
Moazzam Fareed Niazi | Khalid Latif |
Tiberiu Seceleanu | Hannu Tenhunen

A Domain Specific Language for the
SegBus Platform

TUCS Technical Report
No 941, April 2009

A Domain Specific Language for the
SegBus Platform

Moazzam Fareed Niazi
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
moazzam.niazi@utu.fi

Khalid Latif
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
khalat@utu.fi

Tiberiu Seceleanu
ABB Corporate Research
Västerås, Sweden
tiberiu.seceleanu@se.abb.com

Hannu Tenhunen
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
hannu.tenhunen@utu.fi

TUCS Technical Report

No 941, April 2009

Abstract

The report presents a Domain Specific Language (DSL) for a multi-core seg-
mented bus platform, SegBus. The DSL is based on Unified Modeling Language
(UML) profile consists of graphical platform elements in the form of stereotypes
with necessary tagged values to depict platform aspects at high level of abstrac-
tion. Customizations are applied to each stereotyped element in the form of user-
defined rules to restrict relationship between platform elements. Object Constraint
Language (OCL) is employed to introduce constraints to impose structural re-
quirements between platform elements and also introduced mechanism to validate
them. We present a simplified example of H.264 video encoder application where
the DSL is used to specify and validate application and platform model in a unified
representation manner. The DSL allow designers to model application on to plat-
form in a correct and fast manner to get targeted performance and provides a key
starting point for code generation that can be used in later stages of development
cycle.

Keywords: Domain Specific Language, UML, SegBus

TUCS Laboratory
Distributed Systems Design

1 Introduction

With the continuous increase in digital system complexity, supported further by
always decreasing technological figures, the platform based design perspective [1]
does provide the means to address the challenge. The approach gains even more
importance in the context of on-chip distributed or multiprocessing architectures.

Design decisions localized at higher system abstraction levels are known to
bear the most impact on the quality of the eventual system implementation. On
the other hand, optimality of design is strictly connected to platform parameters;
hence, such platform level aspects, if taken into account at high abstraction levels
will support a solution that takes full benefits from the features exposed by the
platform. The specific platform we consider in this study is the SegBus platform
[2].

The Unified Modeling Language (UML) [3] has been utilized in novel de-
sign methods proposing a solution for the challenge. We continue here the work
towards establishing a full functional profile for the SegBus. The purpose is to pro-
vide a unitary framework for platform modeling, application mapping and system
(platform+application) emulation, such that performance aspects are targeted, es-
timated and adjusted to optimal levels in a correct and fast manner. While the
main aspects of the SegBus profile have been delivered by Lindroth et. al. [4], we
address here issues related to the correctness (not formal) of the platform construc-
tion. Therefore, we continue here with an extension that imposes the employment
of constraints, written in Object Constraint Language (OCL) [5]. This will further
support a component based design approach, where the constraints are the plat-
form specific topology and communication structure (elements that support the
communication protocol on the platform).

The approach is based on building a Domain Specific Language (DSL), a spec-
ification language that is created to solve problems in a particular “domain” - the
SegBus platform in our case. The proposed DSL enables us to model the platform
with all necessary constructs and mapping of application components at certain
abstraction level. Thus, we make the task of modeling application and platform
fast and error-free by testing different platform configurations, and set the context
for the development of a system emulator, for early stage performance assessment.

We thus build a graphical interface for the analysis of various SegBus instances
that may answer, better or worse, to specific application requirements. The cus-
tomization for each platform instance is defined in the form of user-defined rules.
These customization rules set properties on each profile element about their rela-
tionships, ownerships, etc. The customization rules impose restrictions on profile
elements during application / platform modeling, in order to provide a structurally
correct version of the platform instance.
Related work. Defining a new language for any particular design flow is of-
ten considered to be a difficult task. With the evolution of platform-based de-
sign flow, it becomes necessary to build specification languages for each plat-

1

form that can represent platform concepts at high-level specification only. Many
domain-specific languages have been built to encapsulate design and implemen-
tation knowledge from a particular application or technical domain.

Risi et al. [9] introduced HyCom - a DSL for hypermedia application develop-
ment, particularly for describing hypermedia documents in a very declarative way.
The DSL was embed in Haskell and hypermedia application can be constructed
by combining and transforming domain components.

Consel et al. [10] introduced Spidle - DSL for for specifying streaming ap-
plications. A compiler also built for DSL to generate source code. The approach
has been validated experimentally by comparing source code generated by Spidle
compiler with equivalent C source code. A number of optimizations in Spidle
compiler were missing like locality in data and instruction caches, performance
impact of buffering input streat etc.

Arora et al. [11] presented a DSL for introducing application-level Check-
pointing and Restart (CaR) mechanism in legacy applications for dynamic and
distributed environments. The idea is to make sequential and parallel legacy sys-
tem to be fault-tolerant by introducing code for CaR mechanism in high-level
specifications.

Riccobene et al. [12] presented a UML profile for SystemC and defined a
language to specify, analyze, design, visualize the software and hardware artifacts
in a SoC design flow that provides a modeling framework for systems in which
high-level functional models can be refined down to an implementation language.
The work concluded that still there is a need to develop appropriate mechanisms
and tools to fully utilize UML-based profiles system development with automation
support.
Overview of the report. In the rest of the report, we proceed as follows. In
section 2 we provide a short description of the SegBus platform and its struc-
tural characteristics. Next, in section 3 we provide description of proposed DSL
including all involved phases from profile development to introducing structural
constraints. Furthermore, in section 4 we provide a modeling example of H.264
video encoder in the context of proposed DSL to show its significance, followed
by conclusion of report in section 5.

2 Background

2.1 Segmented Bus Architecture

A segmented bus is a “collection” of individual buses (segments), interconnected
with the use of FIFO like structures. Each segment acts as a normal bus between
modules that are connected to it and operates in parallel with other segments.
Neighboring segments can be dynamically connected to each other to establish a
connection between modules located in different segments. Due to the segmen-

2

tation of the bus lines, and their relative isolation, parallel transactions can take
place, thus increasing the performance. A high level block diagram of the seg-
mented bus system which we consider in the following sections is illustrated in
Figure 1.

Figure 1: Segmented bus structure.

The SegBus communication platform is composed of components that provide
the necessary separation of segments - Border units (BU), arbitration units - the
Central Arbiter (CA) and local, Segment Arbiters (SA). The application then is
realized with the support of (library available) Functional Units (FU).

The SegBus platform has a single CA unit and several SAs, one for each seg-
ment. The SA of each bus segment decides which device (FU), within the seg-
ment, will get access to the bus in the following transfer burst.
Platform communication. Within a segment, data transfers follow a “traditional”
package based bus protocol, with SAs arbitrating the access to local resources.
The inter-segment communication, is also a package based, circuit switched ap-
proach, with the CA having the central role. The interface components between
adjacent segments, the BUs, are basically FIFO elements with some additional
logic, controlled by the CA and the neighboring SAs. A brief description of the
communication is given as follows.

Whenever one SA recognizes that a request for data transfer targets a module
outside its own segment, it forwards the request to the CA. The later identifies
the target segment address and decides which segments need to be dynamically
connected in order to establish a link between the initiating and targeted devices.

3

When this connection is ready, the initiating device is granted the bus access, and it
starts filling the buffer of the appropriate bridge with the package data. Following
a signaling protocol, the data is taken into account by the corresponding next
segment SA, which forwards it further, towards the destination. At this point, the
SA of the targeted segment routes the package to the own segment lines, from
where it is collected by the targeted device.

A transfer from the initiating segment k to the target segment n is represented
in Figure 2. The segments from k to n are released for possible other inter-segment
operations in a cascaded manner, from the source k to the destination, n.

Figure 2: Inter-segment package transfer.

The arbitration at CA level implements the application dataflow, with respect
to these transfers. Henre, one has to implement accurate control procedures for
inter-segment transfers, as possible conflicting requests must be appropriately sat-
isfied, in order to reach performance requirements and to correctly implement
applications.

2.2 The SegBus UML Profile

Lindroth et. al [4] provided the initial steps of the SegBus platform profile. It
contains a hierarchical decomposition of platform components and provides ap-
propriate means for characterization, instantiation and connectivity but some of
the important features were missing, such as model validation according to plat-
form definition, attributes of platform elements, structural constraints etc. Figure
3 shows the profile elements.

The profile contains the structural elements of the platform. It contains the
platform itself, the stereotype SegBusPlatform, one element modeling the seg-
ments, Segment, the stereotype representing the SA, SegmentArbiter, stereotype
CentralArbiter represents CA, etc. A metaclass is a class whose instances are
classes. Here, all the elements are generalization of metaclass uml20.classes.Class.

2.3 Platform Constraints

The profile described above provides us with the environment for a UML based
platform specification and application development. However, further elements

4

Figure 3: The SegBus profile elements [4].

must be taken into consideration, such that a specific platform instance is not
built in an incorrect fashion. For this, the characteristics of the SegBus must be
considered. A few of these constraints are described as follows.

• The platform may have either a linear or a circular geometry. The topology
impacts on how the “terminal” segments are connected to each other.

• Every platform instance has a unique CA.

• Every segment has a unique SA.

• Every SA is connected to at most two BUs.

• Every BU is connected to at most two SAs.

• Every segment contains at least one FU.

In the following, we express these platform characteristics as structural con-
straints and connect them to the SegBus UML profile, such that a correct compo-
nent approach to platform design is implemented.

5

3 DSL for the SegBus Platform

Domain-specific modeling (DSM) is a way of designing systems that involves
the systematic use of domain-specific languages (DSLs) to represent the various
facets of a system. DSL tend to provide higher-level abstractions than general-
purpose modeling languages like UML.

DSL encapsulates domain concepts and provide semantics to domain entities,
allowing designers to aware themselves as working directly with domain concepts.
DSL is build when there is a good understanding of the problem domain. We
employ MagicDraw UML [6] tool to graphically model various artifacts of the
proposed DSL, as the tool not only provides UML capabilities, but also provides
DSL Customization Engine - an engine able to process user-defined rules for DSL
elements and reflect this in graphical interface and diagrams behavior.

Figure 4 provides a general overview of the proposed DSL. At the top level,
we transform platform concepts into the high-level graphical constructs to form a
DSL, specific for the SegBus platform. The DSL provides a graphical environment
where a designer can map Platform Independent Model (PIM) of the application
on to platform quickly and assign pre-existing components from the SegBus Com-
ponent Library during modeling. Finally, the model can be validated for possible
mistakes to get a correct Platform Specific Model.

We have developed the “SegBus DSL” over three main directions: Profile De-

Figure 4: Design process of the SegBus DSL.

6

Figure 5: Platform elements and their association in profile.

velopment, DSL Customization, Structural Constraints. We briefly discuss related
aspects in the next sub-sections.

3.1 Profile Development

The structural characteristics of the platform are the key starting point of pro-
file development. These are analyzed to develop the UML elements to depict
the hardware components of the platform in high level models. The modeling
of the hardware resources of the SegBus platform in UML profile starts by ana-
lyzing the platform itself. A UML package SegBusProfileMagic, with stereotype
profile is a collection of classes with stereotypes to sustain application develop-
ment on the SegBus platform. The profile defines the main structural elements of
platform. All the classes in the profile that model a particular element of plat-
form are generalizations of the metaclass UML Standard Profile::UML2 Meta-
model::Classes::Kernel::Class. The structural view of the profile is depicted in
Figure 5 with necessary association and multiplicities between profile elements.

Figure 6 shows the hierarchical structure of the platform elements. At the top
level is the SegBusPlatform itself composed of Segment(s) and exactly one Cen-
tralArbiter. Every Segment is be composed of several FunctionalUnits, which
may be a Master or Slave as per application requirement, and exactly one Segmen-
tArbiter. Each Segment is be connected with other Segment through BorderUnits.

The platform (SegBusPlatform) is characterized by the number of segments

7

it contains, platform geometry (linear/circular), package size for communication,
data width and address lines. Each Segment is composed of one SegmentArbiter,
more than one FunctionalUnits (master and/or slave) and interfaces to the neigh-
boring segments via BorderUnit. The important and central element of each seg-
ment is the SegmentArbiter that use to coordinates both the intra-segment and
inter-segment communication. The units involve in writing data on to the bus are
called active units. These units are represented by the Masters and they’re con-
tained by FunctionalUnit. One FunctionalUnit may contain up to one Master and
one Slave as depicted in Figure 5. The FunctionalUnit’s ID (natural number that
is unique at system-level) is inherited by both contained Master and Slave. The
FunctionalUnit methods contain procedures to produce data and to communicate
with SegmentArbiter. Procedures for sending and receiving data are placed within
Master and Slave respectively.

Figure 6: Hierarchical structure of the SegBus profile elements.

The BorderUnit element is an interface between one segment and its neigh-
bours. The internal FIFO buffer is characterized by the fifoSize tag.

3.2 DSL Customization

The next step in DSL development is to introduce user-defined rules for each
profile element. All user-defined rules for each profile element are stored in cus-
tomization classes. Customization classes are generalization of metaclass UML
Standard Profile::MagicDraw Profile::DSL Customization::Customization class,
with stereotype Customization. These customization classes comprise of tags
that store the user-defined DSL customization rules. The customization rules are
parsed and interpreted by the DSL Customization Engine to assist validation pro-
cess. A UML package is created to store all customization classes.

Figure 7 shows the user-defined rules for each profile element. We illustrate
the usage of a few customization rules as follows.

• customizationTarget. This tag stores the names of stereotype(s) which we
are going to customize with respect to current class. User-defined rules
which we introduce in the customization class will be applied to all stereo-
types classes that are mentioned in this tag. In Figure 7, the customization

8

customizationTarget possibleOwners inShortCutMenu suggestedOwnedTypes

SegBusPlatform Package NrSegs,PackageSize,DataWidth,
AddressWidth,IsCircular

Segment,CentralArbiter,B
orderUnit

Segment SegBusPlatform segID SegmentArbiter,
FunctionalUnit

SegmentArbiter Segment - -
CentralArbiter SegBusPlatform - -
BorderUnit SegBusPlatform ID, fifoSize -
FunctionalUnit Segment fuID Master,Slave
Master FunctionalUnit masterID -
Slave FunctionalUnit slaveID -

Figure 7: User-defined rules for different attributes of the Customization classes.

targets are in the first column i.e. SegBusPlatform, Segment, SegmentAr-
biter, CentralArbiter, BorderUnit, FunctionalUnit, Master and Slave stereo-
typed elements.

• possibleOwners. This tag consists of stereotyped or other UML elements
that can instantiate current element. As of the second row of Figure 7, the
possible owner of Segment can only be SegBusPlatform, which can instan-
tiate it inside the respective class.

• inShortCutMenu. This tag is used to add attributes of a class in short-
cut menu. The value of these attributes can be set by right-clicking on any
specific model element. In first row of Figure 7, we included NrSegs, Pack-
ageSize, DataWidth, AddressWidth, IsCircular properties, which appear as
shortcut menu items in the context of the SegBusPlatform class.

• suggestedOwnedTypes. This tag contains list of stereotypes and meta-
classes whose object can be instantiated inside the stereotyped class as inner
elements. In first row of Figure 7, SegBusPlatform can only be associated
with Segment, CentralArbiter and BorderUnit stereotyped classes.

We’ve also introduced three different customized Dependency links (Figure
5), in order to connect different stereotyped elements of the SegBus platform ac-
cording to needs. The advantage of customizing such links during DSL devel-
opment is to specify what will be the possible source and target stereotype(s) for
given links. The customization of these links allow designer to connect only par-
ticular platform elements by imposing user-defined rules. In Figure 8, the two
elements Segment and BorderUnit are connected with a customized link Inter-
SegmentCommunication. The link imposes specific properties of the platform for
communication between mentioned platform elements.

In Figure 9, we depict the customization classes of the SegBus DSL.

9

Figure 8: Dependency link between two profile elements.

<<Customization>>

customizationTarget = SegBusPlatform

disallowedRelationships = Generalization

hiddenOwnedDiagrams = "Any Diagram"
hiddenOwnedTypes = Element

hideMetatype = true
inShortcutMenu =

NrSegs

PackageSize

DataWidth

AddressWidth

IsCircular

possibleOwners =
Package

SegBusPlatform

quickApplyingFor = Class

suggestedOwnedDiagrams = "SegBus Components"
suggestedOwnedTypes =

Segment

CentralArbiter

BorderUnit

<<propertyGroup>>-Segments{properties = "segme...
<<propertyGroup>>-bu{nonunique,properties = "bu",...
<<propertyGroup>>-ca{properties = "ca", useAsNode}

<<Customization>>

SegBusPlatform

<<Customization>>

applyToSource = BorderUnit

applyToTarget = Segment

customizationTarget = InterSegmentCommunication

hideMetatype = true

<<Customization>>

InterSegment Communication

<<Customization>>

customizationTarget = Segment

disallowedRelationships = Generalization

hiddenOwnedTypes = Element

inShortcutMenu = segID

possibleOwners = SegBusPlatform

quickApplyingFor = Class

suggestedOwnedTypes =
FunctionalUnit

SegmentArbiter

hideMetatype = true

<<propertyGroup>>-FUs{properties = "fu", u...
<<propertyGroup>>-SA{properties = "sa", us...

<<Customization>>

Segment

<<Customization>>

customizationTarget = CentralArbiter

disallowedRelationships = Generalization

hiddenOwnedTypes = Element

possibleOwners = SegBusPlatform

quickApplyingFor = Class

hideMetatype = true

<<propertyGroup>>-sbp{properties = "segb...

<<Customization>>

CentralArbiter

<<Customization>>

customizationTarget = SegmentArbiter

disallowedRelationships = Generalization

possibleOwners = Segment

quickApplyingFor = Class

hideMetatype = true

<<propertyGroup>>-segment{properties = "...

<<Customization>>

SegmentArbiter

<<Customization>>

customizationTarget = Master

disallowedRelationships = Generalization

hiddenOwnedTypes = Element

hideMetatype = true
possibleOwners = FunctionalUnit

quickApplyingFor = Class

<<Customization>>
Master

<<Customization>>

customizationTarget = Slave

disallowedRelationships = Generalization

hiddenOwnedTypes = Element

hideMetatype = true
possibleOwners = FunctionalUnit

quickApplyingFor = Class

<<Customization>>
Slave

<<Customization>>

customizationTarget = BorderUnit

disallowedRelationships = Generalization

hiddenOwnedTypes = Element

hideMetatype = true
possibleOwners = SegBusPlatform

quickApplyingFor = Class

<<Customization>>

BorderUnit

Figure 9: DSL Customization classes for each element of the SegBus platform.

3.3 Structural Constraints

The platform characteristics defined in section 2.3 need to be introduced in the
form of structural constraints in the DSL. We specified the required constraints
by using the Object Constraint Language (OCL v2.0) [5] and relate them to the
SegBus UML profile, such that a correct component approach to platform design
is implemented. Some of the constraints are already introduced when applying
multiplicities to relationships between elements in profile the development phase.
For instance, there should be exactly one CentralArbiter in whole SegBusPlatform
- modeled by specifying multiplicity as ’1’ (Figure 5). Also, it is important to

10

enforce in design that the number of Segments should be equal to the property
NrSegs of SegBusPlatform, number of BorderUnits should match the platform
geometry, etc.

All the constraints are stereotyped as validationRule from the Validation Pro-
file, a profile supplied by the tool for supporting the validation of models. The
Validation suite defines a set of validation rules, to be applied when validating a
model. The purpose of making a validation suit is to group constraints logically in
a UML package, SegBus Constraints, stereotype with validationSuit with proper
context supplied for each constraint. We apply this validation suit on our models
when validating it against the platform constraints.

Upon any breach of any constraint requirement during the design process, the
tool provides an error message with a text specified by the DSL. The designer can
subsequently try to solve the indicated problem. The description of a few of the
constraints that we introduced in the DSL, and of the related messages are given
below:

• Number of Segments: This constraint enforces the number of Segments in
the model to be equal to the value of the integer attribute NrSegs that we
specified in the stereotype SegBusPlatform. NrSegs represents the number
of segments that we required in the platform. The constraint specification is
given as:

context SegBusPlatform
inv NrOfSegments:

self.segments->size() = self.NrSegs
self.segments->size() > 1

Error Message 1. “Number of segments in model are not same as specified
in SegBusPlatform”.

Cause. The designer introduced more / less segments than the specified
number.

• Number of FuncationalUnits in a Segment: This constraint enforces in
model that each segment must contain at least one FunctionalUnit.

context Segment
inv NumberOfFU:

self.fu->size() >= 1

Error Message 2. “There should be more than one Functional Unit in each
segment”

Cause. A segment does not contain any FunctionalUnit.

11

• Number of BorderUnits: This constraint enforces in design that there must
be a number of BorderUnits matching to number of segments with respect
to platform geometry.

context SegBusPlatform
inv NumberOfBorderUnits:

if self.IsCircular = true then
self.bu->size() = self.NrSegs

else
self.bu->size() = self.NrSegs-1

endif

Error Message 3. “Number of Border Units is not compliant given the
selected platform topology”.

Cause. The wrong number of border units has been included in the design.

Figure 10: H.264 video encoder partitioned application model.

4 Example using Modeling Tool

We demonstrate our approach with an example of modeling the H.264 video en-
coder on the SegBus platform, using the developed DSL.

Following the previous work [8], we have already decided on a platform struc-
ture: three segments, linear topology. The application has already been partitioned

12

Figure 11: Example configuration of the SegBus platform with 3 segments and
linear topology.

for this case, as depicted in Figure 10. We specify this information in an in-
stance of the SegBusPlatform class’s. The respective attributes are: NrSegs = 3,
IsCircular = false and also set other information, such as address and data bus
width, etc. Finally we map components of the partitioned application model on
the particular segments. The configuration can be seen in Figure 11.

In order to check the structural correctness of our design, we run the validation
suite SegBus Constraint. This can be executed at any time during the platform
development process, that is, after any change has been performed, such as the
introduction of a new functional unit, moving one functional unit into another
segment, etc. If the validation action is performed, for instance, immediately
after the instantiation of the segments, the tool will provide us with three error
messages (nr. 2), and a highlighting of the three segment instances, as we did not
yet associate with them any functional units. By taking the corresponding actions,
these error messages will disappear.

As another example, suppose that instead of three segments, we introduce a
fourth one. This will conflict with the ”number of Segments” constraint, and the
tool will provide to us the error message nr. 1.

5 Conclusions and Future Work

The report presented methods for specifying, modeling and implementing multi-
core embedded system using UML-based methodology. We introduced a DSL

13

for modeling and mapping of segmented bus architecture - SegBus with desired
application. We described in the form of graphical elements the principal struc-
tural elements of the platform with their structural relations and the related DSL
customization.

The DSL provides an environment where a designer can model platform and
associate it with application components in a fast manner using different config-
urations. It will help designers to correctly model application and platform in a
fast manner and will help in model transformation at later stages of development
process. The DSL doesn’t allow modeling the platform by violating structural
constraints. The validation suit embedded in DSL helps designer to rectify the
problems in model and correct them with necessary measures. In subsequent steps
of the design process, we can also generate code from the model and able to an-
alyze its efficiency in the emulation program, so that proper adjustment could be
done in models to achieve optimal performance from platform.

The presented DSL will be used for code generation for any modeled SegBus
configuration and an emulation program needs to be developed for early perfor-
mance estimation. The emulation program will help to optimize high-level models
of the platform to achieve maximum performance from the platform

References

[1] Ferrari, A., Sangiovanni-Vincentelli, A. System design: Traditional concepts
and new paradigms. In Proceedings of IEEE International Conference on
Computer Design: VLSI in Computer and Processors, pp. 212, 1999.

[2] T. Seceleanu. The SegBus Platform - Architecture and Com-
munication Mechanisms. Journal of Systems Architecture (2006),
doi:10.1016/j.sysarc.2006.07.002

[3] www.omg.org. UML Superstructure Specification, v2.0.

[4] T. Lindroth, R. Lavinia, T. Seceleanu, N. Avessta, J. Teuhola. Building a
UML Profile for On-chip Distributed Platforms. In Proceedings of the 30th
Annual International Computer Software and Applications Conference, 2006

[5] OMG. OCL 2.0 Revised Submission, version 1.6 January 6, 2003.

[6] MagicDraw UML. http://www.magicdraw.com

[7] Model-Driven Architecture. http://www.omg.org/mda/

[8] K. Latif, M. Niazi, H. Tenhunen, S. Sezer, T. Seceleanu. Application develop-
ment flow for on-chip distributed architectures. In proceedings of 21st IEEE
International SOC Conference (SOCC), pp. 163-168, 2008.

14

[9] W. Risi, P. López, D. Marcos. HyCom: A Domain Specific Language for Hy-
permedia Application Development. In proceedings of 34th Annual Hawaii
International Conference on System Sciences (HICSS-34)-Volume 9, pp.
163-168, 2001.

[10] C. Consel, H. Hamdi, L. Réveillére, L. Singaravelu, H. Yu, C. Pu. Spidle:
a DSL approach to specifying streaming applications. In Proceedings of Pro-
ceedings of the 2nd international conference on Generative programming and
component engineering, pp. 1-17, 2003.

[11] R. Arora, M. Mernik, P. Bangalore, S. Roychoudhury, S. Mukkai. A
Domain-Specific Language for Application-Level Checkpointing. In Pro-
ceedings of International Conference on Distributed Computing and Internet
Technologies (ICDCIT 2008), pp. 26-38, 2008.

[12] E. Riccobene, A. Rosti, P. Scandurra. Improving SoC Design Flow by means
of MDA and UML Profiles. In 3rd Workshop in Software Model Engineering
(WiSME), 2004.

15

Joukahaisenkatu 3-5B, FIN-20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2286-3
ISSN 1239-1891

