
Anton Tarasyuk | Elena Troubitsyna | Linas Laibinis

Reliability Assessment in Event-B

TUCS Technical Report
No 932, June 2009

Reliability Assessment in Event-B

Anton Tarasyuk
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, FIN-20520 Turku, Finland
anton.tarasyuk@abo.fi

Elena Troubitsyna
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, FIN-20520 Turku, Finland
elena.troubitsyna@abo.fi

Linas Laibinis
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, FIN-20520 Turku, Finland
linas.laibinis@abo.fi

TUCS Technical Report

No 932, June 2009

Abstract

Formal methods are indispensable for ensuring dependability of complex software-
intensive systems. In particular, the B Method and its recent extension Event-B
have been successfully used in the development of several complex safety-critical
systems. However, they are currently not supporting quantitative assessment of
dependability attributes that is often required for certifying safety-critical systems.
In this paper we demonstrate how to integrate reliability assessment into Event-B
development. This work shows how to conduct probabilistic assessment of system
reliability at the development stage rather than at the implementation level. This
allows the developers to chose the design alternative that offers the most optimal
solution from the reliability point of view.

Keywords: Reliability assessment; formal modelling; Markov processes; refine-
ment; probabilistic model checking

TUCS Laboratory
Distributed Systems Laboratory

1 Introduction

Formal verification techniques provide us with rigorous andpowerful methods
for establishing correctness of complex systems. The advances in expressiveness,
usability and automation of these techniques enable their use in the design of
wide range of complex dependable systems. For instance, theB Method [2] and
its extension Event-B [1] provide us with a powerful framework for developing
systems correct-by-construction. The top-down development paradigm based on
stepwise refinement adopted by these frameworks has proven its worth in several
industrial projects [16, 4].

While developing system by refinement, we start from an abstract system spec-
ification and, in a number of refinement steps, introduce the desired implementa-
tion decisions. While approaching the final implementation, we decrease the ab-
straction level and reduce non-determinism inherently present in the abstract spec-
ifications. In general, an abstract specification can be refined in several different
ways because usually there are several ways to resolve its non-determinism. These
refinement alternatives are equivalent from the correctness point of view, i.e., they
faithfully implement functional requirements. Yet they might be different from
the point of view of non-functional requirements, e.g., reliability, performance
etc. Early quantitative assessment of various design alternatives is certainly use-
ful and desirable. However, within the current refinement frameworks we cannot
perform it. In this paper we propose an approach to overcoming this problem.

We propose to integrate stepwise development in Event-B with probabilistic
model checking [11] to enable reliability assessment already at the development
stage. Reliability is a probability of system to function correctly over a given
period of time under a given set of operating conditions [19,20, 14]. Obviously, to
assess reliability of various design alternatives, we needto model their behaviour
stochastically. In this paper we demonstrate how to augment(non-deterministic)
Event-B models with probabilistic information and then convert them into the
form amenable to probabilistic verification. Reliability is expressed as a property
that we verify by probabilistic model checking. To illustrate our approach, we
assess reliability of refinement alternatives that model different fault tolerance
mechanisms.

We believe that our approach can facilitate the process of developing depend-
able systems by enabling evaluation of design alternativesat early development
stages. Moreover, it can also be used to demonstrate that thesystem adheres to the
desired dependability levels, for instance, by proving statistically that the proba-
bility of a catastrophic failure is acceptably low. This application is especially
useful for certifying safety-critical systems.

The remainder of the paper is structured as follows. In Section 2 we give a
brief overview of our modelling formalism – the Event-B framework. In Section 3
we give an example of refinement in Event-B. In Section 4 we demonstrate how to
augment Event-B specifications with probabilistic information and convert them

1

into specifications of the PRISM model checker [15]. In Section 5 we define how
to assess reliability via probabilistic verification and compare the results obtained
by model checking with algebraic solutions. Finally, in Section 6 we discuss the
obtained results, overview the related work and propose some directions for the
future work.

2 Modelling and Refinement in Event-B

The B Method is an approach for the industrial development ofhighly depend-
able software. The method has been successfully used in the development of
several complex real-life applications [16, 4]. Event-B [1] is an extension of the
B Method [2] to model parallel, distributed and reactive systems. The Rodin
platform [18] provides automated tool support for modelling and verification (by
theorem proving) in Event-B. Currently Event-B is used in the EU project De-
ploy [6] to model several industrial systems from automotive, railway, space and
business domains.

Event-B uses the Abstract Machine Notation [17] for constructing and veri-
fying system models. An abstract machine encapsulates the state (the variables)
of a model and defines operations on its state. A simple abstract machine has the
following general form:

MACHINE AM

VARIABLES v

INVARIANTS I

EVENTS
init

evt1
· · ·
evtN

The machine is uniquely identified by its nameAM . The state variables of the
machine,v, are declared in theVARIABLES clause and initialised ininit event.
The variables are strongly typed by constraining predicates of invariantsI given
in the INVARIANTS clause. The invariant is usually defined as a conjunction
predicates and the predicates defining the properties of thesystem that should be
preserved during system execution.

The dynamic behaviour of the system is defined by the set of atomic events
specified in theEVENTS clause. An event is defined as follows:

evt =̂ when g then S end

where the guardg is conjunction of predicates over the state variablesv, and the
actionS is an assignment to the state variables.

2

The guard defines the conditions under which the action can beexecuted, i.e.,
when the event isenabled. If several events are enabled then any of them can be
chosen for execution non-deterministically. If none of theevents is enabled then
the system deadlocks.

In general, the action of an event is a composition of variable assignments ex-
ecuted simultaneously (simultaneous execution is denotedas‖). Variable assign-
ments can be either deterministic or non-deterministic. The deterministic assign-
ment is denoted asx := E(v), wherex is a state variable andE(v) expression
over the state variablesv. The non-deterministic assignment can be denoted as
x :∈ S or x :| Q(v, x′), whereS is a set of values andQ(v, x′) is a predicate. As a
result of non-deterministic assignment,x gets any value fromS or it obtains such
a valuex′ thatQ(v, x′) is satisfied.

The semantics of Event-B events is defined using so called before-after pred-
icates [17]. It is a variation of the weakest precondition semantics [5]. A before-
after predicate describes a relationship between the system states before and af-
ter execution of an event. The formal semantics provides us with a foundation
for establishing correctness of Event-B specifications. Toverify correctness of
a specification we need to prove that its initialization and all events preserve the
invariant.

The formal semantics also establishes a basis for system refinement – the pro-
cess of developing systems correct by construction. The basic idea underlying for-
mal stepwise development by refinement is to design the system implementation
gradually, by a number of correctness preserving steps, called refinements. The
refinement process starts from creating an abstract, albeitunimplementable, spec-
ification and finishes with generating executable code. The intermediate stages
yield the specifications containing a mixture of abstract mathematical constructs
and executable programming artifacts.

Assume that the refinement machineAM ′ is a result of refinement of the ab-
stract machineAM :

MACHINE AM

VARIABLES v

INVARIANTS I

EVENTS
init

evt1
· · ·
evtN

⊑

MACHINE AM ′

VARIABLES v′

INVARIANTS I ′

EVENTS
init′

evt′
1

· · ·
evt′

K

The machineAM ′ might contain new variables and events as well as replace the
abstract data structures ofAM with the concrete ones. The invariants ofAM ′

– I ′ – define not only the invariant properties of the refined model, but also the
connection between the state spaces ofAM andAM ′. For a refinement step to be

3

valid, every possible execution of the refined machine must correspond (viaI ′) to
some execution of the abstract machine. To demonstrate this, we should prove that
init′ is a valid refinement ofinit, each event ofAM ′ is a valid refinement of its
counterpart inAM and that the refined specification does not introduce additional
deadlocks.

In the next section we illustrate modelling and refinement inEvent-B by an
example.

3 Example of Refinement in Event-B

Control and monitoring systems constitute a large class of dependable systems.
Essentially, the behaviour of these systems is periodic. Indeed, a control system
periodically executes a control cycle that consists of reading sensors and setting
actuators. The monitoring systems periodically perform certain measurements.
Due to faults (e.g., caused by random hardware failures) inevitably present in any
system, the system can fail to perform its functions. In thispaper we focus on
modelling fail-safe systems, i.e., the systems that shut down upon occurrence of
failure.

In general, the behaviour of such system can be represented as shown in the
specification below.

MACHINE System

VARIABLES res

INVARIANTS
inv1 : res ∈ BOOL

EVENTS
init =̂

begin
res := TRUE

end
output =̂

when
res = TRUE

then
res :∈ BOOL

end

For the sake of simplicity, we omit the detailed modelling ofthe system func-
tionality. The variableres abstractly models success or failure to perform the
required functions at each iteration. Each iteration of thesystem corresponds to
the execution of the eventoutput. If no failure has occurred then, as a result of
the non-deterministic assignment, the variableres obtains the valueTRUE. In
this case the next iteration can be executed. However, if a failure has occured then
res obtains the valueFALSE and the system deadlocks.

4

In the initial specification we have deliberately abstracted away from mod-
elling system components and their failures. In the next refinement step we intro-
duce explicit representation of system components and introduce fault tolerance
mechanisms. These mechanisms allow the system to perform its functions even
in the presence of certain faults [19]. Fault tolerance is usually achieved by intro-
ducing redundancy into the system design. The redundancy can be either static
or dynamic. When static redundancy is used, the redundant components work in
parallel the main ones. In dynamic redundancy activation ofthe redundant com-
ponents occurs only after the main ones have failed.

Refining a system by introducing the fault tolerance mechanisms is a rather
standard model transformation frequently performed in thedevelopment of de-
pendable systems. Next we show by examples how to introduce various fault
tolerance mechanisms by refinement.

Module

Module

Module

Voter

Input Output

Figure 1: A Triple Modular Redundancy Arrangement

Triple Modular Redundancy (TMR) [19] is a well-known mechanism based
on static redundancy. The general principle is to triplicate a system module and
introduce the majority voting to obtain a single result of the module, as shown
in Figure 1. Such an arrangement allows us to mask failures ofa single module.
TMR can be introduced into a system specification by refinement it as explained
below. We introduce variablesm1, m2 andm3 to model the results produced by
the redundant modules. The variablephase models the phases of TMR execution
– first reading the results produced by the modules and then voting.

5

MACHINE SystemTMR

REFINES System

VARIABLES
res, m1, m2, m3, phase

flag1, f lag2, f lag3

INVARIANTS
inv1..3 : m1, m2, m3 ∈ {0, 1}
inv4 : phase ∈ {reading, voting}
inv5..7 : flag1, f lag2, f lag3 ∈ {0, 1}
inv6 : m1+m2+m3 > 1 ⇒ res = TRUE

EVENTS
· · ·

moduleok1
=̂

when
m1 = 1∧ flag1 = 1∧ phase = reading

then
m1 :∈ {0, 1} ‖ flag1 := 0

end
modulefailed1

=̂
when
m1 = 0∧ flag1 = 1∧ phase = reading

then
flag1 := 0

end
· · ·

synchr =̂
when
flag1 = 0 ∧ flag1 = 0 ∧ flag3 = 0 ∧
phase = reading

then
phase := voting

end
voterok =̂
refinesoutput

when
res = TRUE ∧ phase = voting ∧
m1 + m2 + m3 > 1

then
phase := reading ‖
flag1 := 1 ‖ flag2 := 1 ‖ flag3 := 1

end
voternok =̂
refinesoutput

when
res = TRUE ∧ phase = voting ∧
m1 + m2 + m3 ≤ 1

then
res := FALSE

end

The modules work in parallel. In our specification it is reflected by the fact that all
the events modelling module behaviour are enabled simultaneously. Each event
disables itself after being executed once. When all the modules complete their
execution, the eventsynchr enables the events modelling voting. Let us observe
that the invariant

m1 + m2 + m3 > 1 ⇒ res = TRUE

relates the abstract and refined systems, i.e, it requires that the correct output can
be produced only if no more than one module has failed.

Module

Spare

Input Output

Switch

Fault

detector

Figure 2: A Standby Spare Arrangement

6

In general, we can introduce any fault tolerance mechanism by refinement.
Below we show other alternatives. For instance, instead of the TMR arrangement
we can introduce a standby spare mechanism shown in Figure 2.In this mech-
anism, every result produced by an active (main) module is checked by a fault
detector. If an error is detected then the result produced bythe failed module is
ignored and the system switches to accepting the results produced by the spare.
The spare can behotmeaning that the main module and spare work in parallel. In
this case the switch to spare happens almost instantly. The spare also can becold,
i.e., the spare is in the standby mode and is activated only after the main module
fails.

Below we present an excerpt from the specification that refines theSystem
specification to model dynamic redundancy. Here the valuesin andout of the
variablephasecorrespond to the valuesreading andvoting in the TMR specifica-
tion. The additional execution phasedet is introduced to model failure detection.
The events that model the behaviour at this phase for the hot spare arrangement
are presented below.

EVENTS
· · ·

detectionok1
=̂

when
m1 = 1 ∧ phase = det

then
phase := out ∧ m := m1

flag1 := 1 ∧ flag2 := 1
end

detectionok2
=̂

when
m1 = 0 ∧ m2 = 1 ∧ phase = det

then
phase := out ∧ m := m2 ∧ flag2 := 1

end
detectionnok =̂
when
m1 = 0 ∧ m2 = 0 ∧ phase = det

then
phase := out ∧ m := 0

end
· · ·

The output can be produced successfully if at least one module functions correctly.
If an error is detected then the system switches the failed module off.

Finally, we can also introduce a hybrid arrangement, which combines static
and dynamic redundancy, as shown in Figure 3. The system works as TMR until
a failure of a module occurs. Then the system activates the spare to ”replace” the

7

Module

Module

Module

Input

Output

Spare

Switch

Voter

Disagreement

detector

Figure 3: TMR with a Spare Arrangement

failed module. The full Event-B specifications of this and the previous arrange-
ments can be found in Appendix.

Let us observe that any specification described above is a valid refinement
of our abstract specificationSystem. However, even though the fault tolerance
mechanisms were introduced to increase system reliability, we cannot evaluate
which of the specifications is more optimal from the point of view of reliability.
This problem is caused by the non-deterministic modelling of the failure occur-
rence – the only possible modelling currently available in Event-B. To evaluate re-
liability, we need to replace the non-deterministic modelling of failure occurrence
by the probabilistic ones and use the suitable techniques for reliability evaluation.
Next we present our approach for achieving this.

4 From Event-B Modelling to Probabilistic Model
Checking

To enable formal, probabilistic analysis of reliability inEvent-B we can choose
several options. The first and the most powerful is to rely on probabilistic weak-
est precondition semantics [12] and use probabilistic refinement technique [13]
to evaluate reliability. This technique allows us to express algebraically the relia-
bility of the system as a function of reliabilities of its components. However, for
complex industrial-size systems finding this function might be very complex or
even analytically intractable. A simpler and more scalablesolution is to use prob-
abilistic model checking to obtain numeric solution. To achieve this we need to
augment Event-B models with probabilities in such way that they would become
amenable for probabilistic verification. Then we need to establish connection be-
tween probabilistic verification and reliability assessment.

To tackle the first problem let us observe that Event-B is a state-based formal-

8

ism. The state space of the system specified in Event-B is formed by the values of
the state variables. The transitions between states are determined by the actions
of the system events. The states that can be reached as a result of event execu-
tion are defined by the current state. If we augment Event-B specification with
the probabilities of reaching the next system state from thecurrent one then we
obtain a probabilistic automaton [3]. In case the events aremutually exclusive,
i.e., only one event is enabled at each system state then the specification can be
represented by a Markov chain. Otherwise, it corresponds toa Markov Decision
process [7, 10, 21]. More specifically, it is a discrete time Markov process since
we can use it to describe the states at certain instances of time.

The probabilistic model checking framework developed by Kwiatkowska et
al. [11] supports verification of Discrete-Time Markov Chains (DTMC) and Markov
Decision Processes (MDP). The framework has a mature tool support – the PRISM
model checker [15]

The PRISM modelling language is a high-level state-based language. It relies
on the Reactive Modules formalism of Alur and Henzinger [3].PRISM supports
the use of constants and variables that can be integers, doubles (real numbers) and
Booleans. Constans are used, for instance, to define the probabilities associated
with variable updates. The variables in PRISM are finite-ranged and strongly
typed. They can be either local or global. The definition of aninitial value of a
variable is usually attached to its declaration. The state space of a PRISM model
is defined by the set of all variables, both global and local.

In general, a PRISM specification looks as follows:

dtmc
const doublep11 = . . . ;

. . .

global v : Type init . . . ;
. . .

moduleM1

v1 : Type init . . . ;

[] g11 → p11 : act11 + · · · + p1n : act1n;
[sync] g12 → q11 : act′

11
+ · · · + q1m : act′

1m
;

. . .

endmodule

moduleM2

v2 : Type init . . . ;

[sync] g21 → p21 : act21 + · · · + p2k : act2k;
[] g22 → q21 : act′21 + · · · + q2l : act′

2l
;

. . .

endmodule
. . . .

9

A system specification in PRISM is constructed as a parallel composition of
modules. Modules work in parallel. They can be independent of each other or
interact with each other. Each module has a number of local variablesv1, v2 and
a set of guarded commands that determine its dynamic behaviour. The guarded
commands can have names. Similarly to the events of Event-B,a guarded com-
mand can be executed if its guard evaluates toTRUE. If several guarded com-
mands are enabled then the choice between them can be non-deterministic in case
of MDP or probabilistic (according to the uniform distribution) in case of DTMC.
In general, the body of a guarded command is a probabilistic choice between de-
terministic assignments.

The guarded commands define not only the dynamic behaviour ofa stand-
alone module but can also be used to define syncronisation between modules. If
several modules synchronise then each of them should contain a command defin-
ing the syncronisation condition. These commands should have identical names.
For instance, in our general PRISM specification shown above, the modulesM1

andM2 synchronise. They contain the corresponding guarded commands labelled
with the namesync. The guarded commands that provide synchronisation with
other modules cannot modify the global variables. This allows to avoid read-write
and write-write conflicts on the global variables.

Converting Event-B model into a PRISM model is rather straightforward.
When converting Event-B model into its counterpart, we needto restrict the types
of variables and constants to the types supported by PRISM. The invariants that
describe system properties can be represented as a number oftemporal logic for-
mulas in a list of properties of the model and then can be verified by PRISM if
needed. While converting events into the PRISM guarded commands, we iden-
tify four classes of events: initilisation events, events with parallel deterministic
assignment, non-deterministic assignment and parallel non-deterministic assign-
ment. The conversion of an Event-B event to a PRISM guarded command depends
on its class:

• The initialisation events are used to form the initialisation part of the cor-
responding variable declaration. Hence the initialisation does not have a
corresponding guarded command in PRISM;

• An event with a parallel deterministic assignment

evt =̂ when g then x := x1 ‖ y := y1 ‖ z := z1 end

can be represented by the following guarded command in PRISM:

[] g → (x′ = x1) & (y′ = y1) & (z′ = z1)

Here& denotes the parallel composition;

10

• An event with a non-deterministic assignment

evt =̂ when g then x :∈ {x1, . . . xn} end

can be represented as

[] g → p1 : (x′ = x1) + · · ·+ pn : (x′ = xn)

wherep1, ..., pn are defined according to a certain probability distribution;

• An event with a parallel non-deterministic assignment

evt =̂ when g then x :∈ {x1, . . . xn} ‖

y :∈ {y1, . . . ym} ‖ z :∈ {z1, . . . zk} end

can be represented using the PRISM synchronisation mechanism. It corre-
sponds to a set of the guarded commands modelling syncronisation. These
commands have the identical guards. Their bodies are formedfrom the as-
signments used in the parallel composition of the Event-B action.

moduleX

x : Type init . . . ;

[name] g → p1 : (x′ = x1) + · · ·+ pn : (x′ = xn);

endmodule

moduleY

y : Type init . . . ;

[name] g → q1 : (y′ = y1) + · · · + qm : (y′ = ym);

endmodule

moduleZ

z : Type init . . . ;

[name] g → r1 : (z′ = z1) + · · · + zk : (z′ = zk);

endmodule.

To demonstrate the convertion of an Event-B specification into a PRISM spec-
ification, below we present an excerpt from the PRISM counterpart of the TMR
specification. Here we assume that at each iteration step a module successfully
produces a result with a constant probabilityp.

11

SystemTMR

modulemodule1

m1 : [0..1] init 1;
f : [0..1] init 0;

[m] (phase = 0) & (m1 = 1) & (f = 0) →

p : (m′

1 = 1) & (f ′ = 1)+

+ (1 − p) : (m′

1 = 0) & (f ′ = 1);

[m] (phase = 0) & (m1 = 0) & (f = 0) → (f ′ = 1);

[] (phase = 0) & (f = 1) → (phase′ = 1) & (f ′ = 0);

endmodule

modulemodule2 . . .

modulemodule3 . . .

modulevoter

res : bool init true;

[] (phase = 1) & (m1 + m2 + m3 > 1) → (phase′ = 0);

[] (phase = 1) & (m1 + m2 + m3 ≤ 1) → (res′ = false);

endmodule

While converting an Event-B model into PRISM we could have modelled the
parallel work of the system modules in the same way as we have done it in the
Event-B specifications, i.e., using non-determinism to represent parallel behaviour
and explicitly modelling the phases of system execution. However, we can also
directly use the synchronisation mechanism of PRISM because all the modules
update only their local variables and no read-write conflictcan occur. This so-
lution is presented in the excerpt above. In theSystemTMR specification, the
guarded commands of the modulesmodule1, module2 andmodule3 are synchro-
nised (as designated by them label). In themodule1 we additionally update the
global variablephase to model transition of the system to the voting phase.

5 Reliability Assessment via Probabilistic Model Check-
ing

In engineering, reliability [20, 14] is generally measuredby the probability that
an entityE can perform a required function under given conditions for the time
interval[0, t]:

R(t) = P [E not failed over time[0, t]].

12

The analysis of the abstract and refined specification shows that we can clearly
distinguish between two classes of systems states: operating and failed. In our
case the operating states are the states where the variableres has the valueTRUE.
Correspondingly, the failed states are the states where thevariableres has the
valueFALSE. While the system is in an operating state, it continues to iterate.
When the system fails, it deadlocks. Therefore, we definereliability of the system
as a probability of staying opertaional for a given number ofiterations.

Let T be the random variable measuring the number of iterations before the
deadlock is reached andF (t) its cumulative distribution function. Then clearly
R(t) andF (t) are related as follows:

R(t) = P [T > t] = 1 − P [T ≤ t] = 1 − F (t).

It is straightforward to see that our definition correspondsto the standard defini-
tion of reliability given above. Now let us discuss how to employ PRISM model
checking to assess system reliability.

While analysing a PRISM model, we define a number of temporal logic prop-
erties and systematically check the model to verify them. Properties of discrete-
time PRISM models, i.e, DTMC and MDP, are expressed formallyin the proba-
bilistic computational tree logic [9]. The PRISM property specification language
supports a number of different types of properties. For example, theP operator is
used to refer to the probability of a certain event occurrence.

Since we are interested in assessment of system reliability, we have to verify
invariant properties, i.e., properties maintained by the system globally. In the
PRISM property specification language, the operatorG is used inside the operator
P to express properties of such type. In general, the property

P=?[G ≤ t prop]

returns a probability that the predicateprop remainsTRUE in all states within
the period of timet.

To evaluate reliability of a system, we have to assess a probability of system
staying operational within timet. We define a predicateOP that defines a subset
of all system states where the system is operational. Then, the PRISM property

P=?[G ≤ T OP] (1)

gives us the probability that the system will stay operational during the firstT iter-
ations, i.e, it is a probability that any state in which the system will be during this
time belongs to the subset of operational states. In other words, the property (1)
defines the reliability function of the system.

13

Let us return to our examples. As we discussed previously, the operational
states of our systems are defined by the predicateres = true, i.e.,OP =̂ res =
true. Then the PRISM property

P=?[G ≤ T (res = true)] (2)

denotes the reliability of our systems within timeT .
To evaluate reliability of our refinement alternative, let us assume that a mod-

ule produces a result successfully with the probabilityp equal to0.999998. In
Figure 4 we present the results of analysis of reliability upto 500000 iterations.
Figure 4 (a) shows the comparative results between single-module and both of
TMR systems. The results show that the triple modular redundant system with a
spare always gives better reliability. Note that using the simple TMR arrangement
is better comparing to a single-module only up to approximately 350000 itera-
tions. In Figure 4 (b) we compare single-module and standby spare arrangements.
The results clearly indicate that the better reliability isprovided by the dynamic
redundancy systems and that using of the cold spare arrangement is always more
reliable.

(a) (b)

Figure 4: Resulting Reliabilities

It would be interesting to evaluate precision of the resultsobtained by the
model checking with PRISM. For our case study it is possible to derive analytical
representations of reliability functions, which can be used for comparison with
verification results of property (2). It is well-known that the reliability of a single-
module system isRM (t) = pt and it is easy to show that the reliability of TMR
system, consits of three identical modules, is

RTMR(t) = R3

M
(t) + 3R2

M
(t)(1 − RM(t)) =

= 3R2

M
(t) − 2R3

M
(t) = 3p2t − 2p3t.

Indeed, we can also calculate that the standby spare arrangement with a faulty
detector has the resulting reliability

RHSS = 1 − (1 − pt)2

14

for the hot spare, and the reliability

RCSS = pt(1 + t(1 − p))

for the cold spare module. Finally, for the TMR arrangement,with a spare, the
resulting reliability is

RTMRS = (6t − 8)p3t − 6tp3t−1 + 9p2t.

It is easy to verify that the results obtained by the model checking are identical to
those can be calculated from the formulas presented above. This fact demonstrates
the feasibility of using the PRISM model checker for reliability assessment.

6 Conclusion

In this paper we have proposed an approach to integrating reliability assessment
into the refinement process. The proposed approach enables reliability assessment
at early design phases that allows the designers to evaluatereliability of different
design alternatives already at the development phase.

Our approach integrates two frameworks: refinement in Event-B and proba-
bilistic model checking. Event-B supported by the RODIN tool platform provides
us with a suitable framework for development of complex industrial-size systems.
By integrating probabilistic verification supported by PRISM model checker we
open a possibility to reason about non-functional system requirements in the re-
finement process.

The Event-B framework has been extended by Hallerstede and Hoang [8] to
take into account probabilistic behaviour. They introducequalitative probabilistic
choice operator to reason about almost certain termination. This operator attempts
to bound demonic non-determinism that, for instance, allows to demonstrate con-
vergence of certain protocols. However, this approach is not suitable for reliabil-
ity assessment since explicit quantitative representation of reliability would not be
supported.

Kwiatkowska et al. [11] proposed an approach to assessing dependability of
control systems using continuous time Markov chains. The general idea is similar
to ours – to formulate reliability as a system property to be verified. However,
this approach aims at assessing reliability of already developed system. In our
approach reliability assessment proceeds hand-in-hand with system development.

The similar topic in the context of refinement calculus has been explored pre-
viously by Morgan et al. [13, 12]. In this approach the probabilistic refinement
was used to assess system dependability. However, this workdoes not have the
corresponding tool support, so the use of this approach in industrial practice might
be cumbersome. In our approach we see a great benefit in integrating frameworks
that have mature tool support [18, 15].

15

When using model checking we need to validate whether the analysed model
represents the behaviour of the real system accurately enough. For example, the
validation can be done if we demonstrate that model checkingprovides a good
approximation of the corresponding algebraic solutions. In this paper we delib-
erately chosen the examples for which algebraic solutions can be provided. The
experiments have demonstrated that the results obtained bymodel checking accu-
rately match the algebraic solutions.

In our future work it would be interesting to further explorethe connection
between Event-B modeling and dependability assessment. Inparticular, an ad-
ditional study are required to establish a formal basis for converting all types of
non-deterministic assignments into the probabilistic ones. Furthermore, it would
be interesting to explore the topic of probabilistic data refinement in connection
with dependability assessment.

16

References

[1] J.-R. Abrial. Extending B without changing it (for developing distributed
systems). In H. Habiras, editor,First Conference on the B method, pages
169–190. IRIN Institut de recherche en informatique de Nantes, 1996.

[2] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 2005.

[3] R. Alur and T. Henzinger. Reactive modules. InFormal Methods in System
Design, pages 7–48, 1999.

[4] D. Craigen, S. Gerhart, and T.Ralson. Case study: Paris metro signaling
system. InIEEE Software, pages 32–35, 1994.

[5] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[6] EU-project DEPLOY.http://www.deploy-project.eu/.

[7] W. Feller. An Introduction to Probability Theory and its Applications, vol-
ume 1. John Wiley & Sons, 1967.

[8] S. Hallerstede and T. S. Hoang. Qualitative probabilistic modelling in Event-
B. In J. Davies and J. Gibbons, editors,IFM 2007, LNCS 4591, pages 293–
312, 2007.

[9] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability.
In Formal Aspects of Computing, pages 512–535, 1994.

[10] J. G. Kemeny and J. L. Snell.Finite Markov Chains. D. Van Nostrand
Company, 1960.

[11] M. Kwiatkowska, G. Norman, and D. Parker. Controller dependability anal-
ysis by probabilistic model checking. InControl Engineering Practice,
pages 1427–1434, 2007.

[12] A. K. McIver and C. C. Morgan.Abstraction, Refinement and Proof for
Probabilistic Systems. Springer, 2005.

[13] A. K. McIver, C. C. Morgan, and E. Troubitsyna. The probabilistic
steam boiler: a case study in probabilistic data refinement.In J. Grundy,
M. Schwenke, and T. Vickers, editors,Proc. International Refinement Work-
shop, ANU, Canberra. Springer-Verlag, 1998.

[14] P. D. T. O’Connor.Practical Reliability Engineering, 3rd ed. John Wiley &
Sons, 1995.

17

[15] PRISM probabilistic model checker.
http://www.prismmodelchecker.org.

[16] Rigorous Open Development Environment for Complex Systems (RODIN).
IST FP6 STREP project,http://rodin.cs.ncl.ac.uk/.

[17] Rigorous Open Development Environment for Complex Systems (RODIN).
Deliverable D7, Event-B Language,http://rodin.cs.ncl.ac.uk/.

[18] RODIN Event-B platform.http://www.event-b.org/.

[19] N. Storey.Safety-Critical Computer Systems. Addison-Wesley, 1996.

[20] A. Villemeur. Reliability, Availability, Maintainability and Safety Assess-
ment. John Wiley & Sons, 1995.

[21] D. J. White.Markov Decision Processes. John Wiley & Sons, 1993.

18

Appendix

MACHINE System

VARIABLES

res

INVARIANTS

inv1 : res ∈ BOOL

EVENTS

Initialisation

begin

act1 : res := TRUE

end

Event output=̂

when

grd1 : res = TRUE

then

act1 : res :∈ BOOL

end

END

19

MACHINE SystemTMR

REFINES System

SEES cnt

VARIABLES

m1

m2

m3

phase

flag1

flag2

flag3

res

INVARIANTS

inv1 : m1 ∈ {0 , 1}

inv2 : m2 ∈ {0 , 1}

inv3 : m3 ∈ {0 , 1}

inv4 : phase ∈ PHASES

inv5 : flag1 ∈ {0 , 1}

inv6 : flag2 ∈ {0 , 1}

inv7 : flag3 ∈ {0 , 1}

inv8 : m1 + m2 + m3 > 1 ⇒ res = TRUE

EVENTS

Initialisation

begin

act1 : m1 := 1

act2 : m2 := 1

act3 : m3 := 1

act4 : phase := reading

act5 : flag1 := 1

act6 : flag2 := 1

act7 : flag3 := 1

20

act8 : res := TRUE

end

Event moduleok1=̂

when

grd1 : m1 = 1

grd2 : flag1 = 1

grd3 : phase = reading

then

act1 : m1 :∈ {0 , 1}

act2 : flag1 := 0

end

Event modulefailed1=̂

when

grd1 : m1 = 0

grd2 : flag1 = 1

grd3 : phase = reading

then

act1 : flag1 := 0

end

Event moduleok2=̂

when

grd1 : m2 = 1

grd2 : flag2 = 1

grd3 : phase = reading

then

act1 : m2 :∈ {0 , 1}

act2 : flag2 := 0

end

Event modulefailed2=̂

when

grd1 : m2 = 0

grd2 : flag2 = 1

21

grd3 : phase = reading

then

act1 : flag2 := 0

end

Event moudleok3=̂

when

grd1 : m3 = 1

grd2 : flag3 = 1

grd3 : phase = reading

then

act1 : m3 :∈ {0 , 1}

act2 : flag3 := 0

end

Event modulefailed3=̂

when

grd1 : m3 = 0

grd2 : flag3 = 1

grd3 : phase = reading

then

act1 : flag3 := 0

end

Event synchr=̂

when

grd1 : flag1 = 0

grd2 : flag2 = 0

grd3 : flag3 = 0

grd4 : phase = reading

then

act1 : phase := voting

end

Event voter ok =̂

refines output

22

when

grd1 : res = TRUE

grd2 : m1 + m2 + m3 > 1

grd3 : phase = voting

then

act1 : flag1 := 1

act2 : flag2 := 1

act3 : flag3 := 1

act4 : phase := reading

end

Event voter nok=̂

refines output

when

grd1 : res = TRUE

grd2 : m1 + m2 + m3 ≤ 1

grd3 : phase = voting

then

act1 : res := FALSE

end

END

23

MACHINE SystemHSS

REFINES System

SEES cnt1

VARIABLES

m1

m2

phase

flag1

flag2

res

m

INVARIANTS

inv1 : m1 ∈ {0 , 1}

inv2 : m2 ∈ {0 , 1}

inv3 : phase ∈ PHASES

inv4 : flag1 ∈ {0 , 1}

inv5 : flag2 ∈ {0 , 1}

inv6 : m ∈ {0 , 1}

inv7 : m1 + m2 > 0 ⇒ m = 1

inv8 : m = 1 ⇒ res = TRUE

EVENTS

Initialisation

begin

act1 : m1 := 1

act2 : m2 := 1

act3 : phase := in

act4 : flag1 := 1

act5 : flag2 := 1

act6 : res := TRUE

act7 : m := 1

end

24

Event moduleok1=̂

when

grd1 : m1 = 1

grd2 : flag1 = 1

grd3 : phase = in

then

act1 : m1 :∈ {0 , 1}

act2 : flag1 := 0

end

Event moduleok2=̂

when

grd1 : m2 = 1

grd2 : flag2 = 1

grd3 : phase = in

then

act1 : m2 :∈ {0 , 1}

act2 : flag2 := 0

end

Event modulefailed2=̂

when

grd1 : m2 = 0

grd2 : flag2 = 1

grd3 : phase = in

then

act1 : flag2 := 0

end

Event synchr=̂

when

grd1 : flag1 = 0

grd2 : flag2 = 0

grd3 : phase = in

then

25

act1 : phase := det

end

Event detectionok1=̂

when

grd1 : m1 = 1

grd2 : phase = det

then

act1 : m := m1

act2 : flag1 := 1

act3 : flag2 := 1

act4 : phase := out

end

Event detectionok2=̂

when

grd1 : m1 = 0

grd2 : m2 = 1

grd3 : phase = det

then

act1 : m := m2

act2 : flag2 := 1

act3 : phase := out

end

Event detectionnok=̂

when

grd1 : m1 = 0

grd2 : m2 = 0

grd3 : phase = det

then

act1 : m := 0

act2 : phase := out

end

Event outputok =̂

26

refines output

when

grd1 : res = TRUE

grd2 : m = 1

grd3 : phase = out

then

act1 : phase := in

end

Event outputnok=̂

refines output

when

grd1 : res = TRUE

grd2 : m = 0

grd3 : phase = out

then

act1 : res := FALSE

end

END

27

MACHINE SystemCSS

REFINES System

SEES cnt1

VARIABLES

m1

m2

phase

flag1

flag2

m

res

INVARIANTS

inv1 : m1 ∈ {0 , 1}

inv2 : m2 ∈ {0 , 1}

inv3 : phase ∈ PHASES

inv4 : flag1 ∈ {0 , 1}

inv5 : flag2 ∈ {0 , 1}

inv6 : m ∈ {0 , 1}

inv7 : m1 + m2 > 0 ⇒ m = 1

inv8 : m = 1 ⇒ res = TRUE

inv10 : flag1 = 1 ⇒ (flag2 = 0 ∧ m2 = 1)

inv11 : flag2 = 1 ⇒ (flag1 = 0 ∧ m1 = 0)

EVENTS

Initialisation

begin

act1 : m1 := 1

act2 : m2 := 1

act3 : flag1 := 1

act4 : flag2 := 0

act5 : phase := in

act6 : m := 1

28

act7 : res := TRUE

end

Event module1=̂

when

grd1 : m1 = 1

grd2 : flag1 = 1

grd3 : phase = in

then

act1 : m1 :∈ {0 , 1}

act2 : phase := det

end

Event module2=̂

when

grd1 : m2 = 1

grd2 : flag2 = 1

grd3 : phase = in

then

act1 : m2 :∈ {0 , 1}

act2 : phase := det

end

Event detectionok1=̂

when

grd1 : m1 = 1

grd2 : phase = det

then

act1 : m := m1

act2 : phase := out

end

Event detectionnok1=̂

when

grd1 : m1 = 0

grd2 : flag1 = 1

29

grd3 : phase = det

then

act1 : flag1 := 0

act2 : flag2 := 1

act3 : phase := in

end

Event detectionok2=̂

when

grd1 : m2 = 1

grd2 : flag2 = 1

grd3 : phase = det

then

act1 : m := m2

act2 : phase := out

end

Event detectionnok2=̂

when

grd1 : m2 = 0

grd2 : flag2 = 1

grd3 : phase = det

then

act1 : m := 0

act2 : flag2 := 0

act3 : phase := out

end

Event outputok =̂

refines output

when

grd1 : res = TRUE

grd2 : m = 1

grd3 : phase = out

then

30

act1 : phase := in

end

Event outputnok=̂

refines output

when

grd1 : res = TRUE

grd2 : m = 0

grd3 : phase = out

then

act1 : res := FALSE

end

END

31

MACHINE SystemTMRS

REFINES System

SEES cnt

VARIABLES

m1

m2

m3

m4

phase

flag1

flag2

flag3

flag4

err

res

INVARIANTS

inv1 : m1 ∈ {0 , 1}

inv2 : m2 ∈ {0 , 1}

inv3 : m3 ∈ {0 , 1}

inv4 : m4 ∈ {0 , 1}

inv5 : phase ∈ PHASES

inv6 : flag1 ∈ {0 , 1}

inv7 : flag2 ∈ {0 , 1}

inv8 : flag3 ∈ {0 , 1}

inv9 : flag4 ∈ {0 , 1}

inv10 : err ∈ 0 .. 4

inv11 : (m1 + m2 + m3 > 1) ∧ (err = 0) ⇒ res = TRUE

inv12 : (m1 + m2 + m3 + m4 > 1) ∧ (err 6= 0) ⇒ res = TRUE

inv13 : err = 1 ⇒ m1 = 0

inv14 : err = 2 ⇒ m2 = 0

inv15 : err = 3 ⇒ m3 = 0

32

EVENTS

Initialisation

begin

act1 : m1 := 1

act2 : m2 := 1

act3 : m3 := 1

act4 : m4 := 1

act5 : phase := reading

act6 : flag1 := 1

act7 : flag2 := 1

act8 : flag3 := 1

act9 : flag4 := 0

act10 : err := 0

act11 : res := TRUE

end

Event moduleok1=̂

when

grd1 : m1 = 1

grd2 : flag1 = 1

grd3 : phase = reading

then

act1 : m1 :∈ {0 , 1}

act2 : flag1 := 0

end

Event modulefailed1=̂

when

grd1 : m1 = 0

grd2 : flag1 = 1

grd3 : phase = reading

then

act1 : flag1 := 0

end

Event moduleok2=̂

33

when

grd1 : m2 = 1

grd2 : flag2 = 1

grd3 : phase = reading

then

act1 : m2 :∈ {0 , 1}

act2 : flag2 := 0

end

Event modulefailed2=̂

when

grd1 : m2 = 0

grd2 : flag2 = 1

grd3 : phase = reading

then

act1 : flag2 := 0

end

Event moduleok3=̂

when

grd1 : m3 = 1

grd2 : flag3 = 1

grd3 : phase = reading

then

act1 : m3 :∈ {0 , 1}

act2 : flag3 := 0

end

Event modulefailed3=̂

when

grd1 : m3 = 0

grd2 : flag3 = 1

grd3 : phase = reading

then

act1 : flag3 := 0

34

end

Event moduleok4=̂

when

grd1 : m4 = 1

grd2 : flag4 = 1

grd3 : phase = reading

then

act1 : m4 :∈ {0 , 1}

act2 : flag4 := 0

end

Event modulefailed4=̂

when

grd1 : m4 = 0

grd2 : flag4 = 1

grd3 : phase = reading

then

act1 : flag4 := 0

end

Event synchr=̂

when

grd1 : flag1 = 0

grd2 : flag2 = 0

grd3 : flag3 = 0

grd4 : flag4 = 0

grd5 : phase = reading

then

act1 : phase := voting

end

Event voter ok =̂

refines output

when

35

grd1 : res = TRUE

grd2 : err = 0

grd3 : m1 + m2 + m3 = 3

grd4 : phase = voting

then

act1 : flag1 := 1

act2 : flag2 := 1

act3 : flag3 := 1

act4 : phase := reading

end

Event voter ok1=̂

refines output

when

grd1 : res = TRUE

grd2 : err = 0

grd3 : m1 + m2 + m3 = 2

grd4 : m1 = 0

grd5 : phase = voting

then

act1 : err := 1

act2 : flag2 := 1

act3 : flag3 := 1

act4 : flag4 := 1

act5 : phase := reading

end

Event voter ok2=̂

refines output

when

grd1 : res = TRUE

grd2 : err = 0

grd3 : m1 + m2 + m3 = 2

grd4 : m2 = 0

grd5 : phase = voting

36

then

act1 : err := 2

act2 : flag1 := 1

act3 : flag3 := 1

act4 : flag4 := 1

act5 : phase := reading

end

Event voter ok3=̂

refines output

when

grd1 : res = TRUE

grd2 : err = 0

grd3 : m1 + m2 + m3 = 2

grd4 : m3 = 0

grd5 : phase = voting

then

act1 : err := 3

act2 : flag1 := 1

act3 : flag2 := 1

act4 : flag4 := 1

act5 : phase := reading

end

Event voter nok=̂

refines output

when

grd1 : res = TRUE

grd2 : err = 0

grd3 : m1 + m2 + m3 ≤ 1

grd4 : phase = voting

then

act1 : res := FALSE

end

Event voter’ ok1=̂

37

refines output

when

grd1 : res = TRUE

grd2 : err = 1

grd3 : m2 + m3 + m4 > 1

grd4 : phase = voting

then

act1 : flag2 := 1

act2 : flag3 := 1

act3 : flag4 := 1

act4 : phase := reading

end

Event voter’ nok1=̂

refines output

when

grd1 : res = TRUE

grd2 : err = 1

grd3 : m2 + m3 + m4 ≤ 1

grd4 : phase = voting

then

act1 : res := FALSE

end

Event voter’ ok2=̂

refines output

when

grd1 : res = TRUE

grd2 : err = 2

grd3 : m1 + m3 + m4 ≥ 1

grd4 : phase = voting

then

act1 : flag1 := 1

act2 : flag3 := 1

38

act3 : flag4 := 1

act4 : phase := reading

end

Event voter’ nok2=̂

refines output

when

grd1 : res = TRUE

grd2 : err = 2

grd3 : m1 + m3 + m4 ≤ 1

grd4 : phase = voting

then

act1 : res := FALSE

end

Event voter’ ok3=̂

refines output

when

grd1 : res = TRUE

grd2 : err = 3

grd3 : m1 + m2 + m4 ≥ 1

grd4 : phase = voting

then

act1 : flag1 := 1

act2 : flag2 := 1

act3 : flag4 := 1

act4 : phase := reading

end

Event voter’ nok3=̂

refines output

when

grd1 : res = TRUE

grd2 : err = 3

grd3 : m1 + m2 + m4 ≤ 1

39

grd4 : phase = voting

then

act1 : res := FALSE

end

END

40

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2263-4
ISSN 1239-1891

