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Åbo Akademi University, Finland
elena.troubitsyna@abo.fi

Linas Laibinis
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Abstract

Recently, Space Systems Finland has undertaken formal Event B development of
a part of on-board software for the BepiColombo space mission. As a result, lack
of modularisation mechanisms in Event B has been identified as a serious obsta-
cle to scalability. One of the main benefits of modularisation is that it allows us to
decompose system models into components that can be independently developed.
It also helps to manage complexity of models that in the industrial setting are usu-
ally very large and difficult to comprehend. On the other hand, modularisation
enables reuse of formally developed components in the formal product line devel-
opment. In this paper we propose a conservative extension ofEvent B formalism
to support modularisation. We demonstrate how our approachcan support reuse
in the formal development in the space domain.
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1 Introduction

In the Deploy project[8], Space Systems Finland has performed a pilot Event B
development[11] of a part of on-board software for the BepiColombo space mis-
sion [6]. The developed system is responsible for controlling and monitoring
instruments that produce valuable scientific data that are critical for the success of
the mission. The undertaken development aimed at identifying the strengths and
weaknesses of Event B method and its supporting tool – the RODIN platform[15].
The experience demonstrated that the refinement approach provides a suitable de-
sign technique. It allows us to structure complex and numerous requirements and
promotes disciplined development via abstraction and proofs. However, it has also
became obvious that the lack of modularisation makes Event Bunscalable for for-
mal development of industrial systems. In this paper we propose a conservative
extension of Event B language that supports a simple modularisation idea.

The idea of modules is very well known and is supported by mostof the formal
frameworks. Usually they define a module interface via pre- and postconditions.
However, in our case introducing preconditioned operations in Event B was un-
acceptable due to two main reasons. Firstly, preconditioned operations would not
be supported by the RODIN platform and building a new tool of similar strength
would require significant time and financial investments. Secondly, introduction
of a preconditioned operation would seriously complicate the proof obligations
required to verify correctness and hence would lower the degree of automation
in the development. Therefore, our approach is strictly driven by the pragmatic
needs and oriented towards automation.

In this paper we briefly describe the on-board software that have been mod-
elled and present the experience gained by Space Systems Finland. Then we de-
scribe our proposal for introducing modularisation in Event B and demonstrate
how the system can be redeveloped in a modular fashion.

We believe that by enabling modular development in Event B wenot only
improve scalability of formal modelling but also potentially increase productivity.
Indeed, formally developed components can be reused in other developments and
hence amplify the effect of formal modelling.

2 Challenges and Experiences in Formal Develop-
ment of Onboard Software

2.1 Example of Onboard Software

Spacecraft-embedded software – onboard software – is responsible for managing
various spacecraft operations. For instance, the controlling software is critical to
the mere survivability of a mission, while scientific software is responsible for
correct and effective handling of high volume of data generated by extensive sci-
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entific experiments. Therefore, failure of onboard software can have major reper-
cussions. Yet, onboard software must withstand extreme conditions of the space
environment and operate with hardware, which has limited capabilities compared
to personal computers. It is clear that these factors make the design, implementa-
tion and verification of onboard software very challenging.

Space Systems Finland is one of software providers for the European Space
Agency (ESA) mission BepiColombo. The main goal of the mission is explo-
ration of the planet Mercury. The mission comprises variousscientific studies,
e.g., analysis of its internal structure and a surface, investigation of the geologi-
cal evolution of the planet etc. To achieve the defined scientific goals, one of the
mission orbiters – Mercury Planetary Orbiter – will carry remote sensing and ra-
dioscience instrumentation. Space Systems Finland is responsible for developing
software for an important part of the orbiter – the data processing unit. The com-
pany has undertaken formal development[11] of it in the Event B framework with
the support of the RODIN platform[15].

The data processing unit (DPU) is used to control two scientific instruments:
Solar Intensity X-ray and particle Spectrometer (SIXS) that records the radiation
from the Sun at the position of the spacecraft, and Mercury Imaging X-ray Spec-
trometer (MIXS) that records fluorescent X-rays from the planet surface. In turn,
both instruments contain two separate sensor units: X-ray spectrometer (SIXS-X)
and particle spectrometer (SIXS-P) for SIXS, and telescope(MIXS-T) and colli-
mator (MIXS-C) for MIXS.

The DPU unit is communicating with the BepiColombo spacecraft via SpaceWire
interfaces, which are used to receive telecommands from thespacecraft and trans-
mit science and housekeeping telemetry data back to the spacecraft.

The system under construction consists of three main software components:
the Core Software (CSW), the SIXS instrument application software (SIXS ASW)
and the MIXS instrument application software (MIXS ASW). CSW is the com-
mon interface software for the MIXS ASW and SIXS ASW. It controls and mon-
itors the operating states of SIXS and MIXS instruments, as well as handles
telecommand/telemetry communication with the BepiColombo platform.

In general, the behaviour of the system consists of receiving telecommands
(TC) from the BepiColombo platform and producing corresponding telemetry
data (TM). The received TCs are stored in a memory buffer. CSWis respon-
sible for validation of syntactical and semantical integrity of each received TC.
In particular, it checks that each TC adheres to the PUS standard[14] describing
telemetry and telecommand packet utilization. If validation fails then the corre-
sponding TM is generated. Otherwise a TC is placed in the poolof TCs waiting
for execution. Each TC has a ”recipient” – the component thatwill actually exe-
cute TC.

There are several types of TCs. They might request to change the operational
mode of a component, manage the memory resources, produce a housekeeping
report etc. The component that executes TC acknowledges, ifrequested, TC exe-
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cution by generating the corresponding TM. Moreover, a reaction on a TC might
also include a TM containing progress and housekeeping reports or periodically
generated scientific data.

Above we have given a very brief, high-level overview of system functionality.
The actual detailed requirements for the DPU unit are rathercomplex and large
(the real requirements document contains about several hundreds of pages), so
we omit their detailed description here. Next we outline thesteps of the formal
development aimed at modelling the functional behaviour ofthe system.

2.2 Experiences in Formal Modelling

The formal development of the DPU unit started from an abstract specification that
models the general control flow, abstractly representing a sequence of TC handling
and TM generation steps. The first refinement step introducesexplicit stages of
TC and TM processing. Depending on the stage, a TC or a TM is assigned a
specific status. For example, the TC status can beUnchecked(before validation),
Acceptedor Reject(after validation),Waiting for Execution(before execution),
Succesful Executionor Execution Failed(after execution), andRemovable(TC
processing is finished).

The second refinement step elaborates on the structure of TCsand TM, in-
troducing the notion of TC and TM types. We introduce a numberof concrete
types of TCs and TM, though many types are still modelled abstractly. The third
refinement step focuses on introducing software processes,representing software
components in the model. The representation of TC and TM is extended to explic-
itly model the target component that should execute a TC or the source component
that produced a TM.

The fourth refinement step introduces the notion of the component operat-
ing modes and mode transitions. For instance, the Core Software (CSW )can be
in Operational, Standby, andSafemodes. The fifth refinement step focuses on
modelling generation of reports – the dedicated TMs confirming validation and
execution of the corresponding TCs.

Certain types of TCs require not only reporting TMs but also TMs inform-
ing about progress of the TC execution, an operating mode change, or failure
detection. Such progress reporting is introduced in the sixth refinement step. Fur-
thermore, this refinement step introduces some details modelling the behaviour
of one of the components – SIXS-X. The seventh refinement stepmodels the be-
haviour of the other instruments in the similar way. Besidesit also elaborates on
component-specific TM generation and internal component behaviour.

We verified correctness of the entire refinement chain by proofs in the RODIN
platfrom. The resultant specification has 20 variables, 61 events, 38 invariants.
Additionally, the static data structures (15 sets, 88 constants) are defined by for-
mulating 207 axioms and 20 theorems. The text of the specification (apart from
definition of the data structures) has more than 40 pages.
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The formal modelling of data processing unit described above has highlighted
the following problems in Event B development

• It is not clear how to reuse the conducted development in the similar projects;

• Lack of modularisation support hinders independent development of several
subsystems;

• Without decomposition(modularisation), a specification of even a relatively
simple realistic system becomes very large and difficult to comprehend.

Therefore, there is a clear need to support modularisation mechanisms in formal
Event B development. Next we discuss our proposal for alleviating these prob-
lems.

Complexity of onboard software is constantly increasing, thus software for
a space mission is usually partitioned into components thatdeveloped by differ-
ent providers. In the space sector, cooperation between theproviders and quality
assurance is facilitated by two general mechanisms – the standards and, more re-
cently, the reference architecture. Some of the available standards regulate the
development process in general. Others define the interfaces (the format of data
and data flows) between components, e.g., the PUS standard mentioned above. To
facilitate the development in the sector, the reference architecture aims at provid-
ing a proven template solution for an architecture for the space domain. It lists
typical functions of a space mission and interfaces betweenthe functional blocks.
A simplified version of a reference architecture is given in Fig. 1.
The reference architecture provides us with a suitable basis for identifying generic
components. Since the communication between the components is regulated by
the standards, modules can be abstractly defined by their interfaces. The devel-
opment of components should ensure that the implementationpreserves the given
interface. Hence we can formally specify a system on architectural level, formally
define the conditions imposed on the component interfaces and then develop indi-
vidual components while preserving their interfaces. Furthermore, we can reuse
the models of previously developed components by composingthem using their
interfaces. Such an approach alleviates a problem of verifying large composed
specifications.

3 Event B

In this section we introduce our formal framework – The B Method [1]. It is
an approach for the industrial development of highly dependable software. The
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Figure 1: Reference architecture

method has been successfully used in the development of several complex real-
life applications [10]. Recently the B method has been extended by the Event
B framework [2], which enables modelling of event-based (reactive) systems. In
fact, this extension has incorporated the action system formalism [3, 4] in the B
Method.

The B Method development starts from creating a formal system specifica-
tion. The basic idea underlying stepwise development in B isto design the system
implementation gradually, by a number of correctness preserving steps calledre-
finements.

A simple B specification has the following general form:

MACHINE AM
SEES Context
VARIABLES v
INVARIANT Inv
INITIALISATION Init
EVENTS

E1 = . . .
. . .
EN = . . .

END

A B specification, called anabstract machine, encapsulates a local state (program
variables) and provides operations on the state. In the Event B framework, such
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operations are calledevents. The events can be defined as

WHEN g THEN SEND

or, in case of a parameterised event, as

ANY vl WHERE g THEN SEND

wherevl is a list of new local variables (parameters),g is a state predicate, andS
is a B statement (assignment) describing how the program state is affected by the
event. Both ordinary and non-deterministic assignments can be used to specify
state change. The non-deterministic assignments are of theform:

v : | Post(v,v′)

wherePost is the postcondition or the next state predicate, relating the variable
values before and after the assignment.

The events describe system reactions when the givenWHEN or WHERE
conditions are satisfied. TheINVARIANT clause contains the properties of the
system (expressed as predicates on the program state) that should be preserved
during system execution. The data structures needed for specification of the sys-
tem are defined in a separate component calledcontext.

4 Introduction to Modules in Event B

Our primary goal is to conservatively extend the Event-B language with a possi-
bility of (atomic) operation calls. Such an extension wouldnaturally lead to the
notion of modules – components containing groups of callable operations. More-
over, modules can have their own (external and internal) state and the invariant
expressing properties on this state. The important characteristic of modules is that
they can be developed separately and then composed with the main system during
its formal development. Since we are interested in incorporating modules into
Event B modelling, it should be also possible to statically check the correctness
of such a composition within the Event B framework.

Let us start with an ”ideal” (somewhat extreme) example of a general Event B
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operation that we would like to be able to express in our formal language.

op =

WHEN

Prec(v1,...,vN)

THEN

v1 : | ... op1 call(parameters1) ...

...

vN : | ... opN call(parametersN) ...

opN+1 call(parametersN+1)

...

opN+K call(parametersN+K)

END

Hereopi call(...) are either function or procedure calls from available modules1.
A procedure call can be considered as special case of a function call (with the
pre-defined return values). Thus from now on we will focus only on modelling
function calls in Event-B.

Once an enabled event is chosen for execution in Event B model, all its actions
are executed atomically and in parallel. However, the standard semantics of a
function call, realised in most programming and formal languages, prescribes the
well-defined order of execution steps:

1. Actual parameter expressions are evaluated and passed toa module opera-
tion;

2. The operation is executed on the given parameters and the module state.
The operation result is returned to the calling operation;

3. The actions of the calling operation are executed, substituting the function
calls with the returned results.

Moreover, the atomicity of an event operation with functioncalls should be pre-
served – no other event operation of the main system can intervene in between.
Our challenge in this paper is to implement this standard functionality within the
Event B semantics.

We split our task into two separate issues. First, we show howwe can intro-
duce modules and module calls during Event B development using model decom-
position. Next, we assume availability of pre-defined modules and demonstrate
correctness of our specification containing module operation calls. The latter is a
special case of verifying model composition.

1Since all actions in the operation body should be executed inparallel, to avoid writing con-
flicts, we assume here that all function and procedure calls are from different modules
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4.1 Introducing Modules via Model Decomposition

In this paper we use the J.-R. Abrial’s approach on Event-B decomposition[13].
The approach allows to split an Event B specification into several components
(sub-models) that can be developed separately. If needed, some of these com-
ponents can be further decomposed. Most importantly, the approach formally
guarantees that the final re-composed system will be a refinement of the original
one.

The decomposition is based on partitioning the model operations among the
new components. The model variables are distributed as well, either asinternal
variablesbelonging to some particular components, or asshared variablesthat
can be accessed by several components. To make the components self-contained,
each of them is complemented by specialexternal events, abstractly modelling
how the shared variables may be modified by other components.The approach
also restricts data refinement of the shared variables to make a decomposed sys-
tem consistent. Essentially, the shared variables betweentwo components of a
decomposed system can be often seen as the input and output channels allowing
these components to synchronise their activities.

Let us start with a simple generic example of an Event B operation. We would
like to refine it so that it delegates (part of) its functionality to an external operation
and then uses the returned result. In other words, the operation refinement should
be of the form:

op =

WHEN

Prec(v)

THEN

v : | Post(v,v’)

END

⊑

calling op =

WHEN

Prec’(v,ext)

THEN

v := Out Expr(v,Module op(In Expr(v)))

END

wherePost is the postcondition of the original event,In Expr(v) is the actual pa-
rameter expression,Out Expr(...) is a state expression incorporating the result of
the operation call, andext is the externally visible part of the module state.

We interpret the refined operation as a syntactic sugaring hiding the actual
definition in terms of the current Event B language. The idea is to model a func-
tion call by three events, simulating the three-step execution described above.
Moreover, these three events should be introduced in such a way that we could
decompose the system by distributing the system state and operations between
the calling and called components.

The execution of a called module operation is abstractly modelled by
Module op presented below. Note that, in addition to calculating the result res,
an operation call can also update the module stateext. The execution of a module
operation is wrapped by two events of the calling component:call preparation,
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which passes parameters to a module, andcall finalisation, which incorporates the
returned results.

Module op =

WHEN

i flag 6= o flag

THEN

ext,res : | M Post(pars,ext,ext’,res’)

o flag := 1-o flag

END

call preparation =

WHEN

Prec’(v,ext)

i flag = o flag

pars = NIL

THEN

pars := In Expr(v,ext)

i flag := 1-i flag

END

call finalisation =

WHEN

i flag = o flag

pars 6= NIL

THEN

v := Out Expr(v,res)

pars := NIL

END

The variablesi flag ando flag (of the type0..1) are used to enforce the fixed order
of execution between the main component and a module: firstcall preparation,
thenModule op, and finallycall finalisation. In addition, to guarantee atomicity
of an operation call, all the other operations of the callingcomponent should be
blocked untilcall finalisation finishes. It can be achieved by strengthening their
guards by(i flag = o flag) ∧ (pars = NIL). Essentially, the above solution is a
special case of the alternating bit protocol.

This refinement step also achieves partitioning the state and operations be-
tween components. The variablesres, o flag can be put into the future module
component, whilepars, i flag,v belong to the main specification. Following the
Abrial’s approach, we can decompose the system by movingModule op into a sep-
arate module, where it can be developed (refined) independently.

To prove operation refinement, we need to show the connectionbetween and
the abstract operationPrec and the strengthened preconditionPrec′, as well as
the expected postconditionPost in the main specification and the postcondition
M Post of the module operation. Specifically, the following two theorems should
be proved as additional proof obligations:

∀ext.Prec′(v,ext)∧M Inv(ext) ⇒ Prec(v)
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∀(v,ext,ext′res).M Post(In Expr(pars,ext),ext,ext′, res)∧M Inv(ext) ⇒

Post(v,Out Expr(v, res))

whereM Inv is the module invariant on its external state.

4.2 System Development via Model Composition

In the previous section we showed how we can delegate a part offunctionality of
the main specification to a module by means of model decomposition. In practice,
however, we are more interested in the opposite – composing our systems using a
collection of pre-defined modules.

In our examples above, execution of a module operation was specified as a
single event. In general, a module implementation could contain many callable
operations, each of them consisting of a group of events. Demonstrating the cor-
rectness of a operation call would then become a non-trivialtask.

Since Event B is a refinement-based formalism, the problem can be solved by
applying the classical rules of program correctness, in particular, the correctness
rules for operation calls[7, 9]. Basically, following these rules, it is sufficient to
show the relationships between the pre- / postcondition of aoperation call and the
corresponding pre- / postcondition of a module operation. Specifically, we need
to prove that

Prec ∧ M Inv ⇒ M Prec

M Post ∧ M Inv ⇒ Post

wherePrec, Post andM Prec, M Post specify respectively an operation call and
an module operation itself.

The pre- and postcondition for a module operation then become a part of the
externally visible module description, alongside with theexternal module vari-
ables and invariant. Such an external description is calleda module interface. An
exact structure of a module interface will be presented in the next section.

Let us recall the example from the previous section. However, this time the
module interface describing the module external state, invariant, and operation
preconditions and postconditions is available. Then it canbe shown that the op-
erationcalling op is just a syntactic sugaring for the following (provided that the
above conditions on the preconditions and postconditions are proved):
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calling op =

ANY

ext’, result

WHERE

Prec’(v,ext)

M Post(In Expr(v),ext,ext’,result)

THEN

v := Out Expr(result)

ext := ext’

END

The required sequence of parameter passing, external operation execution, and
returning of its results is now implicitly modelled by new local variables and their
initilisation in the operation guard.

In this section we demonstrated that the module interfaces can be very use-
ful verying the correctness of a module operation call. However, the examples
considered so far are still pretty simple. In the next section we will discuss the
structure and semantics of modules and their interfaces in ageneral case.

5 Extending Event B with Modules

5.1 Module Interface

Our main objectives are to facilitate model reuse and enableconcurrent develop-
ment of formal models. The interface concept plays a centralrole in achieving
this. The introduction of an operation call can be validatedby considering only
an interface description of a called operation. Symmetrically, an implementation
of an operation does not have to be aware of a possible contextof an operation
call since the validation is done againts the requirements stated in the interface.
In other words, a module interface allows a module user to invoke module oper-
ations and observe module external variables without having to inspect module
implementation details.

In our approach, a module interface consists of external module variables (w),
constants (c), and sets (s), the external module invariant, and a collection of mod-

11



ule operations, characterised by their pre- and post-conditions.

MODULE INTERFACE MI =

SEES Interface Context

VARIABLES w

INVARIANT M Inv(c, s, w)

OPERATIONS

res← op1(par) =

PRECONDITION M Pre1(c, s, par, w)

POSTCONDITION M Post1(c, s, par, w, w’, res’)

. . .

END

A module interface does not have an initialisation (it is provided by a module
implementation) and there are no events. However, an interface still must satisfy
certain consistency conditions typical for Event B specifications – operationfea-
sibility (i.e., there are some states that would satisfy pre- and postconditions) and
preservation of the module invariant:

∃res′,w′ ·M Inv(c, s,w)∧M Pre(c, s,p,w)∧M Post(c, s,p,w,w′, res′) (1)

M Inv(c, s,w)∧M Pre(c, s,p,w)∧M Post(c, s,p,w, r′,w′)⇒M Inv(c, s,w′) (2)

A module development always starts with the design of an interface. Once an
interface is formulated and declared final it cannot be altered in any manner. This
ensures that an operation call context is recomposable withan operation imple-
mentation, provided by the last refinement step of a module body.

5.2 Module Body

A module interface formally defines a collection of module operations. Obviously,
it should be complemented by the corresponding module body that provides a suit-
able implementation for each operation. Since an Event-B specification has a flat
structure, there is a problem of relating an interface operation declaration to a set
of events implementing the operation. To show correctness of a module imple-
mentation, we need a clear separation between the events implementing different
module operations.

The solution we are putting forward is based on an introduction of a simple
specification structuring mechanism. The events associated with a particular op-
eration are put together forming anevent group. Several event groups make up
a body a module implementation, one group for each interfaceoperation. The
defining property of an event group is the following: once a control is passed to a
group, the group runs till termination without interference from other groups. This
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allow us to formulate correctness conditions by considering only an operation and
its associated event group.

Events groups simply partition events of a machine. A modulebody defining
a collection of groups has the following structure:

MODULE M =

VARIABLES w

INVARIANT M Inv

GROUP group name1

(events)

GROUP group name2

(events)

. . .

END

The name of a group must match the name of an interface operation definition.
Each interface operation is associated with one group and vice versa. The termi-
nation of an event group corresponds to the termination of anoperation call.

Events of a group obey the usual Event-B consistency and refinement condi-
tions with an additional constraint requiring that a refinedevent inherits a group
membership from its abstract counterpart.

The pre- and postconditions of an interface operation definehigh-level require-
ments to the behaviour of an event group. At least one event ofan event group
must be enabled in the state described by the operation precondition.

M Pre⇒ G1∨G2∨· · ·∨Gn (3)

Each of the events returning control back from an event groupmust satisfy the
operation postcondition and provide suitable return values.

Postev(w,w′)∧¬(G1(w
′)∨G2(w

′)∨· · ·∨Gn(w
′))⇒M Post(w′) (4)

wherePostev is the event postcondition.
A divergent event group cannot be a proper implementation ofan operation.

Therefore, In the first model realising a given interface (that is, an abstract module
implementation) all the event groups must be terminating. The further refinement
steps have to demonstrate the non-divergence of new events,as it is done in a
conventional Event-B development.

5.3 Operation Invocation

The syntactic shorthand for an operation invocation is a function call. The inter-
pretation behind such a shorthand is based on the interface attributes of an op-
eration: its pre- and post-conditions. We have already discussed a simple case
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when just one invocation happens within an action. However,our approach scales
well to several invocations even when there is a complex interlink between call
instances such as using the result of one operation as a parameter for another.

The semantics of an operation call is given by the computation of an equivalent
statement that would be free from the call. Let us consider the following general
case of an event which action relies on an operation call:

E = WHEN G(v, w) THEN v : | Post(v, w, v’, op(a)) END

Here the predicatePost is the before-after predicate of the eventE. It relates the
current model statev to the next statev′ and also, indirectly, via the operation call,
the current external module statew to the next statew′. The result of the operation
call op(a) ia used inPost to constrainv′. The following rewrite rule replaces the
operation call with an equivalent characterisation based on the module interface
pre- and postconditions:

E = ANY res, w’ WHERE

M Inv(w) ∧ M Pre(par,w) ∧ M Post(par, w, w’, res))[a/par]

THEN

v : | Post’(v, w, v’,res)

w := w’

END

whereM Inv(w) is the module invariant andM Pre andM Post are the pre- and
post-conditions of the operationop. The new postconditionPost′ is computed by
replacing all the occurrences ofop invocations with the local variableres, con-
strained in the event guard to a possible return value ofop.

Since there can be more than one such invocation, the rule hasto be applied
iteratively until there are no operation calls left. The important point is the order in
which invocations are eliminated. In a general case, there is a causal link between
calls because each subsequent call may observe side effects(updates of module
external or internal variables) of all the preceding calls.Another form of a causal
link is passing the result of an operation call as a parameterto another call. The
collection of causal relationships defines a total order on operation calls of an
event. Once this ordering of calls is defined, we apply the above rule iteratively.
The result is the following syntactic translation. For someevent depending on a
set of operation callsa1, . . . ,an

E = WHEN G(v, w) THEN v : | Post(v, w, op1(a1), . . . , opn(an), v’)
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the corresponding (free of operation calls) translation iscomputed as follows:

E =

ANY res1, w′
1

WHERE G(v, w)∧ call(1)[a1 / par1][osub(0)]

ANY res2, w′
2

WHERE call(2)[a2, w′
1
/ par2, w2][osub(1)]

. . .

ANY resn, w′n

WHERE call(n)[an, w′
n−1

/ parn, wn][osub(n-1)]

THEN

w := w′
n

v : | Post(v, par, op1(a1), . . . ,opn(an), v’)[osub(n)]

END

END

END

where[osub(k)] is the subsitution[res1, . . . , resk/op1(a1), . . .opk(an)], andcall(k)
stands forM Inv(w)∧M Prek(wk,park)∧M Postk(park,wk,w

′
k
, resk). HerePrek

andPostk are the pre- and post-conditions of the operationopk. A nestedANY

construct is a syntactic sugaring that may be reduced to a single ANY. More
details on this may be found in the Rodin deliverable on the Event-B language
[13].

The expansion of operation calls into a plain Event-B notation reduces the
problem of operation call verification to conventional set of proof obligations gen-
erated for an Event-B event. However, we are not proposing todo such conversion
in practice – this would undermine all the benefits provided by a syntactical rep-
resentation of an operation call. Instead, we rely on the expanded form to derive
the proof obligations neccessary to demonstrate event correctness. From practical
view, a tool implementing the operation call mechanism would do the operation
call expansion as an intermediate step prior to the generation of proof obligations.

6 Modularisation of the DPU unit

This section presents an application of our modularizationapproach in Event B to
model one of important DPU subsystems, responsible for TC validation.

6.1 The Validation Module

The arrived telecommands should be validated (i.e., checked for syntactic and se-
mantic correctness of their fields) before they are forwarded to execution. The
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core software is responsible for syntactic (”early”) checking, while the telecom-
mand target software (which can be either the core software or application soft-
ware) does more thorough (”late”) semantical checking.

In the Event B specification, the validation stage of telecommand process-
ing corresponds to a group of events, covering different cases depending on the
telecommand type, the software component (process) it is targeted to, the cur-
rent core software mode etc. As a result of validation, the status of the processed
telecommand is changed to eitherAccepted or Rejected. In addition, the addi-
tional set variableExclusive Rej is updated in the case when the core software
rejects the telecommand. The information fromExclusive Rej is needed by the
core software later – in the reporting phase.

One of examples of such validation events is as follows:

Reject Private TC Early =

ANY

tc handler

WHERE

tc ∈ dom(TC pool)

TC status(tc handler) = TC Unchecked

TCpool(tc handler) ∈ VALID TCS

Type of TC(TCpool(tc handler)) ∈ PRIVATE TC TYPES

CSW mode 6= Operational

THEN

TC status(tc handler) := TC Rejected

Exclusive Rej := Exclusive Rej ∪ {tc handler}

END

This is an abstract event specifying one such case when the considered TC be-
longs to private (i.e., mission-specific) TC type and the core software is not in the
operational mode (i.e., is on standby or in the safe mode). Asa result, the core
software rejects the telecommand and marks it as ”exclusively rejected”.

Many implementation details describing the validation process (especially the
acceptance of TCs) are still missing and could be added in thelater refinement
steps. However, we would like to move the whole group of validation cases into
a separate module (calledValidation) and develop this module further indepen-
dently. The case analysis and application of concrete validation actions would
happen then within theValidation module. Therefore, we can specify the val-
idation phase within a single operation event containing a call to the operation
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Validate described in this module.

Validate op =

ANY

tc handler

WHERE

tc ∈ dom(TC pool)

TC status(tc handler) = TC Unchecked

THEN

TC status(tc handler) := Validate(tc handler,CSW mode)

END

The parameters for calling theValidate operation are the TC being processed as
well the current core software mode. The returned result is the new status of the
processed TC. Please note the absence of the variableExclusive Rej in the call-
ing operation. The reason for that is that we turnExclusive Rej into an external
variable of the new module. The ”external” status would allow other components
read the current value of this variable. The variable will beupdated internally,
when needed to record ”exclusive” rejection. The additional module operation
Remove Exclusive would allow other the calling component to remove a particu-
lar tc handler from Exclusive Rej after it served its purpose (i.e., in the reporting
phase).

The following excerpt of theValidation module interface contains declaration
of the external module variableExclusive Rej as well as the interfaces for the
operationsValidate andExclusive Remove.

MODULE INTERFACE Validation =

VARIABLES Exclusive Rej

INVARIANT

Exclusive Rej⊆ TC ADDRESSES

...

OPERATIONS

res1← Validate(tc handler,CSW mode) =

PRECONDITION

tc handler∈dom(TCpool)

CSW mode ∈ MODES

TC status(tc handler)=TC Unchecked
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POSTCONDITION

res1 ∈ {TC Accepted,TC Rejected}

tc handler∈Exclusive Rej’⇒ res1=TC Rejected

TC pool(tc handler)/∈VALID TCS⇒ tc handler∈Exclusive Rej’

Type of TC(TC pool(tc handler))∈ PRIVATE TC TYPES ∧

CSW mode 6=Operational⇒ tc handler∈Exclusive Rej’

...

res2← Exclusive Remove(tc handler) =

PRECONDITION

tc handler ∈ Exclusive Rej

TC status(tc handler) = TC Rejected

POSTCONDITION

res2 ∈ BOOL

(res2 = TRUE)⇒ (Exclusive Rej’ = Exclusive Rej\{tc handler})

(res2 = FALSE)⇒ (Exclusive Rej’ = Exclusive Rej)

...

END

6.2 Module Architecture

The Validation module is just one example of DPU modularization. Below we
present the suggested module architecture, structuring the Core software and in-
struments into several different modules such asValidation, Reporting, Mode Man-
agement and so on, each containing callable operations and both external and in-
ternal data. The modulesTC pool andTM pool are especially interesting, since
they essentially implement datatypes (classes) for handling currently processed
TCs and TMs.

7 Conclusions

In this paper we proposed a pragmatic approach to supportingmodularisation in
Event B. This work was motivated by the formal development conducted by Space
Systems Finland[11]. We described the system that have beendeveloped, pre-
sented the development approach and experience gained fromthe development.
The analysis of the development has shown that the lack of modularisation makes
the approach unscalable. Yet the top-down development paradigm and automated
proof-based verification offer an attractive design platform. Our conservative ex-
tension of Event B alleviates scalability problem while preserving all the benefits.
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E n v i r o n m e n t

Figure 2: Module Architecture

The proposed approach to modularisation can be seen as a special case of
the ”shared variables” type of decomposition by J.-R.Abrial[13]. Abrial aims
at enabling decomposition for distributed systems. Hence his approach is more
general and complex. In our case, the systems under construction are sequential,
even though their functionality is distributed among several modules. Our goal
was to enable parallel development of several independent parts of the system as
well as reuse formally developed modules in other developments.

Another proposal for supporting decomposition in Event B aims at the ”shared
events” style decomposition for distributed systems [5]. Finally, there is also pro-
posal for supporting event fusion in Event B[12]. However, all these works offer
more general and hence more difficult to implement alternatives for the modular-
isation.

We believe that our proposal for supporting modularisationfor Event B can
help to keep a positive momentum gained in the recent development and pave a
path towards industrial deployment of formal engineering.In our future work we
are planning to implement our approach as a plug-in to the RODIN platform.
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