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Abstract

We consider a general multiobjective optimization problem with five basic
optimality principles: efficiency, weak and proper Pareto optimality, strong
efficiency and lexicographic optimality. We generalize the concept of trade-
off directions defining them as some optimal surface of appropriate cones. In
convex optimization, the contingent cone can be used for all optimality prin-
ciples except lexicographic optimality where the cone of feasible directions is
useful. In nonconvex case the contingent cone and the cone of locally feasible
directions with lexicographic optimality are helpful. We derive necessary and
sufficient geometrical optimality conditions in terms of corresponding trade-
off directions for both convex and nonconvex cases. We analyze similarities
and differences between the cases.

Keywords: generalized trade-off directions, optimality principles, multi-
objective optimization, geometrical characterization, convex and nonconvex
optimization.



1 Introduction

The overall goal in multiobjective optimization is to find a compromise be-
tween several conflicting objectives which is best-fit to the needs of a decision
maker. This compromise is usually refereed to as an optimality principle.
Various mathematical definitions of the optimality principle can be derived
in several different ways depending on the needs of the solution approaches
used. Moreover, sometimes the use of one definition may be advantageous
to the other due to computational complexity reasons.

The usage of trade-offs as a tool containing essential information about
compromise have been suggested in series of papers (see e.g. [18] and [19]),
where certain scalarizing functions were used to define the concept. Another
approach, proposed in [6], [7], consists in generating solution satisfying some
pre-specified bounds on trade-off information by means of a scalarizing func-
tion. In [5] for convex (including nondifferentiable) problems, the concept of
trade-offs has been generalized into a cone of trade-off directions, which was
defined as a Pareto optimal surface of a contingent (tangent) cone located at
the point considered.

The usage of contingent and normal cones as well as the cone of feasible
directions is a natural choice in the case of convex optimization [16]. In
nonconvex optimization, the main difficulty arises due to the fact that the
contingent cone as well as the cone of feasible directions may loose convexity.
Two additional types of cones are proved to be helpful - tangent cone and
cone of local feasible directions [2]. The guaranteed property of convexity of
these cones assures that they can be used to overcome some difficulties which
appear in nonconvex optimization. However in nonconvex case, tangent cones
do not necessarily represent the shape of the set considered even locally
and the relation to trade-off directions is lost. Therefore to define trade-off
directions in nonconvex case, we must use nonconvex contingent cones as it
was suggested originally in [8] for smooth problems and later generalized for
not necessarily differentiable problems in [11].

The aim of this paper is to describe necessary and sufficient optimal-
ity conditions in terms of trade-off directions for both convex and nonconvex
cases. The paper is organized as follows. In Section 2, we formulate a general
multiobjective problem and introduce five basic optimality principles, which
are the most common in multiobjective optimization. We give traditional
definitions and geometrical ones via appropriate cones. For every optimal-
ity principle considered, we define generalized trade-off directions for convex
and nonconvex cases in Section 3. Giving up convexity naturally means that
we need local instead of global analysis. Section 4 presents the main results
showing interrelation between optimal solutions and corresponding general-
ized trade-off directions. The results presented for convex and nonconvex
cases and summarized in two schemes. The paper is concluded in Section 5,
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where the differences and similarities between two cases are analyzed.

2 Basic optimality principles

We consider general multiobjective optimization problems of the following
form:

min
x∈S

{f1(x), f2(x), . . . , fk(x)},

where the objective functions fi : Rn → R for all i ∈ Ik := {1, . . . , k} are
supposed to be continuous. The decision vector x belongs to the nonempty
feasible set S ⊂ Rn. The image of the feasible set is denoted by Z ⊂ Rk, i.e.
Z := f(S). Elements of Z are termed objective vectors and they are denoted
by z = f(x) = (f1(x), f2(x), . . . , fk(x))T .

The sum of two sets A and E is defined by A+E = {a+e | a ∈ A, e ∈ E}.
The interior, closure, convex hull and complement of a set A are denoted by
int A, cl A, conv A and AC , respectively.

A set A is a cone if λx ∈ A whenever x ∈ A and λ > 0. We denote
the positive orthant of Rk by Rk

+ = {d ∈ Rk | di ≥ 0 for every i ∈ Ik}.
The positive orthant is also known as standard ordering cone. The negative
orthant Rk

−
is defined respectively. Note, that Rk

−
and Rk

+ are closed convex
cones. Furthermore, an open ball with center x and radius δ is denoted by
B(x; δ).

In what follows, the notation z < y for z, y ∈ Rk means that zi < yi for
every i ∈ Ik and, correspondingly, z ≤ y stands for zi ≤ yi for every i ∈ Ik.

Simultaneous optimization of several objectives for multiobjective opti-
mization problem is not a straightforward task. Contrary to the the single
objective case, the concept of optimality is not unique in multiobjective cases.

Below we give traditional definitions of five well-known and most funda-
mental principles of optimality (see e.g. [3], [9]).

Weak Pareto Optimality. An objective vector z∗ ∈ Z is weakly Pareto opti-
mal if there does not exist another objective vector z ∈ Z such that
zi < z∗i for all i ∈ Ik.

Pareto optimality or efficiency. An objective vector z∗ ∈ Z is Pareto opti-
mal or efficient if there does not exist another objective vector z ∈ Z

such that zi ≤ z∗i for all i ∈ Ik and zj < z∗j for at least one index j.

Proper Pareto Optimality. An objective vector z∗ ∈ Z is properly Pareto op-
timal if there exists no objective vector z ∈ Z such that z ∈ C for some
convex cone C, Rk

−
\ {0} ⊂ int C, attached to z∗.
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Strong Efficiency. An objective vector z∗ ∈ Z is strongly Pareto optimal if
for all i ∈ Ik there exists no objective vector z ∈ Z such that zi < z∗i
or in other words z∗ ∈ Z optimizes all objectives zi, i ∈ Ik.

Lexicographic Optimality. An objective vector z∗ ∈ Z is lexicographically op-
timal if for all other objective vector z ∈ Z one of the following two
conditions holds:
1) z = z∗

2) ∃ i ∈ Ik : (z∗i < zi) ∧ (∀j ∈ Ii−1 : z∗j = zj), where I0 = ∅.

A solution is Pareto optimal if improvement in some objectives can only
be obtained at the expense of some other objective(s) (see e.g. [3], [9]).
The set of weakly Pareto optimal solutions contains the Pareto optimal so-
lutions together with solutions where all the objectives cannot be improved
simultaneously (see, e.g. [3], [9]). The set of improperly Pareto optimal so-
lutions represents a set of efficient points with certain abnormal or irregular
properties. Henceforth we use only one of the possible concepts of proper
efficiency, which is according to Henig [4]. This concept uses a convex cone,
which interior part must contain an inverse of standard ordering cone, to
prohibit tradeoffs towards directions within the cone. Strong efficiency is
generally referred to the solutions which deliver optimality to each objective.
Despite feasibility of such solutions is rare, they provide an important in-
formation on the lower bound for each objective in the Pareto optimal set.
Lexicographic optimality principle is generally applied to the situation where
objectives have no equal importance anymore but ordered according to their
significance.

Next we define the five sets of efficient solutions by using appropriate
ordering cones. It is trivial to verify that the definitions of optimality and
efficiency formulated above are equivalent to those following below.

Definition 1 The weakly Pareto optimal set is

WP (Z) := {z ∈ Z | (z + int Rk
−
) ∩ Z = ∅};

the Pareto optimal set is

PO(Z) := {z ∈ Z | (z + Rk
−
\ {0}) ∩ Z = ∅};

the properly Pareto optimal set is defined as

PP (Z) := {z ∈ Z | (z + C \ {0}) ∩ Z = ∅}

for some convex cone C such that Rk
−
\ {0} ⊂ int C;

the strongly efficient set is

SE(Z) := {z ∈ Z | (z + (Rk
+)C) ∩ Z = ∅};
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and the lexicographically optimal set is

LO(Z) = {z ∈ Z | (z + (Ck
lex)

C) ∩ Z = ∅},

where the lexicographic cone is

Ck
lex := {0} ∪ {d ∈ Rk | ∃ i ∈ Ik such that di > 0 and

dj = 0 ∀ j < i}.

Note that SE(Z) ⊂ PP (Z) ⊂ PO(Z) ⊂ WP (Z) and LO(Z) ⊂ PP (Z) ⊂
PO(Z) ⊂ WP (Z).

The corresponding local concepts are defined in the following. Naturally,
in a convex case, local and global concepts are equal.

Definition 2 The locally weakly Pareto optimal set with z = f(x) ∈ Z is
given as

LWP (Z) =
⋃

δ>0

{

z ∈ Z | (z + int Rk
−
) ∩ Z ∩ f(B(x; δ)) = ∅

}

;

the locally Pareto optimal set as

LPO(Z) =
⋃

δ>0

{

z ∈ Z | (z + Rk
−
\ {0}) ∩ Z ∩ f(B(x; δ)) = ∅

}

;

the locally properly Pareto optimal set as

LPP (Z) =
⋃

δ>0

{

z ∈ Z | (z + C \ {0}) ∩ Z ∩ f(B(x; δ)) = ∅
}

for some convex cone C such that Rk
−
\ {0} ⊂ int C;

the locally strongly efficient set with z = f(x) is defined as

LSE(Z) :=
⋃

δ>0

{

z ∈ Z | (z + (Rk
+)C) ∩ Z ∩ f(B(x; δ)) = ∅

}

;

and the locally lexicographically optimal set with z = f(x) is

LLO(Z) =
⋃

δ>0

{

z ∈ Z | (z + (Ck
lex)

C) ∩ Z ∩ f(B(x; δ)) = ∅
}

.

Note that LSE(Z) ⊂ LPP (Z) ⊂ LPO(Z) ⊂ LWP (Z) and LLO(Z) ⊂
LPP (Z) ⊂ LPO(Z) ⊂ LWP (Z).
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3 Generalized trade-off directions

The concept of trade-offs in multiobjective optimization is a key point to
define compromise between conflicting objectives. It can be used to describe
solutions which linearly approximate the feasible region and which are mu-
tually non-dominated with respect to the given optimality principle. The
trade-off directions can be used in many algorithms which requires specify-
ing directions which may lead fast to the solution that is most preferred by
the decision maker (see e.g. [1], [9]).

Since the contingent cones linearly approximates the shape of the feasi-
ble set, equally well in both convex (global approximation) and nonconvex
(local approximation) cases, it can be used to define the generalized trade-off
directions. A (weakly) Pareto surface of the contingent cone serves for that
purposes.

Definition 3 The contingent cone of a set Z ⊂ Rk at z ∈ Z is defined as

Kz(Z) := {d ∈ Rk |

there exist tj ց 0 and dj → d such that z + tjdj ∈ Z}.

Definition 4 The cone of feasible directions of a set Z ⊂ Rk at z ∈ Z is
denoted by

Dz(Z) := {d ∈ Rk |

there exists t > 0 such that z + td ∈ Z}.

The following definition provides regularity condition for Z at z ∈ Z.

Definition 5 The set Z is called regular at z ∈ Z if Dz(Z) = Kz(Z).

In convex case, the sets of generalized trade-off directions can be defined
as follows

Definition 6 Let Z be convex. The set of generalized trade-off directions is
defined as:

- in case of weak Pareto optimality:

GWP (Z) := WP (Kz(Z));

- in case of Pareto optimality (efficiency):

GPO(Z) := PO(Kz(Z));

- in case of proper Pareto optimality:

GPP (Z) := PO(Kz(Z));
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- in case of strong efficiency:

GSE(Z) := SE(Kz(Z)) = SE(Dz(Z));

- in case of lexicographic optimality:

GLO(Z) := LO(Dz(Z)).

Note that GPO(Z) = GPP (Z) by definition since Pareto optimality can be
seen as a particular case of proper Pareto optimality with C = Rk

−
. It is also

easy to see that in convex case SE(Kz(Z)) = SE(Dz(Z)) follows directly
from the definitions and Lemma 1.

In nonconvex case, the cone of feasible directions Dz(Z) does not describe
the shape of Z locally. Thus, we introduce a cone of locally feasible directions,
which reflects the shape of Z locally (see e.g. [12]).

Definition 7 The cone of locally feasible directions of a set Z ⊂ Rk at z ∈ Z

is denoted by
Fz(Z) = {d ∈ Rk |

there exists t > 0 such that z + τd ∈ Z for all τ ∈ (0, t]}.

Notice that, since two solutions are considered to be mutually lexico-
graphically non-dominated if they have the same objective vectors, we have
to use the cone of feasible directions in the definition of the set of generalized
trade-off directions in case with lexicographic optimality. Indeed, the set of
generalized trade-off directions in case with local lexicographic optimality is
either empty or one point 0 (origin of Fz(Z)) only, so it becomes indifferent
if Dz(Z) is closed or open, what is not true in cases with other types of local
optimality.

The following definition provides local regularity condition for Z at z ∈ Z.

Definition 8 The set Z is called locally regular at z ∈ Z if Fz(Z) = Kz(Z).

For nonconvex cases, Clarke [2] has defined a convex tangent cone in the
following way.

Definition 9 The tangent cone of a set Z ⊂ Rk at z ∈ Z is given by the
formula

Tz(Z) = {d ∈ Rk |

for all tj ց 0 and zj → z with zj ∈ Z,

there exists dj → d with zj + tjdj ∈ Z}.

The following basic relations can be derived from the definitions of the
concepts used and from [12], [17].
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cl Dz(Z) = Kz(Z) ⇐ Regularity
⇑

Convexity ⇒ Tangent Regularity
⇓

cl Fz(Z) = Kz(Z) ⇐ Local regularity

Figure 1: Interconnection between variuos types of regularity.

Lemma 1 For the cones Kz(Z), Dz(Z), Tz(Z) and Fz(Z) we have the fol-
lowing

a) Kz(Z) and Tz(Z) are closed and Tz(Z) is convex.

b) 0 ∈ Kz(Z) ∩ Dz(Z) ∩ Tz(Z) ∩ Fz(Z).

c) Z ⊂ z + Dz(Z).

d) cl Fz(Z) ⊂ Kz(Z) ⊂ cl Dz(Z).

e) Tz(Z) ⊂ Kz(Z).

f) If Z is convex, then cl Fz(Z) = Tz(Z) = Kz(Z) = cl Dz(Z).

Note that, under convexity assumption, for any z ∈ Z we have cl Fz(Z) =
Kz(Z) (see e.g. [17]), i.e. local regularity defines a bit stronger requirement
on a local structure of a set than the convexity assumption. At the same time
local regularity does not necessarily imply cl Dz(Z) = Kz(Z), the condition
which is guaranteed under convexity assumption.

Let us point out once again that contingent cones can be nonconvex in
which case their polar cones are irrelevant, in other words, Kz(Z)◦ = {0}
independently of Z.

Even though contingent cones are generally nonconvex, their convexity is
guaranteed under special circumstances.

Definition 10 The set Z is called tangentially regular at z ∈ Z if Tz(Z) =
Kz(Z).

Trivially, we can see that e.g. convex sets are always tangentially regular.
Note that in order to formulate some of optimality conditions we use four

different assumptions about structural properties of Z - convexity, tangent
regularity, regularity and local regularity. In general all these are different
and does not directly imply each other. The interconnection between the
four regularity assumptions are presented in Figure 1.

In nonconvex case, the sets of generalized trade-off directions can be de-
fined similar to Definition 6 for all optimality principles except the lexico-
graphic one.
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Definition 11 (cf. Definition 6) Let Z be nonconvex. The set of generalized
trade-off directions is defined as:

- in case of local weak Pareto optimality:

GLWP (Z) := WP (Kz(Z));

- in case of local Pareto optimality (local efficiency):

GLPO(Z) := PO(Kz(Z));

- in case of local proper Pareto optimality:

GLPP (Z) := PO(Kz(Z));

- in case of local strong efficiency:

GLSE(Z) := SE(Kz(Z));

- in case of local lexicographic optimality:

GLLO(Z) := LO(Fz(Z)).

Notice that, contrary to the convex case, SE(Kz(Z)) is not necessarily
equal to SE(Dz(Z)) if Z is nonconvex. By analogy with convex case, we
should use the cone of locally feasible directions (instead of contingent cone)
in the definition of the set of generalized trade-off directions in case with
local lexicographic optimality.

4 Main Results

4.1 Convex case

Here we formulate and prove the basic results concerning relations between
optimality and corresponding set of generalized trade-off directions in convex
case.

Theorem 1 Let Z be convex. If z ∈ WP (Z), then GWP (Z) 6= ∅.

This result directly follows from the result of theorem 6.

Theorem 2 Let Z be convex. If z ∈ PO(Z), then GPO(Z) 6= ∅ under
assumption that Z is regular.

Proof. Assume z ∈ PO(Z). Suppose that GPO(Z) = ∅. Then (d+Rk
−
\{0})∩

Kz(Z) 6= ∅ for all d ∈ Kz(Z). Taking d = 0 (0 ∈ Kz(Z)), we get (Rk
−
\{0})∩

Kz(Z) 6= ∅, and due to regularity assumption (Rk
−
\{0}) ∩ Dz(Z) 6= ∅. The

last contradicts with the initial assumption that z ∈ PO(Z). This ends the
proof.
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Theorem 3 Let Z be convex. The solution z ∈ PP (Z) if and only if
GPP (Z) 6= ∅.

This result directly follows from the result of theorem 8 and the fact that
convex set is always tangentially regular.

Theorem 4 Let Z be convex. The solution z ∈ SE(Z) if and only if
GSE(Z) 6= ∅, or equivalently GSE(Z) = {0}.

Proof. First we show that z ∈ SE(Z) if and only if 0 ∈ GSE(Z). Indeed,
(see [13])

z ∈ SE(Z) ⇔ Kz(Z) ∩ Rk
+ = Kz(Z) ⇔

(0 + (Rk
+)C) ∩ Kz(Z) = ∅ ⇔ 0 ∈ GSE(Z).

Now it remains to show that if y ∈ Kz(Z), y 6= 0, then y 6∈ GSE(Z). Indeed,
if y ∈ Kz(Z), y 6= 0, then 0 ∈ (y + (Rk

+)C) ∩ Kz(Z), and then y 6∈ GSE(Z).
This ends the proof.

Theorem 5 Let Z be convex. The solution z ∈ LO(Z) if and only if
GLO(Z) 6= ∅, or equivalently GLO(Z) = {0}.

Proof. First we show that z ∈ LO(Z) if and only if 0 ∈ GLO(Z). Indeed,
(see [13])

z ∈ LO(Z) ⇔ Dz(Z) ∩ (Ck
lex)

C = ∅ ⇔

(0 + (Ck
lex)

C) ∩ Dz(Z) = ∅ ⇔ 0 ∈ GLO(Z).

Now it remains to show that if d ∈ Dz(Z), d 6= 0, then d 6∈ GLO(Z). Indeed,
if d ∈ Dz(Z), d 6= 0, then d ∈ Ck

lex and −d ∈ (Ck
lex)

C , i.e. d + (−d) = 0 ∈
Dz(Z), and then (d + (Ck

lex)
C) ∩ Dz(Z) 6= ∅. Thus d 6∈ GLO(Z). This ends

the proof.

4.2 Nonconvex case

Here we formulate and prove the basic results concerning relations between
optimality and corresponding set of generalized trade-off directions in non-
convex case.

Theorem 6 [10] If z ∈ LWP (Z), then GLWP (Z) 6= ∅.

Theorem 7 If z ∈ LPO(Z), then GLPO(Z) 6= ∅ under assumption that Z

is locally regular.

Proof. Assume z ∈ LPO(Z). Suppose that GLPO(Z) = ∅. Then (d +
Rk

−
\{0}) ∩ Kz(Z) ∩ f(B(x; δ) 6= ∅ for all d ∈ Kz(Z). Taking d = 0 (0 ∈

Kz(Z)), we get (Rk
−
\{0})∩Kz(Z)∩f(B(x; δ) 6= ∅, and due to local regularity

assumption (Rk
−
\{0})∩Fz(Z)∩f(B(x; δ) 6= ∅. The last contradicts with the

initial assumption that z ∈ LPO(Z). This ends the proof.

9



Theorem 8 [11] If z ∈ LPP (Z), then GLPP (Z) 6= ∅. The necessary condi-
tion above is also sufficient if Z is tangentially regular.

Theorem 9 If z ∈ LSE(Z), then GLSE(Z) 6= ∅, or equivalently GLSE(Z) =
{0}.

Proof. Let z ∈ LSE(Z). Then (see [14])

Kz(Z) ∩ Rk
+ = Kz(Z).

Then it follows that

(0 + Rk
−
\{0}) ∩ Kz(Z) = ∅ ⇒ 0 ∈ GLSE(Z).

Suppose y ∈ GLSE(Z), y 6= 0, then (y + Rk
−
\{0}) ∩ Kz(Z) = ∅. If y ∈

Rk
+\{0}, then 0 ∈ (y + Rk

−
\{0}), and then y ∈ (Rk

+)C . It implies that
y ∈ (Rk

+)C ∩ Kz(Z). The obtained contradiction ends the proof.

Theorem 10 If z ∈ LLO(Z), then GLLO(Z) 6= ∅, or equivalently GLLO(Z) =
{0}.

Proof. Let z ∈ LLO(Z). Then (see [14])

Fz(Z) ∩ Ck
lex = Fz(Z).

Suppose GLLO(Z) = ∅. Then

(d + (Ck
lex)

C) ∩ Fz(Z) 6= ∅ ∀d ∈ Fz(Z).

Taking d = 0, we get (Ck
lex)

C ∩ Fz(Z) 6= ∅ that contradicts Fz(Z) ∩ Ck
lex =

Fz(Z). This contradiction ends the proof.

5 Conclusions

In that paper we introduced and characterized the concept of trade-off di-
rections for five most common optimality principles in multiobjective opti-
mization. We generally followed the approach, initially proposed by Henig
and Buchanan [5] followed by Lee and Nakayama [8] as well as Miettinen and
Mäkelä [10], [11], where trade-off directions are defined via some optimal sur-
face of appropriate cones. We specified necessary and in some cases also suf-
ficient conditions of optimality in terms of corresponding trade-off directions
in both convex and nonconvex cases. The results obtained not only summa-
rize and order already known facts about trade-off directions but also shed a
new light on their structural properties, emphasizing on some fundamental
similarities and differences existing in convex and nonconvex optimization.
An interesting topic of further research is to investigate applicability of the
proposed concepts in different multiobjective optimization algorithms. Some
interactive methods [1] could be promising candidates for that purpose.
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[11] K. Miettinen, M. M. Mäkelä, ”On generalized trade-off directions in non-
convex multiobjective optimization”, Mathematical Programming. Ser
A, Vol. 92, (2002) pp. 141 – 151.
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