
Tomi Metsälä | Tomi Westerlund | Juha Plosila

Introducing Action Systems Class
Hierarchy to SystemC Modelling

TUCS Technical Report
No 946, June 2009

Introducing Action Systems Class
Hierarchy to SystemC Modelling

Tomi Metsälä
Tomi Westerlund
Juha Plosila

University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, 20520 Turku, Finland
topeme@utu.fi | tovewe@utu.fi | juplos@utu.fi

TUCS Technical Report

No 946, June 2009

Abstract

ActionC is an integration of SystemC, an informal design language for embedded
systems, and Action Systems, a formal modelling language that supports verifica-
tion and stepwise correctness-preserving refinement of system models. In the Ac-
tionC approach Action Systems sets a formal foundation for SystemC modelling
providing a possibility to verify the design as early as during the construction of
the first transaction level model. This report provides an implementation for the
ActionC language structures that concern Action Systems type system verifica-
tion with invariants. The implementation introduced here will be a part of a larger
modelling framework that will be elaborated in the future.

Keywords: SystemC, Action Systems, ActionC, Formal methods, System mod-
elling, System verification

TUCS Laboratory
Distributed Systems

1 Introduction

The concept of ActionC[1] integrates the formal correct-by-construct develop-
ment paradigm of Action Systems[2] and the industry standard design language
SystemC[3][4] into an embedded computer system development framework. Both
Action Systems and SystemC use a modularised model structure supporting mech-
anisms such as procedures, parallel composition and data encapsulation. Both
languages can be used in describing entire HW/SW systems starting from an ini-
tial behavioural model and resulting with an implementabledesign including both
hardware and software partitions. For both languages, there are methods for re-
fining the created models. SystemC also includes a simulation kernel that can be
used in testing the models. SystemC is a modelling language that does not itself
include any formal modelling or verification features. The purpose of ActionC is
to fill this gap in SystemC. SystemC is a class library writtenin C++ and the same
applies here to the ActionC implementation, which is written in C++ and is to be
used alongside SystemC.

This report introduces an implementation that models the Action Systems type
of constants, variables and invariants in SystemC. In Action Systems, invariants
are clauses that dictate the legal states of the system at every point of time. In
contrast to the static way of Action Systems, the modelled structures are here
utilised in run-time checking of system variable values, which in any case, acts
as a good introduction to the usage of the implemented structures. This work has
been the first step in implementing several Action Systems features to be used
with SystemC. The implementation introduced in this reporthas been tested with
SystemC version 2.2.

The Action Systems formalism is introduced briefly in Sect. 2with a short
description of the language and an introduction to its verification mechanisms.
Section 3 introduces SystemC by presenting its basic structures and their usage.
Section 4 presents the concept of ActionC, which combines Action Systems and
SystemC together. The matching language constructs between them are intro-
duced briefly defining a foundation for the ActionC implementation. A C++ class
hierarchy that implements Action Systems type of constants, variables and invari-
ants in SystemC is presented in Sect. 5. These structures arethen used in testing
the state of a running system in Sect. 6. Section 7 provides concluding remarks.

2 Action Systems

Action Systems is a formal language for modelling, verifying and refining designs
of hardware and embedded systems[2]. The Action Systems formalism was ini-
tially proposed by Ralph-Johan Back and Reino Kurki-Suonio[5] and it is based
on the guarded command languageby Edsger W. Dijkstra [6]. With Action Sys-
tems a system can be designed based on its logical behaviour,while the imple-

1

mentational decisions can be postponed until later stages of design. An action
system is a program in which the system execution is described in terms ofatomic
actions. Once an atomic action is chosen for execution it is executedto comple-
tion without interference from other actions in the system.Only the initial and
final states of an atomic action are observable meaning thereare no observable
states between them. If two actions do not share any variables, it is possible to
execute them in parallel. In this case parallel and sequential executions of these
actions are guaranteed to produce identical results.

An action system is a modular unit that has its own local variables and a single
iteration statement that operates the execution of the atomic actions in the sys-
tem. An action system may also include parameterised procedures and nested
action systems. Action systems communicate either by exchanging information
through shared variables or by using shared actions and remote procedure calls.
This procedure based communication is accomplished by importing and exporting
variables and procedures within the system module interface.

The correct behaviour of an action system is ensured with invariants and proto-
cols, which express constraints on the system. Invariants define the legal states of
the system as predicates on the local and global variables, while protocols define
the set of legal actions in the system. That is, invariants dictate rules for system
states and protocols dictate rules for the transitions between them.

2.1 Actions

Actions are defined (for example) by:

A ::= abort (abortion, non-termination)

| skip (empty statement)

| x := e ((multiple) assignment)

| do A od (iterative composition)

| p→ A (guarded command/action)

| A0; . . . ;An (sequential composition)

| A0 8 . . . 8 An (nondeterministic choice)

| A0 � . . . � An (prioritised composition)

| A0∗ . . .∗An (simultaneous composition)

| {p} (assertion statement)

| [p] (assumption statement)

| x := x′.R (nondeterministic assignment)

| |[var x := x0; A]| (block with local variables)

2

whereA, A0 andAn, n∈ N
+, are actions;x is a variable or a list of variables;xo

some value(s) of variable(s)x; e is an expression or a list of expressions; andp
andRare Boolean conditions. Thetotal correctnessof an actionA with respect to
a preconditionP and a postconditionQ is denotedPAQand defined by:

PAQ=̂ P⇒ wp(A,Q)

wherewp(A,Q) stands for theweakest preconditionfor the actionA to establish
the postconditionQ. The activation of the statement listA is guaranteed to lead to
a properly terminating activity leaving the system in a finalstate that satisfies the
postconditionQ and also the weakest precondition.

The guardgA of an actionA is defined by:

gA =̂ ¬wp(A, f alse)

In the case of a guarded actionA =̂ p→ B, we have thatgA= p∧gB. An action
A is said to beenabledin states, where its guard is true anddisabled, where the
guard is false.

The above defined actions and their compositions are all atomic actions.Atomic
compositionsare larger atomic entities composed of simpler ones, and theactions
within such compositions are calledmergedactions. However, in anon-atomic
compositionof actions the component actions are atomic entities of their own, but
the composition itself is not. One such a construct is the iterative composition, the
do-od loop, whose execution may consist of several executions of its component
actions. Non-atomicity means that also the intermediate states of the composition
can be observed in contrast to an atomic composition.

2.2 Action System

An action systemM has the form:

3

sys M (imp pI ; exp pE;)(g;)
|[

private procedure
p(in x;out y) : (P);

public procedure
pE(in x;out y) : (PE);

constant
c;

variable
l ;

action
Ai : (aAi);

invariant
I ;

protocol
Pr;

initialisation
g, l := g0, l0;

execution
do composition of actions Ai od

]|

where we can identify three main sections:interface, declarationand iteration.
The interface part declares the global variablesg, which are visible outside the
action system boundaries meaning that they are accessible by other action sys-
tems. These variables may be eitherin, out or inout variables. The interface also
introducesinterface procedures pI and pE that are imported or defined and ex-
ported by the system, respectively. In general, proceduresare any atomic actions
A, possibly with some local variablesw that are initialised tow0 every time the
procedure is called. The actionA can access the global (g) and local (l) variables
of the host/enclosing system and the formal parametersx andy. Procedures can
be treated as parametrisable subactions because their executions are considered as
parts of the calling action. An action system that does not have any global vari-
ables or interface procedures isa closed action system. Otherwise it isan open
action system. The declarations part introduces all the local variablesl , local pro-
ceduresp, exported procedurespE and actionsAi that perform operations on local
and global variables. InvariantsI and protocolsPr express constraints on these
variables.

The operation of the action system is started by the initialisation in which the
variables are set to their predefined values. In the iteration part, in theexecution
loop, actions are selected for execution based on their composition and enabled-
ness. This is continued until there are no enabled actions, whereupon the com-
putation suspends leaving the system in a state in which it waits for an external
impact that would enable its actions again. Hence, an actionsystem is essentially

4

an initialised block with a body that contains a repeatedly executing statement.

3 SystemC

SystemC[3][4] is a C++ based system modelling language thatdoes not include
any formal features but it has a verification library to be used in testing the created
system models. SystemC can be used in writing a specificationfor a system that
includes both hardware and software components. It is a class library for the
standard C++ programming language [7], and it is an open source standard, which
is currently supported and advanced by the Open SystemC Initiative (OSCI) [8].

SystemC can be used in creating cycle-accurate models of software algo-
rithms, hardware architectures and interfaces of SoC and system-level designs.
Even though it is built on a high-level software programminglanguage, SystemC
is also a suitable tool for hardware modelling. In addition to all the object-oriented
features and development tools of standard C++ SystemC provides system archi-
tecture constructs not included in the standard, such as hardware timing, concur-
rency, and reactive behaviour. Both software and hardware partitions of a system
model can be written in a single high-level language. Therefore, software and
hardware partitions, both being written in SystemC, can also be tested using one
common test bench and without the need for language conversions between dif-
ferent abstraction levels.

3.1 A SystemC Model

A SystemC model consists of SystemCmodulesthat form locally and indepen-
dently operating units. Breaking a design model into several small blocks makes
the otherwise complex system easier to manage. Modules implement data encap-
sulation by hiding local data and algorithms from other modules in the system. A
module may also contain a hierarchy of other modules. Modules run processes
that describe their actual behaviour. Processes are triggered by events.

Modules are connected to each other by channels, which are used in inter-
module and inter-process communication. There are two types of channels:primi-
tive channelsandhierarchical channels. A primitive channel is considered atomic
because it does not contain any other SystemC structures. Hierarchical channels
may contain other modules and channels as well as internal processes. In practise,
a hierarchical channel is a normal SystemC module that is redefined as a channel.

Modules access channels through ports and exports. SystemCprovides three
different kinds of ports to allow single-direction access from the outside environ-
ment to the module, from the module to the environment or bidirectional access
through one port. A port communicates with its designated channel through an
interface, which gives the port the methods that it can use toaccess and use the
channel. This way the port acts as an intermediary for the module, while the inter-

5

=

ActionC

Language constructs

& Programming style
+ Verified, implementable

& simulatable model
Formal, behavioural model

(System specification)

Action Systems
description

SystemC
code

Figure 1: The concept of ActionC.[9]

face does the same for the channel. Inter-module communication can be refined
by using adapters, wrappers and converters if the ports and interfaces between the
modules do not match.

A SystemC simulation is set up in the elaboration phase during which the top
level modules, channels and clocks are instantiated and module ports bound to the
channel instances. Constructs inside the module hierarchies and hierarchical chan-
nels are instantiated in the module and channel constructors. Instantiation starts
from the top and advances recursively through the hierarchies. In the simulation
phase the SystemCscheduleracts as a system kernel that handles the timing and
order of the process execution. It controls event notifications and updates channels
when requested.

4 ActionC

In ActionC, Action Systems and SystemC are put together withthe objective to
utilise the best assets of both system modelling languages.Action Systems as a
formal language is useful especially in the beginning of a system development
process when the behaviour of a system should be defined as accurately as pos-
sible. SystemC is a powerful tool in simulation and implementation of a system
model. By combining the formal features of Action Systems with the benefits of
the SystemC environment we could write an executable specification that is based
on a formal system description. The formal correctness of this specification would
be verified, the specification would be simulatable and, in some cases, synthesis-
able within the limits set by the synthesisable subset of SystemC (Fig. 1).

SystemC and Action Systems share several language constructs. The directly
mappable constructs are gathered in Table 1. Both languagesuse modular con-
structs in creating local scopes: SystemC models consist ofmodules, while an
action system is the corresponding structure in the Action Systems formalism.
In ActionC it is called anActionC module. The atomic actions of Action Sys-
tems are implemented as member functions of the ActionC module being either
normal C++ methods or SystemC processes. These member functions are called
ActionC actionsand they are executed by performingaction calls. Theexecution

6

Table 1: Matching language constructs between Action Systems and SystemC.

Action Systems SystemC

action system ⇔ Module

in variable ⇔ sc_in〈〉

out variable ⇔ sc_out〈〉

inout variable ⇔ sc_inout〈〉

(local) variable ⇔ private C++/

SystemC variable

private procedure ⇔ private C/

C++ void method

public procedure ⇔ SystemC hierarchical

channel

function ⇔ private C/C++

non-void method

action ⇔ Module member

execution loop ⇔ SystemC thread

process

non-atomic sequence; ⇔ sequential execution

loop of each action system is also implemented as a thread process that runs the
local actions one at a time. The thread is suspended while local actions and ac-
tions in other modules are executed. SystemC primitive channel portssc_in<>,
sc_out<> andsc_inout<> match directly with thein, out and inout variables
of the Action Systems formalism. In case of a more complex channel struc-
ture, a SystemC hierarchical channel is a more practical solution. An example
of such case is the procedure based communication model of Action Systems,
which is given a SystemC implementation, for example, in [9]. The nondeter-
ministic choice′ 8 ′ is an essential operator in an Action Systems model. An
implementation for this structure in SystemC environment is introduced in [1].

5 Action Systems Class Hierarchy for SystemC

Action Systems structures can be introduced to SystemC by composing them into
a C++ class hierarchy that can be used alongside SystemC classes. This hierarchy
will consist of classes that model action systems and the declaration clauses of
their features, for example, constants, variables, actions and procedures. Also

7

ac_sysstruct_if

virtual

ac_constant_if

virtual

ac_variable_if

ac_constant<T> ac_variable<T>

virtual

ac_var

virtual

ac_const

Figure 2: ActionC classes describing constants and variables.

the Action Systems type of data structures need to be implemented in addition
to the verification constructs, that is, invariants and protocols. In this report the
class hierarchy is referred to as ActionC class hierarchy and the classes as ActionC
classes. The implementation introduced here has been tested with SystemC library
version 2.2.

An action system is modelled withac_system class. For every module in a
SystemC model there is an instance ofac_system class. This instance is associ-
ated with the members of the action system corresponding to the SystemC module.
ac_system objects may include otherac_system objects, which corresponds to
nesting action systems. Every module member in a SystemC model is encapsu-
lated inside a corresponding object in the ActionC class hierarchy. ac_system
objects hold lists of the member structures that are associated with them. Each
list corresponds to an Action Systems declaration clause. Lists contain pointers,
for instance, to constants, variables, invariants, protocols and subsystems. These
pointers are created and added to the lists during the initialisation of SystemC
modules.

5.1 Constants and Variables

For a constant integer value, for example, an ActionC class object that describes
a constant structure with integer as the type of the returnedvalue is constructed as
follows:

Action Systems: constant max : Integer:= 13 ;
SystemC: const int max = 13;
ActionC: ac_constant<ac_basictype<int> >* constants::max

= new ac_constant<ac_basictype<int> >("max","int",13,false);

In the ActionC approachac_constant<T> is a template class that takes as its
value an Action Systems type of data structure. The data structure can be either

8

ac_datatype

ac_basictype<T> ac_complextype<T>

is part of

virtual

ac_datatype_if
virtual

ac_basictype_if
virtual

ac_complextype_if

Figure 3: Classes describing Action Systems datatype.

a class inheriting fromac_complextype<T>, or a basic typeac_basictype<T>
that holds a normal C++ compatible data type (Fig. 2). The same implementation
model can be applied to Action Systems type of variables withthe exception that
the value of a variable can be modified after initialisation.In addition to a re-
turn value the objects of these classes are initiated with a name label and a string
indicating the type of the return value. With the last attribute of the constructor
a Boolean member variable is set or reset determining if the constant/variable is
global or local.

Basic and complex types form a composite type object hierarchy where basic
types are at the bottom of the hierarchy encapsulating the actual return value that
the constant/variable holds (Fig. 3). Template parameter type T of an
ac_complextype<T> object indicates the type of the next object in the hierarchy.
The type is eitherac_basictype<T> or a class that inheritsac_complextype<T>.
Parameter typeT of anac_basictype<T> object is a C++ compatible data type,
which is not an object, for instance,int, short or double. When calling (or
changing) the value it is retrieved recursively through theobject hierarchy from
theac_basictype<T> object at the bottom. Also, the type of the constant/variable
is the typeT of theac_basictype<T> object, not the template parameter type of
the constant/variable object itself.

Constants and variables, which are used by systems, are declared and defined
separately in a container that they can be used from. Access to the constants and
variables is given only for classes that are declared as friends of the container
class. The container class does not include any public members, but all references
to it are made by its friend classes. Constants and variables, as well as invariants,
are linked to anac_system instance with a pointer when the system is constructed
(Fig. 4). The header file of a container class for variables used by systemsys may
look like this:

9

join_system(ac_system_handle&)
 object to system.

2. Add ac_variable
add_variable(ac_var&)

 object.

1. Create ac_system
<<create>>

:sc_module :ac_system :ac_variable

Figure 4: Creating anac_system object and adding a variable into it.

#ifndef __sys_var_hpp__
#define __sys_var_hpp__

#include <ac_variable.h>
#include <ac_queue.h>

/** Container class for variables of system ’sys’. */
class sys_var {
friend class Sys; ///< The host SystemC module.
friend class sys_invariant; ///< User-defined invariant of system sys.
friend class sys_clause1; ///< User-defined clause.
friend class sys_clause2; ///< User-defined clause.

protected:
static ac_variable<ac_basictype<short> >* varA; ///< Declaring variable varA.
static ac_variable<ac_queue<int> >* varB; ///< Declaring variable varB.

};
#endif

The source file with the definitions may look as follows:

#include "sys_var.h"

/** Values. */
/** Constructor parameters of a basic type: name label, value. */

ac_basictype<short>* valA = new ac_basictype<short>("valA", 0);
/** Constructor parameters of a complex type: name label. */

ac_queue<int>* valB = new ac_queue<int>("valB"); ///< Inherits from ac_complextype<T> class.

/** Variables. Constructor parameters: name label, return type, value, global/not global. */
ac_variable<ac_basictype<short> >* sys_var::varA

= new ac_variable<ac_basictype<short> >("varA","short", valA, false);
ac_variable<ac_queue<int> >* sys_var::varB

= new ac_variable<ac_queue<int> >("varB","int", valB, false);

ac_queue<T> is a template class that implements the Action Systems datatype
queue, which is a FIFO type structure. In this case the queue holds data that is of
type integer or compatible.

5.2 Invariants and Clauses

Invariants in Action Systems are predicates on local and global variables of a sys-
tem. They define constraints on the states of the system they are associated with.

10

ActionC

Userdefined model

sys_clause1

sys_clause2

sys_invariant
uses

uses

uses uses

ac_system

ac_clause

ac_invariant

sc_module ac_constant<T3> ac_variable<T4>

ac_complextype<T1>

ac_basictype<T2>

uses
uses

uses uses

SystemC

usesuses

uses

uses uses uses

uses

Figure 5: Class diagram of a system with an invariant of two clauses.

Constraints may be simple statements that set limits to the values of variables and
constants within a specific system. Constraints can also be more complex Boolean
expressions, relations between variables and constants. PredicateI is an invariant
over an actionA if it satisfies the condition

I ⇒ wp(A, I)

Therefore, the actionA preserves the invariantI . If

wp(A, I) ≡ T

the actionA is said to establish the invariantI . In practise, based on the logical
implication above, actionA preserves invariantI in all other cases except whenI
evaluates to true beforeA is executed and to false after the execution. Therefore,
the preservation of an invariant depends on the system states both before and after
action executions.

Actions in an action system preserve thetotal invariant ITot if they preserve
all (n) invariants associated with that system:

ITot = I1 ∧ I2 ∧ . . . ∧ In

11

This means that in order for the actions in an action system topreserve the total
invariant, they must establish all the invariants at initialisation, and preserve them
through every execution.

The invariants of Action Systems can be implemented in SystemC using the
implementations of constants and variables. Invariants consist ofclausesthat are
Boolean expressions including values of constants, variables and C++ data types.
In the ActionC approach invariant is an instance of a class that can be used in
testing the clauses associated with it. Clauses are gathered together and evaluated
as one combined expression. An invariant evaluates to true when the combination
of its clauses evaluates to true.

System’s total invariant consists of all its individual invariants. The individual
invariants consist of one or more clauses, which are booleanexpressions with one
comparison operator and two operands the operator compares. The operators can
be values of C++ and SystemC data types. User-defined data types can also be
used if the necessary operators are defined for them.

Invariants and clauses are added to a SystemC model as new C++classes
that are compiled along with the rest of the design that user creates. These user-
defined invariant and clause classes inherit from ActionC classesac_invariant
andac_clause, respectively (Fig. 5). Eachac_system instance that describes
an action system for a corresponding SystemC module is used in creating the
instances of the needed invariants.

For example, in Action Systems an invariant may dictate the following con-
straint for a system:

sys_invariant : (varA < constA) ∧ (head(varB) ≤ constA) ;

wherevarA andvarB are variables andconstAis a constant used by the system.
In SystemC a user-defined clause classsys_clause1 that defines the first boolean
expression,varA < constA, may look as follows:

/** Clause: left < right. */
template<class L, class R> class sys_clause1 : public ac_clause
{
public:

/** Constructor. Pointers to the operands are given as parameters. */
sys_clause1(ac_sysstruct_if* l_p, ac_sysstruct_if* r_p) { lo_p = l_p; ro_p = r_p; }

/** Clause is executed.
* Clause retrieves the values of the handled elements and compares them.
*/
virtual bool exec() {
left = (dynamic_cast<ac_basictype<L>* >(lo_p->vtype()))->v();
right = (dynamic_cast<ac_basictype<R>* >(ro_p->vtype()))->v();
if (left < right) { return true; } else { return false; }

}
protected:

L left; ///< Left operand of the clause.
R right; ///< Right operand of the clause.
ac_sysstruct_if* lo_p; ///< Pointer to the left operand.
ac_sysstruct_if* ro_p; ///< Pointer to the right operand.

};

12

The constructor of the invariant that usessys_clause1 and clause classsys_clause2,
which defines expressionhead(varB) ≤ constAin SystemC, may look like this:

sys_invariant::sys_invariant(char* lab) {
label = lab; ///< Set name label as lab.
invh = ac_invariant_handle(label, this);

/** Adding clauses to sys_invariant. */
cl1 = new sys_clause1<short,int>(sys_var::varA, sys_const::constA); add_clause(cl1);
cl2 = new sys_clause2<int,int>(sys_var::varB, sys_const::constA); add_clause(cl2);

}

The clauses that invariants test are instantiated by the invariant itself. The con-
structor is provided with the types and values of the variables and constants the
clause uses. A clause checks the values of the constants and variables each time it
is executed, that is, when the invariant that uses it, is run.

6 Checking Invariants in a Running Simulation

Let us now combine the small examples in Sect. 5 into one. Let us have action
systemS ys that has the form:

sys S ys (in go : Boolean; in : Integer; out out : Integer;)
|[

constant
constA: Integer:= constAval;

variable
varA : Short; varB : queue o f Integer;

action
Pop: (go→ varA= in; varB= varB@varA; out = varA);

invariant
sys_invariant : varA< constA∧ head(varB) ≤ constA;

initialisation
varA,varB := varAinit ,varBinit ;

execution
do Pop od

]|

This system includes one action,Pop, which is executed every time the value of
the boolean type global variablego is true. ActionPop reads the value of global
variablein and stores it on local variablesvarAandvarB. At the end, the value of
varA is copied onto global variableout. After this,Popand the entire systemS ys
is suspended until the value of variablego is true again.

The header file of this system’s implementation in SystemC may look like this:

13

#ifndef __sys_hpp__
#define __sys_hpp__

#include "sys_constants.h" ///< File containing constants for Sys.
#include "sys_variables.h" ///< File containing variables for Sys.
#include "sys_invariant.h" ///< File declaring an invariant for Sys.
#include "ac_sysstruct/ac_system.h" ///< Header file of ac_system class.

SC_MODULE(Sys) {

/** System */
ac_system* sys; ///< The ac_system instance.
sys_invariant* sys_inv; ///< An instance of sys_invariant.

/** Ports. */
sc_in<bool> go; ///< Port for activation signal from outside the system.
sc_in<int> in; ///< Port for signal bringing in integers.
sc_out<int> out; ///< Port for signal sending out integers.

void pop(); ///< Action Pop.
void execution(); ///< Execution loop.
sc_signal<bool> pop_sig; ///< Signal to control action Pop.

SC_CTOR(Sys) {

sys = new ac_system("sys"); ///< The instance of ac_system.

/** Constants. */
sys->add_constant(*constants::constA); ///< Add constA to sys.

/** Variables. */
sys->add_variable(*variables::varA); ///< Add varA to sys.
sys->add_variable(*variables::varB); ///< Add varB to sys.

/** Invariants. */
sys_inv = new sys_invariant("sys_inv"); ///< The instance of sys_invariant.
sys->add_invariant(*sys_inv); ///< Add sys_inv to sys.

/** Process declarations. */
SC_THREAD(execution);
sensitive << go; set_stack_size(0x50000); dont_initialize();

SC_THREAD(pop);
sensitive << pop_sig.posedge_event(); set_stack_size(0x50000); dont_initialize();

sys_inv->test(); ///< Test invariant at initialisation.
}

};
#endif

The source file with the method definitions may look as follows:

#include "sys.h"

/** Execution loop handling action Pop. */
void Sys::execution() {

while(true) {
sys_inv->test(); ///< Test invariant before action Pop.
pop_sig.write(true); wait(pop_sig.negedge_event()); ///< Execute action Pop.
sys_inv->test(); ///< Test invariant after action Pop.

wait(go.posedge_event()); ///< Wait for next activation from port ’go’.
}

}

14

/** Action Pop. */
void Sys::pop() {

while(true) {
/** Receiving integer from port ’in’. */
(dynamic_cast<ac_basictype<short>* >(variables::varA->vtype()))->set_value(in->read());
/** Saving integer into varB. */
(dynamic_cast<ac_queue<int>* >(variables::varB->vtype()))
->append((dynamic_cast<ac_basictype<short>* >(variables::varA->vtype()))->v());

/** Passing integer forward through port ’out’. */
out.write((dynamic_cast<ac_basictype<short>* >(variables::varA->vtype()))->v());

/** Wait for next activation from signal ’pop_sig’. */
pop_sig.write(false);
wait();

}
}

As can be seen from the code, invariantsys_inv() is tested by running method
test() during initialisation as well as before and after runningpop().

In the Action Systems formalism an action system preserves its total invariant
on the basis of the weakest precondition semantics. In the current ActionC imple-
mentation, however, invariants are tested during simulation. In order to verify the
correctness of a running system its invariants should be tested at initialisation as
well as before and after every execution of its actions. The result of an invariant
test is revealed by the results of each individual clause execution. If all clauses
evaluate to true, also the invariant test evaluates to true at that point of simula-
tion. If at least one clause evaluates to false, also the invariant test evaluates to
false indicating that the system does not run properly. However, in Action Sys-
tems an action preserves an invariant in all other cases except when it evaluates
to true before the action is executed and to false after the execution. Therefore,
the preservation of an invariant depends on tests both before and after action ex-
ecutions. This kind of runtime invariant checking does not verify that a system
is correct by construction, but it can be used as a tool in the modelling process.
Introducing a tool for creating systems that are correct by construction will be a
challenge for future ActionC implementations.

Designer can write commands into an invariant about furthermeasures that
will be taken after passing or failing tests.ac_invariant class includes meth-
odstest_passed() andtest_failed(), which can be overridden in the user-
defined invariant class (Fig. 6). The definitions of these methods inac_invariant
class do nothing so they must be overridden if any measures need to be performed
by them in a user-defined model.

7 Conclusion

Both the Action Systems formalism and the SystemC modellingenvironment use
a modularised model structure supporting mechanisms such as procedures, par-

15

 object to system.

2. Add sys_invariant

:sys_invariant:sc_module :ac_system :sys_clause1

 of sys_invariant.
3. Test all clauses

add_invariant(ac_inv&)

<<create>>

join_invariant()

 for testing.

 sys_clause1 object

 object and

1. Create sys_invariant

test_passed()/test_failed()

test()

exec()

<<create>>

add_clause(ac_clau*)

join_system()

Figure 6: Creating an object of user-definedsys_invariant class, adding it into
a system and executing thesys_clause1 object in it.

allel composition and data encapsulation. Both can be used in describing be-
havioural models of HW/SW systems and refining them in a stepwise manner
down to an implementable design. In ActionC these two languages integrate into
an embedded computer system development framework, which enables mathe-
matically rigorous, correct-by-construct modelling withsimulation support for
running the created models.

This report has introduced an implementation for an Action Systems class hi-
erarchy that is to be used in SystemC modelling. In Action Systems, invariants
express constraints on the system they are associated with.They ensure that the
system behaves correctly by defining its legal states as predicates on its local and
global variables. In this report, however, the use of the implemented structures
have been demonstrated by utilising them in checking the values of system vari-
ables at fixed points of simulation. This kind of run-time invariant checking can
be used as a tool in system modelling process but it does not directly adhere to the
static verification approach of Action Systems. That approach will be tackled in
the future implementations of ActionC.

16

References

[1] T. Metsälä, T. Westerlund, S. Virtanen, and J. Plosila, “ActionC: An Action
Systems Approach to System Design with SystemC,” Turku Centre for Com-
puter Science (TUCS), Turku, Finland, Tech. Rep. 865, Jan. 2008.

[2] R.-J. Back and K. Sere, “From Action Systems to Modular Systems,” in
FME’94: Industrial Benefit of Formal Methods. Springer-Verlag, 1994, pp.
1–25.

[3] The Open SystemC Initiative,SystemC Version 2.0 User’s Guide. Update for
SystemC 2.0.1., 2002.

[4] T. Grötker, S. Liao, G. Martin, and S. Swan,System Design with SystemC.
Kluwer Academic Publishers, Boston / Dordrecht / London, 2002.

[5] R.-J. Back and R. Kurki-Suonio, “Decentralization of Process Nets with Cen-
tralized Control,” inPODC ’83: Proceedings of the second annual ACM sym-
posium on Principles of distributed computing. ACM Press, 1983, pp. 131–
142.

[6] E. W. Dijkstra,A Discipline of Programming. Prentice-Hall, Inc., 1976.

[7] B. Stroustrup,The C++ Programming Language, 3rd ed. Addison-Wesley
Publishing Company, Reading, Massachusetts, USA, 1997.

[8] The Open SystemC Initiative, “www.systemc.org (verified 2009-01-29).”

[9] T. Metsälä, T. Westerlund, S. Virtanen, and J. Plosila, “Rigorous Communi-
cation Modelling at Transaction Level with SystemC,” inICSOFT 2008: Pro-
ceedings of the Third International Conference on Softwareand Data Tech-
nologies. INSTICC Press, 2008, pp. 246–251.

17

Joukahaisenkatu 3-5 B, FI-20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematics

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978-952-12-2310-5
ISSN 1239-1891

