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Abstract

A framework for the study of two-way deterministic finite automata (2DFA)
over a one-letter alphabet is developed, generalizing the concept of transfor-
mation semigroups to the case of bi-directional motion. It allows analyzing
the behaviour of automata globally, on all inputs at once, rather than locally,
following a particular computation, as per the mainstream approach to two-
way computations. The method is used to show that transforming an n-state
unary 2DFA to an equivalent sweeping 2DFA requires exactly n + 1 states,
and that exactly max06`6n g(n−`)+`+1 states, where g(k) is the maximum
order of a permutation of k elements, are needed for a similar transformation
of a unary 2DFA to a one-way automaton.
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unary languages, descriptional complexity.
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1 Introduction

Two-way deterministic finite automata (2DFA) were introduced in the fa-
mous paper by Rabin and Scott [15] alongside the one-way nondeterministic
automata (1NFA). Both kinds of automata recognize the same language fam-
ily as the one-way deterministic finite automata (1DFA). However, they are
substantially different in terms of succinctness of description, and the num-
ber of states needed to represent a language by one type of finite automata
is sometimes much greater than for another type.

While the methods for determining the number of states in one-way au-
tomata, both deterministic and nondeterministic, are well-known, and the
main descriptional complexity questions [6] have been researched to extinc-
tion, the succinctness issues of two-way automata have proved to be truly
challenging. The question of whether 2DFAs can simulate their nondeter-
ministic counterpart (2NFA) with only a polynomial blowup has attracted a
lot of attention due to its close connection to the L vs. NL problem in the
complexity theory [2], yet no definite answers could be found. Even such a
basic question as the precise number of states in a 1DFA needed to simulate
an n-state 2DFA could not be determined precisely for almost half a cen-
tury: the (n + 1)n+1 upper bound by Shepherdson [17] was approached by

a relatively close (n−5
2

)
n−5

2 lower bound by Moore [13], but only a few years
ago the exact value n(nn− (n−1)n) was finally determined by Kapoutsis [8].
Simulations of 2NFAs by simpler automata, first studied by Vardi [19], were
also determined precisely by Kapoutsis [8]. The complexity of operations on
2DFAs has recently been investigated by Jirásková and Okhotin [7].

The state complexity of 2DFAs in the seemingly trivial case of a one-
letter alphabet turned out to be challenging as well. The first study of unary
2DFAs was undertaken by Chrobak [4], who has sketched an argument that
an n-state 2DFA over a unary alphabet can be simulated by a Θ(g(n))-state

1DFA, where g(n) = e(1+o(1))
√

n ln n is the maximal order of a permutation
on n elements, known as Landau’s function [9]. Further work in this direc-
tion was done by Mereghetti and Pighizzini [10] and by Geffert, Mereghetti
and Pighizzini [5], who similarly gave good asymptotic estimations of the
2NFA–1DFA tradeoff. Their approach lies with considering only the peri-
odic part of the language and using a general upper bound on the starting
point of its periodicity, and thus leads only to asymptotic succinctness trade-
offs. No optimal simulations between unary two-way and one-way automata
are known up to date. The first such results are obtained in this paper for
the deterministic case.

The goal of this paper is to develop a general framework for reasoning
about unary 2DFAs, which would cover both their periodic and non-periodic
behaviour in a unified way, and subsequently allow determining the precise
number of states needed to represent particular languages. Recalling the
algebraic representation of a 1DFA by a monoid of partial transformations
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of its set of states (Section 3), the paper proceeds with generalizing this
concept to semigroups of two-way transformations representing bi-directional
motion (Section 4). Each 2DFA over a unary alphabet is represented by a
monogenic subsemigroup of the semigroup of two-way transformations, and
the properties of such subsemigroups are gradually worked out in Section 5.
The final result is the precise characterization of monogenic semigroups of
two-way transformations on n states: their index ` (that is, the starting
point of the periodicity) and period lcm(p1, . . . , pk) satisfy the inequality
p1 + · · ·+ pk + ` 6 n + 1.

Based on this analysis, the use of the states by a unary 2DFA is explained
as follows. It is in fact found that 2DFAs can do just two things which lower
the required number of states, as compared to 1DFAs:

1. count divisibility separately for powers of distinct primes;

2. when counting up to a finite bound `, they can count one step less than
one would expect, and then use one of the cycles to distinguish between
strings of length ` and ` + 1.

This understanding is used in the rest of the paper to establish precise state
complexity results for several classes of unary 2DFAs.

The first to be considered is the subclass of sweeping 2DFAs, studied in
Section 6. For an arbitrary alphabet, as independently proved by Berman [1]
and by Micali [12], the succinctness blowup from general 2DFAs to sweeping
2DFAs is exponential. For a unary alphabet, Mereghetti and Pighizzini [11]
established a transformation of an n-state 2NFA to a sweeping 2NFA with
O(n2) states. For 2DFAs, Chrobak [4] has claimed without a proof that
every unary 2DFA can be made sweeping without increasing the number of
states. The claim was not substantiated, and the best result known in the
literature is the O(n2) bound for unary 2NFAs from the work of Mereghetti
and Pighizzini [11]. This paper determines the exact number of states needed
to make an n-state 2DFA sweeping, which turns out to be n + 1.

Section 7 considers the standard question of converting an n-state 2DFA
to an equivalent 1DFA. Chrobak’s [4] asymptotic estimation Θ(g(n)) is
hereby improved to the precise expression, which is max06`6n g(n−`)+`+1.
The same function applies to the 2DFA to 1NFA transformation.

2 Two-way deterministic automata

Given an input string w, a 2DFA operates on a tape containing the string
`wa, where ` and a are special symbols known as the left-end marker and
the right-end marker, respectively. According to the standard definition, a
2DFA begins its computation at the left-end marker and accepts at the right-
end marker. In this paper, the definition is extended to allow acceptance on
both sides: this leads to symmetric constructions and allows avoiding some
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awkward exceptions in the results. Furthermore, to simplify mathematical
treatment of these automata, accepting states are replaced with moving be-
yond the markers.

Definition 1. A 2DFA (with two-sided acceptance) is a quadruple A =
(Σ, Q, q1, δ), in which Σ is a finite alphabet with `,a /∈ Σ, Q is a finite set
of states, q1 ∈ Q is the initial state and δ : Q× (Σ∪{`,a}) → Q×{−1, +1}
is a partially defined transition function.

A computation of A on a string w = a1 . . . a` ∈ (Σ ∪ {`,a})+ beginning
with a configuration (p0, i0) is the longest sequence (p0, i0), (p1, i1), . . ., finite
or infinite, in which

• pt ∈ Q and 1 6 it 6 ` for each t-th step, except maybe for the last
element of a finite computation, which may have it ∈ {0, ` + 1};

• every next element (pt, it), if it is defined, satisfies δ(pt−1, ait−1) =
(pt, dt) and it = it−1 + dt.

The computation beginning with a given configuration (p0, i0) is always
uniquely defined. It is accepting if it is finite and its last configuration (pf , if )
satisfies if ∈ {0, ` + 1}. In this case, this last configuration is denoted by
δ∗w(p0, i0) = (pm, im).

Then A is said to accept an input string w ∈ Σ∗ if δ∗`wa(q1, 1) is defined.
Define L(A) = {w | A accepts w}.

Besides accepting, a 2DFA may explicitly reject by encountering an un-
defined transition, or it may loop, in the sense that the sequence defined
above continues indefinitely within the margins of the tape. In both cases
the string is not in the language.

3 Ordinary transformation semigroups

For any set N , the set of partial functions from N to N (called partial
transformations of N) is known to form a monoid with respect to the function
composition ◦. This monoid is denoted by PT N . For every h ∈ PT N , its
mth power h ◦ · · · ◦ h︸ ︷︷ ︸

m

will be denoted by hm.

It is well-known that the behaviour of a (partial) 1DFA over Σ, with
a set of states Q, is characterized by its transitions monoid, which is the
submonoid of PT Q consisting of all actions of strings δw on this automaton,
where w ∈ Σ∗. This submonoid is generated by the actions of letters, and
the function composition takes the form δu ◦ δv = δvu. A more detailed
introduction was given by Perrin [14].

A semigroup generated by one of its elements, that is, with all elements
being powers of this element, is called monogenic. If a monogenic semigroup
S generated by s is finite, then there exist positive integers i 6= j satisfying
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si = sj. In this case, the least positive integer i, for which there exists j > i
with si = sj, is called the index of S. Then the period of S is the least
number p > 1 with si = si+p. The index and period determine a monogenic
semigroup up to isomorphism.

In the case of the monoid PT N , the index and period of the subsemigroup
generated by a partial transformation h can be easily calculated from the
structure of h when viewed as an oriented graph of out-degree 1, with the
set of nodes N and with h(α) = β represented by an arc α → β. If α ∈ N
is such, that hi(α) = α for some i > 1, then the h-cycle containing α is the
set {hj(α) | 0 6 j 6 ` − 1}, where ` > 1 is the smallest number satisfying
h`(α) = α; this ` is called the length of the h-cycle. An h-tail is any maximal
subset of N consisting of elements not belonging to any h-cycle, in which
for any two elements α and β there exists k satisfying either hk(α) = β
or hk(β) = α. There is a one-to-one correspondence between h-tails and
elements α ∈ N with h(β) 6= α for every β ∈ N ; the h-tail given by such α
consists of all elements hk(α) reachable from α which do not belong to any
cycle. Note that every tail leads either into a cycle, or into a dead element
where h is not defined; in the latter case it shall be called an orphan tail.
The number of elements of N which belong to a given tail is called the length
of the tail. Every element of N belongs to a cycle or to a tail, but not to
both. Furthermore, note that the cycles are necessarily disjoint, while tails
are not.

Lemma 1. For any h ∈ PT N , the index of the subsemigroup generated by h
is equal to the length of the longest h-tail (it equals 1 if there is no tail) and
its period is equal to the least common multiple of the lengths of all h-cycles.

4 Two-way transformation semigroups

In this section, the above graph-theoretic outlook on partial transformations
is generalized to the case of bi-directional motion. This notation allows
extending Lemma 1 to the two-way case, which shall be used as a basis
for state complexity results for unary 2DFAs.

Consider the behaviour of an n-state deterministic two-way automaton
on any nonempty string w. It enters the string in a certain state either from
its first or from its last symbol. Then the automaton may either loop inside
the string, or eventually leave the string by going to the left of its first symbol
or to the right of its last symbol in a certain new state.

The symbol . represents entering a string from the left. Entering the
leftmost symbol of w in a state i is described by a pair (., i). Then, leaving
w by going to the right of its last symbol in a state j is denoted by a pair
(., j), because this means entering the string to the right of w on its first
symbol. Symmetrically, the symbol / represents entering a string from the
right. If the automaton enters the last symbol of w from the right in a state
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k, this is represented by a pair (/, k), and a pair (/, `) also represents leaving
w by going to the left beyond its first symbol in a state `.

Thus the behaviour of an n-state 2DFA on any string can be represented
as a partial transformation of a set N = {., /} × {1, . . . , n}. These transfor-
mations shall be called two-way transformations on {1, . . . , n} and denoted
by the symbols f and g. They shall be depicted by oriented graphs, such as
the one in Figure 1. The following notation for each half of the set N shall
be employed: N. = {.} × {1, . . . , n} and N/ = {/} × {1, . . . , n}.

Figure 1: Representing behaviour of 2DFA on w as fAw : N → N .

Definition 2. Let A = (Σ, Q, q1, δ) be a 2DFA with Q = {q1, . . . , qn}, let
w ∈ (Σ ∪ {`,a})+ be a nonempty string. Then the behaviour of A on w is
a two-way transformation fAw on {1, . . . , n} defined as follows:

fAw (., i) =





(., j), if δ∗w(qi, 1) = (qj, |w|+ 1),

(/, j), if δ∗w(qi, 1) = (qj, 0),

undefined, if δ∗w(qi, 1) is undefined.

fAw (/, i) =





(., j), if δ∗w(qi, |w|) = (qj, |w|+ 1),

(/, j), if δ∗w(qi, |w|) = (qj, 0),

undefined, if δ∗w(qi, |w|) is undefined.

Figure 2: g • f .

Once the behaviour of the automaton on some strings u, v ∈ Σ+ is known
to be f and g, respectively, its behaviour on their concatenation uv can be
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obtained as a certain product g •f (note that this product is unrelated to the
plain function composition g ◦ f). The value fAuv(α) can be inferred from fAu
and fAv by the following chain of equivalences. An equality fAuv(., i) = (., j)
holds, that is, δ∗uv(qi, 1) = (qj, |uv| + 1), if and only if there exists a number
k ∈ N representing how many times the computation on uv crosses the
boundary between u and v, and the intermediate states i` ∈ {1, . . . , n} with
` ∈ {0, . . . , k − 1} and j` ∈ {1, . . . , n} with ` ∈ {1, . . . , k − 1} entered
by the automaton on the successive traversals of this boundary, with some
computations inside u and v occurring in between: δ∗u(qi, 1) = (qi0 , |u| + 1),
δ∗v(qik−1

, 1) = (qj, |v| + 1) and δ∗u(qj`
, |u|) = (qi` , |u| + 1) and δ∗v(qi`−1

, 1) =
(qj`

, 0), for ` = 1, . . . , k − 1. These conditions can be reformulated purely in
terms of the transformations fAu and fAv as follows: fAu ◦ (fAv ◦ fAu )`((., i)) =
(., i`) for ` ∈ {0, . . . , k− 1}, (fAv ◦ fAu )`((., i)) = (/, j`) for ` ∈ {1, . . . , k− 1},
and (fAv ◦ fAu )k(α) = (., j).

Dealing with all other possibilities in the same way leads to the following
definition of g•f . For every α ∈ N., the value (g•f)(α) is defined as follows.

• If there exists k ∈ N such that f ◦ (g ◦ f)`(α) ∈ N. for ` = 0, . . . , k− 1,
(g ◦ f)`(α) ∈ N/ for ` = 1, . . . , k − 1 and (g ◦ f)k(α) ∈ N., then
(g • f)(α) = (g ◦ f)k(α).

• If there exists k ∈ N0 such that f◦(g◦f)`−1(α) ∈ N. and (g◦f)`(α) ∈ N/

for ` = 1, . . . , k and f ◦(g◦f)k(α) ∈ N/, then (g•f)(α) = f ◦(g◦f)k(α).

• It is undefined otherwise.

Symmetrically, the value (g • f)(α) for α ∈ N/ is defined as follows:

• If there exists k ∈ N such that g ◦ (f ◦ g)`(α) ∈ N/ for ` = 0, . . . , k− 1,
(f ◦ g)`(α) ∈ N. for ` = 1, . . . , k − 1 and (f ◦ g)k(α) ∈ N/, then
(g • f)(α) = (f ◦ g)k(α).

• If there exists k ∈ N0 such that g◦(f◦g)`−1(α) ∈ N/ and (f◦g)`(α) ∈ N.

for ` = 1, . . . , k and g◦(f ◦g)k(α) ∈ N., then (g•f)(α) = g◦(f ◦g)k(α).

• It is undefined otherwise.

As a historical reference, one could recall a similar product defined by
Birget [3] in the special case of 2DFAs with disjoint “right-moving” and
“left-moving” states.

Proposition 1. Let u, v ∈ (Σ ∪ {`,a})+ be nonempty strings. Then fAuv =
fAv • fAu .

A natural question is whether all two-way transformations may occur as
behaviours of some automata on some strings, and the answer is negative.
Let f be a behaviour of some automaton on a string w ∈ Σ+, let (., i) ∈ N.
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and assume f
(
(., i)

)
= (., j) ∈ N., as illustrated in Figure 3. Then the

computation of the automaton going through w to the state j beyond w
should pass through the last symbol of w in some state k, from where the
automaton went to the right. Accordingly, there should exist a state k with
f
(
(/, k)

)
= (., j).

Figure 3: Condition (1).

A symmetric condition applies to elements of N/, and the entire necessary
condition can be succinctly stated as follows. For all α, β ∈ N , if both α and
β belong to N. or both belong to N/, this is denoted by α ∼ β and represents
entering strings in the same direction. Then

∀α ∈ N : f(α) ∼ α =⇒ ∃β ∈ N : β � α ∧ f(β) = f(α). (1)

Denote by T T n the set of two-way transformations on {1, . . . , n} satisfying
this condition.

Two-way transformations that occur as behaviours of some automata on
one-symbol strings w = a ∈ Σ must satisfy a stronger condition:

fAa (., i) = fAa (/, i) (for all i ∈ {1, . . . , n}) (2)

And conversely, if a two-way transformation satisfies the condition (2), then
it is a behaviour of some letter in some 2DFA. Such two-way transformations
shall be called distinguished.

Lemma 2. Every f ∈ T T n is a product of two distinguished two-way trans-
formations.

Proof. Define these distinguished two-way transformations fAa and fAb as
follows. For every α ∈ N with f(α) undefined, fAa (α) is undefined if α ∈
N., and fAb (α) is undefined if α ∈ N/. For every α ∈ N with f(α) � α,
define fAa (α) = f(α) if α ∈ N., and fAb (α) = f(α) if α ∈ N/. Clearly,
(fAb • fAa )(α) = f(α) for every such α.

If α, f(α) ∈ N., then, by (1), there exists (/, i) ∈ N/ with f((/, i)) = f(α).
Define fAa (α) = (., i). Since fAb ((., i)) = fAb ((/, i)) has already been defined
as f((/, i)) ∈ N. at the previous step, (fAb • fAa )(α) = (fAb ◦ fAa )(α) =
fAb ((., i)) = f((/, i)) = f(α), as required.

The last case of α, f(α) ∈ N/ is symmetric. By (1), there is (., i) ∈ N.

with f((., i)) = f(α), and it is sufficient to define fAb (α) = (/, i).
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Proposition 2. A two-way transformation belongs to T T n if and only if it
is a behaviour of some 2DFA on some string.

Proof. Since condition (1) is satisfied by the behaviour of any automaton on
an arbitrary string, such a behaviour belongs to T T n. Conversely, Lemma 2
shows that every element f ∈ T T n is of the form f = fAb • fAa , where
fAa , fAb are behaviours of a 2DFA A on some letters a, b. Then, according to
Proposition 1, it holds f = fAab.

Proposition 3. The set T T n equipped with the product • is a semigroup.

Though this fact could be proved directly by establishing the associa-
tivity of • and demonstrating that it preserves the class T T n, there is a
simpler argument relying on the correspondence of T T n to 2DFAs and on
the associativity of the concatenation.

Proof. First note that, given finitely many elements of T T n, not only each
of them is a behaviour of some 2DFA on some string by Proposition 2, but
it can also be assumed that all of them are behaviours of the same automa-
ton on different strings; this can be achieved simply by taking strings over
different alphabets. Then the closure of T T n under • follows directly from
Proposition 1. Furthermore, the product • is associative on T T n, because
Proposition 1 implies fAw • (fAv • fAu ) = fAuvw = (fAw • fAv ) • fAu .

Note that T T n is not a monoid for the lack of an identity element.
Though there exists an identity two-way transformation defined by e(α) = α,
it does not satisfy condition (1). For this reason, the semigroup represen-
tation of two-way automata considers only their computations on nonempty
inputs. The empty string will be reintroduced later, when turning from
semigroups back to automata.

The semigroup T T n will be called the full two-way transformation semi-
group on {1, . . . , n}. Since elements of T T n will often be considered also
as ordinary transformations of the set N , a different notation for powers
with respect to the operation of T T n has to be introduced: f •m stands for
f • . . . • f︸ ︷︷ ︸

m

.

There is the following formal connection between computations of 2DFAs
and semigroups T T n:

Proposition 4. Let A = (Σ, Q, q1, δ) be a 2DFA, where Q = {q1, . . . , qn},
and consider the subsemigroup of T T n generated by distinguished two-way
transformations fAa , for a ∈ Σ ∪ {`,a}. Then

L(A) =
{

a1 . . . a`

∣∣ (fAa • fAa`
• . . . • fAa1

• fA` )
(
(., 1)

)
is defined

}
.

In particular, for a given automaton A, the membership of a string a1 . . . a` ∈
Σ+ in L(A) depends only on the element fAa1...a`

= fAa`
• . . . • fAa1

of the sub-
semigroup generated by {fAa | a ∈ Σ}.
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This proposition, in particular, shows that if two strings u, v ∈ Σ+ satisfy
fAu = fAv , then they represent the same element of the syntactic monoid of
L(A), because fAxuy = fAy • fAu • fAx = fAy • fAv • fAx = fAxvy for every x, y ∈ Σ∗.

Proof. By the definition of a 2DFA, w ∈ L(A) if and only if δ∗`wa((q1, 1))
is defined. According to the definition of fA`wa, this is in turn equivalent to
fA`wa(., 1)’s being defined. Since, by Proposition 1, fA`a1...a`a = fAa • fAa`

• . . . •
fAa1

• fA` , the equality follows.

Consider Proposition 4 in the case of a unary alphabet Σ = {a}. Then it
asserts that

L(A) =
{

a`
∣∣ (fAa • (fAa )•` • fA` )

(
(., 1)

)
is defined

}
,

and thus the membership of a` in L(A) is determined by the element (fAa )•` of
the (monogenic) subsemigroup of T T n generated by fAa . Thus understanding
the structure of monogenic semigroups generated by distinguished two-way
transformations is essential for characterizing the power of 2DFAs over a
unary alphabet.

5 Monogenic subsemigroups of T T n

Let f ∈ T T n be any fixed element of the two-way transformation semi-
group. This element represents the behaviour of some 2DFA on some string
x, and computations of this 2DFA on long sequences xm of its copies can be
explained entirely in terms of a monogenic subsemigroup of T T n. In partic-
ular, this applies to computations on strings over a unary alphabet, where
x = a and f is a distinguished two-way transformation. However, in general,
f need not be distinguished, and the following results apply to more general
computations on xm for a fixed x ∈ Σ+ and variable m.

5.1 The distance travelled after i steps

This setting leads to the following model. Consider a bi-infinite string of
fs, with the copies of f numbered by integers. For any α ∈ N., consider
the computation starting from α in copy number 0. At every j-th step,
the automaton proceeds to the neighbouring instance of f : to the right if
f j(α) ∈ N. and to the left if f j(α) ∈ N/. Such a computation is illustrated
in Figure 4, where f(α) = β, f 2(α) = γ, . . . , f 6(α) = α, etc. Similarly one
can consider computations starting from α′ ∈ N/, numbering the instances
of f in the reverse direction.

Consider the distance travelled in such a computation. In Figure 4, three
steps of computation move the head back by one square, while six steps of
computation result in moving forward by two squares. This shall be denoted
by d(α, 3) = −1 and d(α, 6) = 2, respectively.
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α

Figure 4: Computation on a bi-infinite string of a’s

Definition 3. For every α ∈ N and i > 0, such that f i(α) is defined, let

d(α, i) =
∣∣{j | 1 6 j 6 i, f j(α) ∼ α}

∣∣−
∣∣{j | 1 6 j 6 i, f j(α) � α}

∣∣ .

In other words, d(α, i) expresses how far one moves from the original
position in the bi-infinite string of fs by means of i steps of the computa-
tion represented by the two-way transformation f , where positive numbers
mean continuing in the direction of α, while negative numbers mean that the
direction was reversed.

Observe that d(α, i) and d(α, i + 1) always differ exactly by one. Fur-
thermore, for every α ∈ N , the distance travelled after i + j steps can be
calculated as follows:

d(α, i + j) =

{
d(α, i) + d(f i(α), j), if f i(α) ∼ α

d(α, i)− d(f i(α), j), if f i(α) � α
(3)

The next observation expresses the fact that when a position with a pos-
itive distance m is first visited, it must be entered from the same direction
as α (and from the other direction for a position with a negative distance):

Lemma 3. Let α ∈ N and m ∈ Z. If m > 0 and i > 1 is the smallest integer
with d(α, i) = m, then f i(α) ∼ α. Symmetrically, if m < 0 and i > 1 is the
smallest integer with d(α, i) = m, then f i(α) � α.

In the following, a two-way transformation f ∈ T T n will be considered
as an ordinary transformation of the set N , and it will be investigated how
the structure of the corresponding graph determines the behaviour of f as a
two-way transformation. This investigation will be based on calculating the
values of d for nodes of the graph.

To begin with, the values of d for nodes belonging to f -cycles are given
by the structure of their cycles.

Lemma 4. Let C be an f -cycle of length m and α, β ∈ C. Then

i. d(α, m) = |{γ ∈ C | γ ∼ α}| − |{γ ∈ C | γ � α}|.
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ii. If α ∼ β then d(β,m) = d(α, m).

iii. If α � β then d(β,m) = − d(α, m).

iv. For every k ∈ N: d(α, k ·m) = k · d(α,m).

For example, the f -cycle C = {α, β, γ, δ, ε, ζ} in Figure 4 is of length 6,
and d(α, 6) = 4− 2 = 2, d(α, 12) = 4 and d(γ, 6) = −2.

5.2 f •m: computation on a block of m instances of f

For any m > 1 and α ∈ N , the value f •m(α) represents the computation
on a block of m instances of f . This computation begins on the first or
on the last instance of f in this block, depending on whether α ∈ N. or
α ∈ N/. Consider the case of α ∈ N.. Then the computation begins on the
first instance of f , and at every j-th step the computation proceeds to the
neighbouring instance as described above. Unless f •m(α) is undefined, the
computation eventually leaves the block to the right or to the left.

The condition of leaving the block can be defined in terms of d as d(α, i) ∈
{−1,m} for some i. This is formally established in the following lemma,
which handles the cases of α ∈ N. and α ∈ N/ uniformly.

Lemma 5. For every m ∈ N and α ∈ N , f •m(α) = f i(α), where i ∈ N
is the smallest number with d(α, i) /∈ {0, . . . , m − 1}, or, equivalently, with
d(α, i) ∈ {−1,m}. If such an i does not exist, then f •m(α) is undefined.

Furthermore, d(α, i) = m if and only if f •m(α) ∼ α and d(α, i) = −1 if
and only if f •m(α) � α.

Proof. Assume that α ∈ N.; for α ∈ N/, symmetric arguments can be used
due to the associativity of • and the symmetry of its definition. The state-
ment will be proved by induction on m.

Basis: For m = 1, the statement turns into f(α) = f(α), which is true.

Induction step: Consider the definition of the operation • in the case of
(f •(m−1) • f)(α). In order to verify the statement, it is enough to show the
following two claims, since the only remaining possibility is the case when
(f •(m−1) • f)(α) is not defined and the number i does not exist.

• The first case of the definition of (f •(m−1) • f)(α) applies if and only if
the least i, such that d(α, i) /∈ {0, . . . , m− 1}, satisfies d(α, i) = m. In
this case, the claim is that f •m(α) = f i(α) and f •m(α) ∼ α.

• The second case of the definition of (f •(m−1) • f)(α) applies if and only
if the least i, such that d(α, i) /∈ {0, . . . , m− 1}, satisfies d(α, i) = −1.
The claim in this case is that f •m(α) = f i(α) too and f •m(α) � α.
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The former claim shall be verified in the rest of this proof; the argument for
the latter claim could be carried out in the same way.

First, assume that in the definition of (f •(m−1) • f)(α) the first case is
applicable, that is, there exists k ∈ N such that f ◦(f •(m−1) ◦f)`(α) ∈ N., for
` = 0, . . . , k−1, (f •(m−1)◦f)`(α) ∈ N/, for ` = 1, . . . , k−1, (f •(m−1)◦f)k(α) ∈
N. and (f •(m−1) • f)(α) = (f •(m−1) ◦ f)k(α). By the induction hypothesis,
for every ` = 1, . . . , k,

(f •(m−1) ◦ f)`(α) = f i`(f ◦ (f •(m−1) ◦ f)`−1(α)),

where i` is the least number such that

d(f ◦ (f •(m−1) ◦ f)`−1(α), i`) /∈ {0, . . . , m− 2}.
Additionally, the induction assumption also gives that
d(f ◦ (f •(m−1) ◦ f)`−1(α), i`) = −1 for ` = 1, . . . , k − 1 and
d(f ◦ (f •(m−1) ◦ f)k−1(α), i`) = m − 1. Denote for all ` = 0, . . . , k the
sum 1 + i1 + 1 + · · ·+ i` = i1 + · · ·+ i` + ` by s`. Then (3) gives

d(α, s`−1 + 1 + j) = d(α, s`−1 + 1) + d(f ◦ (f •(m−1) ◦ f)`−1(α), j),

for all ` = 1, . . . , k and j = 0, . . . , i`. This in particular means that d(α, s`) =
0 and d(α, s` + 1) = 1, for ` = 1, . . . , k − 1, and d(α, sk) = m. Therefore
d(α, s`−1 + 1 + j) = d(f ◦ (f •(m−1) ◦ f)`−1(α), j) + 1, for ` = 1, . . . , k and
j = 0, . . . , i`, which implies that sk is the least number such that d(α, sk) /∈
{0, . . . , m − 1}. However, since f •m(α) = (f •(m−1) ◦ f)k(α) = f sk(α), the
direct implication of the first case is proved.

Conversely, assume that the smallest i, such that d(α, i) /∈ {0, . . . ,m−1},
satisfies d(α, i) = m. Let s1, . . . , sk−1 ∈ N be all numbers less than i
such that d(α, s`) = 0. Define i` = s` − s`−1 − 1 for ` = 1, . . . k, where
s0 stands for 0 and sk stands for i. Then d(α, 1 + i1 + 1 + · · ·+ i`) =
d(α, s`) = 0 and d(α, 1 + i1 + 1 + · · ·+ i` + 1) = 1, for ` = 1, . . . , k − 1,
and d(α, 1 + i1 + 1 + · · ·+ ik) = d(α, i) = m. This in particular shows
that f s`(α) ∈ N/ for ` = 1, . . . , k − 1 (since d(α, s` − 1) cannot be −1)
and f s`−1+1(α) ∈ N. for ` = 1, . . . , k. Therefore d(f s`−1+1(α), j) =
d(α, s`−1 + 1 + j) − 1 < m − 1 for j = 0, . . . , i` − 1, which proves that i` is
the smallest number such that d(f s`−1+1(α), i`) /∈ {0, . . . ,m− 2}. By the in-
duction hypothesis, this implies f •(m−1)(f s`−1+1(α)) = f s`(α). Putting these
facts together for all `, one obtains f ◦ (f •(m−1) ◦ f)`(α) = f s`+1(α) ∈ N., for
` = 0, . . . , k − 1, (f •(m−1) ◦ f)`(α) = f s`+1(α) ∈ N/, for ` = 1, . . . , k − 1, and
(f •(m−1) ◦ f)k(α) ∈ N.. This means that in the definition of (f •(m−1) • f)(α)
the first case applies.

5.3 f̃ : moving by f until advancing by one position

Consider the example in Figure 4. What the f -cycle of length 6 does is,
starting from α, first going one step forward, then two steps back and finally
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three steps forward. Provided that there is an extra instance of f in position
−1, this results in going 2 steps forward. However, if the instance of f in
position 0 is the leftmost one, then this computation would not take place.

In order to deal with computations on long blocks of fs, it is useful to
assume that there is an unbounded supply of fs on both sides, and consider
the computation starting from α that results in advancing by one position
(that is, to the right if α ∈ N. and to the left if α ∈ N/).

Definition 4. For every f ∈ T T n, define a partial transformation f̃ ∈ PT N

by the rule f̃(α) = f i(α), where i ∈ N is the smallest number with d(α, i) = 1.
If such an i does not exist, f̃(α) is undefined.

Returning to Figure 4, f̃(α) = f(α) = β, since d(α, 1) = 1. The value of
f̃(β) is given by f 5(β) = α, because {d(β, n)}n>1 = {−1,−2,−1, 0,1, . . .}.
For the elements γ, δ ∈ N/, f̃ represents going by one step to the left, and
accordingly, f̃(γ) = δ and f̃(δ) is undefined.

A few basic properties of f̃ need to be noted. First, since f̃(α) = f i(α) for
some i, every arc in the graph of f̃ is a shortcut in the graph of f , representing
the resultant movement by one step forward:

Remark 1. If there is an f̃ -path from α to β, then there is an f -path from
α to β. In particular, if α and β belong to the same f̃ -cycle, then they also
belong to the same f -cycle.

Secondly, f̃(α) ∼ α, since the last step of the computation defining f̃(α)
is a move in the same direction as α.

Lemma 6. Let α ∈ N be such that f̃(α) is defined. Then there exists such
i > 1, that α ∼ f i−1(α) ∼ f i(α) = f̃(α).

Proof. According to the definition of f̃ , let i be the smallest number with
d(α, i) = 1. Then the last element of the sequence {d(α, j)}i

j=0 is 1, and
hence the second last element must be d(α, i− 1) = 0 (if it were 2, then
there would exist i′ < i satisfying d(α, i′) = 1, which would contradict the
choice of i). Then d(α, i) = d(α, i− 1) + 1 implies that f i(α) ∼ α.

If i = 1, then f i−1(α) = α ∼ α, and if i > 2, then, continuing the above
argument, the third last element of the sequence {d(α, j)}i

j=0 must be −1.
Therefore, d(α, i− 1) = d(α, i− 2) + 1 and f i−1(α) ∼ α.

The partial transformation f̃ corresponds to advancing by one position.
The next lemma establishes that the m-th power of f̃ (that is, the composi-
tion of m instances of f̃) represents advancing by m positions.

Lemma 7. For every m ∈ N and α ∈ N it holds that f̃m(α) = f i(α), where
i ∈ N is the smallest number with d(α, i) = m.
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Proof. It has to be proved by induction on m that f̃m(α) is defined if and
only if there exists i ∈ N with d(α, i) = m, and if this is the case, then
f̃m(α) = f i(α), where i ∈ N is the smallest number having this property.

Basis m = 1: immediate by the definition of f̃ .
Induction step: First assume that f̃m(α) is defined. Then f̃m−1(α) is

defined as well and by the induction hypothesis f̃m−1(α) = f i(α), where i is
the smallest number with d(α, i) = m − 1. Let β = f̃m−1(α). Since f̃(β) is
defined, it is equal to f j(β), where j is the smallest number with d(β, j) = 1.
This gives f̃m(α) = f i+j(α).

Since f i(α) ∼ α due to Lemma 3, by (3),

d(α, i + j) = d(α, i) + d(f i(α), j) = (m− 1) + 1 = m.

Suppose i+j is not the smallest such number. If d(α, k) = m for some k < i,
then i is not the smallest number with d(α, i) = m − 1, which contradicts
the assumption. So let d(α, i + k) = m for some k 6 j. Then

m = d(α, i + k) = d(α, i) + d(f i(α), k),

and therefore d(f i(α), k) = 1, which, by the choice of j, means k = j.
Conversely, assume that there exists i ∈ N such that d(α, i) = m. Then

there also exists j < i such that d(α, j) = m−1. Therefore, by the induction
assumption, f̃m−1(α) = f j(α) for the smallest j with this property. Since
f̃m−1(α) ∼ α by Lemma 3, d(f̃m−1(α), i− j) = d(α, i) − d(α, j) = 1 due
to (3). Consequently, f̃(f̃m−1(α)) is defined. This completes the proof of the
induction step.

5.4 Isomorphism of subsemigroups generated by f and f̃

In order to describe the subsemigroup generated by f in T T n, it will be
proved that it is isomorphic to the subsemigroup generated by f̃ in PT N .
This amounts to showing that for all positive integers m and k the equality
f •m = f •k is equivalent to f̃m = f̃k. The direct implication follows immedi-
atelly from the following lemma, which states that making m steps forward
over f is the same as making one step forward over a block of m instances
of f .

Lemma 8. For every m > 1, f̃ •m = f̃m.

Proof. Let dm be defined for the element f •m ∈ T T n in the same way as d
is defined for f . First, the following claim will be proved.

Claim 1. For every k ≥ 1 it holds that (f •m)k(α) = f i(α), where i is the
kth smallest positive integer j satisfying one of the conditions

1. f j(α) ∼ α and m | d(α, j),
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2. f j(α) � α and m | (d(α, j) + 1).

Additionally, if f i(α) ∼ α, then dm(α, k) = d(α, i)/m, and if f i(α) � α,
then dm(α, k) = (d(α, i)−m + 1)/m.

The proof of the claim proceeds by induction on k. The basis of the
induction for k = 1 follows directly from Lemma 5. To prove the induction
step, assume that the claim holds for k. Two cases have to be distinguished.

First, let (f •m)k(α) = f i(α) ∼ α. This means that the first condition
holds for i and so m | d(α, i). Because d((f •m)k(α), `) = d(α, i + `)− d(α, i)
for every ` ≥ 1 due to 3, this number reaches −1 or m precisely when
d(α, i + `) reaches d(α, i)−1 or d(α, i)+m, respectively. Note that if some `
satisfies both f i+`(α) � α and d(α, i + `) = d(α, i)+m− 1, then there exists
`′ < ` such that f i+`′(α) ∼ α and d(α, i + `′) = d(α, i) + m, and so this ` is
not the smallest one such that j = i+ ` satisfies one of the above conditions.
Similarly, if some ` satisfies both f i+`(α) ∼ α and d(α, i + `) = d(α, i), then
there exists `′ < ` such that f i+`′(α) � α and d(α, i + `′) = d(α, i)− 1, and
so this ` is also not the smallest one such that j = i + ` satisfies one of the
above conditions. This shows that the smallest ` such that d((f •m)k(α), `) ∈
{−1,m} is the same as the smallest ` such that one of the above conditions
holds for j = i + `. Accordingly, by Lemma 5, (f •m)k+1(α) = f j(α), where
j is the (k + 1)th smallest j satisfying one of the above conditions. Finally,
if f j(α) ∼ α, that is, if d((f i(α), `) = m, then one can use the induction
hypothesis to calculate dm(α, k + 1) = dm(α, k) + 1 = (d(α, i) + m)/m =
d(α, j)/m. Analogously, if f j(α) � α, that is, if d((f i(α), `) = −1, then
dm(α, k + 1) = dm(α, k)− 1 = (d(α, i)−m)/m = (d(α, j)−m + 1)/m.

The second case of (f •m)k(α) = f i(α) � α can be dealt with in the
same way as follows. This means that the first condition holds for i and so
m | d(α, i). Because d((f •m)k(α), `) = d(α, i + `)−d(α, i) for every ` ≥ 1 due
to 3, this number reaches−1 or m precisely when d(α, i + `) reaches d(α, i)−1
or d(α, i)+m, respectively. Note that if some ` satisfies both f i+`(α) � α and
d(α, i + `) = d(α, i) + m− 1, then there exists `′ < ` such that f i+`′(α) ∼ α
and d(α, i + `′) = d(α, i) + m, and so this ` is not the smallest one such that
j = i + ` satisfies one of the above conditions. Similarly, if some ` satisfies
both f i+`(α) ∼ α and d(α, i + `) = d(α, i), then there exists `′ < ` such
that f i+`′(α) � α and d(α, i + `′) = d(α, i)− 1, and so this ` is also not the
smallest one such that j = i + ` satisfies one of the above conditions. This
shows that the smallest ` such that d((f •m)k(α), `) ∈ {−1,m} is the same
as the smallest ` such that one of the above conditions holds for j = i + `.
Accordingly, by Lemma 5, (f •m)k+1(α) = f j(α), where j is the (k + 1)th
smallest j satisfying one of the above conditions. Finally, if f j(α) ∼ α, that
is, if d((f i(α), `) = m, then one can use the induction hypothesis to calculate
dm(α, k + 1) = dm(α, k) + 1 = (d(α, i) + m)/m = d(α, j)/m. Analogously, if
f j(α) � α, that is, if d((f i(α), `) = −1, then dm(α, k + 1) = dm(α, k)− 1 =
(d(α, i)−m)/m = (d(α, j)−m + 1)/m.
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The claim implies that f̃ •m(α) = f i(α), where i ∈ N is the smallest
number such that d(α, i) = m. Really, dm(α, k) can reach 1 only if the
corresponding value d(α, i) is at least m, and if this ever happens, then the
first time d(α, i) equals m, it also holds that f i(α) ∼ α, and therefore f i(α) =
(f •m)k(α) for some k ≥ 1. The statement now follows from Lemma 7.

The isomorphism of subsemigroups generated by f and f̃ in T T n and
PT N , respectively, can now be proved.

Lemma 9. For every m, k ∈ N, f •m = f •k if and only if f̃m = f̃k.

Proof. For the “only if” part, the equality f •m = f •k and Lemma 8 imply

that f̃m = f̃ •m = f̃ •k = f̃k.
In order to prove the “if” part, assume that f •m(α) 6= f •k(α) with m < k,

and let us find some element of N where f̃m and f̃k differ.
Case I. If f •k(α) is not defined, then, by Lemma 5, there is no i with

d(α, i) = −1. Then, since f •m(α) is defined, the only option in Lemma 5 is
that for the smallest i with d(α, i) /∈ {0, . . . ,m−1} it holds that d(α, i) = m.
Accordingly, by Lemma 7, f̃m(α) = f i(α), that is, f̃m(α) is defined. At the
same time, f̃k(α) must be undefined, because if it is defined, then f̃k(α) =

f̃ •k(α) by Lemma 8, and thus f •k(α) is defined as well, which contradicts
the assumption.

Case II. If f •k(α) ∼ α, then, by Lemma 5, for the least j with d(α, j) /∈
{0, . . . , k − 1} it holds that d(α, j) = k and f •k(α) = f j(α). Since m < k,
there exists i < j with d(α, i) = m, and it is least among numbers with
d(α, i) /∈ {0, . . . ,m− 1}, so f •m(α) = f i(α).

Applying Lemma 7 to both cases yields f̃k(α) = f j(α) and f̃m(α) =
f i(α), and therefore

f̃m(α) = f i(α) = f •m(α) 6= f •k(α) = f j(α) = f̃k(α).

Case III. It remains to deal with the case f •k(α) � α. Since f •m(α) � α
would imply that f •k(α) and f •m(α) are equal by Lemma 5, it has to be
the case that f •m(α) ∼ α. If f̃m(α) 6= f̃k(α), then α itself is the required
element. So it can be assumed that f̃m(α) = f̃k(α). Denote by

• i the smallest number with d(α, i) = m;

• j the smallest number with d(α, j) = −1;

• ` the smallest number with d(α, `) = k.

This means that f •m(α) = f̃m(α) = f i(α), f •k(α) = f j(α), f̃k(α) = f `(α)
and i < j < `. Note that by our assumption f i(α) = f `(α) and so f i(α)
already lies in an f -cycle whose length divides ` − i. Now it is clear that
there exists p ∈ N such that j < p < `, d(α, p) = 0 and f p(α) ∼ α. It will
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be shown by contradiction that f̃m and f̃k differ on β = f p(α). So assume
f̃m(β) = f̃k(β) and note that in fact

f̃k(β) = f̃k(α) = f̃m(α) = f i(α).

Let q be the smallest number such that d(β, q) = m that is, f̃m(β) = f q(β).
Then the number s = p − i + q is a multiple of the length of the f -cycle
containing f i(α), because

f s(f i(α)) = fp+q(α) = f̃m(β) = f̃k(β) = f i(α).

One can also calculate

d(f i(α), s) = d(f i(α), p− i)+d(β, q) = d(α, p)−d(α, i)+d(β, q) = 0−m+m = 0,

using (3) twice. By Lemma 4.iv this means that d(f i(α), t) = 0 for any
t ∈ N which is a multiple of the length of the cycle. Since the length of the
cycle divides `− i, using (3) one obtains d(α, i) = d(α, `), contradicting the
choice of i and `. Therefore, f̃m(β) 6= f̃k(β), and so f̃m differs from f̃k, as
required.

5.5 The cycles and the longest tail in f̃

According to Remark 1, every f̃ -cycle is formed by some of the nodes in some
f -cycle. The exact number of these nodes is determined in the next lemma:

Lemma 10. Let α ∈ N belong to an f̃ -cycle consisting of nodes from
an f -cycle C. Then the length of the f̃ -cycle of α is |{γ ∈ C | γ ∼ α}| −
|{γ ∈ C | γ � α}|. Additionally, if β ∈ N belongs to C and satisfies α � β,
then β belongs to an f̃ -tail.

Proof. Assume that α belongs to an f̃ -cycle, that is, f̃k(α) = α for some
k > 1. Then f̃k(α) = f i(α), where i is the least number with d(α, i) = k.
This means that i is a multiple of the length m of the cycle C. Let i = ` ·m.
According to Lemma 4(i), it is sufficient to prove that the length of the f̃ -
cycle of α is d(α, m). Since f̃ j(α) cannot be equal to α for j < d(α, m) due to
Lemma 7, it is enough to verify f̃d(α,m)(α) = α. Suppose this is not the case.
Then by Lemma 7 the least j satisfying d(α, j) = d(α,m) is smaller than m.
Using (3), Lemma 4(ii) and Lemma 4(iv) this gives d(α, j + (`− 1) ·m) =
d(α, j) + d(f j(α), (`− 1) ·m) = d(α, m) + (`− 1) · d(f j(α),m) = d(α,m) +
(` − 1) · d(α, m) = d(α, m) + d(α, (`− 1) ·m) = d(α, ` ·m) = d(α, i) = k,
which contradicts minimality of i.

Because the length of the f̃ -cycle is a positive number, the first statement
of the lemma in particular gives

|{γ ∈ C | γ ∼ α}| > |{γ ∈ C | γ � α}| .
Therefore β cannot belong to an f̃ -cycle too, since that would imply that the
converse inequality is true as well.
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As long as an f -cycle has a different number of nodes from N. and from
N/, it represents eventual advancement in one or the other direction, and
there is an f̃ -cycle representing this advancement:

Lemma 11. Let C be an f -cycle, such that |C ∩N.| > |C ∩N/|. Then there
exists an f̃ -cycle of length |C ∩N.|−|C ∩N/| consisting of some of the nodes
from C ∩N.. The symmetric statement holds for |C ∩N.| < |C ∩N/|.
Proof. Let m be the length of the cycle C and consider an arbitrary α ∈
C ∩ N.. By Lemma 4.i and Lemma 4.iv it holds that d(α, k ·m) = k ·
(|C ∩N.|−|C ∩N/|). This means that d(α, i) reaches arbitrarily large values
with increasing i and so, according to Lemma 7, f̃m(α) is defined for every
m > 0. In particular, for m > |C ∩N.| the node f̃m(α), which belongs to
C ∩ N. by Remark 1, must lie in an f̃ -cycle, whose length is |C ∩N.| −
|C ∩N/| due to Lemma 10.

Assume that for some node in N/ and for another node in N., their
f -paths eventually converge. Then at most one of these nodes continues
advancement in the same direction, represented by an f̃ -cycle:

Lemma 12. Let α, β ∈ N be such that α � β and there exist i, j > 0 with
f i(α) = f j(β). Then either α or β belongs to an orphan f̃ -tail.

Proof. If the conclusion of the lemma does not hold, then there exist γ, δ ∈ N
belonging to f̃ -cycles that can be reached from α and β, respectively, by a
sequence of applications of f̃ . Then, by Remark 1, both γ and δ belong to
the corresponding f -cycles. Since γ and δ can be reached from α and β also
by applying f due to Remark 1, the assumption of the lemma guarantees
that γ and δ in fact belong to the same f -cycle. Because α ∼ γ and β ∼ δ,
it holds that γ � δ, contradicting Lemma 10.

Figure 5: The elements f̃ , f •2 and f̃ •2 = f̃ 2 corresponding to f from Figure 4.

Let C be the set of all nodes from N belonging to f̃ -cycles, and fix one of
the longest f̃ -tails. Let T denote this f̃ -tail and denote D = C ∪ T . Denote
the restriction of f̃ to D by f̂ ∈ PT D.
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Then the subsemigroups generated by f̃ and f̂ have the same index and
period by Lemma 1, and hence are isomorphic. Therefore, some information
about the index and period of the subsemigroup generated by f can be
obtained by finding an upper bound on the size of D with respect to n. In
the following, it will be shown that D never contains more than n+1 nodes,
and that it contains n + 1 nodes only in one special case. The argument is
based on the following simple observation.

Lemma 13. All nodes in D that do not belong to an f -cycle belong to the
same f -tail.

Proof. Let α, β ∈ D be arbitrary nodes belonging to f -tails. First observe
that neither α nor β can belong to an f̃ -cycle, since, by Remark 1, this would
mean that they belong to an f -cycle as well. Therefore both α and β belong
to the unique f̂ -tail. Consequently, one can reach one of these nodes from
the other by several applications of f (again by Remark 1), and so the f -tail
of α is the same as the f -tail of β.

The verification of the inequality |D| 6 n + 1 is rather simple if f is
a distinguished transformation, because it can be easily shown that there
exists at most one i such that both (., i) and (/, i) belong to D. Really,
assume there is such an i ∈ {1, . . . , n}. Since f(., i) = f(/, i), at least one
of the nodes (., i) and (/, i) (say the former one) belongs to an f -tail. As
they cannot belong to the same f -tail, Lemma 13 ensures that (/, i) belongs
to an f -cycle. Therefore (., i) is the last node of the unique f -tail, which
contains some element of D. This implies that such i is uniquely determined.
Moreover, one can also see that if such an i exists, then f̂ contains a cycle
(the node (., i) cannot belong to the only f̂ -tail due to (., i) � (/, i)) and
there exists a node in D (namely the last node of the f̂ -tail of (., i)) where
f̂ is not defined.

It turns out that these properties are not specific for distinguished trans-
formations. The following lemma will be used to generalise the above argu-
ment to the case of an arbitrary element of T T n.

Lemma 14. There exists at most one γ ∈ N such that there exist α, δ ∈ D
and i, j > 1 satisfying α � δ, f j(α) = f i(δ) = γ and f j−1(α) 6= f i−1(δ).

Proof. Consider any such γ, α, δ, i and j. The conditions of the lemma
imply that γ is a junction node of f where two paths join, which rules out
the cases of α and δ belonging to the same f -tail, or both of them belonging
to f -cycles. Since α, δ ∈ D, by Lemma 13, it also cannot be the case that
they belong to different f -tails.

Therefore, one of them (let it be α) belongs to an f -tail and δ belongs to
an f -cycle. Then, by Lemma 13, α belongs to a certain f -tail that contains
all elements of D not belonging to cycles, and accordingly γ must be the node
where this f -tail reaches an f -cycle. As such, γ is uniquely determined.
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According to Lemma 14, there exists at most one γ satisfying the condi-
tions. If it exists, denote it by γ0.

Lemma 15. It holds that |N | > 2 |D| − 2. Additionally, if |N | = 2 |D| − 2,
then f̂ is undefined on some element of D and contains a cycle.

Proof. Consider the set

E = {α ∈ N \D | f(α) � α and f(α) ∈ Im(f̂)}.

The goal is to find for each γ ∈ Im(f̂) a node α ∈ E with f(α) = γ.
Assume γ = f̂(δ), where δ ∈ D. Since f̃(δ) is defined, by Lemma 6

there exists a number i > 1 such that f i−1(δ) ∼ f̃(δ) = f i(δ) = γ. Denote
β = f i−1(δ); then β ∼ γ and f(β) = γ. The condition (1) ensures that there
also exists some α ∈ N such that α � γ and f(α) = γ.

Suppose α ∈ D. Then Lemma 14 is applicable to γ, α, δ, i and j = 1;
the required condition β = f i−1(δ) 6= f j−1(α) = α holds because β � α.
According to the lemma, this case is only possible for γ = γ0.

Therefore, for every γ 6= γ0 from Im(f̂), the corresponding α is not in D.
Since f(α) = γ � α, α ∈ E. For different such γs, the corresponding αs are
distinct. There are at least

∣∣ Im(f̂)
∣∣− 1 > |D| − 2 such γs different from γ0,

and hence E contains at least |D|−2 elements, which proves |N | > 2 |D|−2.
Moreover, the equality |N | = 2 |D| − 2 can be satisfied only if E = |D| − 2,
which could happen only if γ0 exists. However, in this case Lemma 12 can
be applied, which shows that one of α and δ belongs to an f̃ -tail containing
a node where f̃ is not defined. Because both α and δ belong to D, this f̃ -tail
must be in fact the only f̂ -tail. Finally, from α � δ it follows that the other
node cannot belong to this unique f̂ -tail, and so there exists an f̂ -cycle.

5.6 The main theorem and its implications

Now the structure of all monogenic subsemigroups of T T n can be described.

Theorem 1. For every monogenic subsemigroup S of T T n there exist k > 1
and numbers p1, . . . , pk > 1 and ` > 1, with p1+ . . .+pk +` 6 n+1, such that
S has index ` and period lcm(p1, . . . , pk). More precisely, if S is generated
by f ∈ T T n, then ` can be obtained as the length of the longest f̃ -tail and
numbers p1, . . . , pk as the lengths of all f̃ -cycles (if there is no cycle in f̃ ,
then one can take k = 1 and p1 = 1).

Conversely, for any k > 1 and arbitrary integers p1, . . . , pk > 1 and
` > 1 satisfying p1 + . . . + pk + ` 6 n + 1, the semigroup T T n contains
a distinguished transformation which generates a subsemigroup with index `
and period lcm(p1, . . . , pk).

Proof. The subsemigroup generated by f is isomorphic to the subsemigroup
generated by f̃ by Lemma 9, which is in turn isomorphic to the subsemigroup
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generated by f̂ in PT D. Therefore it follows immediately from Lemma 1 that
the index and period of S are ` and lcm(p1, . . . , pk), respectively. It remains
to verify that the numbers `, p1, . . . , pk satisfy the required inequalities. First
note that ` is really at least 1, because otherwise f̃ would be a permutation
of N , which is impossible by Lemma 15. If f̃ contains some cycle, then the
choice of D guarantees that the sum p1 + . . . + pk + ` is at most equal to
the size of D, which is bounded by n + 1 due to Lemma 15. If f̃ contains
no cycles, then Lemma 15 shows that D contains at most n nodes, and so
p1 + ` = 1 + ` ≤ n + 1 as well. This verifies the first part of the claim.

In order to verify the converse statement, one can assume, without loss
of generality, that p1 + . . . + pk + ` = n + 1. Let g be any permutation
of the set {`, . . . , n} consisting of cycles of lengths p1, . . . , pk. This allows
constructing a distinguished transformation f ∈ T T n as follows: f(., i) =
f(/, i) = (., i + 1) for i = 1, . . . , ` − 1 and f(., i) = f(/, i) = (/, g(i)) for
i = `, . . . , n. In other words, there is a right-going tail on states {1, . . . , `}
and left-going cycles on states {`, . . . , n} according to g. The corresponding
partial mapping f̃ coincides with f on (., i) for i = 1, . . . , `−1 and on (/, i) for
i = `, . . . , n, and it is undefined elsewhere. Since the subsemigroup generated
by f is isomorphic to the one generated by f̃ by Lemma 9, Lemma 1 shows
that it has index ` and period lcm(p1, . . . , pk), as required.

Corollary 1. Let S be a monogenic subsemigroup of T T n, which has index `
and period p. Let p = p1 · · · pk, where p1, . . . , pk are powers of distinct primes,
be the prime factorization of p. Then, n must be at least p1 + . . .+pk + `−1.

Proof. For S, the theorem states that there are numbers m > 1 and
q1, . . . , qm > 1 satisfying q1 + . . . + qm + ` 6 n + 1, such that the period
of S is lcm(q1, . . . , qm). Therefore lcm(q1, . . . , qm) = p1 · · · pk, since the pe-
riod is p1 · · · pk by assumption. This in particular means that each of the
prime powers pi divides at least one of the numbers qj, and as the primes are
pairwise distinct, it implies that p1+. . .+pk+` 6 q1+. . .+qm+` 6 n+1.

Using Proposition 4, the previous result about monogenic subsemigroups
of T T n can be applied to languages recognized by 2DFAs.

Corollary 2. Let A be an n-state 2DFA over an arbitrary finite alphabet.
Then for every monogenic subsemigroup S of the syntactic semigroup of L(A)
there exist k > 1 and numbers p1, . . . , pk > 1 and ` > 1, with p1+. . .+pk+` 6
n + 1, such that S has index ` and period p = lcm(p1, . . . , pk).

Corollary 3. Let L be a regular language over an arbitrary finite alphabet,
whose syntactic semigroup contains a monogenic subsemigroup S with index
` and period p. Let p = p1 · · · pk, where p1, . . . , pk are powers of distinct
primes, be the prime factorization of p. Then, every 2DFA recognizing L
must have at least p1 + . . . + pk + `− 1 states.
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Consider computations of a 2DFA A on inputs uxiv, in which the be-
haviour on the infix xi is described by the two-way transformation (fAx )•i.
Due to Proposition 4, the membership of a string uxiv in the language L(A)
depends only on the element fAuxiv = fAv • (fAx )•i • fAu of T T n. Therefore,
the periodic behaviour of the set {i > 1 | uxiv ∈ L(A)} depends only on
the structure of the subsemigroup generated in T T n by fAx . More precisely,
the period of this set divides the period of the subsemigroup, and its index
is bounded by the index of the subsemigroup. This leads to the following
consequences of Theorem 1 and Corollary 2.

Corollary 4. Let A be an n-state 2DFA over an arbitrary finite alphabet
Σ, and let u, v ∈ Σ∗ and x ∈ Σ+ be any strings. Then, there exist k > 1
and numbers p1, . . . , pk > 1 and ` > 1, with p1 + . . . + pk + ` 6 n + 1, such
that the set of numbers {i > 1 | uxiv ∈ L(A)} is periodic from ` with period
p = lcm(p1, . . . , pk).

Corollary 5. Let L be a regular language over an arbitrary finite alphabet
Σ, and let u, v ∈ Σ∗ and x ∈ Σ+ be any strings. Let the set of numbers
{i > 1 | uxiv ∈ L(A)} have period p beginning from `. Let p = p1 · · · pk,
where p1, . . . , pk are powers of distinct primes, be the prime factorization of
p. Then, every 2DFA recognizing L must have at least p1 + . . . + pk + `− 1
states.

For example, Corollary 5 asserts that every 2DFA for the language
ab

(
((abb)15)∗ ∪ {(abb)6})ba requires at least 3 + 5 + 7− 1 states.
The last two results are simplified to the case of the unary alphabet as

follows (obtained by setting x = a and u = v = ε).

Corollary 6. Let A be an n-state 2DFA over Σ = {a}. Then there exist
k > 1 and numbers p1, . . . , pk > 1 and ` > 1, with p1 + . . . + pk + ` 6 n + 1,
such that there exists a 1DFA for L(A) with a tail of length ` and period
p = lcm(p1, . . . , pk).

Corollary 7. Let L ⊆ a∗ be a regular language with the minimal 1DFA with
tail ` and period p. Let p = p1 · · · pk, where p1, . . . , pk are powers of distinct
primes, be the prime factorization of p. Then, every 2DFA recognizing L
must have at least p1 + . . . + pk + max(`, 1)− 1 states.

6 Transformation to sweeping automata

A 2DFA is called sweeping [18] if in every computation its head changes the
direction of motion only on the markers. For an arbitrary alphabet, as inde-
pendently proved by Berman [1] and by Micali [12], the succinctness blowup
from general 2DFAs to sweeping 2DFAs is exponential. For a unary alpha-
bet, Mereghetti and Pighizzini [11] established a transformation of an n-state
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2NFA to a sweeping 2NFA with O(n2) states. Regarding the deterministic
case, Chrobak [4] mentioned in passing that “it is easy to show that any
unary 2DFA can be substituted by an equivalent sweeping 2DFA without
increasing the number of its states”. This claim was not substantiated, and
the best result known in the literature is the O(n2) bound for unary 2NFAs
from the work of Mereghetti and Pighizzini [11]. The framework developed
in this paper allows finally settling this question:

Theorem 2. Let n > 1. Then for every unary deterministic two-way au-
tomaton A with n states, there exists an equivalent sweeping deterministic
two-way automaton with n + 1 states. For n > 1, this bound is the best
possible.

In short, the intuition of Chrobak was generally right, though one extra
state is needed. The lower bound is witnessed by a 2DFA with acceptance
only on the right-end marker (that is, with the standard definition of accep-
tance), for which every equivalent sweeping 2DFA needs n + 1 states.

The upper bound is proved by constructing a new sweeping automaton,
that simulates the transformation f̃ , where f is the behaviour of the original
2DFA on the letter. This is based upon the following correspondence of f̃ to
automata.

Lemma 16. Let f ∈ T T n be the behaviour of a unary 2DFA A on the letter.
If A, having started from a configuration (qi, k), reaches the (k+1)th letter of
the input without previously getting to `, and (qj, k+1) is the configuration in
which it reaches the (k + 1)th letter for the first time, then f̃((., i)) = (., j).

Symmetrically, if A, having started from a configuration (qi, k), reaches
the (k−1)th letter of the input without previously getting to a, and (qj, k−1)
is the configuration in which it reaches (k−1)th letter for the first time, then
f̃((/, i)) = (/, j).

Proof. The assumption is that δ∗
ak(qi, k) = (qj, k + 1). By the definition of

the behaviour of A, this means that fA
ak((/, i)) = (., j). Proposition 1 and

Lemma 5 show fA
ak((/, i)) = f •k((/, i)) = f `((/, i)), where ` is the smallest

number such that d((/, i), `) = −1. Due to (2), f `((., i)) equals (., j) as
well, and since d((., i),m) = − d((/, i),m) for all m > 1, the number `
is also the smallest number such that d((., i), `) = 1. This proves that
f̃((., i)) = f `((., i)) = (., j), as required.

Applying Lemma 16 several times leads to the following statement:

Lemma 17. Let f ∈ T T n be the behaviour of a unary 2DFA A on the letter
and let ` > 1. Let qj be the state of A when it reaches position k + ` for the
first time, starting from a configuration (qi, k). If no end marker was visited
before reaching the configuration (qj, k + `), then f̃ `((., i)) = (., j).

Symmetrically, let qj be the state of A when it reaches position k − ` for
the first time, starting from a configuration (qi, k). If no end marker was
visited before reaching the configuration (qj, k − `), then f̃ `((/, i)) = (/, j).
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Proof of Theorem 2. The construction of a sweeping 2DFA given below is
straightforward in itself: it produces p1 + . . .+ pk + ` states, where p1, . . . , pk

are the lengths of the cycles in f̃ , and ` is the length of its longest tail. The
nontrivial part of the argument is the upper bound n + 1 on this sum, given
in Corollary 6.

Because the index of the language L(A) is at most n by Theorem 1,
if the language is finite or co-finite, there exists even a 1DFA with n + 1
states recognizing it. So assume that L(A) is neither finite nor co-finite. Let
f ∈ T T n be the behaviour of A on the letter, and let ` be the length of the
longest f̃ -tail. According to Theorem 1, there are at most n + 1− ` nodes in
C, the set of all nodes of f̂ -cycles. The new sweeping automaton B will use
the set of states Q1 = Q. ∪ Q/, where Q. is the set of right-moving states
and Q/ is the set of left-moving states:

Q. = {q1, . . . , q`} ∪ (C ∩N.), Q/ = C ∩N/

The automaton B begins its computation in state q1 and proceeds by counting
the first ` symbols using states q1, . . . , q`:

δ′(q1,`) = (q1, +1),

δ′(qi, a) = (qi+1, +1) (for i ∈ {1, . . . , `− 1}).

If the right-end marker is encountered, B behaves according to the mem-
bership of this string in L(A): if ai−1 ∈ L(A), then the transition δ′(qi,a)
accepts, otherwise it rejects. Because L(A) is neither finite nor cofinite,
the automaton A cannot decide whether to accept a string longer than a`−1

without ever going beyond the prefix `a`. Therefore, fA`a`(., 1) is defined as
(., k), for some k ∈ {1, . . . , n}, and by Lemma 17 the node (., k) belongs
to an f̂ -cycle. The sweeping automaton B has states corresponding to all
nodes in f̂ -cycles, and at this point it enters such a state (., k), and then
continues counting a’s modulo this f̂ -cycle, thus indirectly simulating a more
complicated cyclic behaviour of A:

δ′(q`, a) = (fA`a`(., 1), +1),

δ′((., i), a) = (f̂(., i), +1).

Eventually, B reaches the right-end marker. The transition δ′((., i),a) is
defined according to the behaviour of A on the suffix a`a, starting from a
in state qi. Three cases will be distinguished. Assume A eventually passes
through a` and leaves the string to the left in state k, that is, fA

a`a(/, i) is of
the form (/, k), for some k ∈ {1, . . . , n}. Then Lemma 17 guarantees that
(/, k) belongs to an f̂ -cycle, and if B enters the same cycle ` states earlier,
then it will reach the state (/, k) after reading the suffix a`. This is achieved
by defining

δ′((., i),a) = ((/, j),−1),
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where (/, j) is the (uniquely defined) element of the same f̂ -cycle as (/, k),
so that f̂ `(/, j) = (/, k). The second case is when A accepts at the right-end
marker, that is, if fA

a`a(/, i) is of the form (., k): then the state ((., i),a) of B
is defined to be accepting. Finally, if fA

a`a(/, i) is undefined, then δ′((., i),a)
is undefined as well.

The right-to-left motion of the sweeping automaton B is done in states
from Q/, using the transitions

δ′((/, i), a) = (f̂(/, i),−1).

Eventually, B returns to the left-end marker, where its behaviour is defined
symmetrically to the case of the right-end marker. If fA`a`(., i) is of the form
(., k), then define

δ′((/, i),`) = ((., j), +1)

where f̂ `(., j) = fA`a`(., i); if fA`a`(., i) is of the form (/, k), then ((/, i),`) is
accepting; and if fA`a`(., i) is undefined, δ′((/, i),`) is undefined as well.

Evidently, the new automaton B accepts the same words of length at
most ` − 1 as A. Let w ∈ a∗ be a word of length at least `. When the
automaton A reaches position ` + 2 for the first time, it is in a state qk with
fA`a`(., 1) = (., k). On the other hand, the computation of B on the same
input w begins by going through the configurations (q1, 1), (q1, 2), (q2, 3), . . . ,
(q`, ` + 1) and reaches (fA`a`(., 1), ` + 2). It will be proved by induction that
in this way the whole computation of A is simulated by the computation of
B: If the original automaton gets from the left-end marker to a configuration
(qk, i), with i ≥ `+2 without passing through the right-end marker, then the
new automaton gets to the configuration ((., k), i); if the original automaton
gets from the right-end marker to a configuration (qk, i), with i ≤ |w| − ` + 1
without passing through the left-end marker, then the new automaton gets
to the configuration ((/, k), i); if the original automaton stops, then the new
one stops as well, with the same output.

First assume that A is in the configuration (qk, i), with i ≥ `+2, and B is
in the configuration ((., k), i). If i ≤ |w|+1 then the automata currently read
letter a. Because (., k) belongs to an f̃ -cycle, by Lemma 12 the node (/, k)
belongs to an f̃ -tail that does not lead to a cycle. Therefore f̃ `(/, k) is not
defined, and Lemma 17 ensures that A cannot reach the left-end marker be-
fore the right-end marker. Therefore, the automaton A eventually gets into
a configuration (qm, i+1), which satisfies f̃(., k) = (.,m) due to Lemma 16.
This shows that B goes from the configuration ((., k), i) directly to the con-
figuration ((.,m), i + 1), which was to be proved.

In the case i = |w| + 2, both automata are at the right-end marker. If
fA

a`a(/, i) is either of the form (., k) or undefined, then both automata accept
or reject w, respectively. So it remains to deal with the situation when
fA

a`a(/, i) is of the form (/, k). Then A eventually reaches the configuration
(qk, |w| − l + 1). Meanwhile, the new automaton B goes to ((/, j), |w| + 1)
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such that f̂ `(/, j) = (/, k), and continues to (f̂(/, j), |w|), . . . , (f̂ `(/, j), |w|−
l + 1) = ((/, k), |w| − l + 1), which settles also this case.

The other case of automata currently going from the right-end marker is
proved symmetrically.

Aiming to prove that n + 1 states are necessary, consider the languages
Ln = a(a2)∗ ∪ {an−2} for n even and Ln = (a2)∗ ∪ {an−2} for n odd. The
language Ln is recognized by a two-way automaton with the set of states
Q = {q1, . . . , qn}, which starts its computation by counting modulo 2 using
the following transitions:

δ(q1,`) = (q1, +1),

δ(q1, a) = (q2, +1),

δ(q2, a) = (q1, +1).

Once the right-end marker is reached, the string is either accepted because
of its parity,

δ(q1,a) = (q1, +1) (if n is odd),

δ(q2,a) = (q2, +1) (if n is even),

or the automaton proceeds back to the left in state qn:

δ(q2,a) = (qn,−1) (if n is odd),

δ(q1,a) = (qn,−1) (if n is even),

On its way to the left, the automaton decrements its state

δ(qi, a) = (qi−1,−1) (for 3 6 i 6 n),

and if the input string is of length exactly n − 2, the automaton arrives to
the left-end marker in state q2, and immediately turns back:

δ(q2,`) = (q2, +1).

This time the automaton will pass though the string from left to right “in
counter-phase”, and will accordingly reach the right-end marker in an ac-
cepting state.

If the string is shorter than n − 2, the automaton reaches the left-end
marker in state qi with i > 3, for which the transition is undefined.

Finally, if the length of the string is n− 1 or greater, then the automaton
enters the state q2 before reaching the left-end marker. Note that for every
state qi visited during the right-to-left movement, the state qj ∈ {q1, q2} in
which the automaton first visited this square satisfies j = i (mod 2): this
property holds for the last square and qn and extends inductively for every
next step. Therefore, when the automaton enters q2 from the right, it has
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Figure 6: Computation of the 2DFA for Ln with n = 4 in Theorem 2.

already been in this state, and thus enters an infinite loop. Note that the
behaviour in this case makes the automaton non-sweeping.

In order to show that the language Ln cannot be recognized by an n-
state sweeping automaton, note first that Ln has index n − 1 and period 2.
Assume that a sweeping automaton A = (Σ, Q, q1, δ) for Ln exists, and let
f ∈ T T n be the behaviour of the letter in A. Then, by Theorem 1, the
partial function f̂ must be defined on n+1 nodes and has to consist of a tail
of length n− 1 and a cycle of length 2. Furthermore, the tail may noy lead
to a cycle, because in this case both the tail and the cycle have to be in N.

(or both in N/), which requires (n − 1) + 2 = n + 1 elements on that side.
Hence, either this orphan f̃ -tail of length n − 1 is in N. and the f̃ -cycle of
length 2 is in N/, or vice versa. As the following arguments are symmetric,
only the former case will be considered.

First, it should be verified that if α and β belong to the f̂ -tail and f̂(α) =
β, then in fact f(α) = β. If this is not the case, then f(α) � α. Let i ≥ 3 be
the least number such that d(α, i) = 1 and let γ = f i−1(α). If f i−2(α) ∼ α,
then f̃(f i−2(α)) = γ. If f i−2(α) ∼ α, then f i−2(α) = (/, j) for some j ≤ n
and f̃(., j) = γ. Because the f̂ -tail consists of all nodes of N. except for
one, in both cases the node γ must belong to this tail. This means that
f̂(γ) = f̂(α), and since α and γ lie on the same f̂ -tail, they are actually
equal, which contradicts the assumption f(α) � α.

Knowing that the f̂ -tail is in fact an f -tail as well, one can assume,
without loss of generality, that f((., j)) = f((/, j)) = (., j + 1) for all j ≤
n − 2. This immediately implies that at most one of the nodes (/, j), for
j ≤ n−2, belongs to an f -cycle. By Lemma 10 the f -cycle containing the f̂ -
cycle consists either of three nodes from N/ and one node from N., or simply
of two nodes of N/. In the former case, these three nodes from N/ must be
(/, n− 2), (/, n− 1) and (/, n). However, then it is easy to see that such an
f -cycle has to satisfy f(., n− 1) = (/, n) and f(/, n− 1) = (/, n− 2), which
is not allowed. Therefore, the latter case is true. In this case, the two nodes
of the cycle must be (/, n − 1) and (/, n), which means that f(., n − 1) =
f(/, n− 1) = (/, n) and f(., n) = f(/, n) = (/, n− 1).

Altogether, there are only two possibilities for the behaviour of the au-
tomaton A on the letter. The first one is the following: δ(qj, a) = (qj+1, +1)
for j = 1, . . . , n− 2, δ(qn−1, a) = (qn,−1) and δ(qn, a) = (qn−1,−1). Because
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the automaton is sweeping, δ(q1,`) = (q, +1), where q is one of the states
q1,. . . ,qn−2. However, then if the input word is of length at least n − 1, the
automaton makes a turn when scanning this word, which is a contradiction.

The second possible behaviour of A is left-right symmetric to the first
one: δ(qj, a) = (qj+1,−1) for j = 1, . . . , n − 2, δ(qn−1, a) = (qn, +1) and
δ(qn, a) = (qn−1, +1). In this case, δ(q1,`) = (q, +1), where q is either qn−1

or qn. This means that the automaton reaches the right-end marker in state
qn−1 or qn depending on whether the length of the input is odd or even. In any
case, both configurations (qn−1,a) and (qn,a) are reached for infinitely many
input words. If the automaton continues from any of these configurations
back to the left, it has to use the states q1,. . . ,qn−2, which means that on
any word of length at least n − 1, it turns inside the input. Therefore, the
automaton has to stop in both configurations, and so it cannot recognize the
language Ln. This completes the proof.

7 Transformation to one-way automata

Now consider the question of the number of states in 1DFAs and 1NFAs
needed to represent languages recognized by n-state 2DFAs. Chrobak [4]
was the first to find out that both tradeoffs are asymptotically equivalent to
the function

g(n) = max{lcm{p1, . . . , pk} | p1 + · · ·+ pk 6 n},
known as Landau’s function and estimated as g(n) = e(1+o(1))

√
n ln n [9].

For a 2DFA over an alphabet {a}, with f ∈ T T n representing the be-
haviour of a, the numbers p1, . . . , pk in the definition of g correspond, accord-
ing to Theorem 1, to the cycles in f̃ . The length of the tail ` in Theorem 1
is actually reflected by the number n− (p1 + · · · + pk). The contribution of
` into the size of a 1DFA is taken into account in the following definition of
a modified Landau’s function:

g′(n) = max{lcm{p1, . . . , pk}+ ` | p1 + · · ·+ pk + ` = n}
The difference between g′(n) and g(n) is asymptotically insignificant, and

hence g′(n) = e(1+o(1))
√

n ln n.

Theorem 3. Let n > 1. Then for every unary two-way automaton A with
n states, where the action of the letter is deterministic, there exists an equiv-
alent complete 1DFA with g′(n) + 1 states. For n > 3, this bound is tight
already for the transformation of complete 2DFAs with acceptance on both
sides to 1NFAs.

Proof. By Corollary 6, there exists a 1DFA for L(A) with p+ ` states, where
p = lcm(p1, . . . , pk), with k > 1, p1, . . . , pk > 1, ` > 1 and p1 + . . . + pk + ` 6
n+1. Because ` > 1, it holds that p+(`−1) ≤ g′(n), and so p+` ≤ g′(n)+1.
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In order to prove that this bound is tight, let n > 3 and consider k > 1,
` > 1 and p1, . . . , pk > 2 are powers of distinct primes, such that p1 + . . . +
pk + (`− 1) = n and g′(n) = p1 · · · pk + (`− 1). Since n ≥ 3, one can assume
that pk ≥ 3. Denote p = p1 · · · pk. Consider the language

Ln = ap+`−1(ap)∗ ∪ {ai | i ≡ ` (mod pk) & i ≡ `− 1 (mod p1 · · · pk−1)}.

First, a 2DFA A with n states, which recognizes Ln, will be constructed.
The states of A will be denoted (r, s), for r ∈ {1, . . . , k} and s ∈ {0, . . . , pr−
1}, and t, for t ∈ {1, . . . , `−1}. The initial state is (1, 0), and the computation
begins by checking that the length of the string is `− 1 modulo p1, . . . , pk−1

and ` modulo pk:

δ((1, 0),`) = ((1, 0), +1)

δ((r, s), a) = ((r, s + 1 mod pr), +1) (r 6 k, r odd, 0 6 s < pr),

δ((r, `− 1 mod pr),`) = ((r + 1, 0), +1) (r < k, r odd),

δ((r, s), a) = ((r, s + 1 mod pr),−1) (r 6 k, r even, 0 6 s < pr),

δ((r, `− 1 mod pr),a) = ((r + 1, 0),−1). (r < k, r even).

If k is even, then: δ((k, ` mod pk),`) is accepting, δ((k, ` − 1 mod pk),`) =
(1, +1) if ` > 1 and δ((k, 0),`) = ((k, 0), +1) if ` = 1. If k is even, then:
δ(t, a) = (t + 1, +1) for t ∈ {1, . . . , ` − 2} and δ(` − 1, a) = ((k, 0), +1). If
k is odd, then: δ(t, a) = (t + 1,−1) for t ∈ {1, . . . , ` − 2} and δ(` − 1, a) =
((k, 0),−1). If k is odd, then: δ((k, ` mod pk),a) is accepting, δ((k, ` −
1 mod pk),a) = (1,−1) if ` > 1 and δ((k, 0),a) = ((k, 0),−1) if ` = 1. The
rest is undefined.

If the input word belongs to the second component of Ln, the automaton
passes successfully through the states of the form (r, s) and accepts in the
state (k, ` mod pk). By the Chinese remainder theorem, the length of the
input word is equal to `− 1 modulo p if and only if it reaches one of the end
markers (depending on the parity of k) in the state (k, `− 1 mod pk). Then
it uses the states 1, . . . , `− 1 to decide whether the word belongs to the first
component of Ln, that is, whether it is of length at least `: If the length is
at least `, the automaton turns back and returns to the end marker in the
accepting state (k, ` mod pk). If the length does not exceed ` − 2, then the
automaton reaches the other end marker in one of the states 1, . . . , ` − 1,
where it rejects. Finally, if the length is exactly ` − 1, then the automaton
reaches the end marker in the state (k, 0), which is either rejecting or initial,
so the automaton rejects either directly or by entering an infinite loop.

With the aim of proving that any 1NFA for the language Ln requires at
least p + ` = g′(n) + 1 states, assume that B is a 1NFA with fewer than
p+` states, which recognizes Ln. An accepting path of the word ap+`−1 ∈ Ln

passes through p + ` states of B, so two of these states must be equal. In
other words, there exist 0 ≤ r < s ≤ p + ` − 1 such that the state reached
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after reading ar is the same as the state reached after reading as. This means
that the word ap+`−1−s+r belongs to Ln. Therefore p + `− 1− s + r ≡ p + `
(mod p)k, that is, s− r ≡ −1 (mod p)k. In particular, this implies that s− r
is not divisible by p, and so the word ap+`−1+s−r ∈ Ln also belongs to the
second component of Ln. Hence, it satisfies p+`−1+s−r ≡ p+` (mod p)k,
that is, s− r ≡ 1 (mod p)k, contradicting the assumption pk > 3.
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