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Abstract

Recently, Space Systems Finland has undertaken format Bvéevelopment of
a part of on-board software for the BepiColombo space nms#s a result, lack
of modularisation mechanisms in Event B has been identifieal serious obsta-
cle to scalability. One of the main benefits of modularisatthat it allows us to
decompose system models into components that can be iragEggndeveloped.
It also helps to manage complexity of models that in the itrthisetting are usu-
ally very large and difficult to comprehend. On the other handdularisation
enables reuse of formally developed components in the fgsroduct line devel-
opment. In this paper we propose a conservative extensiBrerit B formalism
to support modularisation. We demonstrate how our approanlsupport reuse
in the formal development in the space domain.

Keywords: Formal modelling, Event B, refinement, modularisationsesu
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1 Introduction

In the Deploy project[8], Space Systems Finland has pesdra pilot Event B
development[11] of a part of on-board software for the BefaGbo space mis-
sion [6]. The developed system is responsible for contrgliitnd monitoring
instruments that produce valuable scientific data thatrtieat for the success of
the mission. The undertaken development aimed at idengjfithe strengths and
weaknesses of Event B method and its supporting tool — thelR@&tform[15].
The experience demonstrated that the refinement approacides a suitable de-
sign technique. It allows us to structure complex and nuogerequirements and
promotes disciplined development via abstraction andfprdéowever, it has also
became obvious that the lack of modularisation makes EvemsBalable for for-
mal development of industrial systems. In this paper we @sepa conservative
extension of Event B language that supports a simple madaten idea.

The idea of modules is very well known and is supported by roftste formal
frameworks. Usually they define a module interface via pnet postconditions.
However, in our case introducing preconditioned operationEvent B was un-
acceptable due to two main reasons. Firstly, precondidi@perations would not
be supported by the RODIN platform and building a new tooligfilar strength
would require significant time and financial investmentscddelly, introduction
of a preconditioned operation would seriously complicéie proof obligations
required to verify correctness and hence would lower theetegf automation
in the development. Therefore, our approach is strictlyadriby the pragmatic
needs and oriented towards automation.

In this paper we briefly describe the on-board software thatteen mod-
elled and present the experience gained by Space Systetasd:imThen we de-
scribe our proposal for introducing modularisation in BvBrand demonstrate
how the system can be redeveloped in a modular fashion.

We believe that by enabling modular development in Event Bnatonly
improve scalability of formal modelling but also potenlyahcrease productivity.
Indeed, formally developed components can be reused im dévelopments and
hence amplify the effect of formal modelling.

2 Challenges and Experiences in Formal Develop-
ment of Onboard Software

2.1 Exampleof Onboard Software

Spacecraft-embedded software — onboard software — isnetye for managing
various spacecraft operations. For instance, the comigadloftware is critical to
the mere survivability of a mission, while scientific softeas responsible for
correct and effective handling of high volume of data geteerdy extensive sci-
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entific experiments. Therefore, failure of onboard sofwean have major reper-
cussions. Yet, onboard software must withstand extremditions of the space
environment and operate with hardware, which has limitg@bdities compared
to personal computers. It is clear that these factors makdekign, implementa-
tion and verification of onboard software very challenging.

Space Systems Finland is one of software providers for the&an Space
Agency (ESA) mission BepiColombo. The main goal of the noisss explo-
ration of the planet Mercury. The mission comprises varistigntific studies,
e.g., analysis of its internal structure and a surface,simgation of the geologi-
cal evolution of the planet etc. To achieve the defined siegbals, one of the
mission orbiters — Mercury Planetary Orbiter — will carryn@te sensing and ra-
dioscience instrumentation. Space Systems Finland i®nssile for developing
software for an important part of the orbiter — the data pseey unit. The com-
pany has undertaken formal development[11] of it in the Efeinamework with
the support of the RODIN platform[15].

The data processing unit (DPU) is used to control two sdientistruments:
Solar Intensity X-ray and particle Spectrometer (SIXS} teaords the radiation
from the Sun at the position of the spacecraft, and Merculgimg X-ray Spec-
trometer (MIXS) that records fluorescent X-rays from thenplesurface. In turn,
both instruments contain two separate sensor units: Xpagteometer (SIXS-X)
and particle spectrometer (SIXS-P) for SIXS, and teles¢diXS-T) and colli-
mator (MIXS-C) for MIXS.

The DPU unitis communicating with the BepiColombo spacera SpaceWire
interfaces, which are used to receive telecommands frospheecraft and trans-
mit science and housekeeping telemetry data back to the cfadic

The system under construction consists of three main stfta@amponents:
the Core Software (CSW), the SIXS instrument applicatidtware (SIXS ASW)
and the MIXS instrument application software (MIXS ASW).\@Ss the com-
mon interface software for the MIXS ASW and SIXS ASW. It catérand mon-
itors the operating states of SIXS and MIXS instruments, af as handles
telecommand/telemetry communication with the BepiColormlatform.

In general, the behaviour of the system consists of reqgitetecommands
(TC) from the BepiColombo platform and producing corresging telemetry
data (TM). The received TCs are stored in a memory buffer. GSVWespon-
sible for validation of syntactical and semantical intggof each received TC.
In particular, it checks that each TC adheres to the PUS atdfid}] describing
telemetry and telecommand packet utilization. If validatfails then the corre-
sponding TM is generated. Otherwise a TC is placed in the pb®LCs waiting
for execution. Each TC has a "recipient” — the componentwhthiactually exe-
cute TC.

There are several types of TCs. They might request to chdmegeperational
mode of a component, manage the memory resources, produmgsakeeping
report etc. The component that executes TC acknowledgessjukested, TC exe-
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cution by generating the corresponding TM. Moreover, atrea®n a TC might
also include a TM containing progress and housekeepingtsepo periodically
generated scientific data.

Above we have given a very brief, high-level overview of gystfunctionality.
The actual detailed requirements for the DPU unit are ratberplex and large
(the real requirements document contains about severalrbéds of pages), so
we omit their detailed description here. Next we outline skeps of the formal
development aimed at modelling the functional behaviouhefsystem.

2.2 Experiencesin Formal Modelling

The formal development of the DPU unit started from an abssjgecification that
models the general control flow, abstractly representirggiaance of TC handling
and TM generation steps. The first refinement step introdexpkcit stages of
TC and TM processing. Depending on the stage, a TC or a TM igresss a
specific status. For example, the TC status cabibeheckedbefore validation),
Acceptedor Reject(after validation),Waiting for Executionbefore execution),
Succesful Executioar Execution Failed(after execution), an@RemovablgTC
processing is finished).

The second refinement step elaborates on the structure o3 M, in-
troducing the notion of TC and TM types. We introduce a nundfesoncrete
types of TCs and TM, though many types are still modelledrab#y. The third
refinement step focuses on introducing software processggsenting software
components in the model. The representation of TC and TMtenebed to explic-
itly model the target component that should execute a TCeostlirce component
that produced a TM.

The fourth refinement step introduces the notion of the carapboperat-
ing modes and mode transitions. For instance, the Core 8at¢(CSW )can be
in Operational, Standhyand Safemodes. The fifth refinement step focuses on
modelling generation of reports — the dedicated TMs confignialidation and
execution of the corresponding TCs.

Certain types of TCs require not only reporting TMs but al$dsTinform-
ing about progress of the TC execution, an operating modageheor failure
detection. Such progress reporting is introduced in thi sefinement step. Fur-
thermore, this refinement step introduces some details limagiéhe behaviour
of one of the components — SIXS-X. The seventh refinementrstajels the be-
haviour of the other instruments in the similar way. Besidedso elaborates on
component-specific TM generation and internal componemaieur.

We verified correctness of the entire refinement chain byfpriodhe RODIN
platfrom. The resultant specification has 20 variables, v&hts, 38 invariants.
Additionally, the static data structures (15 sets, 88 amts) are defined by for-
mulating 207 axioms and 20 theorems. The text of the spetdicéapart from
definition of the data structures) has more than 40 pages.
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The formal modelling of data processing unit described ali@s highlighted
the following problems in Event B development

e Itis notclear how to reuse the conducted development inithiées projects;

e Lack of modularisation support hinders independent dgratnt of several
subsystems;

¢ Without decomposition(modularisation), a specificatibewen a relatively
simple realistic system becomes very large and difficuloimerehend.

Therefore, there is a clear need to support modularisatechanisms in formal
Event B development. Next we discuss our proposal for atew these prob-
lems.

Complexity of onboard software is constantly increasimgistsoftware for
a space mission is usually partitioned into componentsdéet¢loped by differ-
ent providers. In the space sector, cooperation betweeprtiveders and quality
assurance is facilitated by two general mechanisms — thelatds and, more re-
cently, the reference architecture. Some of the availailedsrds regulate the
development process in general. Others define the intar{tice format of data
and data flows) between components, e.g., the PUS standatmnezl above. To
facilitate the development in the sector, the referencki@cture aims at provid-
ing a proven template solution for an architecture for thecepdomain. It lists
typical functions of a space mission and interfaces betwleefunctional blocks.
A simplified version of a reference architecture is givenii B.
The reference architecture provides us with a suitablestbasidentifying generic
components. Since the communication between the compoiserdgulated by
the standards, modules can be abstractly defined by theifanes. The devel-
opment of components should ensure that the implementateserves the given
interface. Hence we can formally specify a system on arctuital level, formally
define the conditions imposed on the component interfacgthem develop indi-
vidual components while preserving their interfaces. tkenmmnore, we can reuse
the models of previously developed components by compdbem using their
interfaces. Such an approach alleviates a problem of wegfiarge composed
specifications.

3 EventB

In this section we introduce our formal framework — The B MetH1]. It is
an approach for the industrial development of highly depbétel software. The
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method has been successfully used in the development afateoenplex real-
life applications [10]. Recently the B method has been a¢dnby the Event
B framework [2], which enables modelling of event-baseddtive) systems. In
fact, this extension has incorporated the action systemdbsm [3, 4] in the B
Method.

The B Method development starts from creating a formal sypecifica-
tion. The basic idea underlying stepwise development intB design the system
implementation gradually, by a number of correctness pvesg steps callede-
finements

A simple B specification has the following general form:

MACHINE AM

SEES Context
VARIABLES v
INVARIANT Inv
INITIALISATION Init
EVENTS

El =

En =

END

A B specification, called aabstract machingencapsulates a local state (program
variables) and provides operations on the state. In thetEB/éramework, such
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operations are callegivents The events can be defined as

WHEN g THEN SEND

or, in case of a parameterised event, as

ANY v| WHERE g THEN SEND

wherevl is a list of new local variables (parameterg)s a state predicate, ar®l
is a B statement (assignment) describing how the program istaffected by the
event. Both ordinary and non-deterministic assignmentsbeaused to specify
state change. The non-deterministic assignments are &drtme

v :| Post(v,V)

wherePost is the postcondition or the next state predicate, relativegviariable
values before and after the assignment.

The events describe system reactions when the giVétEN or WHERE
conditions are satisfied. TH&VARIANT clause contains the properties of the
system (expressed as predicates on the program statehthdt $e preserved
during system execution. The data structures needed foifigpgion of the sys-
tem are defined in a separate component caltedext

4 |Introduction to Modulesin Event B

Our primary goal is to conservatively extend the Event-B)jlaage with a possi-
bility of (atomic) operation calls. Such an extension won&turally lead to the

notion of modules — components containing groups of cadlaplkerations. More-

over, modules can have their own (external and internalg stad the invariant

expressing properties on this state. The important chematit of modules is that
they can be developed separately and then composed withatinesgrstem during

its formal development. Since we are interested in incapaog modules into

Event B modelling, it should be also possible to staticaligak the correctness
of such a composition within the Event B framework.

Let us start with an "ideal” (somewhat extreme) example oémaegal Event B
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operation that we would like to be able to express in our fotarayuage.

op =
WHEN
Prec(vy,...,vN)
THEN
vi :| ... opi-call(parameterss) ...
VN ]| ... opn-call(parametersy) ...

opn+1-call(parametersy.y1)

opn+k -call(parametersy.1k)

END

Hereop;_call(...) are either function or procedure calls from available meghl
A procedure call can be considered as special case of a dancall (with the
pre-defined return values). Thus from now on we will focusyamh modelling
function calls in Event-B.

Once an enabled event is chosen for execution in Event B maltigs actions
are executed atomically and in parallel. However, the stehdemantics of a
function call, realised in most programming and formal laages, prescribes the
well-defined order of execution steps:

1. Actual parameter expressions are evaluated and pasaedadule opera-
tion;

2. The operation is executed on the given parameters and ddelenstate.
The operation result is returned to the calling operation;

3. The actions of the calling operation are executed, dulisiy the function
calls with the returned results.

Moreover, the atomicity of an event operation with functaails should be pre-
served — no other event operation of the main system carvarterin between.
Our challenge in this paper is to implement this standardtfanality within the
Event B semantics.

We split our task into two separate issues. First, we showwwewan intro-
duce modules and module calls during Event B developmengusodel decom-
position. Next, we assume availability of pre-defined medwdnd demonstrate
correctness of our specification containing module opamnatalls. The latter is a
special case of verifying model composition.

1Since all actions in the operation body should be executgiallel, to avoid writing con-
flicts, we assume here that all function and procedure cadléram different modules
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4.1 Introducing Modulesvia Model Decomposition

In this paper we use the J.-R. Abrial’'s approach on Event-&uagosition[13].
The approach allows to split an Event B specification intcesgvcomponents
(sub-models) that can be developed separately. If needete sf these com-
ponents can be further decomposed. Most importantly, tipeoaph formally
guarantees that the final re-composed system will be a reéineaf the original
one.

The decomposition is based on partitioning the model omersitamong the
new components. The model variables are distributed as aiter asnternal
variablesbelonging to some particular components, oishared variableghat
can be accessed by several components. To make the compeakttontained,
each of them is complemented by spe@aternal eventsabstractly modelling
how the shared variables may be modified by other compon@ims.approach
also restricts data refinement of the shared variables t@ malecomposed sys-
tem consistent. Essentially, the shared variables betweercomponents of a
decomposed system can be often seen as the input and ousjouiet$ allowing
these components to synchronise their activities.

Let us start with a simple generic example of an Event B opmratVe would
like to refine it so that it delegates (part of) its functiatyetio an external operation
and then uses the returned result. In other words, the operafinement should
be of the form:

op = calling.op =
WHEN WHEN
Prec(v) — Prec’(v,ext)
THEN a THEN
v :| Post(v,v") v := Out_Expr(v,Module_op(In_Expr(v)))
END END

wherePost is the postcondition of the original evemt, Expr(v) is the actual pa-
rameter expressioQut_Expr(...) is a state expression incorporating the result of
the operation call, anextis the externally visible part of the module state.

We interpret the refined operation as a syntactic sugaridopdnithe actual
definition in terms of the current Event B language. The idet® imodel a func-
tion call by three events, simulating the three-step execulescribed above.
Moreover, these three events should be introduced in suchyalvat we could
decompose the system by distributing the system state amichtogns between
the calling and called components.

The execution of a called module operation is abstractly efied by
Module_op presented below. Note that, in addition to calculating #sultres,
an operation call can also update the module statelThe execution of a module
operation is wrapped by two events of the calling componesit:preparation,
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which passes parameters to a module,@fidfinalisation, which incorporates the
returned results.

Moduleop =
WHEN
i_flag # o_flag
THEN
ext,res :| M_Post(pars,ext,ext’,res’)

o_flag := 1-o_flag

END

call_preparation = o
call_finalisation =

WHEN
WHEN
Prec’(v,ext)
i_flag = o_flag
i_flag = o_flag
pars # NIL
pars = NIL
THEN
THEN

v := Out_Expr(v,res)
pars := In_Expr(v,ext)
pars := NIL

i_flag := 1-i_flag END

END

The variables flag ando_flag (of the type0..1) are used to enforce the fixed order
of execution between the main component and a module: clilispreparation,
thenModule_op, and finallycall_finalisation. In addition, to guarantee atomicity
of an operation call, all the other operations of the calliboghponent should be
blocked untilcall_finalisation finishes. It can be achieved by strengthening their
guards by(i_flag = o_flag) A (pars = NIL). Essentially, the above solution is a
special case of the alternating bit protocol.

This refinement step also achieves partitioning the statieoperations be-
tween components. The variables, o_flag can be put into the future module
component, whilepars,i_flag,v belong to the main specification. Following the
Abrial’'s approach, we can decompose the system by mownage_op into a sep-
arate module, where it can be developed (refined) indepdégden

To prove operation refinement, we need to show the conneotween and
the abstract operatioBrec and the strengthened preconditiBrec’, as well as
the expected postconditidPost in the main specification and the postcondition
M_Post of the module operation. Specifically, the following two ¢dihems should
be proved as additional proof obligations:

Vext.Prec’(v,ext) AM_Inv(ext) = Prec(v)
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V(v,ext,ext'res).M_Post(In_Expr(pars, ext), ext,ext’, res) A M_Inv(ext) =
Post (v, Out_Expr(v,res))

whereM_lnv is the module invariant on its external state.

4.2 System Development via Model Composition

In the previous section we showed how we can delegate a paamctionality of
the main specification to a module by means of model decortiposin practice,
however, we are more interested in the opposite — composingystems using a
collection of pre-defined modules.

In our examples above, execution of a module operation wesifigd as a
single event. In general, a module implementation couldainmrmany callable
operations, each of them consisting of a group of events. ddetmating the cor-
rectness of a operation call would then become a non-triask.

Since Event B is a refinement-based formalism, the problenbeasolved by
applying the classical rules of program correctness, itiquaar, the correctness
rules for operation calls[7, 9]. Basically, following tleerules, it is sufficient to
show the relationships between the pre- / postconditioropfeaiation call and the
corresponding pre- / postcondition of a module operatigmec8ically, we need
to prove that

Prec A M_lnv = M_Prec
M_Post A M_lnv = Post

wherePrec, Post andM_Prec, M_Post specify respectively an operation call and
an module operation itself.

The pre- and postcondition for a module operation then becamart of the
externally visible module description, alongside with theéernal module vari-
ables and invariant. Such an external description is calleddule interfaceAn
exact structure of a module interface will be presentedemikxt section.

Let us recall the example from the previous section. Howedwes time the
module interface describing the module external stategriamt, and operation
preconditions and postconditions is available. Then itlmashown that the op-
erationcalling_op is just a syntactic sugaring for the following (providedtttize
above conditions on the preconditions and postconditiompreoved):
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calling.op =
ANY
ext’, result
WHERE
Prec’(v,ext)
M_Post(In_Expr(v),ext,ext’,result)
THEN
v := Out_Expr(result)
ext := ext’

END

The required sequence of parameter passing, externalt@peexecution, and
returning of its results is now implicitly modelled by newchd variables and their
initilisation in the operation guard.

In this section we demonstrated that the module interfaaasbe very use-
ful verying the correctness of a module operation call. Hmvethe examples
considered so far are still pretty simple. In the next secti@ will discuss the
structure and semantics of modules and their interfaceg@naral case.

5 Extending Event B with M odules

5.1 Modulelnterface

Our main objectives are to facilitate model reuse and enatrteurrent develop-
ment of formal models. The interface concept plays a cendtalin achieving
this. The introduction of an operation call can be validdtgdtonsidering only
an interface description of a called operation. Symmdtyican implementation
of an operation does not have to be aware of a possible conitext operation
call since the validation is done againts the requiremenated in the interface.
In other words, a module interface allows a module user tokevmodule oper-
ations and observe module external variables without lgaiennspect module
implementation details.

In our approach, a module interface consists of externaleodariablesy),
constantsd), and setsd), the external module invariant, and a collection of mod-

11



ule operations, characterised by their pre- and post-tiondi

MODULE_INTERFACE MI =
SEES Interface_Context
VARIABLESw
INVARIANT M_Inv(c, s, W)
OPERATIONS
res «— opi(par) =
PRECONDITION M_Preq(c, s, par, w)
POSTCONDITION M_Post;(c, s, par, w, W', res’)

END

A module interface does not have an initialisation (it isvpded by a module
implementation) and there are no events. However, an agerstill must satisfy
certain consistency conditions typical for Event B speatfans — operatiofea-
sibility (i.e., there are some states that would satisfy pre- and@uodgitions) and
preservation of the module invariant:

Jres’,w’ - M_Inv(c,s,w) AM_Pre(c,s,p,w) A M_Post(c,s, p,w,w’,res’) (1)

M_Inv(c,s,w) AM_Pre(c,s, p,w) A M_Post(c,s,p,w,r',w’) = M_lnv(c,s,w’) (2)

A module development always starts with the design of anfete. Once an
interface is formulated and declared final it cannot be @dtén any manner. This
ensures that an operation call context is recomposableamithperation imple-
mentation, provided by the last refinement step of a modudig.bo

5.2 Module Body

A module interface formally defines a collection of modulergiions. Obviously,
it should be complemented by the corresponding module daatytrovides a suit-
able implementation for each operation. Since an Eventdgifipation has a flat
structure, there is a problem of relating an interface dperaleclaration to a set
of events implementing the operation. To show correctnéssmodule imple-
mentation, we need a clear separation between the eventnrapting different
module operations.

The solution we are putting forward is based on an introdunctif a simple
specification structuring mechanism. The events assalcvete a particular op-
eration are put together forming @&wvent group Several event groups make up
a body a module implementation, one group for each interégezation. The
defining property of an event group is the following: once atoa is passed to a
group, the group runs till termination without interfererfrom other groups. This
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allow us to formulate correctness conditions by considgoinly an operation and
its associated event group.

Events groups simply partition events of a machine. A mobtolgy defining
a collection of groups has the following structure:

MODULEM =
VARIABLESw
INVARIANT M_Inv
GROUP group.namel

(events)
GROUP group_.name?2

(events)

END

The name of a group must match the name of an interface opermdéfinition.
Each interface operation is associated with one group aredwérsa. The termi-
nation of an event group corresponds to the termination @fp@nation call.

Events of a group obey the usual Event-B consistency anceraént condi-
tions with an additional constraint requiring that a refimeent inherits a group
membership from its abstract counterpart.

The pre- and postconditions of an interface operation defigielevel require-
ments to the behaviour of an event group. At least one eveah @vent group
must be enabled in the state described by the operationmuieicm.

M_Pre= GiVGyV--- VG, 3)

Each of the events returning control back from an event graupt satisfy the
operation postcondition and provide suitable return \alue

Poste, (w, W) A= (G (W) V Ga (W) V-V Gn(w)) = M_Post(w') 4)

wherePost, is the event postcondition.

A divergent event group cannot be a proper implementaticanabperation.
Therefore, In the first model realising a given interfacai(ik, an abstract module
implementation) all the event groups must be terminatirige flirther refinement
steps have to demonstrate the non-divergence of new ewnisjs done in a
conventional Event-B development.

5.3 Operation Invocation

The syntactic shorthand for an operation invocation is @tion call. The inter-
pretation behind such a shorthand is based on the interfadautes of an op-
eration: its pre- and post-conditions. We have alreadyudised a simple case
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when just one invocation happens within an action. Howexarapproach scales
well to several invocations even when there is a complexlinkebetween call
instances such as using the result of one operation as a @arafior another.

The semantics of an operation call is given by the computatian equivalent
statement that would be free from the call. Let us considefaiowing general
case of an event which action relies on an operation call:

E = WHEN G(v, w) THEN v :| Post(v, w, v, op(a)) END

Here the predicatPostis the before-after predicate of the evéntlt relates the
current model stateto the next state’ and also, indirectly, via the operation call,
the current external module stateto the next state’. The result of the operation
call op(a) ia used inPost to constrain/. The following rewrite rule replaces the
operation call with an equivalent characterisation basethe module interface
pre- and postconditions:

E = ANY res,w WHERE
M_Inv(w) A M_Pre(par,w) A M_Post(par, w, W', res))[a/par]
THEN
v | Post'(v, w, v',res)
wi=w
END

whereM_Inv(w) is the module invariant anéll_Pre andM Post are the pre- and
post-conditions of the operati@p. The new postconditioRost’ is computed by
replacing all the occurrences of invocations with the local variablees, con-
strained in the event guard to a possible return valusp of

Since there can be more than one such invocation, the rulehasapplied
iteratively until there are no operation calls left. The wngant pointis the order in
which invocations are eliminated. In a general case, tlseaecausal link between
calls because each subsequent call may observe side €tipdates of module
external or internal variables) of all the preceding calsother form of a causal
link is passing the result of an operation call as a parametanother call. The
collection of causal relationships defines a total order peration calls of an
event. Once this ordering of calls is defined, we apply thevabole iteratively.
The result is the following syntactic translation. For soevent depending on a
set of operation callay, ..., an

E = WHEN G(v, w) THEN v :| Post(v, w, opi(a1), ... , opn(an), V)
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the corresponding (free of operation calls) translaticcoimputed as follows:
E =
ANY resy, wp
WHERE G(v, w) A call(1)[a; / par1][osub(0)]
ANY resy, wh
WHERE call(2)[a2, W}/ para, wa][osub(1)]

ANY res,, W,
WHERE call(n)[a,, W/, 1/ par,, wy][osub(n-1)]
THEN

W= w),

v :| Post(v, par, opi(ai),...,opa(an), v)[osub(n)]
END

END
END

where|osub(k)] is the subsitutioriresy, ..., resy/opi(a1),...opk(an)], andcall(k)
stands foM_Inv(w) A M_Prey (wy, park) A M_Posty (pary, wi, w;, resk). HerePre
andPost, are the pre- and post-conditions of the operatipp A nestedANY
construct is a syntactic sugaring that may be reduced togleshNY. More
details on this may be found in the Rodin deliverable on ther=B language
[13].

The expansion of operation calls into a plain Event-B notatieduces the
problem of operation call verification to conventional sgbof obligations gen-
erated for an Event-B event. However, we are not proposidg such conversion
in practice — this would undermine all the benefits providgaIsyntactical rep-
resentation of an operation call. Instead, we rely on thewedpd form to derive
the proof obligations neccessary to demonstrate evergdoess. From practical
view, a tool implementing the operation call mechanism walo the operation
call expansion as an intermediate step prior to the gewerafiproof obligations.

6 Modularisation of the DPU unit

This section presents an application of our modularizaajmproach in Event B to
model one of important DPU subsystems, responsible for Ti@at#on.

6.1 TheValidation Module

The arrived telecommands should be validated (i.e., cliefkesyntactic and se-
mantic correctness of their fields) before they are forwardeexecution. The
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core software is responsible for syntactic ("early”) chiagk while the telecom-
mand target software (which can be either the core softwaepplication soft-
ware) does more thorough ("late”) semantical checking.

In the Event B specification, the validation stage of telee@nd process-
ing corresponds to a group of events, covering differenésaepending on the
telecommand type, the software component (process) irgetied to, the cur-
rent core software mode etc. As a result of validation, taeustof the processed
telecommand is changed to eithitcepted or Rejected. In addition, the addi-
tional set variableExclusive_Rej is updated in the case when the core software
rejects the telecommand. The information fr@sxclusive_Rej is needed by the
core software later — in the reporting phase.

One of examples of such validation events is as follows:

Reject_Private_TC_Early =

ANY
tc_handler

WHERE
tc € dom(TC_pool)
TC_status(tc_handler) = TC_Unchecked
TCpool(tc_handler) € VALID_TCS
Type_of_ TC(TCpool(tc_handler)) € PRIVATE_.TC_TYPES
CSW._mode # Operational

THEN
TC_status(tc_handler) := TC_Rejected
Exclusive_Rej := Exclusive_Rej U {tc_handler}

END

This is an abstract event specifying one such case when tigdewed TC be-
longs to private (i.e., mission-specific) TC type and theegmftware is not in the
operational mode (i.e., is on standby or in the safe mode)a Aesult, the core
software rejects the telecommand and marks it as "excllysiegected”.

Many implementation details describing the validationgaeiss (especially the
acceptance of TCs) are still missing and could be added itatke refinement
steps. However, we would like to move the whole group of \al@h cases into
a separate module (callathlidation) and develop this module further indepen-
dently. The case analysis and application of concrete atdid actions would
happen then within th&alidation module. Therefore, we can specify the val-
idation phase within a single operation event containinglato the operation
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Validate described in this module.

Validateop =
ANY
tc_handler
WHERE
tc € dom(TC_pool)
TC_status(tc_handler) = TC_Unchecked
THEN
TC_status(tc_handler) := Validate(tc_handler, CSW_mode)
END

The parameters for calling théalidate operation are the TC being processed as
well the current core software mode. The returned resuliesnew status of the
processed TC. Please note the absence of the vakablgsive_Rej in the call-

ing operation. The reason for that is that we téxalusive_Rej into an external
variable of the new module. The "external” status wouldwalt@her components
read the current value of this variable. The variable willupelated internally,
when needed to record "exclusive” rejection. The additionadule operation
Remove_Exclusive would allow other the calling component to remove a particu-
lar tc_handler from Exclusive_Rej after it served its purpose (i.e., in the reporting
phase).

The following excerpt of th&alidation module interface contains declaration
of the external module variablexclusive_Rej as well as the interfaces for the
operations/alidate andExclusive_Remove.

MODULE_INTERFACE Validation =
VARIABLES Exclusive_Rej
INVARIANT

Exclusive_Rej C TC_ADDRESSES

OPERATIONS
resl «— Validate(tc_handler,CSW_mode) =
PRECONDITION
tc_handleredom(TCpool)
CSW_mode € MODES
TC_status(tc_handler)=TC_Unchecked
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POSTCONDITION
resl € {TC_Accepted, TC_Rejected}
tc_handlercExclusive_Rej = res1=TC_Rejected
TC_pool(tc_handler)¢VALID_TCS = tc_handler€Exclusive Rej’
Type_of TC(TC_pool(tc_handler))e PRIVATE_.TC_TYPES A

CSW_mode=#£Operational = tc_handler€Exclusive_Rej’

res2 «— Exclusive_Remove(tc_handler) =

PRECONDITION
tc_handler € Exclusive_Rej
TC_status(tc_handler) = TC_Rejected

POSTCONDITION
res2 € BOOL
(res2 = TRUE) = (Exclusive_Rej’ = Exclusive_Rej\ {tc_handler})
(res2 = FALSE) = (Exclusive_Rej’ = Exclusive_Rej)

END

6.2 Module Architecture

The Validation module is just one example of DPU modulaiarat Below we
present the suggested module architecture, structuren@tine software and in-
struments into several different modules suckalslation, Reporting, Mode Man-
agement and so on, each containing callable operations and bothnektand in-
ternal data. The module&C pool and TM pool are especially interesting, since
they essentially implement datatypes (classes) for hagdurrently processed
TCs and TMs.

7 Conclusions

In this paper we proposed a pragmatic approach to suppartodylarisation in

Event B. This work was motivated by the formal developmenthated by Space
Systems Finland[11]. We described the system that have teesioped, pre-
sented the development approach and experience gainedheodevelopment.
The analysis of the development has shown that the lack otitandation makes
the approach unscalable. Yet the top-down developmendjggmeand automated
proof-based verification offer an attractive design plaitfoOur conservative ex-
tension of Event B alleviates scalability problem whileg@eving all the benefits.
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Figure 2: Module Architecture

The proposed approach to modularisation can be seen as ialpse of
the "shared variables” type of decomposition by J.-R.Aft&. Abrial aims
at enabling decomposition for distributed systems. Henseajpproach is more
general and complex. In our case, the systems under cotistrace sequential,
even though their functionality is distributed among selemodules. Our goal
was to enable parallel development of several independetd pf the system as
well as reuse formally developed modules in other developse

Another proposal for supporting decomposition in EventrBsaat the "shared
events” style decomposition for distributed systems [&jaly, there is also pro-
posal for supporting event fusion in Event B[12]. Howevdriteese works offer
more general and hence more difficult to implement alteveatior the modular-
isation.

We believe that our proposal for supporting modularisaf@mEvent B can
help to keep a positive momentum gained in the recent denedapand pave a
path towards industrial deployment of formal engineerimgour future work we
are planning to implement our approach as a plug-in to the IRGilatform.
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