t#w of reliability.
This problem is caused by the non-deterministic modellihthe failure occur-
rence — the only possible modelling currently availableweii-B. To evaluate re-
liability, we need to replace the non-deterministic madellof failure occurrence
by the probabilistic ones and use the suitable techniquegliability evaluation.
Next we present our approach for achieving this.

4 From Event-B Modelling to Probabilistic Model
Checking

To enable formal, probabilistic analysis of reliability HEvent-B we can choose
several options. The first and the most powerful is to rely ababilistic weak-
est precondition semantics [12] and use probabilistic eefient technique [13]
to evaluate reliability. This technique allows us to exprafgebraically the relia-
bility of the system as a function of reliabilities of its cponents. However, for
complex industrial-size systems finding this function ntigh very complex or
even analytically intractable. A simpler and more scalablation is to use prob-
abilistic model checking to obtain numeric solution. Toiawk this we need to
augment Event-B models with probabilities in such way thaytwould become
amenable for probabilistic verification. Then we need talelsth connection be-
tween probabilistic verification and reliability assessme

To tackle the first problem let us observe that Event-B is #®dtased formal-

8

ism. The state space of the system specified in Event-B isgdtoy the values of
the state variables. The transitions between states agentatd by the actions
of the system events. The states that can be reached as taofesugnt execu-
tion are defined by the current state. If we augment Eventegifipation with
the probabilities of reaching the next system state fronctireent one then we
obtain a probabilistic automaton [3]. In case the eventsvanwally exclusive,
i.e., only one event is enabled at each system state thempéodisation can be
represented by a Markov chain. Otherwise, it correspondsMarkov Decision
process [7, 10, 21]. More specifically, it is a discrete timarkbv process since
we can use it to describe the states at certain instancesef ti

The probabilistic model checking framework developed byidlwowska et
al. [11] supports verification of Discrete-Time Markov Oh&(DTMC) and Markov
Decision Processes (MDP). The framework has a mature tppst the PRISM
model checker [15]

The PRISM modelling language is a high-level state-baseguage. It relies
on the Reactive Modules formalism of Alur and Henzinger BRISM supports
the use of constants and variables that can be integersiesqueal numbers) and
Booleans. Constans are used, for instance, to define thalphties associated
with variable updates. The variables in PRISM are finitegeghand strongly
typed. They can be either local or global. The definition ofratial value of a
variable is usually attached to its declaration. The staées of a PRISM model
is defined by the set of all variables, both global and local.

In general, a PRISM specification looks as follows:

dtmc
const doublep;; = .. .;

global v : T'ype init .. .;

module M,
vy : Type init ... ;

[g11 — p11: actiy + -+ 4 pipn @ actip;
[sync] g12 — qu1 : acthy + -+ qim : acty,,;

endmodule
module M5
v : Type init ... ;

[sync] ga1 — par s actay + -+ pay * actay;
] g22 — qo1 : aCt/m +o gy actl2l;

endmodule

A system specification in PRISM is constructed as a paratieiposition of
modules. Modules work in parallel. They can be independéetioh other or
interact with each other. Each module has a number of locahasv;, v, and
a set of guarded commands that determine its dynamic balravithe guarded
commands can have names. Similarly to the events of EveatgBarded com-
mand can be executed if its guard evaluate¥ it/ £. If several guarded com-
mands are enabled then the choice between them can be resmuhestic in case
of MDP or probabilistic (according to the uniform distribut) in case of DTMC.
In general, the body of a guarded command is a probabilibbece between de-
terministic assignments.

The guarded commands define not only the dynamic behavioarstéand-
alone module but can also be used to define syncronisatisrebatmodules. If
several modules synchronise then each of them should camtzammand defin-
ing the syncronisation condition. These commands showld teentical names.
For instance, in our general PRISM specification shown abibemodulesi/;
andM, synchronise. They contain the corresponding guarded caomsiabelled
with the namesync. The guarded commands that provide synchronisation with
other modules cannot modify the global variables. This/glto avoid read-write
and write-write conflicts on the global variables.

Converting Event-B model into a PRISM model is rather stifyward.
When converting Event-B model into its counterpart, we rteaéstrict the types
of variables and constants to the types supported by PRISM.ifvariants that
describe system properties can be represented as a nuntberpral logic for-
mulas in a list of properties of the model and then can be eérifiy PRISM if
needed. While converting events into the PRISM guarded camasy, we iden-
tify four classes of events: initilisation events, eventthvparallel deterministic
assignment, non-deterministic assignment and paralleldaterministic assign-
ment. The conversion of an Event-B event to a PRISM guardeuhtand depends
on its class:

e The initialisation events are used to form the initialisatpart of the cor-
responding variable declaration. Hence the initialisatioes not have a
corresponding guarded command in PRISM,;

e An event with a parallel deterministic assignment

evt =whengthenz :=x; ||y =y || z:= 2z end
can be represented by the following guarded command in PRISM
Jg— @ =z)&y =m) & (@ =2)

Here& denotes the parallel composition;

10

e An event with a non-deterministic assignment
evt = whengthenz :€ {z,...2,} end
can be represented as
Jg—pi:(@ =2)+ - +pp: (2 =m,)
wherep, ..., p,, are defined according to a certain probability distribution

e An event with a parallel non-deterministic assignment

evt =whengthenx :€ {x,...2z,} ||
y:€{y,...ym} || z:€ {z1,... 2} end

can be represented using the PRISM synchronisation mexchaiti corre-
sponds to a set of the guarded commands modelling synctiomisdhese
commands have the identical guards. Their bodies are fofropdthe as-
signments used in the parallel composition of the Eventi{®ac

module X

x: Typeinit ... ;

[name] g — p1: (2" =x1) + -+ pu (27 = 2);
endmodule
moduleY

y : Typeinit ... ;

[namel g — qi: (Y =y1) + -+ @ (Y = ym);
endmodule
module Z

z:Typeinit ... ;

[name] g —ry: (2 =21) + -+ 2z 2 (2 = 2z1);

endmodule

To demonstrate the convertion of an Event-B specificatitmarPRISM spec-
ification, below we present an excerpt from the PRISM coyatetrof the TMR
specification. Here we assume that at each iteration stepdallmsuccessfully
produces a result with a constant probabitity

11

Systemryr
module module;

my : [0..1] init 1;
f:[0..1] init 0;

[m] (phase = 0) & (m1 =0) & (f =0) — (f' =1);
) (phase = 0) & (f = 1) — (phase! = 1) & (' = 0);
endmodule
module modules
module modules
module voter
res : bool init true;
[(phase = 1) & (m1 + mg + mg > 1) — (phase’ = 0);
[(phase = 1) & (m1 +mg +mg < 1) — (res’ = false);
endmodule

While converting an Event-B model into PRISM we could havedeited the

parallel work of the system modules in the same way as we hene d in the
Event-B specifications, i.e., using non-determinism toesent parallel behaviour
and explicitly modelling the phases of system executionweier, we can also
directly use the synchronisation mechanism of PRISM bexaillshe modules
update only their local variables and no read-write conflaxt occur. This so-
lution is presented in the excerpt above. In wstemsyr Specification, the
guarded commands of the modutesdule;, module; andmodules are synchro-
nised (as designated by thelabel). In themodule; we additionally update the
global variablephase to model transition of the system to the voting phase.

5 Reliability Assessment via Probabilistic Model Check-

ing

In engineering, reliability [20, 14] is generally measuit®dthe probability that
an entity& can perform a required function under given conditions far time

intervall0, ¢]:

R(t) = P[& not failed over timeo0, ¢]].

12

The analysis of the abstract and refined specification sHmatsve can clearly
distinguish between two classes of systems states: opgraid failed. In our
case the operating states are the states where the vasalbias the valug' RU E.
Correspondingly, the failed states are the states whergahableres has the
value FALSE. While the system is in an operating state, it continuesei@ie.
When the system fails, it deadlocks. Therefore, we dehability of the system
as a probability of staying opertaional for a given numbertefations

Let 7 be the random variable measuring the number of iteratiofmd¢he
deadlock is reached and(¢) its cumulative distribution function. Then clearly
R(t) andF'(t) are related as follows:

R(t)=P[T >t]=1—-P[T <t]=1- F(1).

It is straightforward to see that our definition correspotudthe standard defini-
tion of reliability given above. Now let us discuss how to éoypPRISM model
checking to assess system reliability.

While analysing a PRISM model, we define a number of tempotatiprop-
erties and systematically check the model to verify thenopPrties of discrete-
time PRISM models, i.e, DTMC and MDP, are expressed formallyne proba-
bilistic computational tree logic [9]. The PRISM propertyesification language
supports a number of different types of properties. For e@tantheP operator is
used to refer to the probability of a certain event occureenc

Since we are interested in assessment of system relialtyhave to verify
invariant properties, i.e., properties maintained by the systematigpb In the
PRISM property specification language, the operétes used inside the operator
P to express properties of such type. In general, the property

P_;[G <t prop)

returns a probability that the predicateop remains’RU E' in all states within
the period of time.

To evaluate reliability of a system, we have to assess a piitlyaof system
staying operational within timé We define a predicat@P that defines a subset
of all system states where the system is operational. TherRRISM property

P_,[G < T OP] (1)

gives us the probability that the system will stay operadl@luring the first” iter-
ations, i.e, it is a probability that any state in which thetsyn will be during this
time belongs to the subset of operational states. In othedsyohe property (1)
defines the reliability function of the system.

13

Let us return to our examples. As we discussed previoustyptierational
states of our systems are defined by the predicate= true, i.e.,OP = res =
true. Then the PRISM property

P_+[G < T (res = true)] (2)

denotes the reliability of our systems within tirile

To evaluate reliability of our refinement alternative, lstassume that a mod-
ule produces a result successfully with the probabjitgqual t00.999998. In
Figure 4 we present the results of analysis of reliabilityta00000 iterations.
Figure 4 (a) shows the comparative results between singlgufe and both of
TMR systems. The results show that the triple modular redongystem with a
spare always gives better reliability. Note that using thgpte TMR arrangement
is better comparing to a single-module only up to approx@lyaB50000 itera-
tions. In Figure 4 (b) we compare single-module and stanghyesarrangements.
The results clearly indicate that the better reliabilityprevided by the dynamic
redundancy systems and that using of the cold spare arramjésmalways more
reliable.

1.0 ¢ 1.0 +

0.9 0.9

0.8 0.8

0.7 0.7
Z z
=06 =06
Qo

Q
B o5 . module Bos module
<] - TMR <] - hot spare
& 0.4 x 0.4
o -+ TMRS & -+ cold spare
0.3 0.3

0.2 0.2
0.1 0.1

0.0 0.0
0 100,000 200,000 300,000 400,000 500,000 0 100,000 200,000 300,000 400,000 500,000

T (iterations) T (iterations)

(@) (b)

Figure 4: Resulting Reliabilities

It would be interesting to evaluate precision of the resalitained by the
model checking with PRISM. For our case study it is possiblédrive analytical
representations of reliability functions, which can bedusa comparison with
verification results of property (2). It is well-known thagtreliability of a single-
module system i, (t) = p' and it is easy to show that the reliability of TMR
system, consits of three identical modules, is

Rryr(t) = Ry (t) + 3R, () (1 — Ry(t) =
= 3Ry, (1) — 2Ry, (t) = 3p* — 2p™.

Indeed, we can also calculate that the standby spare amamgevith a faulty
detector has the resulting reliability

Rpss =1—(1—p")?

14

for the hot spare, and the reliability
Ress = p'(1+t(1—p))

for the cold spare module. Finally, for the TMR arrangementh a spare, the
resulting reliability is

RTMRS = (6t — 8)p3t — 6tp3t71 + 9p2t.

It is easy to verify that the results obtained by the modetkimg are identical to
those can be calculated from the formulas presented abtngfatt demonstrates
the feasibility of using the PRISM model checker for rellapiassessment.

6 Conclusion

In this paper we have proposed an approach to integratirapilegly assessment
into the refinement process. The proposed approach enab#dslity assessment
at early design phases that allows the designers to evaklatbility of different
design alternatives already at the development phase.

Our approach integrates two frameworks: refinement in EBeand proba-
bilistic model checking. Event-B supported by the RODINl{glatform provides
us with a suitable framework for development of complex stdal-size systems.
By integrating probabilistic verification supported by R model checker we
open a possibility to reason about non-functional systeguirements in the re-
finement process.

The Event-B framework has been extended by Hallerstede aaadH[8] to
take into account probabilistic behaviour. They introdgualitative probabilistic
choice operator to reason about almost certain terminatibis operator attempts
to bound demonic non-determinism that, for instance, alttwdemonstrate con-
vergence of certain protocols. However, this approach isuaibable for reliabil-
ity assessment since explicit quantitative represemtatioeliability would not be
supported.

Kwiatkowska et al. [11] proposed an approach to assessipgndiability of
control systems using continuous time Markov chains. Tmeg# idea is similar
to ours — to formulate reliability as a system property to befied. However,
this approach aims at assessing reliability of already ldpeel system. In our
approach reliability assessment proceeds hand-in-hahdsystem development.

The similar topic in the context of refinement calculus hasnbexplored pre-
viously by Morgan et al. [13, 12]. In this approach the prabsiic refinement
was used to assess system dependability. However, this doa® not have the
corresponding tool support, so the use of this approachdunsitmial practice might
be cumbersome. In our approach we see a great benefit inatitegframeworks
that have mature tool support [18, 15].

15

When using model checking we need to validate whether thgsaethmodel
represents the behaviour of the real system accuratelygbndtor example, the
validation can be done if we demonstrate that model chegiogides a good
approximation of the corresponding algebraic solutiomsthis paper we delib-
erately chosen the examples for which algebraic solutiansbe provided. The
experiments have demonstrated that the results obtainewtgl checking accu-
rately match the algebraic solutions.

In our future work it would be interesting to further expldree connection
between Event-B modeling and dependability assessmenparticular, an ad-
ditional study are required to establish a formal basis @mverting all types of
non-deterministic assignments into the probabilisticsorfeurthermore, it would
be interesting to explore the topic of probabilistic dat@nement in connection
with dependability assessment.

16

References

[1] J.-R. Abrial. Extending B without changing it (for dewging distributed
systems). In H. Habiras, editdfirst Conference on the B methogages
169-190. IRIN Institut de recherche en informatique de Bsnt996.

[2] J.-R. Abrial. The B-Book: Assigning Programs to MeaningSambridge
University Press, 2005.

[3] R. Alur and T. Henzinger. Reactive modules.Hormal Methods in System
Design pages 7-48, 1999.

[4] D. Craigen, S. Gerhart, and T.Ralson. Case study: Pagisonsignaling
system. INEEE Softwargpages 32-35, 1994.

[5] E. W. Dijkstra. A Discipline of ProgrammingPrentice-Hall, 1976.
[6] EU-project DEPLOY.htt p: //ww. depl oy- proj ect. eu/.

[7] W. Feller. An Introduction to Probability Theory and its Applicatign®l-
ume 1. John Wiley & Sons, 1967.

[8] S. Hallerstede and T. S. Hoang. Qualitative probalidistodelling in Event-
B. In J. Davies and J. Gibbons, editoiisM 2007, LNCS 459]1pages 293—
312, 2007.

[9] H. Hansson and B. Jonsson. A logic for reasoning aboug aimd reliability.
In Formal Aspects of Computingages 512-535, 1994.

[10] J. G. Kemeny and J. L. SnellFinite Markov Chains D. Van Nostrand
Company, 1960.

[11] M. Kwiatkowska, G. Norman, and D. Parker. Controllepdadability anal-
ysis by probabilistic model checking. I@ontrol Engineering Practice
pages 1427-1434, 2007.

[12] A. K. Mclver and C. C. Morgan. Abstraction, Refinement and Proof for
Probabilistic SystemsSpringer, 2005.

[13] A. K. Mclver, C. C. Morgan, and E. Troubitsyna. The prbbetic
steam boiler: a case study in probabilistic data refinemémt]. Grundy,
M. Schwenke, and T. Vickers, editoRroc. International Refinement Work-
shop, ANU, CanberraSpringer-Verlag, 1998.

[14] P. D. T. O’Connor.Practical Reliability Engineering, 3rd edlohn Wiley &
Sons, 1995.

17

[15] PRISM probabilistic model checker.
http://ww. pri smmodel checker. org.

[16] Rigorous Open Development Environment for Complext&ys (RODIN).
IST FP6 STREP projechtt p: //rodi n. cs. ncl . ac. uk/.

[17] Rigorous Open Development Environment for Complext&ys (RODIN).
Deliverable D7, Event-B Languaget t p: / / r odi n. cs. ncl . ac. uk/ .

[18] RODIN Event-B platformht t p: / / www. event - b. or g/ .
[19] N. Storey.Safety-Critical Computer Systen’&ddison-Wesley, 1996.

[20] A. Villemeur. Reliability, Availability, Maintainability and Safety Aess-
ment John Wiley & Sons, 1995.

[21] D. J. White.Markov Decision Processedohn Wiley & Sons, 1993.

18

Appendix

MACHINE System
VARIABLES

res
INVARIANTS

invl : res € BOOL
EVENTS
Initialisation

begin
actl: res:= TRUFE
end

Event output=

when

grdl : res = TRUE
then

actl: res:€ BOOL
end

END

19

MACHINE SystemTMR
REFINES System
SEES cnt

VARIABLES

ml
m2
m3
phase
flagl
flag2
flag3

res
INVARIANTS

invi: m1 €{0,1}

inv2: m2 € {0,1}

inv3: m3 €{0,1}

inv4d : phase € PHASES

invb : flagl € {0,1}

inv6 : flag2 € {0,1}

inv7 : flagd3 € {0,1}

inv8: ml +m2 +m3 > 1 = res = TRUE

EVENTS
Initialisation

begin

actl: ml =1

act2: m2:=1

act3: m8 =1

actd : phase := reading
acths: flagl =1
act6 : flag2 := 1
act7: flag3 =1

20

act8: res ;= TRUFE

end

Event moduleokl=

when

grdl

then

actl:
: flagl =0

act2
end

cml =1
grd2 :
grd3 :

flagl = 1
phase = reading

m1:€{0,1}

Event modulefailed1=

when

grdl

then

actl :

end

cml =10
grd2 :
grd3 :

flagl = 1
phase = reading

flagl == 0

Event moduleok2=

when

grdl :
grd2 :
grd3 :

then

actl:
: flag2 =0

act2
end

m2 =1
flag2 = 1

phase = reading

m2 € {0,1}

Event modulefailed2=

when
grdl: m2 =0
grd2 : flag2 = 1

21

grd3 :

then

actl:

end

phase = reading

flag2 =0

Event moudleok3=

when

grdl :
grd2 :
grd3 :

then

actl :
: flag3 == 0

act2
end

ms =1

flags = 1
phase = reading

m3 :€{0,1}

Event modulefailed3=

when

grdl :
grd2 :
grd3 :

then
actl
end

Event synchr=

when

grdl :
grd2 :
grd3 :
grd4 :

then
actl
end

Event voterok=

refines output

ms =0

flags = 1
phase = reading

: flag3 =0
flagl =0
flag2 = 0
flagd = 0

phase = reading

phase := voting

22

when

grdl :
grd2 :
grd3 :

then

actl:
act2:

act3

acts :

end

res = TRUFE

ml +m2+m8 > 1

phase = voting

flagl == 1
flag2 =1
: flags =1

phase := reading

Event voternok=

refines output

when

grdl :
grd2 :
grd3 :

then
actl

end

END

res = TRUFE

mil 4+ m2+m8 < 1

phase = voting

:res .= FALSE

23

MACHINE SystemHSS
REFINES System
SEES cntl
VARIABLES

ml

m2
phase
flagl
flag2
res

m

INVARIANTS

invi: m1 €{0,1}

inv2: m2 €{0,1}

inv3: phase € PHASES
inv4 : flagl € {0,1}
invb : flag2 € {0,1}

inv6: m e {0,1}

inv7: ml 4+ m2 > 0=m=1
inv8: m=1=res = TRUE

EVENTS
Initialisation

begin
actl: ml :=1
act2: m2:=1
act3 : phase := in
actd : flagl =1
actb: flag2 := 1
act6 : res:= TRUE
act7: m:=1

end

Event moduleokl=

when

grdl :
grd2 :
grd3 :

then

actl :
act2:

end

ml =1

flagl =1
phase = in

m1:€{0,1}
flagl == 0

Event moduleok2=

when

grdl :
grd2 :
grd3 :

then

actl :
act2:

end

m2 =1

flag2 = 1
phase = in

m2 :€ {0,1}
flag2 == 0

Event modulefailed2=

when

grdl :
grd2 :
grd3 :

then

actl :

end

Event synchr=

when

grdl

grd2 :
grd3 :

then

m2 = 0
flag2 =1

phase = in

flag2 =0
flagl = 0
flag2 =0
phase = in

25

actl :

end

phase := det

Event detectionokl=

when

grdl :
grd2 :

then

actl :
act2:
act3

end

ml =1
phase = det

m = ml
flagl =1

: flag2 =1
actéd :

phase := out

Event detectionok2=

when

grdl :
grd2 :
grd3 :

then

actl :

: flag2 =1
act3d:

act2

end

ml =10
m2 =1
phase = det

m = m2

phase := out

Event detectionnok=

when

grdl :
grd2 :
grd3 :

then

actl :
act2:

end

ml =10
m2 =0
phase = det
m:=0

phase := out

Event outputok=

26

refines output

when

grdl :
grd2 :
grd3 :

then

actl :

end

res = TRUFE
m =1

phase = out

phase := in

Event outputnok=

refines output

when

grdl :
grd2 :
grd3 :

then

actl :

end

END

res = TRUFE
m =0

phase = out

res .= FALSE

27

MACHINE SystemCSS
REFINES System
SEES cntl
VARIABLES

ml

m2
phase
flagl
flag2
m

res

INVARIANTS

invl: ml €{0,1}

inv2: m2 € {0,1}

inv3: phase € PHASES

inv4 : flagl € {0,1}

invs : flag2 € {0,1}

inv6: m e {0,1}

inv7: mi+m2>0=m=1

inv8: m =1 =res = TRUE

invi0 : flagl =1 = (flag2 = 0Am2 =1)
invil: flag2 = 1 = (flagl = 0 A m1 = 0)

EVENTS
Initialisation

begin
actl: ml =1
act2: m2 :=1
act3: flagl =1
actd : flag2 = 0
acth : phase := in

act6: m =

28

act7
end

:res ;.= TRUFE

Event modulel=

when

grdl
grd2
grd3

then

actl :

act2
end

cml =1

: flagl = 1
. phase = in

m1:€{0,1}
. phase := det

Event module2=

when

grdl :

grd2
grd3

then

actl :

act?2
end

m2 =1

: flag2 = 1
: phase = in

m2:€{0,1}
. phase := det

Event detectionokl=

when

grdl :
grd2 :

then

actl :

act2
end

ml =1
phase = det
m = ml

. phase := out

Event detectionnokl=

when
grdl : ml =0
grd2 : flagl = 1

29

grd3 :

then
actl

end

phase = det

: flagl =0
act2:
act3:

flag2 =1
phase := in

Event detectionok2=

when

grdl :
grd2 :
grd3 :

then

actl :

act?2
end

m2 =1

flag2 =1
phase = det

m = m2

. phase := out

Event detectionnok2=

when

grdl :
grd2 :
grd3 :

then

actl :
act2:
act3:

end

m2 =0

flag2 = 1
phase = det

m:= 0
flag2 == 0
phase := out

Event outputok =

refines output

when

grdl :
grd2 :

res = TRUFE

m =1

grd3 : phase = out

then

30

actl :

end

phase := n

Event outputnok=

refines output

when

grdl :
grd2 :
grd3 :

then

actl :

end

END

res = TRUFE
m =0

phase = out

res ;= FALSE

31

MACHINE SystemTMRS
REFINES System
SEES cnt

VARIABLES

ml

m2

m3

m4
phase
flagl
flag2
flag3
flagd
err

res

INVARIANTS

invl: ml €{0,1}

inv2: m2 €{0,1}

inv3: m3 € {0,1}

invd : m4 € {0,1}

inv5 : phase € PHASES

invé : flagl € {0,1}

inv7 : flag2 € {0,1}

inv8: flag3 € {0,1}

inv9 : flag4 € {0,1}

inviO: erre 0..4

invil: (mI+m2+m3 > 1)A(err =0)=res = TRUE
invi2: (ml +m2+m3+mj > 1)A(err # 0)= res= TRUE
invi3: err=1=ml =0

invid: err=2=m2 =0

invi5: err=8=m3 =10

32

EVENTS
Initialisation

begin

actl:
act2:
act3:
act4 :
acth:

act6

act’ :
act8:
act9:
actl0:

ml =1
m2 =1
m3 =1
m4 = 1
phase := reading
: flagl =1
flag2 =1
flag3 =1
flags =0
err := 0

actll: res := TRUFE

end

Event moduleokl=

when

grdl :
grd2 :
grd3 :

then

actl :
act2:

end

ml =1

flagl = 1
phase = reading

m1:€{0,1}
flagl == 0

Event modulefailed1=

when

grdl :
grd2 :
grd3 :

then

actl :

end

ml =10

flagl =1
phase = reading

flagl == 0

Event moduleok2=

33

when

grdl :
grd2 :
grd3 :

then
actl

end

m2 =1

flag2 = 1
phase = reading

:m2:€{0,1}
act2:

flag2 == 0

Event modulefailed2=

when

grdl :
grd2 :
grd3 :

then

actl :

end

m2 = 0
flag2 = 1

phase = reading

flag2 =0

Event moduleok3=

when

grdl :
grd2 :
grd3 :

then
actl

end

ms = 1

flags = 1
phase = reading

:m3:€{0,1}
act2:

flag3 == 0

Event modulefailed3=

when

grdl :
grd2 :
grd3 :

then
actl

ms =0

flags = 1
phase = reading

: flag3 == 0

34

end

Event moduleok4 =

when
grdl: m4 =1
grd2: flag = 1
grd3 : phase = reading
then
actl: m4 :€{0,1}
act2: flag4 =0
end

Event modulefailed4=

when
grdl: m4 =0

grd2: flag = 1
grd3 : phase = reading

then
actl: flag4 =0
end

Event synchr=

when

grdl : flagl =0

grd2 : flag2 = 0

grd3 : flag3 =0

grd4 : flagj = 0

grd5 : phase = reading
then

actl : phase := voting

end
Event voterok=
refines output

when

35

grdl :
grd2 :
grd3 :
grd4 :

then

actl :
act2:

act3

acts :

end

res = TRUFE
err = 0

ml+m2+m38 =3

phase = voting

flagl == 1
flag2 =1
: flags =1

phase := reading

Event voterokl=

refines output

when

grdl :
grd2 :
grd3 :
grd4 :
grdb :

then

actl :

act2

act3:
actsd :
actb:

end

res = TRUFE

err = 0

ml +m2+m8 =2

ml =10

phase = voting

err == 1

: flag2 =1
flags =1
flagg =1

phase := reading

Event voterok2=

refines output

when

grdl :
grd2 :
grd3 :
grd4 :
grdb :

res = TRUFE

err = 0

ml +m2+m8 =2

m2 =0

phase = voting

36

then
actl: err:=2
act2: flagl =1
act3: flag3 =1
actd : flag) =1
actb : phase := reading

end
Event voterok3=
refines output

when
grdl : res = TRUE
grd2: err =0
grd3: ml +m2+ms =2
grdd: m3 =0
grd5 : phase = voting
then
actl: err:=38
act2: flagl =1
act3: flag2 =1
actd : flagj =1
actb : phase := reading

end
Event voternok=

refines output

when
grdl : res = TRUE
grd2 : err =0

grd3: mi +m2+ms < 1
grd4 : phase = voting
then
actl: res:= FALSE
end

Event voter_okl=

37

refines output

when

grdl :
grd2 :
grd3 :
grd4 :

then

actl:
act2:
act3d:
act4d

end

res = TRUFE

err = 1

m2 + m3 +my4 > 1

phase = voting

flag2 =1
flag3 =1
flags =1

. phase := reading

Event voter_nokl=

refines output

when

grdl :
grd2 :
grd3 :
grd4 :

then
actl :
end

res = TRUFE
err = 1

m2 +m3 +m4 < 1

phase = voting

res ;= FALSE

Event voter_ok2=

refines output

when
grdl :
grd2 :
grd3 :
grd4 :

then
actl:
act2:

res = TRUFE

err = 2

ml +m3+my4 > 1

phase = voting

flagl == 1
flags =1

38

act3: flagj =1
actd : phase := reading

end
Event voter_nok2=
refines output

when

grdl : res = TRUE
grd2 : err = 2
grd3: ml +m3+m4 < 1
grd4d : phase = voting
then
actl: res:= FALSE
end

Event voter_ok3=
refines output

when

grdl : res = TRUE

grd2 : err =3

grd3: ml +m2 +m4 > 1

grd4 : phase = voting
then

actl: flagl =1

act2: flag2 =1

act3: flagj =1

act4d : phase := reading

end
Event voter_nok3=
refines output

when

grdl : res = TRUE
grd2: err =8
grd3: ml+m2+m4 <1

39

grd4 : phase = voting
then

actl: res:= FALSE
end

END

40

TURKU

CENTRE for

COMPUTER

SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

\ m , University of Turku
§ {’/_ e Department of Information Technology
- —
[N e Department of Mathematics
N (5
O

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 978-952-12-2263-4
ISSN 1239-1891

