
Alexander Okhotin

A study of unambiguous finite automata
over a one-letter alphabet

TUCS Technical Report
No 951, September 2009

A study of unambiguous finite automata
over a one-letter alphabet

Alexander Okhotin
Academy of Finland, and
Department of Mathematics, University of Turku, and
Turku Centre for Computer Science
Turku FIN–20014, Finland
alexander.okhotin@utu.fi

TUCS Technical Report

No 951, September 2009

Abstract

Nondeterministic finite automata (NFA) with at most one accepting com-
putation on every input string are known as unambiguous finite automata
(UFA). It is shown that every UFA over a unary alphabet Σ = {a} can be
transformed to the Chrobak normal form without adding any extra states.
The normal form is then used to determine the exact number of states in
DFAs needed to represent unary languages recognized by n-state UFAs; the

growth rate of this function is eΘ(
3√

n ln2 n). The conversion of an n-state unary
NFA to a UFA requires UFAs with g(n)+O(n2) = e

√
n ln n(1+o(1)) states, where

g(n) is Landau’s function. In addition, it is shown that the complement of
n-state unary UFAs requires at least n2−o(1) states in an NFA.

Keywords: Finite automata, unary languages, ambiguity, descriptional
complexity, state complexity, Landau’s function.

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

This paper is concerned with a noteworthy family of automata located be-
tween deterministic finite automata (DFA) and nondeterministic finite au-
tomata (NFA): the unambiguous finite automata (UFA), that is, NFAs that
have at most one accepting computation for every string. Apparently, this
family was first studied by Schmidt [19], whose unpublished thesis contains
a interesting method of proving lower bounds for UFAs based upon the rank
of certain matrices, and a 2Ω(

√
n) lower bound on the tradeoff between UFAs

and DFAs. These methods were further elaborated by Leung [9, 10] and by
Hromkovič et al. [6], who studied degrees of nondeterminism in finite au-
tomata. In particular, Leung [10] established a precise 2n − 1 UFA–DFA
tradeoff. Computational complexity of testing properties of UFAs was stud-
ied by Stearns and Hunt [21] and recently by Björklund and Martens [2].

This paper considers UFA in the special case of an alphabet Σ = {a}. The
main properties of DFAs and NFAs over a unary alphabet are quite different
from the the case of a general alphabet. Lyubich [11] and Chrobak [3] have
shown that in the unary case the DFA–NFA tradeoff is g(n) + O(n2), where

g(n) = e(1+o(1))
√

n ln n is the maximum order of an element in the group of
permutations on n objects, known as Landau’s function [8]. State complexity
of basic operations on unary DFAs was first studied by Yu, Zhuang and
K. Salomaa [22], and elaborated by Pighizzini and Shallit [17]. A similar
study for unary NFAs was carried out by Holzer and Kutrib [5], and the
hardest languages for complementation were further studied by Mera and
Pighizzini [14]. Succinctness of two-way automata over a unary alphabet has
received particular attention in the works of Chrobak [3], Mereghetti and
Pighizzini [15] and Geffert et al. [4].

The first natural question about unary UFAs is whether they are non-
trivial: that is, any more succinct than unary DFAs. The smallest example
of a nontrivial UFA is presented in Figure 1, left; it is unambiguous, be-
cause only strings of even length are accepted in the first cycle, and only
strings of odd length are accepted in the second cycle. This UFA has
1 + 4 + 6 = 11 states, while the smallest equivalent DFA shown on the
right requires 1 + lcm(4, 6) = 13 states. This example motivates the study
of unary UFAs, which is undertaken in the present paper.

It should be noted that the existing methods of proving lower bounds on
the size of UFAs, based upon the matrix methods of Schmidt [19], are quite
hard to apply in the case of a unary alphabet. For unary inputs, Schmidt’s
matrix belongs to a class of circulant matrices, and the problem of deter-
mining the rank of a circulant matrix of 0s and 1s, studied by Ingleton [7],
is surprisingly hard in the general case. Unless the matrix for a particular
language happens to be of some special form, finding its rank is difficult.

New methods of analysis are thus required, and they shall be derived
from the earlier work on unary NFAs. Perhaps the most important basic

1

Figure 1: An 11-state unary UFA and the 13-state minimal equivalent DFA.

result on unary NFAs is the Chrobak normal form, in which there is one tail
of states, ending with transitions into one or more disjoint cycles. It was
proved by Chrobak [3] that every n-state NFA can be transformed to this
normal form, with the cycles of combined length at most n and with the tail
of length O(n2). This paper begins with refining Chrobak’s transformation
for the case of a UFA, eventually developing a transformation to the same
normal form, but without increasing the number of states, and satisfying an
additional condition specific to UFAs.

This normal form is then used to determine the precise tradeoff between
UFAs and DFAs, which is expressed in terms of a more complicated variant
of Landau’s function, denoted g̃. In particular, the UFA–DFA tradeoff is
asymptotically equivalent to g̃, and the growth rate of the latter is deter-

mined as 2Θ(
3√

n ln2 n). A close lower bound on the tradeoff between NFAs
and UFAs is established using the matrix methods of Schmidt [19], and the
tradeoff is found to be of the order of the original Landau’s function, that is,
e(1+o(1))

√
n ln n. Finally, the complexity of operations on UFAs is approached,

and an n2−o(1) lower bound for complementation is established, which shows
for the first time that the complement of a UFA sometimes requires additional
states. The complexity of Kleene star is determined precisely as (n−1)2 +1.

2 Simplifying unary automata

A nondeterministic finite automaton (NFA) is a quintuple A =
(Σ, Q,Q0, δ, F), where Σ is an input alphabet, Q is a finite nonempty set
of states; Q0 ⊆ Q is the set of initial states; δ : Q × Σ → 2Q is the tran-
sition function; F ⊆ Q is the set of accepting states. The automaton A
is said to accept a string w = a1 . . . an if there exists a sequence of states
r0, . . . , rn ∈ Q, in which r0 ∈ Q0, ri ∈ δ(ri−1, ai) for all i, and rn ∈ F . The
language recognized by an NFA, denoted by L(A), is the set of all strings it

2

accepts. The transition function shall be extended to δ : Q × Σ∗ → 2Q by
δ(q, ε) = {q} and δ(q, aw) =

⋃
q′∈δ(q,a) δ(q′, w).

In some literature, NFAs are defined with a unique initial state, that is,
with Q0 = {q0}. Every NFA can be converted to an NFA with a unique
initial state by adding a new initial state.

A deterministic finite automaton (DFA) is an NFA with a unique outgoing
transition from each state by each symbol (|δ(q, a)| = 1 for all q, a) and with
a unique initial state (|Q0| = 1). An NFA A is a partial DFA if |Q0| = 1 and
|δ(q, a)| 6 1 for all q and a.

An NFA is unambiguous if for every w ∈ L(A) the corresponding se-
quence of states r0, . . . , r|w| in the definition of acceptance is unique. An
unambiguous NFA is called an unambiguous finite automaton (UFA).

The first lower bound argument for UFAs was given by Schmidt [19,
Thm. 3.9] in his proof of a 2Ω(

√
n) lower bound on the NFA–UFA tradeoff.

The following general statement of Schmidt’s lower bound method is due to
Leung [10]:

Schmidt’s Theorem [19, 10]. Let L ⊆ Σ∗ be a regular language and
let {(u1, v1), . . . , (un, vn)} with n > 1 and ui, vi ∈ Σ∗ be a finite set of pairs
of strings. Consider the integer matrix M ∈ Zn×n defined by Mi,j = 1 if
uivj ∈ L, and Mi,j = 0 otherwise. Then every UFA recognizing L has at
least rank M states.

A state q is called useful if q ∈ δ(q0, a
k) and δ(q, a`) ∩ F for some k, ` >

0. A state that is not useful is called useless. A state q is a sink state if
δ(q, a) = ∅. Note that a sink state that is not accepting is always useless.

Let Σ = {a} and consider the following transformation of automata.
First, the acceptance is done one step earlier; second, an extra transition by
a is added to the beginning of the automaton. Clearly, the transformation
preserves the language:

Lemma 1. Let A = ({a}, Q, Q0, δ, F) be an NFA with sink states Qsink ⊆ Q.
Then the NFA B = ({a}, (Q \ Qsink) ∪ {q−1}, {q−1}, δ′, F ′) with δ′(q, a) =
δ(q, a) \ Qsink for all q ∈ Q \ Qsink, δ′(q−1, a) = Q0 \ Qsink and F ′ = { q |
δ(q, a) ∩ F 6= ∅ } ∪ { q−1 | if ε ∈ L(A) } recognizes the same language. Fur-
thermore, if A is unambiguous, then so is B.

Proof. If order to see that L(B) = L(A), consider any string a` with ` > 1.
If a` ∈ L(A), then there is a state q ∈ δ(Q0, a

`) with q ∈ F . Then
there exists a state q′ ∈ δ(Q0, a

`−1) with q ∈ δ(q′, a). The latter means that
q′ /∈ Qsink, and therefore q′ ∈ δ′(Q0, a

`−1) in the automaton B as well. Using
the transition from q−1, q′ ∈ δ′(q−1, a

`). In addition, q′ ∈ F ′ because of q,
and therefore a` ∈ L(B).

Conversely, if a` ∈ L(B), then there is a state q′ ∈ δ′(q−1, a
`) with q′ ∈ F ′.

Hence, on one hand, there is q0 ∈ Q0 with q′ ∈ δ′(q0, a
`−1) ⊆ δ(q0, a

`−1), and

3

on the other hand, there is q ∈ δ(q′, a) with q ∈ F . This implies q ∈ δ(q0, a
`)

and hence a` ∈ L(A).
Now assume A is unambiguous and suppose B is not. Then there exists

a string accepted by B in two different ways, that is, there are states q 6= q′

and numbers `, m > 0, such that q, q′ ∈ δ′(q−1, a
`), δ′(q, am) ∩ F ′ 6= ∅ and

δ′(q′, am)∩F ′ 6= ∅. Consider that ` > 1, and therefore there are states q0, q
′
0 ∈

δ′(q−1, a) ⊆ Q0 satisfying the conditions q ∈ δ′(q0, a
`−1) and q′ ∈ δ′(q′0, a

`−1).
The same transitions are possible in A, that is, q ∈ δ(q0, a

`−1) and q′ ∈
δ(q′0, a

`−1). At the same time, by the construction of F ′, δ(q, am+1) ∩ F 6= ∅
and δ(q′, am+1)∩ F 6= ∅. This gives two different accepting computations of
A on a`+m, which is impossible by assumption.

Note that as long as A has at least one sink state, the number of states
in B does not exceed the number of states in A. The purpose of this trans-
formation is to simplify the structure of sink states.

Figure 2: Back-step transformation of unary NFAs.

If the language is finite, the transformation in Lemma 1 can be applied
until the NFA is straightened into a chain ending with one sink state, as
shown in the example in Figure 2. This gives a proof of the following known
result:

Proposition 1 (Mandl [12]). For every NFA recognizing a finite language
over {a} there exists a partial DFA with the same number of states recognizing
the same language.

This partial DFA will have a unique sink state. In the case of an infinite
language, the above transformation leads to a complete elimination of sink
states:

Lemma 2. For every n-state NFA recognizing an infinite unary language
there exists an NFA without sink states that has at most n states and recog-
nizes the same language. The construction is effective and preserves unam-
biguity.

Proof. Let us say that a state q is terminal, if δ(q, a`) = ∅ for some `. The
statement of the lemma is proved by induction on the number of terminal

4

states in the NFA. The basis, 0 terminal states, holds because the given NFA
already satisfies the condition.

For the induction step, let A = ({a}, Q, Q0, δ, F) be the given NFA,
and let Qsink ⊆ Q be its nonempty set of sink states. Construct the NFA
B = ({a}, (Q \ Qsink) ∪ {q−1}, {q−1}, δ′, F ′) with L(B) = L(A), as defined
in Lemma 1. It is now claimed that every terminal state of B is a terminal
state of A.

Assume that q ∈ Q is not a terminal state of A. Then there exists an
infinite sequence of states q1, q2, . . ., with q1 = q and qi+1 ∈ δ(qi, a). This
makes δ(qi, a

`) 6= ∅ for all i and `, and in particular qi /∈ Qsink for all i. Then
qi+1 ∈ δ′(qi, a), that is, the same sequence of states is preserved in B. This
shows that q is not a terminal state of B, which proves the claim.

Accordingly, B has no new terminal states, which would not be terminal
in A. Note that since L(B) is infinite, q−1 is not a terminal state. At the same
time, B has cast away A’s terminal states from Qsink, so B has fewer terminal
states than A. Then, by the induction hypothesis, B can be transformed to
the form without sink states, which is the desired form of A.

Once sink states are eliminated, and thus all computations of a UFA must
eventually end in cycles, it turns out the cyclic part of the UFA has to be
deterministic, which is established in the following lemma.

Lemma 3. Let A = ({a}, Q, Q0, δ, F) be a UFA recognizing an infinite lan-
guage. Assume that there are no sink states and no useless states in A. Let q
be a cyclic state, that is, with q ∈ δ(q, ap) for some p > 0. Then the outgoing
transition from q is unique.

Proof. Let q be reachable from one of the initial states by a string a`. One
transition from q begins the cycle from q to q by ap. Suppose there is another
transition from q. The path started by this transition eventually, after read-
ing a string am, reaches a cyclic state q′ with q′ ∈ δ(q′, ap′) (or a sink state,
which is impossible by assumption). Since the latter state is not useless, it
should be possible to reach an accepting state from q′ by some string an.

Figure 3: A cyclic state in an NFA.

The above transitions are illustrated in Figure 3. Using these transitions,
the automaton can accept all strings in a`(ap)∗am(ap′)∗an, that is, all strings
of length ` + ip + m + i′p′ + n by using i iterations over the first cycle and i′

iterations over the second cycle. Setting i = 0 and i′ = p, or i = p′ and i′ = 0,
one can obtain two distinct accepting computations on the string a`+m+n+pp′ ,
which contradicts the assumption that the automaton in unambiguous.

5

3 Chrobak normal form of unambiguous au-

tomata

The study of NFAs over a unary alphabet is founded upon the following
normal form:

Definition 1 (Chrobak [3]). An NFA over {a} is said to be in Chrobak
normal form if its set of states is {q0, . . . , q`−1}∪

⋃k
i=1 Ri, with ` > 0, k > 0,

Ri = {ri,0, . . . , ri,pi−1} and 1 6 p1 < p2 < . . . < pk, the unique initial state is
q0 if ` > 1 or there is a set of initial states {r1,0, . . . , rk,0} if ` = 0, and the
transitions are:

δ(qi, a) = {qi+1} (0 6 i 6 `− 2)

δ(q`−1, a) = {r1,0, r2,0, . . . , rk,0} (if ` > 1)

δ(ri,j, a) = {ri,j+1 mod pi
} (1 6 i 6 k, 0 6 j 6 pi − 1),

The set of accepting states may be arbitrary.

It is known from Chrobak [3] that every NFA with n states can be trans-
formed to an equivalent NFA in this normal form, with ` = O(n2) and∑k

i=1 pn 6 n. The growth in the number of states is thus at most quadratic.
In contrast, for UFAs such a transformation can be done without increasing
the number of states.

Theorem 1. For every UFA recognizing an infinite language over {a} there
exists (and can be effectively constructed) a UFA in Chrobak normal form
with the same number of states recognizing the same language. Furthermore,
if the original UFA has a unique initial state, then so does the resulting UFA.

Proof. Let A = ({a}, Q, Q0, δ, F) be a unary UFA. By Lemma 2, there is
no loss of generality in the assumption that there are no sink states in the
automaton. It can also be assumed that A contains no useless states.

Let Q̂ ⊆ Q be the set of cyclic states of A. By Lemma 3, every state q in
Q̂ has a unique outgoing transition, and the graph of transition A from the
states in Q̂ is a collection of one or more disjoint simple cycles. Let k be the
number of simple cycles in Q̂.

For every n > 1, define Qn = δ(Q0, a
n) ⊆ Q. Let ` > 0 be the least

number with Q` ⊆ Q̂: this eventually happens, since all paths lead to simple
cycles. The definition of the sets Qn is illustrated in Figure 4, left, where
k = 2 and ` = 3.

The idea of the construction is to replace each set Qn, for 0 6 n 6
` − 1, with a new state qn, and to leave the states in Q̂ as they are. Let
pi be the length of each ith cycle in A, and denote the states in it by Ri =
{ri,0, . . . , ri,pi−1} for all 1 6 i 6 k, and with transitions δ(ri,j, a) = ri,j+1,
where the addition is modulo pi. The new NFA B has the set of states

6

Figure 4: Transforming a UFA to Chrobak normal form.

Q′ = {q0, . . . , q`−1} ∪
⋃k

i=1 Ri. If ` > 1, its unique initial state is q0, and in
case of ` = 0, the set of initial states is { ri,0 | 1 6 i 6 k }. The transitions of
B are defined by δ′(qn, a) = qn+1 for 0 6 n 6 `−2, δ′(q`−1, a) = {r1,0, . . . , rk,0}
and δ′(ri,j, a) = ri,j+1 = δ(ri,j, a). The set of accepting states is defined as
follows:

F ′ = { qn | 0 6 n 6 `− 1, Qn ∩ F 6= ∅ } ∪ { ri,f−s | ri,s ∈ Q`, ri,f ∈ F },

where the subtraction is modulo pi. The automaton has at most n states,
because

|Q′| = ` +
∣∣∣

k⋃
i=1

Ri

∣∣∣ = ` + |Q̂| 6
∣∣∣

`−1⋃
n=0

Qn \ Q̂
∣∣∣ + |Q̂| = |Q|.

Claim 1. The string a`+n in accepted by A in Ri if and only if it is accepted
by B in Ri.

Indeed, the acceptance of a`+n by A in Ri is equivalent to the existence
of states ri,s ∈ Q` and ri,f ∈ F with f − s = n (mod pi). By the definition
of F ′, this holds if and only if ri,n mod pi

∈ F ′, which holds if and only if B
accepts a`+n in Ri. This proves the claim.

One can infer from this claim that L(B) = L(A) as follows. According to
the definition of F ′, every string shorter than a` is accepted by B if and only
if it is accepted by A. A string a`+n is accepted by both automata if the ith
component mentioned in the claim exists, and is rejected by both automata
otherwise.

7

To show that B is unambiguous, consider that strings up to a`−1 have
a unique computation, and if a string a`+n with n > 0 is accepted in two
different states, these states must belong to different cycles. Then, by the
claim, A should accept a`+n in both cycles, which contradicts the assumption
that it is unambiguous.

Once a UFA is converted to Chrobak normal form, the following key
restriction of unambiguous automata is exposed:

Theorem 2. An NFA ({a}, Q, q0, δ, F) in Chrobak normal form recognizing
an infinite language over {a} is unambiguous if and only if for every two
accepting states ri,f , rj,f ′ ∈ F with i 6= j, the offsets f and f ′ are different
modulo gcd(pi, pj).

The proof uses Chinese Remainder Theorem in the following formulation:

Chinese Remainder Theorem. Let p, p′ > 1 and i, i′ > 0 be any numbers
with i = i′ (mod gcd(p, p′)). Then there exists a number n > 0 with n =
i (mod p) and n = i′ (mod p′).

Proof of Theorem 2. ⇐© Assume that the conditions on accepting states hold
and suppose that the automaton is ambiguous. Then there is a string a`+n

with n > 0 accepted in cycles Ri and Rj; more precisely, in states ri,f and
rj,f ′ . Accordingly, n = f (mod pi) and n = f ′ (mod pj), and therefore
f = n = f ′ (mod gcd(pi, pj)), which contradicts the condition.

⇒© Let the automaton be unambiguous and suppose there exist two states
ri,f , rj,f ′ ∈ F with i 6= j and f = f ′ (mod gcd(pi, pj)). The latter condition
makes a generalized version of the Chinese Remainder Theorem applicable
to f , f ′, pi and pj, and it asserts that there exists a number n > 0 with n = f
(mod pi) and n = f ′ (mod pj). Then the string a`+n has two accepting com-
putations, one in the component Ri and the other in Rj, which contradicts
the assumption that the automaton is unambiguous.

Theorem 2, in particular, implies that the lengths of the cycles cannot
be primes (unless there is a unique cycle), and that gcd(pi, pj) > 2 for any
two distinct cycles. For example, the UFA in Figure 1 in the introduction
has gcd(4, 6) = 2, and accepting states are separated by the parity of their
offsets.

4 UFA–DFA tradeoff

An upper bound on the number of states in a DFA needed to represent a
unary language recognized by an n-state unary NFA has been established
by Lyubich [11]. It is asymptotically equivalent to the maximum order of a
permutation on n elements:

g(n) = max{ lcm(p1, . . . , pk) | k > 1, p1 + . . . + pk 6 n }.

8

This function is known as Landau’s function, as its e
√

n ln n(1+o(1)) asymptotics
was determined by Landau [8], see also Miller [16] for a more accessible
argument.

Twenty years after Lyubich, an asymptotically matching lower bound on
the unary NFA to DFA tradeoff was obtained by Chrobak [3], who also gave
a new, combinatorial proof of Lyubich’s upper bound. These results can be
stated as follows:

Proposition 2 (Lyubich [11], Chrobak [3]). For every n-state unary NFA
there exists a DFA with at most g(n) + n2 states recognizing the same lan-
guage. Conversely, for every n there is a language recognized by an n-state
NFA, such that every equivalent DFA requires g(n) states.

The essense of this result is a natural correspondence between unary
NFAs and Landau’s function. The numbers p1, . . . , pk in the definition of
g(n) correspond to lengths of cycles of an NFA in Chrobak normal form,
the sum p1 + . . . + pk represents the number of states in an NFA, and an
equivalent DFA has to have lcm(p1, . . . , pk) states.

This analysis of NFAs can be extended to UFAs, if the additional con-
straints on their Chrobak normal form given in Theorem 2 are embedded
into the definition of Landau’s function. This leads to the following variant
of this function:

g̃(n) = max
{

lcm(p1, . . . , pk)
∣∣ k > 1, p1 + . . . + pk 6 n,

∃f1, . . . , fk with fi ∈ {0, . . . , pi − 1} :

∀i, j (i 6= j) fi 6= fj (mod gcd(pi, pj))
}

For n up to 9 the value of g̃(n) is n. The next value is g̃(10) = 12, given
by k = 2, p1 = 4, p2 = 6, f1 = 0 and f2 = 1 with 0 6= 1 (mod gcd(4, 6)). This

function can be asymptotically estimated as eΘ(
3√

n ln2 n), and this estimation
will be the subject of the next section. Now the task is to express the tradeoff
between UFAs and DFAs using this function, which can be done as follows:

Theorem 3. For every n > 1, the following number of states is sufficient
and in the worst case necessary for a DFA to recognize a language recognized
by an n-state UFA with multiple initial states:

fUFA–DFA(n) =

{
n + 1, if n 6 9

max
06`<n

g̃(n− `) + `, if n > 10

For UFAs with a unique initial state, the tradeoff function takes the following
form:

fUFA1–DFA(n) =

{
n + 1, if n 6 10

max
16`<n

g̃(n− `) + `, if n > 11

9

For n 6 9, UFAs are not yet any more powerful than partial DFAs, and
thus can be simulated by DFAs with n + 1 states, with the lower bound wit-
nessed by a finite language. Once there are sufficiently many states to reach
nontrivial values of g̃, the following witness languages can be represented:

Lemma 4. Let k > 2, ` > 0, p1, . . . , pk > 2 and f1, . . . , fk > 0 with 0 6
fi < pi be any numbers, such that (a) fi 6= fj (mod gcd(pi, pj)) for all
1 6 i < j 6 k, (b) lcm(p1, . . . , pi−1, pi+1, . . . , pk) is not divisible by pi for any
1 6 i 6 k, and (c) fi = pi − 1 for some i. Then the language

L = a` ·
k⋃

i=1

afi(api)∗

has a UFA with ` + p1 + . . . + pk states, while every DFA for this language
requires ` + lcm(p1, . . . , pm) states.

Proof. The construction of a UFA in Chrobak normal form with a tail of
length ` and with cycles p1, . . . , pk, each with a unique accepting state at
offset fi, is entirely obvious. As fi 6= fj (mod gcd(pi, pj)) by assumption,
the condition of Theorem 2 is satisfied.

Let p = lcm(p1, . . . , pm) and consider any DFA recognizing L. It is suffi-
cient to prove that for any two distinct states q = δ(q0, a

m) and q′ = δ(q0, a
m′

)
with 0 6 m < m′ < ` + p there exists a string accepted from one of these
states and not accepted from the other. If m′−m = 0 (mod p), then m < `,
and the string a`−1−m is not accepted from q, for the reason that a`−1 /∈ L.
At the same time, a`−1−m is accepted from q′, because a`+p−1 ∈ L by the
condition (c).

It remains to consider the case of m′ −m 6= 0 (mod p). Then the length
of one of the cycles in the UFA does not divide m′ − m; assume, without
loss of generality, that m′ −m is not divisible by p1. It is claimed that there
exists a number n ∈ {0, . . . , p − 1} equal to f1 + m′ − m modulo p1, such
that the string a`+p+n−(m′−m) is in L1, but a`+p+n /∈ L. This would prove the
statement, because the string a`+p+n−m′

is then accepted from q and rejected
from q′.

Suppose, for the sake of contradiction, that there is no such number.
Then, for every number n equal to n1 = f1 + m′ −m modulo p1, the string
a`+n is in L. Let

Li = a` · afi · (api)∗,

and hence L = L1 ∪ . . . ∪ Lk. Since m′ −m is not divisible by p1, m′ −m 6=
0 (mod p1), hence n1 6= f1 (mod p1), and accordingly a`+n ∈ L2 ∪ . . . ∪ Lk.
A contradiction is derived by applying the following statement k − 1 times:

Claim 2. Let 2 6 i 6 k and let ni−1 be a number with 0 6 ni−1 <
lcm(p1, . . . , pi−1). Assume that a`+n ∈ Li ∪ Li+1 ∪ . . . ∪ Lk for all n > 0
equal to ni−1 modulo lcm(p1, . . . , pi−1). Then there exists a number ni with

10

0 6 ni < lcm(p1, . . . , pi−1, pi), such that a`+n ∈ Li+1 ∪ . . . ∪ Lk for every
number n > 0 equal to ni modulo lcm(p1, . . . , pi−1, pi).

Indeed, the first application of the claim, for i = 2, gives a number n2,
such that a`+n ∈ L3 ∪ . . . ∪ Lk for every n with n = n2 (mod lcm(p1, p2)),
the second application yields n3 with a`+n ∈ L4 ∪ . . . ∪ Lk for n =
n3 (mod lcm(p1, p2, p3)), and so on. Finally, for i = k the claim leads to
the conclusion that there is a number nk, such that a`+nk ∈ ∅, which is a
contradiction.

It remains to prove the claim. Consider two numbers, ni−1 and ni−1 +
lcm(p1, . . . , pi−1). It is known that lcm(p1, . . . , pi−1) is nonzero modulo pi

(otherwise pi would divide lcm(p1, . . . , pi−1), contradicting assumption (b)).
Then ni−1 6= ni−1 + lcm(p1, . . . , pi−1) (mod pi), and therefore at least one of
these numbers must be different from fi modulo pi; denote this number by
ni.

Since ni = ni−1 (mod lcm(p1, . . . , pi−1)), all numbers equal to ni modulo
lcm(p1, . . . , pi) are equal to ni−1 modulo lcm(p1, . . . , pi−1), and thus for every
such number n, the string a`+n must be in Li∪Li+1∪ . . .∪Lk by assumption.
But since none of these numbers are equal to fi modulo pi, none of the
corresponding strings belong to Li. Therefore, all these strings are in Li+1 ∪
. . . ∪ Lk which proves the claim and completes the proof of the lemma.

The matching upper bound is implied by the following lemma:

Lemma 5. For every n-state UFA in Chrobak normal form with a tail of
length ` > 0 there exists a DFA with at most ` + g̃(n− `) states recognizing
the same language.

Proof. Let p1, . . . , pk be the lengths of the cycles in this UFA. Then it is
well-known that there is an equivalent DFA with lcm(p1, . . . , pk) + ` states
[3, Thm. 4.4].

Consider one accepting state from each cycle: r1,f1 , r2,f2 , . . . , rk,fk
∈ F .

By Theorem 2, fi 6= fj (mod gcd(pi, pj)) for all i 6= j. Then these numbers
satisfy the definition of g̃, and accordingly lcm(p1, . . . , pk) 6 g̃(n− `), which
shows that the above DFA has at most g̃(n− `) + ` states.

The theorem is now established as a consequence of the above lemmata.

Proof of Theorem 3. Note that g̃(10) = lcm(4, 6) = 12, and therefore, for
every n > 11, g̃(n − `) + ` > n + 1 for ` = n − 10. It is also easy to
verify that the smallest two numbers with a common divisor and with a
least common multiple larger than either of the numbers are 4 and 6, and
accordingly g̃(n) = n for n < 10. Then the function stated in the theorem
can be equivalently expressed as follows:

fUFA–DFA(n) = max
(
n + 1, max

06`<n
g̃(n− `) + `

)
.

11

The first claim is that every n-state unary UFA can be transformed to
an equivalent DFA with fUFA–DFA(n) states. If the UFA recognizes a finite
language, then, by Proposition 1, this language is recognized by an n-state
partial DFA, and hence by an (n + 1)-state complete DFA.

If the language recognized by the UFA is infinite, then, according to
Theorem 1, it can be assumed that the UFA is in Chrobak normal form; let
` be the length of the tail. Then a DFA with g̃(n− `) + ` states recognizing
the same language exists due to Lemma 5. In all three cases the number of
states is at most fUFA–DFA(n).

To prove the lower bound, fix n > 1. The language {an−1} has a partial
DFA (and hence a UFA) with n states, but every complete DFA for this
language requires n + 1 states, and hence fUFA–DFA(n) > n + 1. It remains
to prove that fUFA–DFA(n) > g̃(n− `) + ` for every ` ∈ {1, . . . , n− 1}.

Choose ` so that the number g̃(n − `) + ` is the greatest possible, and
consider the number g̃(n − `), which is given by lcm(p1, . . . , pk) for some
k > 1, p1, . . . , pk > 2 and f1, . . . , fk > 0 with p1 + . . . + pk 6 n− ` and fi 6=
fj (mod gcd(pi, pj)) for all i 6= j. Furthermore, the number lcm(p1, . . . , pk)
is by definition the greatest among all numbers k, pi and fi meeting the above
constraints.

It is claimed that every cycle length pi contributes something to the
least common multiple, that is, lcm(p1, . . . , pi−1, pi+1, . . . , pk) is not divisi-
ble by pi. Indeed, if lcm(p1, . . . , pi−1, pi+1, . . . , pk) is a multiple of pi, then
lcm(p1, . . . , pi−1, pi+1, . . . , pk) = lcm(p1, . . . , pk), and accordingly g̃(p1 + . . . +
pk) = g̃(p1+. . .+pk−pi), which implies that g̃(n−`−pi)+`+pi > g̃(n−`)+`.
Then `′ = ` + pi leads to a greater value g̃(n− `′) + `′, which contradicts the
choice of `.

The next claim is that the offsets f1, . . . , fk can be adjusted so that f1 =
p1 − 1. It is sufficient to add the number p1 − f1 − 1 to all offsets, that
is, to redefine the offsets as f ′i = fi + p1 − f1 − 1. The condition f ′i 6=
f ′j (mod gcd(pi, pj)) is preserved, because f ′i−f ′j = fi−fj (mod gcd(pi, pj)).

It has thus been demonstrated that all conditions of Lemma 4 are satis-
fied, and hence there exists a language representable by an n-state UFA, for
which every DFA must have lcm(p1, . . . , pk) + ` = g̃(n− `) + ` states.

The values of g̃(n) for small values of n, calculated by an exhaustive
search, are given in Table 1, along with the computed lengths of cycles
p1, . . . , pk. Furthermore, the table gives the precise number of states in a
DFA needed to simulate an n-state UFA, as well as witness languages on
which this bound is reached. These languages and their state complexity are
determined on the basis of the values of g̃(n) according to Lemma 4 (which
does not involve any extensive calculations). The next Table 2 gives similar
results for UFAs with a unique initial state.

12

n: UFA g̃(n) f(n): DFA witness language
1 1 2 {ε}
2 2 3 {a}
3 3 4 {a2}
4 4 5 {a3}
5 5 6 {a4}
6 6 7 {a5}
7 7 8 {a6}
8 8 9 {a7}
9 9 10 {a8}
10 12 =lcm(4,6) 12 a3(a4)∗ ∪ a4(a6)∗

11 12 =lcm(4,6) 13 a4(a4)∗ ∪ a5(a6)∗

12 12 =lcm(4,6) 14 a5(a4)∗ ∪ a6(a6)∗

13 13 15 a6(a4)∗ ∪ a7(a6)∗

14 24 =lcm(6,8) 24 a5(a6)∗ ∪ a6(a8)∗

15 24 =lcm(6,8) 25 a6(a6)∗ ∪ a7(a8)∗

16 30 =lcm(6,10) 30 a5(a6)∗ ∪ a6(a10)∗

17 30 =lcm(6,10) 31 a6(a6)∗ ∪ a7(a10)∗

18 40 =lcm(8,10) 40 a7(a8)∗ ∪ a8(a10)∗

19 40 =lcm(8,10) 41 a8(a8)∗ ∪ a9(a10)∗

20 42 =lcm(6,14) 42 a5(a6)∗ ∪ a6(a14)∗

21 42 =lcm(6,14) 43 a6(a6)∗ ∪ a7(a14)∗

22 60 =lcm(10,12) 60 a9(a10)∗ ∪ a10(a12)∗

23 60 =lcm(10,12) 61 a10(a10)∗ ∪ a11(a12)∗

24 70 =lcm(10,14) 70 a9(a10)∗ ∪ a10(a14)∗

25 70 =lcm(10,14) 71 a10(a10)∗ ∪ a11(a14)∗

26 84 =lcm(12,14) 84 a11(a12)∗ ∪ a12(a14)∗

27 84 =lcm(12,14) 85 a12(a12)∗ ∪ a13(a14)∗

28 90 =lcm(10,18) 90 a9(a10)∗ ∪ a10(a18)∗

29 90 =lcm(10,18) 91 a10(a10)∗ ∪ a11(a18)∗

30 120 =lcm(8,10,12) 120 a7(a8)∗ ∪ a8(a10)∗ ∪ a9(a12)∗

31 120 =lcm(8,10,12) 121 a8(a8)∗ ∪ a9(a10)∗ ∪ a10(a12)∗

32 126 =lcm(14,18) 126 a13(a14)∗ ∪ a14(a18)∗

33 126 =lcm(14,18) 127 a14(a14)∗ ∪ a15(a18)∗

34 168 =lcm(8,12,14) 168 a7(a8)∗ ∪ a9(a12)∗ ∪ a8(a14)∗

35 168 =lcm(8,12,14) 169 a8(a8)∗ ∪ a10(a12)∗ ∪ a9(a14)∗

36 180 =lcm(9,12,15) 180 a8(a9)∗ ∪ a9(a12)∗ ∪ a10(a15)∗

37 180 =lcm(9,12,15) 181 a9(a9)∗ ∪ a10(a12)∗ ∪ a11(a15)∗

38 240 =lcm(10,12,16) 240 a9(a10)∗ ∪ a8(a12)∗ ∪ a10(a16)∗

39 240 =lcm(10,12,16) 241 a10(a10)∗ ∪ a9(a12)∗ ∪ a11(a16)∗

40 240 =lcm(10,12,16) 242 a11(a10)∗ ∪ a10(a12)∗ ∪ a12(a16)∗

41 240 =lcm(10,12,16) 243 a12(a10)∗ ∪ a11(a12)∗ ∪ a13(a16)∗

42 336 =lcm(12,14,16) 336 a11(a12)∗ ∪ a12(a14)∗ ∪ a13(a16)∗

43 336 =lcm(12,14,16) 337 a12(a12)∗ ∪ a13(a14)∗ ∪ a14(a16)∗

44 336 =lcm(12,14,16) 338 a13(a12)∗ ∪ a14(a14)∗ ∪ a15(a16)∗

45 336 =lcm(12,14,16) 339 a14(a12)∗ ∪ a15(a14)∗ ∪ a16(a16)∗

46 420 =lcm(12,14,20) 420 a11(a12)∗ ∪ a12(a14)∗ ∪ a13(a20)∗

47 420 =lcm(12,14,20) 421 a12(a12)∗ ∪ a13(a14)∗ ∪ a14(a20)∗

48 420 =lcm(12,14,20) 422 a13(a12)∗ ∪ a14(a14)∗ ∪ a15(a20)∗

49 420 =lcm(12,14,20) 423 a14(a12)∗ ∪ a15(a14)∗ ∪ a16(a20)∗

50 560 =lcm(14,16,20) 560 a13(a14)∗ ∪ a12(a16)∗ ∪ a14(a20)∗

Table 1: Values of g̃(n); UFA–DFA tradeoff with witness languages.

13

n: UFA1 g̃(n) f(n): DFA witness language
1 1 2 {ε}
2 2 3 {a}
3 3 4 {a2}
4 4 5 {a3}
5 5 6 {a4}
6 6 7 {a5}
7 7 8 {a6}
8 8 9 {a7}
9 9 10 {a8}
10 12 =lcm(4,6) 11 {a9}
11 12 =lcm(4,6) 13 a4(a4)∗ ∪ a5(a6)∗

12 12 =lcm(4,6) 14 a5(a4)∗ ∪ a6(a6)∗

13 13 15 a6(a4)∗ ∪ a7(a6)∗

14 24 =lcm(6,8) 16 a7(a4)∗ ∪ a8(a6)∗

15 24 =lcm(6,8) 25 a6(a6)∗ ∪ a7(a8)∗

16 30 =lcm(6,10) 26 a7(a6)∗ ∪ a8(a8)∗

17 30 =lcm(6,10) 31 a6(a6)∗ ∪ a7(a10)∗

18 40 =lcm(8,10) 32 a7(a6)∗ ∪ a8(a10)∗

19 40 =lcm(8,10) 41 a8(a8)∗ ∪ a9(a10)∗

20 42 =lcm(6,14) 42 a9(a8)∗ ∪ a10(a10)∗

21 42 =lcm(6,14) 43 a6(a6)∗ ∪ a7(a14)∗

22 60 =lcm(10,12) 44 a7(a6)∗ ∪ a8(a14)∗

23 60 =lcm(10,12) 61 a10(a10)∗ ∪ a11(a12)∗

24 70 =lcm(10,14) 62 a11(a10)∗ ∪ a12(a12)∗

25 70 =lcm(10,14) 71 a10(a10)∗ ∪ a11(a14)∗

26 84 =lcm(12,14) 72 a11(a10)∗ ∪ a12(a14)∗

27 84 =lcm(12,14) 85 a12(a12)∗ ∪ a13(a14)∗

28 90 =lcm(10,18) 86 a13(a12)∗ ∪ a14(a14)∗

29 90 =lcm(10,18) 91 a10(a10)∗ ∪ a11(a18)∗

30 120 =lcm(8,10,12) 92 a11(a10)∗ ∪ a12(a18)∗

31 120 =lcm(8,10,12) 121 a8(a8)∗ ∪ a9(a10)∗ ∪ a10(a12)∗

32 126 =lcm(14,18) 122 a9(a8)∗ ∪ a10(a10)∗ ∪ a11(a12)∗

33 126 =lcm(14,18) 127 a14(a14)∗ ∪ a15(a18)∗

34 168 =lcm(8,12,14) 128 a15(a14)∗ ∪ a16(a18)∗

35 168 =lcm(8,12,14) 169 a8(a8)∗ ∪ a10(a12)∗ ∪ a9(a14)∗

36 180 =lcm(9,12,15) 170 a9(a8)∗ ∪ a11(a12)∗ ∪ a10(a14)∗

37 180 =lcm(9,12,15) 181 a9(a9)∗ ∪ a10(a12)∗ ∪ a11(a15)∗

38 240 =lcm(10,12,16) 182 a10(a9)∗ ∪ a11(a12)∗ ∪ a12(a15)∗

39 240 =lcm(10,12,16) 241 a10(a10)∗ ∪ a9(a12)∗ ∪ a11(a16)∗

40 240 =lcm(10,12,16) 242 a11(a10)∗ ∪ a10(a12)∗ ∪ a12(a16)∗

41 240 =lcm(10,12,16) 243 a12(a10)∗ ∪ a11(a12)∗ ∪ a13(a16)∗

42 336 =lcm(12,14,16) 244 a13(a10)∗ ∪ a12(a12)∗ ∪ a14(a16)∗

43 336 =lcm(12,14,16) 337 a12(a12)∗ ∪ a13(a14)∗ ∪ a14(a16)∗

44 336 =lcm(12,14,16) 338 a13(a12)∗ ∪ a14(a14)∗ ∪ a15(a16)∗

45 336 =lcm(12,14,16) 339 a14(a12)∗ ∪ a15(a14)∗ ∪ a16(a16)∗

46 420 =lcm(12,14,20) 340 a15(a12)∗ ∪ a16(a14)∗ ∪ a17(a16)∗

47 420 =lcm(12,14,20) 421 a12(a12)∗ ∪ a13(a14)∗ ∪ a14(a20)∗

48 420 =lcm(12,14,20) 422 a13(a12)∗ ∪ a14(a14)∗ ∪ a15(a20)∗

49 420 =lcm(12,14,20) 423 a14(a12)∗ ∪ a15(a14)∗ ∪ a16(a20)∗

50 560 =lcm(14,16,20) 424 a15(a12)∗ ∪ a16(a14)∗ ∪ a17(a20)∗

Table 2: UFA1–DFA tradeoff with witness languages.

14

5 Estimations of g̃

The function g̃ characterizes the expressive power of unary UFAs, and es-
timating the growth rate of this function, especially in comparison with g,
is essential to understand the power of ambiguity in finite automata over a
unary alphabet.

So what is the asymptotic behaviour of the function g̃? The first step
towards determining its growth rate is estimating the maximum number of
cycles k for a given sum of cycle lengths.

Lemma 6. Let k > 1 and let π1, . . . , πk > 2 be any integers, for which (a)
there exist f1, . . . , fk ∈ N with fi 6= fj (mod gcd(πi, πj)) for all i 6= j, and
(b) lcm(π1, . . . , πi−1, πi+1, . . . , πk) is not divisible by pi for any 1 6 i 6 k.
Then π1 + . . . + πk > 4

9
k3 ln k − 8

27
k3
√

ln k.

As in Lemma 4, the condition of each cycle contributing something to the
least common multiple is essential: if it is lifted, then taking k cycles each of
length k gives

∑
πi = k2, and the statement does not hold.

For each i, let ri = lcm(π1,...,πk)
lcm(π1,...,πi−1,πi+1,...,πk)

and let πi = risi. Then the

numbers r1, . . . , rk are pairwise relatively prime, each of them is at least 2
by the condition (b), and hence gcd(πi, πj) = gcd(si, sj) for i 6= j. In this
notation, the statement of the lemma can be equivalently reformulated as
follows:

min
r1,...,rk>2

relatively prime

min
s1,...,sk∈N∃f1,...,fk∈N

fi 6=fj (mod gcd(si,sj))

k∑
i=1

risi > 4
9
k3 ln k − 8

27
k3
√

ln k.

The proof proceeds by simplifying the expression in the left-hand side,
decreasing its value, but in the end still obtaining a value greater than
4
9
k3 ln k − 8

27
k3
√

ln k. The first simplification step is replacing the condi-
tion on s1, . . . , sk involving the numbers f1, . . . , fk with the following simpler
consequence of this condition:

Claim 6.1. 1
s1

+ . . . + 1
sk

6 1.

Proof. Let s = lcm(s1, . . . , sk). An ith cycle is said to cover a number
n ∈ {0, . . . , s− 1}, if fi = n (mod si). Then each i-th cycle covers exactly s

si

different numbers, and, in total,
∑k

i=1
s
si

numbers are covered.

Suppose
∑k

i=1
1
si

> 1. Then
∑k

i=1
s
si

> s, and accordingly, some number
n must be covered by two different cycles, that is, fi = n (mod si) and
fj = n (mod sj). Therefore, fi = n = fj (mod gcd(si, sj)), which contradicts
the assumption.

In order to obtain the smallest values of the sum
∑

risi, the numbers
si should be as small as possible, but too small values are not allowed by

15

Claim 6.1. For example, for k = 3 and r1 = 2, r1 = 3, r1 = 7, the smallest
possible values of si are s1 = s2 = s3 = 3 or s1 = s2 = 4, s3 = 2. The
former choice leads to the sum 2 · 3 + 3 · 3 + 7 · 3 = 36, while the latter gives
2 ·4+3 ·4+7 ·2 = 34. Note that taking any smaller values of si would violate
the condition of Claim 6.1, while any greater values would increase the sum;
therefore, the least value of

∑
risi for the given k and ri is 34.

Aiming to estimate this minimum, it is convenient to allow the values of
si to be any positive real numbers. This will slightly reduce the value of the
minimum, but will make it analytically calculable as follows:

Claim 6.2. Let a1, . . . , am > 0 be any positive real numbers. Then

min
x1,...,xk∈R+
1

x1
+...+ 1

xk
=1

k∑
i=1

aixi =
(√

a1 + . . . +
√

ak

)2

and the minimum is reached at the point xi =
√

a1+...+
√

ak√
ai

.

Proof. This is an exercise in analysis. Eliminating one of the variables as

xk =
1

1− 1
x1
− . . .− 1

xk−1

,

the task is to find the minimum of the following function:

f(x1, . . . , xk−1) = a1x1 + . . . + ak−1xk−1 +
ak

1− 1
x1
− . . .− 1

xk−1

.

Its partial derivative by xi is

∂f

∂xi

= ai − ak

x2
i

(
1− 1

x1
− . . .− 1

xk−1

)2 .

Taking the necessary condition of an extremum, ∂f
∂xi

= 0 for all i, and assum-

ing new variables yi = 1
xi

leads to the following system of equations:

y2
i

(1− y1 − . . .− yk−1)2
=

ai

ak

(for 1 6 i 6 k − 1).

Since both yi and 1− y1 − . . .− yk−1 are positive, this system can be refor-
mulated as

yi

1− y1 − . . .− yk−1

=

√
ai

ak

(for 1 6 i 6 k − 1).

Now each variable yi with 2 6 i 6 k − 1 can be expressed through y1 by
dividing the first equation by the ith:

yi

y1

=

√
ai

a1

(for 2 6 i 6 k − 1).

16

Substituting yi = y1

√
ai

a1
in the first equation results in

y1

1−∑k−1
j=1 y1

√
aj

a1

=
a1

ak

,

and therefore

y1 =
1

∑k
j=1

√
aj

a1

.

Returning to the original variables, f attains its minimum at xi =
∑k

j=1

√
aj

ai
,

and its value at this point is
∑k

i=1

∑k
j=1

√
aiaj = (

√
a1 + . . . +

√
ak)

2, which
proves the claim.

Therefore, a lower bound on the sum
∑k

i=1 risi is (
√

r1 + . . .+
√

rk)
2, and

the next task is to estimate the least value of this sum for all applicable ri,
that is, for every choice of pairwise relatively prime r1, . . . , rk > 2. In fact,
the minimum is achieved by taking the first k primes.

Claim 6.3. Let 2 6 r1 < . . . < rk be any pairwise relatively prime natural
numbers. Then pi 6 ri, where pi is the ith prime.

Proof. Suppose that ri < pi for some i. Each rj with j < i is less than ri, and
hence rj must have a prime factor r′j 6 pi−1. Since the primes r′1, . . . , r

′
i−1

must be pairwise distinct, it follows that {r′1, . . . , r′i−1} = {p1, . . . , pi−1}, and
thus every prime factor of ri must belong to this set, which contradicts the
assumption that r1, . . . , rk are relatively prime.

Therefore, the sum is decreased (or unaltered) by replacing each ri with
the ith prime:

(
√

r1 + . . . +
√

rk)
2 > (

√
p1 + . . . +

√
pk)

2.

In order to estimate the sum
∑k

i=1

√
pi, consider the following known fact:

Proposition 3. pn > n ln n for all n > 1.

It remains to calculate the resulting sum:

Claim 6.4.
∑k

n=1

√
n ln n > 2

3
k
√

k ln k − 2
9
k
√

k for all k > 1.

Proof. For k 6 8 the inequality can be verified by direct calculations, so
assume k > 9. The idea is to approximate the sum with the integral∫ k

1

√
x ln x dx. Integrating by parts,

∫ √
x ln x dx = x

√
x ln x−

∫
x d
√

x ln x = x
√

x ln x−
∫

x
ln x + 1

2
√

x ln x
dx =

= x
√

x ln x− 1
2

∫ √
x ln x dx− 1

2

∫ √
x

ln x
dx,

17

and solving the resulting equation gives

∫ √
x ln x dx = 2

3
x
√

x ln x− 1
3

∫ √
x

ln x
dx.

Then, using the facts that f(x) =
√

x ln x is increasing, and that
√

x
ln x

6 √
x

for all x > e,

k∑
n=1

√
n ln n >

∫ k

1

√
x ln x dx = 2

3
k
√

k ln k−1
3

∫ k

9

√
x

ln x
dx−1

3

∫ 9

1

√
x

ln x
dx >

> 2
3
k
√

k ln k − 1
3

∫ k

9

√
x dx− 1

3

∫ 9

1

√
x

ln x
dx =

= 2
3
k
√

k ln k − 2
9
k
√

k + 2
9
9
√

9− 1
3

∫ 9

1

√
x

ln x
dx.

Approximating the latter integral numerically shows that 1
3

∫ 9

1

√
x

ln x
dx <

6 = 2
9
9
√

9, which completes the proof.

With all these auxiliary results established, Lemma 6 is proved by the
following chain of inequalities.

Proof of Lemma 6.

min
r1,...,rk>2

relatively prime

min
s1,...,sk∈N∃f1,...,fk∈N

fi 6=fj (mod gcd(si,sj))

k∑
i=1

risi > min
r1,...,rk>2

relatively prime

min
s1,...,sk∈N

1
s1

+...+ 1
sk

61

k∑
i=1

risi >

> min
r1,...,rk>2

relatively prime

min
x1,...,xk∈R+
1

x1
+...+ 1

xk
61

k∑
i=1

rixi = min
r1,...,rk>2

relatively prime

(√
r1 + . . . +

√
rk

)2
=

=
(√

p1 + . . . +
√

pk

)2
>

(k∑
i=1

√
i ln i

)2

>
(

2
3
k
√

k ln k − 2
9
k
√

k
)2

>

> 4
9
k3 ln k − 8

27
k3
√

ln k.

The next lemma reformulates this estimation by giving a lower bound on
k as a function of n.

Lemma 7. Under the assumptions of Lemma 6, k < 3
3√4

3

√
n

ln n−2
√

ln n
, where

n = π1 + . . . + πk > 55.

The condition that n > 55 > e4 is needed to ensure that the denominator
of the fraction under the cubic root is positive.

18

Proof. Suppose k > 3
3√4

3

√
n

ln n−2
√

ln n
. Then k3 > 27

4
n

ln n−2
√

ln n
and ln k >

1
3
(ln n − ln(ln n − 2

√
ln n) + ln 27

4
), and since the function f(k) = 4

9
k3 ln k −

8
27

k3
√

ln k = k3
√

ln k(4
9

√
ln k − 8

27
) is increasing,

4
9
k3 ln k − 8

27
k3
√

ln k >

> n
27
4
· 4
9
· 1
3
(ln n−ln(ln n−2

√
ln n)+ln 27

4
)− 27

4
· 8
27
· 1√

3

√
ln n−ln(ln n−2

√
ln n)+ln 27

4

ln n−2
√

ln n
=

= n
ln n−ln(ln n−2

√
ln n)+ln 27

4
− 2√

3

√
ln n−ln(ln n−2

√
ln n)+ln 27

4

ln n−2
√

ln n
>

> n
ln n−ln ln n+1− 2√

3

√
ln n+2

ln n−2
√

ln n
> n,

where the last inequality is established by showing that 2
√

ln n > ln ln n−1+
2√
3

√
ln n + 2 for all applicable values of n. Substituting x =

√
ln n, consider

the function h(x) = 2x− 2 ln x + 1− 2√
3

√
x2 + 2. It is easy to calculate that

h(2) > 0 and to verify that h′(x) = 2− 2
x
− 2√

3
x√

x2+2
> 0 for all x > 2. Hence,

the function is positive for all x > 2, and accordingly the inequality holds for
all n > e4.

It has thus been shown that 4
9
k3 ln k − 8

27
k3
√

ln k > n, contrary to
Lemma 6. The contradiction obtained proves the lemma.

The following upper bound of g̃(n) can be inferred from this bound on k.

Theorem 4 (Upper bound). g̃(n) < e
3√

2n ln2 n(1+o(1)).

The proof of the theorem relies only on the upper bound on k, and oth-
erwise ignores the additional constraints in the definition of g̃ as compared
to g. Using further properties of g̃ in this proof would likely lead to a better
bound.

The first step is to simplify the model by replacing the least common
multiple of π1, . . . , πk with their product, and then allowing the cycle lengths
to be real numbers. Then, as it is well-known, the maximum of the product
is reached for all factors being identical:

Proposition 4. max
x1+...+xk6x

x1 . . . xk = (x
k
)k for every k ∈ N and x ∈ R+.

Another fact about elementary functions is that (n
k
)k reaches its maximum

at k = n
e
, and since the values of k allowed by Lemma 7 are much smaller,

one should choose k as large as possible to obtain the greatest value of (n
k
)k.

Proposition 5. The function f(y) = (n
y
)y increases on 0 < y 6 n

e
, has a

maximum at y = n
e

and decreases on n
e

6 y.

19

Proof of Theorem 4. The upper bound is proved by the following chain of
inequalities, which uses Lemma 7, Proposition 4 and Proposition 5:

g̃(n) = max
k>1

{ lcm(π1, . . . , πk) | π1 + . . . + πk 6 n and 〈. . .〉 } =

= max
k>1

{ lcm(π1, . . . , πk) | π1+. . .+πk 6 n, lcm(π1,...,πk)
lcm(π1,...,πi−1,πi+1,...πk)

> 2, and 〈. . .〉 } =

= max
16k< 3

3√4
3
√

n

ln n−2
√

ln n

{ lcm(π1, . . . , πk) | π1 + . . . + πk 6 n and 〈. . .〉 } 6

6 max
16k< 3

3√4
3
√

n

ln n−2
√

ln n

{ π1 . . . πk | π1 + . . . + πk 6 n } 6

6 max
16k< 3

3√4
3
√

n

ln n−2
√

ln n

max
x1,...,xk∈R+
x1+...+xk6n

k∏
i=1

xi = max
16k< 3

3√4
3
√

n

ln n−2
√

ln n

(n

k

)k

6

6
(

n
3
3√4

3

√
n

ln n−2
√

ln n

) 3
3√4

3
√

n

ln n−2
√

ln n

= e
3
3√4

3
√

n

ln n−2
√

ln n
ln

(
3√4
3

n
2
3

3
√

ln n−2
√

ln n
)

<

< e
3
3√4

3
√

n

ln n−2
√

ln n
ln

(
n

2
3

3√
ln n

)
= e

3
3√4

3√n
3√

ln n

3
√

ln n

ln n−2
√

ln n

(
2
3

ln n+ 1
3

ln ln n
)

=

= e
3
3√4

3√n
3√

ln n

3

√
1+ 2

√
ln n

ln n−2
√

ln n

2
3

ln n
(
1+ ln ln n

2 ln n

)
= e

3√2 3√n(ln n)
2
3 (1+o(1)).

The second task is to establish a lower bound on g̃. The argument is
based upon the following known facts about primes. Let pi denote the ith
prime.

Proposition 6 (Bach and Shallit [1]).
∑k

i=1 pi = (1 + o(1))1
2
k2 ln k.

Proposition 7.
∏k

i=1 pi = e(1+o(1))k ln k.

Using these facts, the following lower bound on g̃(n) shall be established:

Theorem 5 (Lower bound). g̃(n) > e
3
√

2
9

3√
n ln2 n(1+o(1)).

Proof. For any k, consider the numbers kpi with i ∈ {1, . . . , k}. These
numbers satisfy the definition of g̃ with fi = i − 1 for each i. Let sk =
k

∑k
i=1 pi be the sum of these numbers. Then the value of g̃ on sk must be

at least lcm(kp1, . . . , kpk) = k
∏k

i=1 pi.

By Proposition 6, the argument of g̃ is estimated as

sk = k

k∑
i=1

pi = (1 + o(1))1
2
k3 ln k.

20

Note that

sk+1 = (1+o(1))1
2
(k+1)3 ln(k+1) = (1+o(1))1

2
k3(ln k)

(k + 1)3

k3

ln(k + 1)

ln k
=

= (1 + o(1))1
2
k3(ln k)(1 + O(k2)

k3)(1 +
ln k+1

k

ln k
) = (1 + o(1))1

2
k3 ln k.

Let f : N → R be the infinitesimal function, for which sk+1 = (1 +
f(k))1

2
k3 ln k. Fix any n and consider the greatest number k with sk 6 n.

Then
n < sk+1 = (1 + f(k))1

2
k3 ln k. (1)

Using Proposition 7 to estimate the product of the first k primes, the
value of g̃ is

k

k∏
i=1

pi = e(1+o(1))k ln k.

Using the inequality (1), the expression k ln k can be estimated by the
following function of n:

3

√
2
9

3
√

n ln
2
3 n < 3

√
2
9

3
√

1 + f(k)
1
3
√

2
k

3
√

ln k ln
2
3

(
(1 + f(k))1

2
k3 ln k

)
=

= 3

√
1
9

3
√

1 + f(k)k
3
√

ln k
[
3 ln k + ln(1 + f(k)) + ln ln k

2

] 2
3 =

= 3

√
1
9

3
√

1 + f(k)k
3
√

ln k
3
√

9(ln
2
3 k)

[
1+ ln(1+f(k))

3 ln k
+

ln ln k
2

3 ln k

] 2
3 = k ln k(1+o(1)),

which leads to the following lower bound on g̃(n):

g̃(n) > g̃(sk) >
k∏

i=1

pi = e(1+o(1))k ln k > e(1+o(1)) 3
√

2
9

3√n ln
2
3 n.

According to Theorems 4–5, the values of the function g̃ are confined
within the following bounds:

e
3
√

2
9

3√
n ln2 n(1+o(1)) < g̃(n) < e

3√2
3√

n ln2 n(1+o(1)).

Corollary 1. g̃(n) = eΘ
(

3
√

n(ln n)2
)
.

Improving this estimation is an interesting theoretical question. Perhaps

it could be proved that g̃ is of the order eC
3√

n ln2 n(1+o(1)), for some constant

C with 0.605 < 3

√
2
9

6 C 6 3
√

2 < 1.260. In anticipation of such a result, it

is worthwhile to elaborate on the constants obtained in the above proof.
The first function estimated in the proof is the least number n = n(k),

for which k cycles may be used in the definition of g̃(n). Lemma 6 gives a

21

lower bound of 4
9
(1 + o(1))k3 ln k. At the same time, the proof of Theorem 5

contains an example with the sum 1
2
(1 + o(1))k3 ln k. Possibly, the actual

function here could be represented as C ′(1 + o(1))k3 ln k for 4
9

6 C ′ 6 1
2
.

The gap between C ′ = 4
9

and C ′ = 1
2

reflects several essential simplifications
made in course of the proof, and narrowing this gap might require an entirely
different argument.

Suppose the least number n = n(k) allowing k cycles were estimated as
C ′(1 + o(1))k3 ln k. Then an accordingly revised Lemma 7 would give k <

(1 + o(1)) 3

√
3
C′

3

√
n

ln n−2
√

ln n
, which would in turn modify the upper bound on

g̃(n) given in Theorem 4 to e
3
√

8
9C′

3√
n ln2 n(1+o(1)). Provided that examples with

n = C ′(1 + o(1))k3 ln k are also constructed in Theorem 5, the lower bound

on g̃ would become e
3
√

1
9C′

3√
n ln2 n(1+o(1)). The exponents in these bounds differ

by a factor of 2, which is another measure of inefficiency of the arguments in
this section.

Returning to the UFA–DFA tradeoff, note that the tradeoff function sat-
isfies g̃(n) 6 fUFA–DFA 6 g̃(n) + n, while in the case of UFAs with a unique
initial state, g̃(n− 1) 6 fUFA1–DFA 6 g̃(n− 1) + n. Therefore, both functions
asymptotically behave as g̃:

Corollary 2. fUFA–DFA = eΘ
(

3
√

n(ln n)2
)

and fUFA1–DFA = eΘ
(

3
√

n(ln n)2
)
.

6 NFA–UFA tradeoff

An NFA can be transformed to an equivalent UFA simply by transforming
it to a DFA. It turns out that for some NFAs no better transformation is
possible:

Lemma 8. For all k > 1 and p1, . . . , pk > 2, the language

L = {ε} ∪ a

k⋃
i=1

{ε, a, a2, . . . , api−2}(api)∗ = (alcm(p1,...,pk))∗ ∪ {ε}

has an NFA with 1 +
∑k

i=1 pi states, while the smallest UFA for L needs at
least 1 + lcm(p1, . . . , pk) states.

Proof. The NFA for L is in Chrobak normal form, with the tail of length 1
and with k loops of length p1, . . . , pk.

The smallest DFA for L contains an accepting initial state and a loop of
length lcm(p1, . . . , pk), which has a non-accepting last state, with the rest of
the states being accepting. It remains to show that there does not exist any
smaller UFA recognizing this language. This can be done using the method
of Schmidt [19].

22

Let n = lcm(p1, . . . , pk) and consider the strings ui = vi = ai−1 for
1 6 i 6 n + 1. The corresponding (n + 1)× (n + 1) matrix M is defined by
Mi,j = 0 for i + j = n + 2 and for i = j = n + 1, and Mi,j = 1 for the rest of
the entries. Then its determinant can be calculated by first subtracting the
first row from the rest of the rows, and then by adding each row to the first
row:

det M =

∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1 1 0
1 1 1 . . . 1 0 1
1 1 1 . . . 0 1 1
...

...
... . .

. ...
...

...
1 1 0 . . . 1 1 1
1 0 1 . . . 1 1 1
0 1 1 . . . 1 1 0

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣

1 1 1 . . . 1 1 0
0 0 0 . . . 0 −1 1
0 0 0 . . . −1 0 1
...

...
... . .

. ...
...

...
0 0 −1 . . . 0 0 1
0 −1 0 . . . 0 0 1
−1 0 0 . . . 0 0 0

∣∣∣∣∣∣∣∣∣∣

=

=

∣∣∣∣∣∣∣∣∣∣

0 0 0 . . . 0 0 n− 1
0 0 0 . . . 0 −1 1
0 0 0 . . . −1 0 1
...

...
... . .

. ...
...

...
0 0 −1 . . . 0 0 1
0 −1 0 . . . 0 0 1
−1 0 0 . . . 0 0 0

∣∣∣∣∣∣∣∣∣∣

= (−1)n · (n− 1).

Since the determinant is nonzero, the matrix has full rank n+1, and accord-
ingly, by Schmidt’s Theorem, every UFA for this language must have at least
n + 1 states.

Thus g(n− 1) + 1 is a lower bound on the NFA to UFA transformation.
An asymptotically matching upper bound of g(n − 1) + O(n2) is given by
Chrobak’s [3, Thm. 4.4] construction, which begins by converting an n-state
NFA to the Chrobak normal form with a tail of length O(n2) and with at
most n−1 states in the cycles, and then proceeds by determinizing the cycles,
making at most g(n− 1) states.

Theorem 6. For every n > 1, the number of states in a UFA sufficient
and, in the worst case, necessary to represent languages recognized by n-state
NFAs is g(n− 1) + O(n2) = e

√
n ln n(1+o(1)).

7 Complementing unary UFAs

The first operation is complementation: with respect to DFAs, it has state
complexity n, since in order to represent the complement of a language recog-
nized by a DFA, it is sufficient to complement its set of accepting states. For
unary NFAs, Holzer and Kutrib [5] have shown that complementation may
require a blowup of up to g(n) states: that is, complementing some unary
NFAs basically requires determinizing them.

The situation with UFAs is quite nontrivial. On one hand, for a substan-
tial class of UFAs, the complement can be constructed by changing the set
of accepting states, like in the case of DFAs. On the other hand, it will be
proved that complementing some UFAs requires additional states.

23

The following subclass of UFAs allows efficient complementation:

Lemma 9. Let A = (Σ, Q, q0, δ, F) be a unary UFA in Chrobak normal form
recognizing an infinite language, and assume that there exists a number p
that divides the length of every cycle, such that for every two accepting states
ri,f , rj,f ′ ∈ F with i 6= j, it holds that f 6= f ′ (mod p). Then there exists
and can be effectively constructed a set F ′, such that A′ = (Σ, Q, q0, δ, F

′) is
a UFA recognizing L(A).

Proof. Under these assumptions, the set {0, . . . , p − 1} is partitioned into
disjoint sets S1, . . . , Sk, such that a state ri,f may be accepting only if the
number f modulo p is in Si. That is, a string a`+n may be accepted only in
the (uniquely determined) i-th cycle with (n mod p) ∈ Si.

Then the new set of accepting states is defined as follows:

F ′ = { qi | qi /∈ F } ∪ { ri,f | (f mod p) ∈ Si, ri,f /∈ F }.

The conditions of Theorem 2 are still met for the new automaton, that is, it
remains a UFA.

Consider a string a`+n, let i be the number n taken modulo p and let f be
n taken modulo pi. Then a`+n is accepted by the original automaton if and
only if ri,f ∈ F . At the same time, by construction, this string is accepted
by the new automaton if and only if ri,f /∈ F .

In particular, this lemma is applicable to all UFAs with k = 2 cycles, such
as the one in Figure 1. But for k > 3 the lengths of the cycles need not have
a common divisor, which gives examples of UFAs not covered by the above
lemma. Sometimes the lengths of the cycles may have a common divisor, yet
the separation of offsets required by Theorem 2 would not be possible. The
following example illustrates the latter case.

Example 1. Let k = 3 and consider cycle lengths p1 = 8, p2 = 10 and
p3 = 12, where gcd(8, 10) = 2, gcd(8, 12) = 4 and gcd(10, 12) = 2. Then the
numbers f1 = 7, f2 = 8 and f3 = 9 satisfy the condition in Theorem 2, as
7 6= 8 (mod 2), 7 6= 9 (mod 4) and 8 6= 9 (mod 2). This leads to a UFA with
1+8+10+12 = 31 states recognizing the language a8(a8)∗∪a9(a10)∗∪a10(a12)∗.

However, gcd(8, 10, 12) = 2 and 7 = 9 (mod 2), and thus Lemma 9 is not
applicable to this UFA, and would not be applicable for any choice of offsets
f1, f2, f3.

The next lemma considers the case of three cycles whose lengths have no
common divisor. It turns out that representing the complement of such a
language requires a UFA with a greater number of states.

24

Lemma 10. Let p1, p2, p3 be any three pairwise distinct primes. Then the
language L = L1 ∪ L2 ∪ L3, where

L1 = a{ap1 , a2p1 , . . . , a(p2−1)p1}(ap1p2)∗,

L2 = a{ap2 , a2p2 , . . . , a(p3−1)p2}(ap2p3)∗ and

L3 = a{ap3 , a2p3 , . . . , a(p1−1)p3}(ap1p3)∗,

has a UFA with p1p2 +p2p3 +p1p3 +1 states, while every NFA for L contains
at least p1p2p3 states.

Proof. The construction of the UFA for L is straightforward. It has a tail of
length 1 and three cycles of length p1p2, p2p3 and p1p3, with accepting states
r1,`1p1 for `1 ∈ {1, . . . , p2 − 1}, r2,`2p2 for `2 ∈ {1, . . . , p3 − 1} and r3,`3p3 for
`3 ∈ {1, . . . , p1 − 1}. To see that the condition of Theorem 2 is satisfied,
consider the offsets of accepting states in the cycles modulo p1, p2 and p3:

(mod p1) (mod p2) (mod p3)
{ap1 , a2p1 , . . . , a(p2−1)p1} (mod p1p2) 0 {1, . . . , p2 − 1} . . .

{ap2 , a2p2 , . . . , a(p3−1)p2} (mod p2p3) . . . 0 {1, . . . , p3 − 1}
{ap3 , a2p3 , . . . , a(p1−1)p3} (mod p1p3) {1, . . . , p1 − 1} . . . 0

Now the offsets of accepting states in the first and the second cycles are
different modulo p2 = gcd(p1p2, p2p3), etc.

In order to show that no UFA for L can have fewer than p1p2p3 states, it
is sufficient to establish the following statement:

Claim 3. Every infinite regular subset of L has period divisible by p1p2p3.

Let p be the period of this subset. By the symmetry, it is sufficient to
prove that p is a multiple of p1. In order to obtain a contradiction, suppose
that p 6= 0 (mod p1). Let a1+n be any string in the periodic part of this
subset, and consider the number n modulo p1:

• If n = 0 (mod p1), then n = 0 (mod p2) (otherwise, if n 6= 0 (mod p2),
the string a1+n would be in L1), and n = 0 (mod p3) as well (otherwise
a1+n ∈ L2). Since a1+n is accepted in a cycle of length p, the string
a1+n+pp3 is accepted as well. This string satisfies n+ pp3 = 0 (mod p3),
but at the same time n+pp3 6= 0 (mod p1), and therefore a1+n+pp3 ∈ L3,
which is a contradiction.

• If n 6= 0 (mod p1), then n 6= 0 (mod p3) (otherwise a1+n ∈ L3) and
n 6= 0 (mod p2) (otherwise a1+n ∈ L2). Let i be p taken modulo
p1 (i 6= 0 by assumption), and consider the string a1+n+(p1−i)pp2 , which
should be accepted in the same cycle as a1+n. However, n+(p1−i)pp2 6=
0 (mod p2) and n + (p1 − i)pp2 = i + (p1 − i) = 0 (mod p1), and
accordingly a1+n+(p1−i)pp2 ∈ L1. The contradiction obtained completes
the proof of the claim.

25

Now every NFA recognizing L should have a tail and one or more cycles,
and the combination of tail and each of these cycles is a DFA recognizing
some subset of L. Therefore, the length of each cycle of this NFA must be a
multiple of p1p2p3, which proves the lemma.

In particular, applying this lemma for p1 = 3, p2 = 5 and p3 = 7 gives
a language recognized by a UFA with 72 = 15 + 35 + 21 + 1 states, while
its complement requires a UFA with at least 105 = 3 · 5 · 7 states. Witness
languages of this form lead to the following fairly modest lower bound.

Theorem 7. The state complexity of complementation for UFAs over a
unary alphabet is at least 1

42
n
√

n (for all n > 867) and at most fUFA–DFA(n).

Proof. The upper bound is immediate, since every UFA can be determinized
and then complemented.

The proof of the lower bound relies on a result of Ramanujan [18] that
for every m > 17 there are at least three primes between m

2
and m. Let n

be any number greater than 3 · 172 = 867. Then there exist three primes
p1, p2, p3 with √

n
12

< p1 < p2 < p3 6
√

n
3
.

By Lemma 10, there is a language L recognized by a UFA with

p1p2 + p2p3 + p1p3 + 1 6 3
√

n
3

(√
n
3
− 2

)
+ 1 = n− 6

√
n
3

+ 1 6 n

states, while every UFA for L needs to have at least

p1p2p3 >
(√

n
12

)3

=
(

1
12

)3
2n
√

n > 1
42

n
√

n

states, which proves the lower bound.

Better lower bounds can be obtained from the following generalization of
Lemma 10 to any number of prime divisors:

Lemma 11. Let k > 1 and let p1, . . . , p2k+1 be any pairwise distinct primes.
Then the language L =

⋃2k+1
i=1 Li, where

Li = { a1+n | n 6= 0 (mod pi), n = 0 (mod pi+1 . . . pi+k) }

(with all arithmetic in subscripts done modulo 2k + 1), has a UFA with
1 +

⋃2k+1
i=1 pipi+1 . . . pi+k states, while every NFA for L contains at least

p1 . . . p2k+1 states.

Proof. A UFA for L has a tail of length 1 and 2k + 1 cycles, with each ith
cycle of length p̂i = pipi+1 . . . pi+k, containing accepting states ri,`pi+1...pi+k

for
` ∈ {1, . . . , pi − 1}.

26

To see that the condition of Theorem 2 is satisfied, consider any ith
and any jth cycles with i 6= j. Since the difference of i and j modulo
2k + 1 is at most k, either the number pi is in {pj+1, . . . , pj+k}, or pj be-
longs to {pi+1, . . . , pi+k}. Assume, without loss of generality, that the for-
mer is the case. Then pi is a common divisor of p̂i and p̂j, and for every
two accepting states ri,`pi+1...pi+k

and rj,`′pj+1...pj+k
the number `pi+1 . . . pi+k

is nonzero modulo pi, while `′pj+1 . . . pj+k is divisible by pi. Therefore,
`pi+1 . . . pi+k 6= `′pj+1 . . . pj+k (mod gcd(p̂i, p̂j)).

A lower bound on the size of any NFA recognizing L is based upon the
following property:

Claim 4. Every infinite periodic subset of L containing any string a1+n with
n = 0 (mod p1 . . . p2k+1) has period divisible by p1 . . . p2k+1.

Indeed, if p is the period of such a subset and it is not divisible by some
pi, for any i ∈ {1, . . . , 2k + 1}, then the string w = a1+n+p(p1...pi−1pi+1...p2k+1)

belongs to this subset as well. Since n + p(p1 . . . pi−1pi+1 . . . p2k+1) = n =
0 (mod pj) for every j 6= i, but n + p(p1 . . . pi−1pi+1 . . . p2k+1) 6= 0 (mod pi),
the string w belongs to Li, which is a contradiction.

Now consider that an NFA for the language L should accept all strings in
a(ap1...p2k+1)∗, and all but finitely many of them are accepted in the periodic
part. Then, by the above claim, the period of the periodic part must be a
multiple of p1 . . . p2k+1.

Lemma 12. Let k > 1. Then the number of states in an NFA necessary
to represent complements of n-state UFAs over a unary alphabet is at least

1
22k+1(2k+1)2

· n2− 1
k+1 for all n > (2k + 1)(4(2k + 1) ln 4(2k + 1))k+1.

Proof. Let ri denote ith Ramanujan prime, that is, the smallest integer, such
that for every m > ri there are at least i primes between m

2
and m. The

existence of such a number for every i was proved by Ramanujan [18], and
the first values are r1 = 2, r2 = 11, r3 = 17, r4 = 29, r5 = 41, r6 = 47,
r7 = 59.

Let n be any number greater than (2k + 1) · (r2k+1)
k+1 (k = 1, 2, 3, . . .

this means that n > 867, 344605, 84821527, . . .) Then there exist 2k + 1
primes p1, . . . , p2k+1 with

1
2

k+1

√
n

2k+1
< p1 < . . . < p2k+1 6 k+1

√
n

2k+1
.

By Lemma 10, there is a language L recognized by a UFA with

1 +
2k+1∑
i=1

pipi+1 . . . pi+k 6 (2k + 1) k+1

√
n

2k+1

((
n

2k+1

) k
k+1 − 2

)
+ 1 =

= n− 2(2k + 1) k+1

√
n

2k+1
+ 1 6 n

27

states, while every UFA for L needs to have at least

p1 . . . p2k+1 >
(

1
2

k+1

√
n

2k+1

)2k+1

=
1

22k+1(2k + 1)
2k+1
k+1

· n
2k+1
k+1 >

> 1

22k+1(2k + 1)2
· n2− 1

k+1

states, which proves the lower bound.
It remains to estimate the least n to which the above argument ap-

plies. The following bounds on Ramanujan primes were recently obtained
by Sondow [20]: 2i ln 2i < ri < 4i ln 4i. Then (2k + 1) · (r2k+1)

k+1 <
(2k + 1)(4(2k + 1) ln 4(2k + 1))k+1.

Theorem 8. The state complexity of complementation for UFAs over a
unary alphabet is at least n2−o(1) and at most fUFA–DFA(n).

Proof. According to Lemma 12, the function f(n) defined by

f(n) = max
k: n>n0(k)

1

22k+1(2k + 1)2
· n2− 1

k+1 = max
k: n>n0(k)

n2− 1
k+1

−logn(22k+1(2k+1)2),

where n0(k) = d(2k + 1)(4(2k + 1) ln 4(2k + 1))k+1e, is a lower bound on the
state complexity of complementation. Define a new function h(n), so that
f(n) = n2−h(n). The goal is to prove that limn→∞ h(n) = 0.

Fix an arbitrary real number ε > 0 and set k = b1
ε
c, so that 1

k+1
< ε.

Let n̂ = max(n0(k), n1(k)), where n1(k) = (22k+1(2k + 1)2)
1

ε− 1
k+1 . Then, for

every n > n̂, since n > n0(k),

f(n) > n2− 1
k+1

−logn(22k+1(2k+1)2).

At the same time, n > n1(k) implies that nε− 1
k+1 > 22k+1(2k+1)2, and hence

ε− 1
k+1

> logn(22k+1(2k + 1)2). Accordingly,

f(n) > n2−ε+(ε− 1
k+1

)−logn(22k+1(2k+1)2) > n2−ε,

and therefore h(n) 6 ε.

8 State complexity of intersection and star

Now consider the operation of intersection, which has state complexity mn
both for DFAs [13, 22] and for NFAs [5], and both over unary and larger
alphabets. It maintains the same complexity for UFAs:

Lemma 13. For every alphabet Σ and for all m,n > 1, the intersection of
any two UFAs over Σ with m and n states is recognized by a UFAs with mn
states.

28

The proof is by the standard direct product construction, which always
produces a UFA for UFA arguments.

A matching lower bound for select values of m,n is already known:

Proposition 8 (Holzer, Kutrib [5]). For all relatively prime m,n > 2, the
language (amn)∗ = (am)∗ ∩ (an)∗ requires an NFA with at least mn states.

Theorem 9. The state complexity of intersection for UFAs over a unary
alphabet is at most mn. This bound is reachable for all relatively prime m,n.

The last operation to be considered is the Kleene star : its state complex-
ity for unary DFAs is (n−1)2 +1, obtained by Yu, Zhuang and Salomaa [22,
Thm. 5.3]. An identical result holds for UFAs, in spite of the differences
between the two models.

Lemma 14 (Yu, Zhuang and Salomaa [22]). For every language L ⊆ a∗

recognized by an n-state unary NFA in Chrobak normal form, there exists a
DFA for L∗ with (n− 1)2 + 1 states.

Strictly speaking, Yu, Zhuang and Salomaa [22] established this result
for L represented by a DFA, but their argument can be entirely replicated
to prove Lemma 14 as stated.

As in the case of DFAs, lower bounds on the star of UFAs use witness
languages with a co-finite star. It turns out that for co-finite unary languages,
UFAs are no more succinct as DFAs.

Lemma 15. Let L ⊆ a∗ be a co-finite language, let am be the longest string
not in L. Then the smallest NFA in Chrobak normal form for L contains
m + 2 states and coincides with the smallest DFA for L.

Proof. The construction of an (m + 2)-state DFA is obvious.

Let A = ({a}, Q, q0, δ, F) be any NFA in Chrobak normal form recogniz-
ing L. Let it have a tail of length ` and k > 1 cycles of length p1, . . . , pk. It
is claimed that every string of length ` or more is accepted by A.

Let n > ` and consider the string a`+m·lcm(p1,...,pk), which is longer than
am and hence is in L. Let this string be accepted in an ith cycle, that is, in
state ri,n−`+m·lcm(p1,...,pk), where the arithmetic is modulo pi. Since this is the
same state as ri,n−`, the string an is accepted in that state as well.

As the string am should not be accepted by A, m should be at most `−1.
Therefore, the tail of A contains at least m+1 states, while the loops consist
of at least one state, which proves the lower bound of m + 2.

Theorem 10. For every n > 1, star of an n-state UFA is representable by a
UFA with (n− 1)2 + 1 states, and this number of states is in the worst case
necessary.

29

Proof. The upper bound is given in Lemma 14.
For the lower bound, consider the language L = an−1(an)∗. As noted by

Yu, Zhuang and Salomaa [22], its star L∗ is co-finite, and the longest string
not belonging to it is a(n−2)n. Then, by Lemma 15, every UFA for L∗ requires
at least (n− 2)n + 2 = (n− 1)2 + 1 states.

9 Conclusion

The refinement of Chrobak normal form for the unambiguous case has proved
to be a useful tool for studying unary UFAs. The main result is that the trans-
formation of unary UFAs to DFAs leads to an exponential blowup, which is,
however, smaller than the unary NFA to DFA blowup. The new variant of
Landau’s function, which characterizes the UFA to DFA blowup, deserves a
further study: it remains to understand the form of cycle lengths, on which
the maximum least common multiple is achieved. It would also be interest-

ing to obtain a more precise asymptotic estimation than the given eΘ(
3√

n ln2 n),

perhaps an estimation of the form eC
3√

n ln2 n(1+o(1)). Another question of in-
terest is to determine an efficient method of computing the values of g̃.

The complexity of operations on UFAs, in particular the complexity of
complementing them, is left as the main open problem. It is unlikely that
complementation could be done using as few as n2 states. Most probably
the complexity is exponential, yet perhaps not of the order of fUFA-DFA(n).
However, proving such stronger lower bounds requires a deeper analysis than
in Lemma 10.

Acknowledgements

I am indebted to Oksana Yakimova for kindly explaining me what to do with
the integral

∫ k

1

√
x ln x dx. I am grateful to Galina Jirásková and to Hermann

Gruber for their helpful comments on the manuscript. Research supported
by the Academy of Finland under grant 134860.

References

[1] E. Bach, J. Shallit, Algorithmic Number Theory, Vol. 1: Efficient Algo-
rithms, MIT Press, 1996.

[2] H. Björklund, W. Martens, “The tractability frontier for NFA minimiza-
tion”, Automata, Languages and Programming (ICALP 2008, Reyk-
jav́ık, Iceland, July 6–13, 2008), part II, LNCS 5126, 27–38.

[3] M. Chrobak, “Finite automata and unary languages”, Theoretical Com-
puter Science, 47 (1986), 149–158; errata: 302:1–3 (2003), 497–498.

30

http://dx.doi.org/10.1007/978-3-540-70583-3_3
http://dx.doi.org/10.1007/978-3-540-70583-3_3
http://dx.doi.org/10.1016/0304-3975(86)90142-8
http://dx.doi.org/10.1016/S0304-3975(03)00136-1

[4] V. Geffert, C. Mereghetti, G. Pighizzini, “Complementing two-way finite
automata”, Information and Computation, 205:8 (2007), 1173–1187.

[5] M. Holzer, M. Kutrib, “Nondeterministic descriptional complexity of
regular languages”, International Journal of Foundations of Computer
Science, 14 (2003), 1087–1102.

[6] J. Hromkovič, S. Seibert, J. Karhumäki, H. Klauck, G. Schnitger, “Com-
munication complexity method for measuring nondeterminism in finite
automata”, Information and Computation, 172:2 (2002), 202–217.

[7] A. W. Ingleton, “The rank of circulant matrices”, Journal of the London
Mathematical Society, 31 (1956), 445–460.

[8] E. Landau, “Über die Maximalordnung der Permutationen gegebenen
Grades” (On the maximal order of permutations of a given degree),
Archiv der Mathematik und Physik, Ser. 3, 5 (1903), 92–103.

[9] H. Leung, “Separating exponentially ambiguous finite automata from
polynomially ambiguous finite automata”, SIAM Journal on Computing,
27:4 (1998), 1073–1082.

[10] H. Leung, “Descriptional complexity of NFA of different ambiguity”,
International Journal of Foundations of Computer Science, 16:5 (2005),
975–984.

[11] Yu. Lyubich, “Bounds for the optimal determinization of nondetermin-
istic autonomic automata”, Sibirskii Matematicheskii Zhurnal, 2 (1964),
337–355, in Russian.

[12] R. Mandl, “Precise bounds associated with the subset construction on
various classes of nondeterministic finite automata”, 7th Princeton Con-
ference on Information and System Sciences, 1973, 263–267.

[13] A. N. Maslov, “Estimates of the number of states of finite automata”,
Soviet Mathematics Doklady, 11 (1970), 1373–1375.

[14] F. Mera, G. Pighizzini, “Complementing unary nondeterministic au-
tomata”, Theoretical Computer Science, 330:2 (2005), 349–360.

[15] C. Mereghetti, G. Pighizzini, “Optimal simulations between unary au-
tomata”, SIAM Journal on Computing, 30:6 (2001), 1976–1992.

[16] W. Miller, “The maximum order of an element of a finite symmetric
group”, American Mathematical Monthly, 94:6 (1987), 497–506.

[17] G. Pighizzini, J. Shallit, “Unary language operations, state complex-
ity and Jacobsthal’s function”, International Journal of Foundations of
Computer Science, 13:1 (2002), 145–159.

31

http://dx.doi.org/10.1016/j.ic.2007.01.008
http://dx.doi.org/10.1016/j.ic.2007.01.008
http://dx.doi.org/10.1142/S0129054103002199
http://dx.doi.org/10.1142/S0129054103002199
http://dx.doi.org/10.1006/inco.2001.3069
http://dx.doi.org/10.1006/inco.2001.3069
http://dx.doi.org/10.1006/inco.2001.3069
http://dx.doi.org/10.1112/jlms/s1-31.4.445
http://dx.doi.org/10.1142/S0129054105003418
http://dx.doi.org/10.1016/j.tcs.2004.04.015
http://dx.doi.org/10.1016/j.tcs.2004.04.015
http://dx.doi.org/10.1137/S009753979935431X
http://dx.doi.org/10.1137/S009753979935431X
http://dx.doi.org/10.2307/2322839
http://dx.doi.org/10.2307/2322839
http://dx.doi.org/10.1142/S012905410200100X
http://dx.doi.org/10.1142/S012905410200100X

[18] S. Ramanujan, “A proof of Bertrand’s postulate”, Journal of the Indian
Mathematical Society, 11 (1919), 181–182.

[19] E. M. Schmidt, Succinctness of Description of Context-Free, Regular
and Unambiguous Languages, Ph. D. thesis, Cornell University, 1978.

[20] J. Sondow, “Ramanujan primes and Bertrand’s postulate”, American
Mathematical Monthly, 116 (2009), 630–635.

[21] R. E. Stearns, H. B. Hunt III, “On the equivalence and containment
problems for unambiguous regular expressions, regular grammars and
finite automata”, SIAM Journal on Computing, 14 (1985), 598–611.

[22] S. Yu, Q. Zhuang, K. Salomaa, “The state complexity of some basic
operations on regular languages”, Theoretical Computer Science, 125
(1994), 315–328.

32

http://dx.doi.org/10.1137/0214044
http://dx.doi.org/10.1137/0214044
http://dx.doi.org/10.1137/0214044
http://dx.doi.org/10.1016/0304-3975(92)00011-F
http://dx.doi.org/10.1016/0304-3975(92)00011-F

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978-952-12-2328-0
ISSN 1239-1891

	Introduction
	Simplifying unary automata
	Chrobak normal form of unambiguous automata
	UFA--DFA tradeoff
	Estimations of g"0365g
	NFA--UFA tradeoff
	Complementing unary UFAs
	State complexity of intersection and star
	Conclusion

