Tomi Metsala | Tomi Westerlund | Juha Plosila

Introducing Action Systems Class
Hierarchy to SystemC Modelling

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report

No 946, June 2009

1

Introducing Action Systems Class
Hierarchy to SystemC Modelling

Tomi Metséala
Tomi Westerlund

Juha Plosila _
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, 20520 Turku, Finland
topeme@tu.fi | tovewe@tu.fi | juplos@itu.fi

TUCS Technical Report
No 946, June 2009

Abstract

ActionC is an integration of SystemC, an informal desigrglzege for embedded
systems, and Action Systems, a formal modelling languaaestipports verifica-
tion and stepwise correctness-preserving refinement tsysiodels. In the Ac-

tionC approach Action Systems sets a formal foundation yete3nC modelling

providing a possibility to verify the design as early as dgrthe construction of
the first transaction level model. This report provides aplé@mentation for the

ActionC language structures that concern Action Systeips system verifica-

tion with invariants. The implementation introduced heil e a part of a larger

modelling framework that will be elaborated in the future.

Keywords: SystemC, Action Systems, ActionC, Formal methods, System-m
elling, System verification

TUCS Laboratory
Distributed Systems

1 Introduction

The concept of ActionC[1] integrates the formal correctdopstruct develop-
ment paradigm of Action Systems[2] and the industry stashdi@sign language
SystemC[3][4] into an embedded computer system developfraanework. Both
Action Systems and SystemC use a modularised model stesuipporting mech-
anisms such as procedures, parallel composition and datpsuation. Both
languages can be used in describing entire HW/SW systemimgticom an ini-
tial behavioural model and resulting with an implementatasign including both
hardware and software partitions. For both languagese ther methods for re-
fining the created models. SystemC also includes a simual&gonel that can be
used in testing the models. SystemC is a modelling langusgedbes not itself
include any formal modelling or verification features. Thegose of ActionC is
to fill this gap in SystemC. SystemC is a class library wriite@++ and the same
applies here to the ActionC implementation, which is wntie C++ and is to be
used alongside SystemC.

This report introduces an implementation that models theASystems type
of constants, variables and invariants in SystemC. In Ac8gstems, invariants
are clauses that dictate the legal states of the system it pomt of time. In
contrast to the static way of Action Systems, the modelledcsires are here
utilised in run-time checking of system variable valuesjohhn any case, acts
as a good introduction to the usage of the implemented siiest This work has
been the first step in implementing several Action Systeratufes to be used
with SystemC. The implementation introduced in this repat been tested with
SystemC version 2.2.

The Action Systems formalism is introduced briefly in Sectvigh a short
description of the language and an introduction to its \e&ifon mechanisms.
Section 3 introduces SystemC by presenting its basic stegtand their usage.
Section 4 presents the concept of ActionC, which combing®ASystems and
SystemC together. The matching language constructs bettheen are intro-
duced briefly defining a foundation for the ActionC implenatimn. A C++ class
hierarchy that implements Action Systems type of constaatsables and invari-
ants in SystemcC is presented in Sect. 5. These structuréiseareised in testing
the state of a running system in Sect. 6. Section 7 providesleding remarks.

2 Action Systems

Action Systems is a formal language for modelling, verifyand refining designs
of hardware and embedded systems[2]. The Action Systemsaftam was ini-
tially proposed by Ralph-Johan Back and Reino Kurki-Suf&jiand it is based
onthe guarded command languabg Edsger W. Dijkstra [6]. With Action Sys-
tems a system can be designed based on its logical behawibilg, the imple-

1

mentational decisions can be postponed until later stafydssagn. An action
system is a program in which the system execution is destiibierms ofatomic
actions Once an atomic action is chosen for execution it is execiat@dmple-
tion without interference from other actions in the syste@mly the initial and
final states of an atomic action are observable meaning Hrer@o observable
states between them. If two actions do not share any vasialles possible to
execute them in parallel. In this case parallel and secalezstecutions of these
actions are guaranteed to produce identical results.

An action system is a modular unit that has its own local \deimand a single
iteration statement that operates the execution of theiataations in the sys-
tem. An action system may also include parameterised puweedand nested
action systems. Action systems communicate either by exghg information
through shared variables or by using shared actions andtegonocedure calls.
This procedure based communication is accomplished byringand exporting
variables and procedures within the system module interfac

The correct behaviour of an action system is ensured witriamts and proto-
cols, which express constraints on the system. Invariaftealthe legal states of
the system as predicates on the local and global variablate mrotocols define
the set of legal actions in the system. That is, invariartsate rules for system
states and protocols dictate rules for the transitions éetvwhem.

2.1 Actions

Actions are defined (for example) by:

A::= abort (abortion, non-termination
| skip (empty statement
|x:=e ((multiple) assignmeit
|doAod (iterative compositioh
lp—A (guarded command/actign
| Ao;-- i An (sequential compositign
[Ao [.-] An (nondeterministic choige
[Ao/ - /| An (prioritised compositiohn
| Ao ... An (simultaneous compositipn
| {p} (assertion statement
| [P] (assumption statement
| x:=%X.R (nondeterministic assignment
| [[var x:=Xo; Al (block with local variableg

whereA, Ag andA,, n € NT, are actionsx is a variable or a list of variablesg
some value(s) of variable(s) e is an expression or a list of expressions; gnd
andR are Boolean conditions. Thetal correctnessf an actionA with respect to
a preconditiorP and a postconditio is denoted?AQand defined by:

PAQE P = wp(A,Q)

wherewp(A, Q) stands for theveakest preconditiofor the actionA to establish
the postconditiol®. The activation of the statement |li&tis guaranteed to lead to
a properly terminating activity leaving the system in a fisialte that satisfies the
postconditionQ and also the weakest precondition.

The guardyA of an actionA is defined by:

gA= —wp(A, false

In the case of a guarded actidn= p — B, we have thagA= pAgB. An action
Ais said to besnabledin states, where its guard is true atidabled where the
guard is false.

The above defined actions and their compositions are allie@etions.Atomic
compositiongre larger atomic entities composed of simpler ones, anddtiens
within such compositions are calledergedactions. However, in @aon-atomic
compositiorof actions the component actions are atomic entities of tven, but
the composition itself is not. One such a construct is tiratitee composition, the
do-od loop, whose execution may consist of several executionts @oimponent
actions. Non-atomicity means that also the intermediatiestof the composition
can be observed in contrast to an atomic composition.

2.2 Action System

An action systemw/ has the form:

ﬁls M (imp pi; exp pg;)(G;)
private procedure
p(in x;outy): (P);
public procedure
pe(in x;outy): (Pe);
constant
G
variable
l;
action
A (aA);
invariant
l;
protocol
Pr;
initialisation
g,l :=qg0,I0;
execution
doconposition of actions A od
|

where we can identify three main sectionisterface declarationanditeration.
The interface part declares the global varialdesvhich are visible outside the
action system boundaries meaning that they are accessiléhbr action sys-
tems. These variables may be eithgrout or inout variables. The interface also
introducesinterface procedurespand pg that are imported or defined and ex-
ported by the system, respectively. In general, procecanesny atomic actions
A, possibly with some local variableg that are initialised tavO every time the
procedure is called. The actigncan access the globaj)(and local () variables
of the host/enclosing system and the formal parametarsdy. Procedures can
be treated as parametrisable subactions because thaitiexsare considered as
parts of the calling action. An action system that does nwe lzany global vari-
ables or interface proceduresaslosed action systenOtherwise it isan open
action systemThe declarations part introduces all the local variabléscal pro-
cedure, exported procedurgg and actiong\; that perform operations on local
and global variables. Invariantsand protocoldPr express constraints on these
variables.

The operation of the action system is started by the ing@ilon in which the
variables are set to their predefined values. In the iteraiaot, in theexecution
loop, actions are selected for execution based on their ositign and enabled-
ness. This is continued until there are no enabled actiohsreupon the com-
putation suspends leaving the system in a state in whichitsvi@ an external
impact that would enable its actions again. Hence, an astistem is essentially

4

an initialised block with a body that contains a repeatedbceating statement.

3 SystemC

SystemC[3][4] is a C++ based system modelling languagedbas not include
any formal features but it has a verification library to bedisgesting the created
system models. SystemC can be used in writing a specificaircn system that
includes both hardware and software components. It is & dilsary for the
standard C++ programming language [7], and it is an operce@tandard, which
is currently supported and advanced by the Open System@tivet (OSCI) [8].

SystemC can be used in creating cycle-accurate models tiiasef algo-
rithms, hardware architectures and interfaces of SoC astésylevel designs.
Even though it is built on a high-level software programmiisgguage, SystemC
is also a suitable tool for hardware modelling. In additioall the object-oriented
features and development tools of standard C++ SystemGda®gystem archi-
tecture constructs not included in the standard, such asvaae timing, concur-
rency, and reactive behaviour. Both software and hardwanttipns of a system
model can be written in a single high-level language. Thweegfsoftware and
hardware partitions, both being written in SystemC, can bistested using one
common test bench and without the need for language coowsrbietween dif-
ferent abstraction levels.

3.1 A SystemC Model

A SystemC model consists of Systemidulesthat form locally and indepen-
dently operating units. Breaking a design model into séwmeall blocks makes
the otherwise complex system easier to manage. Modulegimguit data encap-
sulation by hiding local data and algorithms from other medun the system. A
module may also contain a hierarchy of other modules. Ma&dule processes
that describe their actual behaviour. Processes are teddmy events.

Modules are connected to each other by channels, which &t insnter-
module and inter-process communication. There are twestgpehannelsprimi-
tive channelandhierarchical channelsA primitive channel is considered atomic
because it does not contain any other SystemC structuresargical channels
may contain other modules and channels as well as interoeépses. In practise,
a hierarchical channel is a normal SystemC module that efireetl as a channel.

Modules access channels through ports and exports. Systeov@es three
different kinds of ports to allow single-direction access the outside environ-
ment to the module, from the module to the environment oréational access
through one port. A port communicates with its designateahokel through an
interface, which gives the port the methods that it can usetess and use the
channel. This way the port acts as an intermediary for theutegavhile the inter-

5

Formal, behavioural model Language constructs __ Verified, implementable

(System specification) & Programming style & simulatable model
Action Systems SystemC
description code

ActionC

Figure 1: The concept of ActionC.[9]

face does the same for the channel. Inter-module commioricean be refined
by using adapters, wrappers and converters if the ports@daces between the
modules do not match.

A SystemC simulation is set up in the elaboration phase dwimch the top
level modules, channels and clocks are instantiated andii@padrts bound to the
channel instances. Constructs inside the module hieegemd hierarchical chan-
nels are instantiated in the module and channel constsictostantiation starts
from the top and advances recursively through the hieraschin the simulation
phase the Systems&Zheduleracts as a system kernel that handles the timing and
order of the process execution. It controls event notiticetiand updates channels
when requested.

4 ActionC

In ActionC, Action Systems and SystemC are put together thighobjective to
utilise the best assets of both system modelling langua@eson Systems as a
formal language is useful especially in the beginning of steay development
process when the behaviour of a system should be defined asatatg as pos-
sible. SystemC is a powerful tool in simulation and impletaéon of a system
model. By combining the formal features of Action Systemthwine benefits of
the SystemC environment we could write an executable spatidn that is based
on a formal system description. The formal correctnessisfihecification would
be verified, the specification would be simulatable and, mesgcases, synthesis-
able within the limits set by the synthesisable subset ofesy€ (Fig. 1).
SystemC and Action Systems share several language casstiine directly
mappable constructs are gathered in Table 1. Both languasgemodular con-
structs in creating local scopes: SystemC models consistoafules, while an
action system is the corresponding structure in the Actigste3ns formalism.
In ActionC it is called anActionC module The atomic actions of Action Sys-
tems are implemented as member functions of the ActionC fhedaking either
normal C++ methods or SystemC processes. These membeiohsate called
ActionC actionsnd they are executed by performiaction calls Theexecution

6

Table 1: Matching language constructs between Action &ystend SystemC.

Action Systems SystemC
action system < Module

in variable & sc_in)

out variable & sc_out)
inout variable & sc_inout)
(local) variable & private C++/

SystemC variable

private procedure < private C/
C++ void method
public procedure & SystemC hierarchical
channel
function & private C/C++

non-void method

action < Module member
execution loop < SystemC thread
process

non-atomic sequence < sequential execution

loop of each action system is also implemented as a threaggsdhat runs the
local actions one at a time. The thread is suspended whié &mtions and ac-
tions in other modules are executed. SystemC primitive mélgportssc_i n<>,
sc_out <> andsc_i nout <> match directly with than, out andinout variables

of the Action Systems formalism. In case of a more complexnbhstruc-
ture, a SystemC hierarchical channel is a more practicaltisol An example

of such case is the procedure based communication model tainASystems,
which is given a SystemC implementation, for example, in [She nondeter-
ministic choice’ | ’ is an essential operator in an Action Systems model. An
implementation for this structure in SystemC environmemtiroduced in [1].

5 Action Systems Class Hierarchy for SystemC

Action Systems structures can be introduced to SystemCimposing them into

a C++ class hierarchy that can be used alongside Systengeslaghis hierarchy
will consist of classes that model action systems and théaddon clauses of
their features, for example, constants, variables, astand procedures. Also

7

virtual . virtual
ac_sysstruct_if
ac_const ac_var

I I 1]

I I

virtual virtual
ac_constant_if ac_variable_if

T T

ac_constant<T> ac_variable<T>

Figure 2: ActionC classes describing constants and vasabl

the Action Systems type of data structures need to be impieeden addition
to the verification constructs, that is, invariants and geots. In this report the
class hierarchy is referred to as ActionC class hierarchytlaclasses as ActionC
classes. The implementation introduced here has beed tegkeSystemC library
version 2.2.

An action system is modelled withc _syst emclass. For every module in a
SystemC model there is an instanceaof syst emclass. This instance is associ-
ated with the members of the action system correspondifgtSystemC module.
ac_syst emobjects may include otherc_syst emobjects, which corresponds to
nesting action systems. Every module member in a System@Insdncapsu-
lated inside a corresponding object in the ActionC classahofly. ac_system
objects hold lists of the member structures that are ageacisith them. Each
list corresponds to an Action Systems declaration claussgs tontain pointers,
for instance, to constants, variables, invariants, padtoand subsystems. These
pointers are created and added to the lists during thelisétaoon of SystemC
modules.

5.1 Constantsand Variables

For a constant integer value, for example, an ActionC clégsco that describes
a constant structure with integer as the type of the retuvake is constructed as
follows:

Action Systems: constant max : Integer:= 13;
SystemC: const i nt max =13;
ActionC: ac_const ant <ac_basi ct ype<i nt > >* const ant s: : max
= new ac_constant<ac_basictype<int>>("max","int",al3¢);

In the ActionC approaclac_const ant <T> is a template class that takes as its
value an Action Systems type of data structure. The datatateican be either

8

virtual
ac_datatype_if

i

ac_datatype

I
| |

virtual virtual
ac_basictype_if ac_complextype_if

i i

ac_basictype<T> ac_complextype<T> ‘_

Figure 3: Classes describing Action Systems datatype.

a class inheriting fronac_conpl ext ype<T>, or a basic typac_basi ct ype<T>
that holds a normal C++ compatible data type (Fig. 2). Thees@nplementation
model can be applied to Action Systems type of variables thighexception that
the value of a variable can be modified after initialisatidn.addition to a re-
turn value the objects of these classes are initiated wimaenlabel and a string
indicating the type of the return value. With the last atitéoof the constructor
a Boolean member variable is set or reset determining if tmstant/variable is
global or local.

Basic and complex types form a composite type object hieyandhere basic
types are at the bottom of the hierarchy encapsulating thualaeturn value that
the constant/variable holds (Fig. 3). Template parameype T of an
ac_conpl ext ype<T> object indicates the type of the next object in the hierarchy
The type is eitheac_basi ct ype<T> or a class that inheritec_conpl ext ype<T>.
Parameter typ& of anac_basi ct ype<T> object is a C++ compatible data type,
which is not an object, for instancent, short or doubl e. When calling (or
changing) the value it is retrieved recursively through dbgct hierarchy from
theac_basi ct ype<T> object at the bottom. Also, the type of the constant/vaeabl
is the typeT of theac_basi ct ype<T> object, not the template parameter type of
the constant/variable object itself.

Constants and variables, which are used by systems, ael@end defined
separately in a container that they can be used from. Acodbe tconstants and
variables is given only for classes that are declared asdsief the container
class. The container class does not include any public mesyimgt all references
to it are made by its friend classes. Constants and varigddesell as invariants,
are linked to arac_syst eminstance with a pointer when the system is constructed
(Fig. 4). The header file of a container class for variableslsy systensys may
look like this:

:sc_module rac_system rac_variable

1. Create ac_system
object.

<<create>>

2. Add ac_variable

X add_variable (ac_varé&)
object to system.

join_system (ac_system_hag.le&)

Figure 4: Creating aac_syst emobject and adding a variable into it.

#ifndef __sys_var_hpp__
#define __sys var_hpp__

#include <ac_variabl e. h>
#incl ude <ac_queue. h>

/** Container class for variables of system’'sys'. */
class sys_var {

friend class Sys; [1/< The host SystenC nodul e.
friend class sys_invariant; ///< User-defined invariant of systemsys
friend class sys_clausel; /1< User-defined clause
friend class sys_clause2; /'11< User-defined clause
protected
static ac_variabl e<ac_basi ctype<short> >* varA; /11< Declaring variable varA
static ac_vari abl e<ac_queue<i nt > >* varB; [11< Declaring variable varB
¥
#endi f

The source file with the definitions may look as follows:

#include "sys_var.h"

/** Val ues. */
/** Constructor paranmeters of a basic type: name |abel, value. */
ac_basi ctype<short>* val A = new ac_basi ctype<short>("val A", 0)
/** Constructor paranmeters of a conplex type: nane |abel. */
ac_queue<i nt>* val B = new ac_queue<int>("val B"); ///< Inherits fromac_conpl extype<T> cl ass

/** Variables. Constructor parameters: nanme |abel, return type, value, global/not global. */
ac_variabl e<ac_basi ct ype<short> >* sys_var::varA

= new ac_vari abl e<ac_basi ct ype<short> >("varA", "short", val A false)
ac_variabl e<ac_queue<i nt> >* sys_var::varB

= new ac_vari abl e<ac_queue<int> >("varB","int", valB, false)

ac_queue<T> is a template class that implements the Action Systems\getat
gueue which is a FIFO type structure. In this case the queue haitks tthat is of
type integer or compatible.

5.2 Invariantsand Clauses

Invariants in Action Systems are predicates on local anbdajleariables of a sys-
tem. They define constraints on the states of the system tbeysaociated with.

10

SystemC ActionC

ac_clause ac_complextype<T1l>
Y))
. 1
. . ac_basictype<T2> {@====-p == 1
ac_invariant 0 1 1
1 1
1
4 1 1 1
------------ 1 1
A uses L L uses L uses IHSCS
sc_module ac_system ac_constant<T3> ac_variable<T4>
A T

uses

P
- - -

A A A
1 1
! 1
! 1
! 1

1

1

I uses
1

uses uses

e
1
1
1
1
1
1
1
1
T
1
1

sys_clause2

1
1
1
1
1
1
1
1
1
1
1
:
A |

e e e e e e e e e e p sys_invariant

User-defined model

Figure 5: Class diagram of a system with an invariant of tvesés.

Constraints may be simple statements that set limits toahes of variables and
constants within a specific system. Constraints can alsadoe complex Boolean
expressions, relations between variables and constamedicBtel is an invariant
over an actiorA if it satisfies the condition

| = wp(Al)
Therefore, the actioA preserves the invariaiht If

Wp(A) =T
the actionA is said to establish the invariaht In practise, based on the logical
implication above, actiod preserves invariaritin all other cases except whén
evaluates to true beforkis executed and to false after the execution. Therefore,
the preservation of an invariant depends on the systensdiath before and after
action executions.

Actions in an action system preserve togal invariant ko if they preserve
all (n) invariants associated with that system:

ITat =11 AT A .o A T,

11

This means that in order for the actions in an action systeprdserve the total
invariant, they must establish all the invariants at ifigetion, and preserve them
through every execution.

The invariants of Action Systems can be implemented in 8ySteising the
implementations of constants and variables. Invariantsisb ofclauseghat are
Boolean expressions including values of constants, vi@sadnd C++ data types.
In the ActionC approach invariant is an instance of a claas ¢an be used in
testing the clauses associated with it. Clauses are gdttegether and evaluated
as one combined expression. An invariant evaluates to themhe combination
of its clauses evaluates to true.

System’s total invariant consists of all its individual amants. The individual
invariants consist of one or more clauses, which are bo@gpressions with one
comparison operator and two operands the operator compidresoperators can
be values of C++ and SystemC data types. User-defined data tgm also be
used if the necessary operators are defined for them.

Invariants and clauses are added to a SystemC model as newl@sses
that are compiled along with the rest of the design that ussates. These user-
defined invariant and clause classes inherit from Actior&Ssgsc_i nvari ant
andac_cl ause, respectively (Fig. 5). Eachc_syst eminstance that describes
an action system for a corresponding SystemC module is usedeating the
instances of the needed invariants.

For example, in Action Systems an invariant may dictate dlewing con-
straint for a system:

sysinvariant : (varA < constA A (headvarB) < constA ;

wherevarA andvarB are variables andonstAis a constant used by the system.
In SystemC a user-defined clause ck&ss cl ausel that defines the first boolean
expressionyarA < constA may look as follows:

/** Clause: left <right. */
tenmpl ate<class L, class R> class sys_clausel : public ac_clause

{

public:
/** Constructor. Pointers to the operands are given as parameters. */
sys_clausel(ac_sysstruct_if* | _p, ac_sysstruct_if* r_p) { lo_p=1_p; rop=r_p; }

[** Clause is executed.
* (Clause retrieves the values of the handled el ements and conpares them
*/
virtual bool exec() {
left = (dynam c_cast <ac_basi ctype<L>* >(lo_p->vtype()))->v();
right = (dynam c_cast<ac_basi ctype<R>* >(ro_p->vtype()))->v();
if (left <right) { returntrue; } else { return false; }

}

protected:
L left; /11< Left operand of the clause.
R right; /11< Right operand of the clause.

ac_sysstruct _if* lo_p; ///< Pointer to the left operand.
ac_sysstruct _if* ro_p; ///< Pointer to the right operand.

12

The constructor of the invariant that usgs_cl ausel and clause clasys_cl ause2,
which defines expressidreadvarB) < constAin SystemC, may look like this:

sys_invariant::sys_invariant(char* lab) {
| abel =1lab; ///< Set name |abel as |ab.
invh = ac_invariant_handl e(Iabel, this);

/** Addi ng clauses to sys_invariant. */
cl1 = new sys_cl ausel<short,int>(sys_var::varA sys_const::constA); add_clause(cl1l);
cl 2 = new sys_cl ause2<int,int>(sys_var::varB, sys_const::constA); add_clause(cl?2);

}

The clauses that invariants test are instantiated by tregiant itself. The con-

structor is provided with the types and values of the vaesland constants the
clause uses. A clause checks the values of the constantaaablgs each time it

is executed, that is, when the invariant that uses it, is run.

6 Checking lnvariantsin a Running Simulation

Let us now combine the small examples in Sect. 5 into one. &dtave action
systemsysthat has the form:

sys Sys (in go: Booleanin : Integer, out out: Integer,)
1l
constant
constA Integer:= constAq;
variable
varA: Short varB: queueof Integer
action
Pop: (go— varA=in; varB= varB@varA; out = varA);
invariant
sys invariant : varA < constAA headvarB) < constA
initialisation
varA varB .= varAy, varBiit;
execution
do Pop od
Il

This system includes one actidPop, which is executed every time the value of
the boolean type global variabgm is true. ActionPopreads the value of global
variablein and stores it on local variablearAandvarB. At the end, the value of
varAis copied onto global variableut. After this,Popand the entire systegys
is suspended until the value of varialgieis true again.

The header file of this system’s implementation in System§ loak like this:

13

#i

fndef __sys_hpp__

#define __sys_hpp__

#i
#
#i
#i

ncl ude "sys_constants. h" [/1< File containing constants for Sys.
ncl ude "sys_vari abl es. h" /11< File containing variables for Sys.
nclude "sys_invariant.h" [/1< File declaring an invariant for Sys.
nclude "ac_sysstruct/ac_systemh" ///< Header file of ac_systemclass.

SC_MODULE(Sys) {

b

[** System */
ac_systent sys; /11< The ac_systeminstance.
sys_invariant* sys_inv; /11< An instance of sys_invariant.

[** Ports. */

sc_i n<bool > go; /1l< Port for activation signal fromoutside the system
sc_in<int>in; /1< Port for signal bringing in integers.

sc_out<int> out; [1/< Port for signal sending out integers.

voi d pop(); /11< Action Pop.

voi d execution(); /11 < Execution |oop.

sc_si gnal <bool > pop_sig; ///< Signal to control action Pop.

SC_CTOR(Sys) {
sys = new ac_systen("sys"); I11< The instance of ac_system

[** Constants. */
sys->add_const ant (*constants:: constA); //]< Add constA to sys.

[** Variables. */
sys->add_vari abl e(*vari abl es: : varA); //]< Add varA to sys.
sys->add_vari abl e(*vari abl es: : varB); /1< Add varB to sys.

[** Invariants. */
Sys_inv = new sys_invariant("sys_inv"); ///< The instance of sys_invariant.
sys->add_i nvariant (*sys_inv); /11< Add sys_inv to sys.

/** Process declarations. */
SC_THREAD(execut i on) ;
sensitive << go; set_stack_size(0x50000); dont_initialize();

SC_THREAD(pop) ;
sensitive << pop_sig. posedge_event(); set_stack_si ze(0x50000); dont_initialize();

sys_inv->test(); [1]< Test invariant at initialisation.

}

#endi f

The source file with the method definitions may look as follows

#i

ncl ude "sys.h"

/** Execution loop handling action Pop. */
voi d Sys::execution() {

while(true) {
sys_inv->test(); [11< Test invariant before action Pop.
pop_sig.wite(true); wait(pop_sig.negedge_event()); ///< Execute action Pop.
sys_inv->test(); [11< Test invariant after action Pop.
wai t (go. posedge_event()); [/1< Wit for next activation from port
}

14

'go’.

/** Action Pop. */
voi d Sys::pop() {

while(true) {
/** Receiving integer fromport "in . */
(dynami c_cast <ac_basi ct ype<short>* >(variabl es::varA->vtype()))->set_val ue(in->read());
/** Saving integer into varB. */
(dynanmi c_cast <ac_queue<i nt >* >(vari abl es: :varB->vtype()))
- >append((dynani c_cast <ac_basi ct ype<short>* >(variabl es::varA->vtype()))->v());
/** Passing integer forward through port 'out’'. */
out.write((dynam c_cast<ac_basi ctype<short>* >(variabl es::varA->vtype()))->v());

/** Wait for next activation fromsignal 'pop_sig . */
pop_sig.wite(false);
wait();

As can be seen from the code, invariaps_i nv() is tested by running method
test () during initialisation as well as before and after runngog() .

In the Action Systems formalism an action system presetsdstal invariant
on the basis of the weakest precondition semantics. In therduActionC imple-
mentation, however, invariants are tested during simanatin order to verify the
correctness of a running system its invariants should lede initialisation as
well as before and after every execution of its actions. Eselt of an invariant
test is revealed by the results of each individual clausewdian. If all clauses
evaluate to true, also the invariant test evaluates to tralkad point of simula-
tion. If at least one clause evaluates to false, also theiamatest evaluates to
false indicating that the system does not run properly. Hewen Action Sys-
tems an action preserves an invariant in all other casegpexdeen it evaluates
to true before the action is executed and to false after teewtdon. Therefore,
the preservation of an invariant depends on tests bothdefwd after action ex-
ecutions. This kind of runtime invariant checking does nertify that a system
is correct by construction, but it can be used as a tool in thdetting process.
Introducing a tool for creating systems that are correctdmystruction will be a
challenge for future ActionC implementations.

Designer can write commands into an invariant about furtheasures that
will be taken after passing or failing testac_i nvari ant class includes meth-
odstest _passed() andtest failed(), which can be overridden in the user-
defined invariant class (Fig. 6). The definitions of thesenoeés inac_i nvari ant
class do nothing so they must be overridden if any measuesktode performed
by them in a user-defined model.

7 Conclusion

Both the Action Systems formalism and the SystemC mode#imgronment use
a modularised model structure supporting mechanisms suighogedures, par-

15

:sc_module rac_system :sys_invariant :sys_clausel

1
1. Create sys_invariant <<create>> ' |
object and :
. <<create>>
sys_clause1 object
for testing. .
join_invariant ()
add| clause (ac_clau*) —— et ---mmm e 1

add_jnvariant (ac_invé&)

2. Add sys_invariant join_system()
object to system. Rt
< _______________
test ()
3. Test all clauses exec ()
of sys_invariant. et —- - __T]
test_passed () /test_failed (11—
q _________________________________

Figure 6: Creating an object of user-defirsgd i nvari ant class, adding it into
a system and executing thgs_cl ausel object in it.

allel composition and data encapsulation. Both can be usebkscribing be-
havioural models of HW/SW systems and refining them in a stepwanner
down to an implementable design. In ActionC these two laggeantegrate into
an embedded computer system development framework, whighles mathe-
matically rigorous, correct-by-construct modelling wihmulation support for
running the created models.

This report has introduced an implementation for an Actigat&ns class hi-
erarchy that is to be used in SystemC modelling. In Actiont&ws, invariants
express constraints on the system they are associated Widy. ensure that the
system behaves correctly by defining its legal states asqated on its local and
global variables. In this report, however, the use of thelemented structures
have been demonstrated by utilising them in checking theegabf system vari-
ables at fixed points of simulation. This kind of run-timeamant checking can
be used as a tool in system modelling process but it does reattlyi adhere to the
static verification approach of Action Systems. That apghoaill be tackled in
the future implementations of ActionC.

16

References

[1]

[2]

[3]

[4]

[5]

[6]
[7]

T. Metséla, T. Westerlund, S. Virtanen, and J. PlosikgtionC: An Action
Systems Approach to System Design with SystemC,” Turku1i€dat Com-
puter Science (TUCS), Turku, Finland, Tech. Rep. 865, Ja®82

R.-J. Back and K. Sere, “From Action Systems to Modulast8ys,” in
FME’94: Industrial Benefit of Formal Methods Springer-Verlag, 1994, pp.
1-25.

The Open SystemC Initiativ&gystemC Version 2.0 User’s Guide. Update for
SystemC 2.0.12002.

T. Grotker, S. Liao, G. Martin, and S. Swa8ystem Design with SystemC
Kluwer Academic Publishers, Boston / Dordrecht / Londor920

R.-J. Back and R. Kurki-Suonio, “Decentralization obeess Nets with Cen-
tralized Control,” inPODC '83: Proceedings of the second annual ACM sym-
posium on Principles of distributed computingACM Press, 1983, pp. 131—
142.

E. W. Dijkstra, A Discipline of Programming Prentice-Hall, Inc., 1976.

B. Stroustrup,The C++ Programming Language&rd ed. Addison-Wesley
Publishing Company, Reading, Massachusetts, USA, 1997.

[8] The Open SystemcC Initiative, “www.systemc.org (vedfiz009-01-29).”

[9] T. Metsala, T. Westerlund, S. Virtanen, and J. PlosiRigbrous Communi-

cation Modelling at Transaction Level with SystemC,I@SOFT 2008: Pro-
ceedings of the Third International Conference on Softveareé Data Tech-
nologies INSTICC Press, 2008, pp. 246—-251.

17

TURKU

CENTRE for

COMPUTER

SCIENCE

Joukahaisenkatu 3-5 B, FI-20520 Turku, Finland | www.tucs.fi

m University of Turku
§ ,{ég ® Department of Information Technology
= S i
-~ N ® Department of Mathematics
(g
O

Abo Akademi University
® Department of Computer Science
e |Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
® |Institute of Information Systems Sciences

ISBN 978-952-12-2310-5
ISSN 1239-1891

