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Abstract

It is shown that the recently discovered computational universality in systems
of equations over sets of numbers occurs already in systems of the simplest
form, with one unknown X and two equations X +X +C = X +X +D and
X + E = F , where C, D, E, F ⊆ N are four ultimately periodic constants
and + denotes the operation of elementwise addition of sets, S+T = {m+n |
m ∈ S, n ∈ T}.

Keywords: Language equations, equations over sets of numbers, computa-
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1 Introduction

Equations over sets of natural numbers are a particular case of language
equations [9], with an alphabet consisting of a single letter. Until recently,
nothing was known about these equations beyond the fact that they are
nontrivial: this was demonstrated by Leiss [11], who constructed an equation
with a non-periodic solution.

Recently Jeż [2] has introduced a new method of constructing systems of
equations of the form





X1 = ϕ1(X1, . . . , Xn)
...

Xn = ϕn(X1, . . . , Xn)

where Xi are unknown sets of numbers and the right-hand sides ϕi may con-
tain the following operations: union, intersection, addition of sets defined
as S + T = {m + n | m ∈ S, n ∈ T}, and singleton constant sets. These
equations correspond to conjunctive grammars [12] over a one-letter alpha-
bet. The method of Jeż [2] was further explored by Jeż and Okhotin [3, 4],
who have subsequently used it [5] to establish computational completeness
of equations over sets of numbers of a more general form





ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

where both left-hand and right-hand sides may use union, addition and sin-
gleton constants. To be precise, it was proved that a set of numbers is
represented by a unique (least, greatest) solution of such a system if and
only if it is recursive (r.e., co-r.e., respectively).

The next result due by Jeż and Okhotin [6] was a simulation of a system
with union and addition by a system using addition only, such that every
solution Xi = Si of the original system is represented by a solution Xi =
S ′i = σ(Si) of the new system, with 16n + 13 ∈ S ′i if and only if n ∈ Si.
This, in particular, leads to a representation of a set σ(S) by unique (least,
greatest) solutions of systems , for every recursive (r.e., co-r.e., respectively)
set S. On the other hand, it was proved by Lehtinen and Okhotin [10] that
some quite simple sets cannot be specified by equations using only addition
without any encoding, and therefore equations with addition only are slightly
less powerful that equations with union and addition.

This paper continues to explore simple cases of equations over sets of num-
bers by demonstrating computational universality of systems of two equations
of the form {

X + X + C = X + X + D
X + E = F
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where X is the unique unknown and C, D, E and F are ultimately periodic
constant sets. The final result is stated as follows: for every recursive (r.e.,
co-r.e.) set S there is a system of two equations of the above form with a
unique (least, greatest, respectively) solution S ′, satisfying np+ t ∈ S ′ if and
only if n ∈ Si, for some constants p > 1 and t > 0. At the same time, some
limitations of the expressive power of univariate equations are exposed, and
thus these systems are again a little less powerful than systems with multiple
variables.

2 Existing construction

Let N = {0, 1, 2, . . .} be the set of natural numbers including 0, and let
S, T ⊆ N be its subsets. The sum of these sets is the set S+T = {m+n |m ∈
S, n ∈ T}.

Define a partial order of componentwise inclusion on vectors of sets of
numbers by (S1, . . . , Sn) v (S ′1, . . . , S

′
n) if Si ⊆ S ′i for all i. For systems with

multiple solutions, there is sometimes the least or the greatest solution with
respect to this order.

Equations over sets of numbers using two operations, union and addition,
have recently been proved computationally complete.

Theorem 1 (Jeż, Okhotin [5]). For every recursive (r.e., co-r.e.) set S ⊆ N
there exists a system of equations





ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

with ϕj, ψj using singleton constants and the operations of union and addi-
tion, which has a unique (least, greatest, respectively) solution with X1 = S.

As a matching upper bound, unique (least, greatest) solutions of equa-
tions over sets of numbers with any Boolean operations and addition are
known to be recursive (r.e., co-r.e., respectively), so this result precisely char-
acterizes the families of sets representable by solutions of such equations.

For systems of equations over sets of numbers with addition as the only
operation, a computational universality result was recently established by
Jeż and Okhotin [5]. The idea was to take any recursive (r.e., co-r.e.) set S
and consider its encoding : another set S ′ with 16n + 13 ∈ S ′ if and only if
n ∈ S. Then it was proved that any system as in Theorem 1 (that is, with
the operations of union and addition) can be simulated by another system
using addition only, which manipulates such encodings of sets instead of the
sets in their original form.
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This encoding of sets requires the following notation: for each S ⊆ N,
p > 1 and i ∈ {0, 1, . . . , p− 1}, define

τ p
i (S) = {pn + i | n ∈ S}.

A set of this form will be called a track, and it will be said that the set S is
encoded on the i-th track. Tracks of the form τ p

i (N) are called full tracks, and
whenever a set S ′ has S ′ ∩ τ p

i (N) = ∅, it will be said that S ′ has an empty
i-th track.

Now, setting p = 16, the encoding of a set is defined as follows:

Definition 1 (Jeż, Okhotin [6]). For every set S ⊆ N, its encoding is the
set

σ(S) = {0} ∪ τ 16
6 (N) ∪ τ 16

8 (N) ∪ τ 16
9 (N) ∪ τ 16

12 (N) ∪ τ 16
13 (S).

Theorem 2 (Jeż, Okhotin [6]). For every recursive (r.e., co-r.e.) set S ⊆ N0

there exists a system of equations




ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

with ϕj, ψj using the operation of addition and ultimately periodic constants,
which has a unique (least, greatest, respectively) solution with Xi = σ(Si) for
some Si ⊆ N, of which S1 = S.

Given a Turing machine recognizing S (the complement of S in the case
of a greatest solution), such a system can be effectively constructed.

Though every set can be represented in an encoded form, not all sets can
be represented as they are. A class of non-representable sets has been found.
These are sets satisfying the following two conditions. First, they must be
prime in the sense of having no nontrivial representation as a sum of two
sets:

Definition 2. A set S ⊆ N is prime if S = S1 + S2 implies S1 = {0} or
S2 = {0}.

Second, they are fragile, which means that the sum of this set with any
set containing at least two elements is co-finite.

Definition 3. A set S ⊆ N is fragile if S + {n1, n2} is co-finite for all
n1, n2 ∈ N with n1 6= n2.

This definition is equivalent to the statement that for every k > 1 there
are only finitely many numbers n ∈ N with n, n + k /∈ S.

Theorem 3 (Lehtinen, Okhotin [10]). No set that is prime and fragile is
representable by systems of equation over natural numbers with operation of
addition and ultimately periodic constants.

There exist computationally easy sets that are prime and fragile.
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3 Encoding into one variable

In this section a system of equations over multiple variables is simulated by a
system with only one variable. The constructed system will then be further
simulated by a system with one variable and only two equations.

Assume that the simulated system has m variables X1, X2, . . . , Xm. The
equations with constants are Xi = Ei for i = 1, 2, . . . , c, where Ei is an ulti-
mately periodic constant containing zero. The rest of the equations contain
only variables and are of the form Xk + X` = Xk′ + X`′ . The system will be
simulated in such a way that solutions Xi = Si for i = 1, . . . , m of the orig-
inal system are encoded into tracks of solutions of the new equation. Only
solutions that have zero in all the sets Si are considered, other solutions are
not represented in the new system.

The sets S1, . . . , Sm are encoded with p = 2m+2 tracks so that the set Sj

will be on the track dj = 3p
8

+ 2j−1 − 1. The encoding is given by:

π(S1, . . . , Sm) =

p
4
−1⋃

i=0

τ p
i (N) ∪

m⋃
j=1

τ p
dj

(Sj). (1)

The idea of the encoding is that in the sum π(S1, . . . , Sm) + π(S1, . . . , Sm)
the encoding of the sum Sk + S` is on track dk + d`. Note that the numbers
dk + d` are pairwise different (cf. the encoding for conjunctive grammars due
to Jeż and Okhotin [4]).

The simulation represents three different conditions. One equation guar-
antees that all solutions of the new system are valid π-encodings of some
m sets: this equation is formulated in Lemma 1. All equations Xi = Ei

are verified by a single equation given in Lemma 2. And for every equation
Xk + X` = Xk′ + X`′ there is a corresponding equation stated in Lemma 3.

The following Lemma formalizes an equation that has only correct π-
encodings as a solution.

Lemma 1. A set S ⊆ N is of the form S = π(S1, . . . , Sm) for some
S1, . . . , Sm ⊆ N with 0 ∈ Si for all i if and only if it satisfies the equation

X + (τ p
0 (N) ∪ {3p

4
}) =

⋃ p
4
−1

i=0 τ p
i (N) ∪⋃m

j=1 τ p
dj

(N) ∪⋃p−1

k= 3p
4

τ p
k (N)

Proof. Let 0 ∈ Si ⊆ N and S = π(S1, . . . , Sm). Then

S + τ p
0 (N) =

p
4
−1⋃

i=0

τ p
i (N) ∪

m⋃
j=1

τ p
dj

(N)

and

S + {3p
4
} =

⋃p−1

k= 3p
4

τ p
k (N) ∪⋃m

j=1 τ p
dj− p

4
(Sj + {1}).
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The union of these sets gives the right-hand side of the equation and thus S
is a solution.

Conversely, let X = S be a solution of the equation. All tracks that are
empty in the right-hand side are empty in S. To see that tracks 3p

4
, 3p

4
+ 1,

. . . , p−1 are empty in S, suppose that there is n ∈ S with n ≡ 3p
4

+ i mod p

for some i ∈ {0, . . . , p
4
− 1}; but then the number n + 3p

4
cannot be in the

right-hand side, because it belongs to track p
2

+ i that is empty in the right-

hand side, which is a contradiction. Since these tracks 3p
4
, 3p

4
+ 1, . . . , p − 1

are full on the right-hand side, they can only be obtained by shifting full
tracks in S by 3p

4
; that is, tracks 0, 1, . . . , p

4
− 1 are full in S. It remains to

show that each data track dj, for j = 1, 2, . . . , m, contains the encoding of 0,
that is, the number dj. Since the right-hand side contains a full track dj and
dj − 3p

4
< 0, this number can be obtained only by having dj ∈ S. It follows

that S = π(S1, . . . , Sm), for some S1, . . . , Sm ⊆ N.

The constant equations of the original system are checked by the following
equation:

Lemma 2. The sets 0 ∈ Si ⊆ N for i = 1, . . . , c satisfy the equations X` = E`

for ` = 1, . . . , c if and only if π(S1, . . . , Sm) satisfies the equation

X + (τ p
0 (N) ∪ {p− 1− dc}) =

=

p
4
−1⋃

i=0

τ p
i (N) ∪

m⋃
j=1

τ p
dj

(N) ∪
p−1−dc+

p
4
−1⋃

k=p−1−dc

τ p
k (N) ∪

c⋃

l=1

τ p
p−1−dc+d`

(E`) (2)

Proof. The sum with τ p
0 (N) gives:

π(S1, . . . , Sm) + τ p
0 (N) =

p
4
−1⋃

i=0

τ p
i (N) ∪

m⋃
j=1

τ p
dj

(N).

When summed to {p − 1 − dc} the tracks are just moved, the full tracks to
tracks p− 1− dc, . . . , p− 1− dc + p

4
− 1:

p
4
−1⋃

i=0

τ p
i (N) + {p− 1− dc} =

p−1−dc+
p
4
−1⋃

k=p−1−dc

τ p
k (N).

And the sums τ p
dj

(Sj) + {p − 1 − dc}) yield τ p
p−1−dc+dj

(Sj) for j = 1, . . . , c,

which are reflected in the right-hand side of (2), while τ p
dc+dj−1(Sj + {1}) ⊆

⋃ p
4
−1

i=0 τ p
i (N) for j = (c + 1), . . . , m is overwritten by

⋃ p
4
−1

i=0 τ p
i (N).

Lemma 3. The sets S1, . . . , Sm ⊆ N satisfy the equation Xk +X` = Xk′+X`′

if and only if π(S1, . . . , Sm) satisfies the equation

X + X + {0, p
4
, p− 1− dk − d`} = X + X + {0, p

4
, p− 1− dk′ − d`′}
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Proof. The sum Sk + S` will be on the track dk + d` = 3p
4

+ 2k−1 + 2`−1 − 2
of π(S1, . . . , Sm) + π(S1, . . . , Sm):

π(S1, . . . , Sm) + π(S1, . . . , Sm) =

3p
4
−2⋃

i=0

τ p
i (N) ∪

⋃

k6`

τdk+d`
(Sk + S`).

By adding the constant {0, p
4
, p − 1 − dk − d`} to π(S1, . . . , Sm) +

π(S1, . . . , Sm) the sum Sk + S` ends up to track p− 1, while all other tracks
are full:

π(S1, . . . , Sm)+π(S1, . . . , Sm)+{p
4
, p−1−dk−d`} =

⋃p−2
i=0 τ p

i (N)∪τp−1(Sk+S`)

The claim of the lemma is a direct consequence of this.

To sum up the construction, the original system has variables X1, . . . , Xm,
equations with constants

Xi = Ei, for i = 1, . . . , c

and equations without constants

Xk + X` = Xk′ + X`′ , (k, `, k′, `′) ∈ V.

The new system has only one variable X, equations X + E1 = F1, X + E2 =
F2, where Ei and Fi are given in Lemmas 1 and 2 and equations

X + X + {0, p
4
, p− 1− dk − d`} = X + X + {0, p

4
, p− 1− dk′ − d`′}

for all (k, `, k′, `′) ∈ V . The correctness of the construction is stated as
follows:

Proposition 1. A set S is a solution of the constructed system if and only
if there are sets 0 ∈ Si ⊆ N for i = 1, . . . , m such that S = π(S1, . . . , Sm)
and Xi = Si is a solution of the original system.

4 Encoding into two equations

The equations produced in the previous section are defined uniformly and
differ only by the constants. They can be merged into four constants as
follows:

Lemma 4. Consider a system of equations of the form {X + X + Ci =
X + X + Di | 0 6 i 6 m − 1} ∪ {X + Ei = Fi | 0 6 i 6 m′ − 1} with
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m > 0, m′ > 1 and Ci, Di, Ei, Fi ⊆ N, and assume Ei 6= ∅ for all i. Let
p = max(m,m′ + 1) and define

C =
m−1⋃
i=0

{pn + i | n ∈ Ci}, D =
m−1⋃
i=0

{pn + i | n ∈ Di},

E =
m′−1⋃
i=0

{pn + i | n ∈ Ei}, F =
m′−1⋃
i=0

{pn + i | n ∈ Ei}.

Then X = S is a solution of the above system if and only if X = S ′ =
{np | n ∈ S} is a solution of the following system of two equations:

X + X + C = X + X + D

X + E = F,

and all solutions of the latter system are of this form.

Proof. The first claim is that every solution X = S ′ of the second system
contains only numbers equivalent to 0 modulo p, that is, S ′ ⊆ {np | n > 0}.
Suppose there is a number np + i ∈ S ′, where 1 6 i 6 p − 1, and let
j = min(p − 1 − i,m′ − 1). Then 0 6 j 6 m′ − 1 and m′ 6 j + i 6 p − 1.
Since it is known that Ej 6= ∅, there exists a number n′ with n′p + j ∈ E.
Then (np + i) + (n′p + j) ∈ S ′ + E, and thus (n + n′)p + (i + j) must be in
F , which is a contradiction, as all numbers in F are between 0 and m′ − 1
modulo p.

Let S ⊆ N and define S ′ = {np | n ∈ S}. It should be proved that S
is a solution of the original system if and only if S ′ is a solution of the new
system.

Claim 1. For all i and n, n ∈ S + S + Ci if and only if pn + i ∈ S ′ + S ′ + C

If n ∈ S + S + Ci, then n = n1 + n2 + n3 with n1, n2 ∈ S and n3 ∈ Ci.
Then pn1, pn2 ∈ S ′ and pn3 + i ∈ C, and therefore pn + i ∈ S ′ + S ′ + C.

Conversely, if pn + i ∈ S ′ + S ′ + C, then pn + i = pn1 + pn2 + pn3 + i
for some numbers pn1, pn2 ∈ S ′ and pn3 + i ∈ C, since all numbers in S ′ are
equivalent to 0 modulo p, and so the number taken from C can only be equal
to i modulo p. Then, by the definition of S ′ and C n1, n2 ∈ S and n3 ∈ Ci,
and thus n ∈ S + S + Ci.

Claim 2. For each i ∈ {0, . . . , m− 1}, S + S + Ci = S + S + Di if and only
if (S ′ + S ′ + C) ∩ τ p

i (N) = (S ′ + S ′ + D) ∩ τ p
i (N)

If S + S + Ci = S + S + Di, then, by Claim 1, a number np + i is in
S ′+S ′+C if and only if n ∈ S +S +Ci, which equivalent to n ∈ S +S +Di

by the equation. The latter holds if and only if np + i ∈ S ′ + S ′ + D, by
Claim 1 again. Thus the new equation holds modulo intersection with τ p

i (N).
Conversely, assuming that (S ′ + S ′ + C) ∩ τ p

i (N) = (S ′ + S ′ + D) ∩ τ p
i (N),
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consider that n ∈ S + S + Ci if and only if np + i ∈ S ′ + S ′ + C by Claim 1,
which is the same as np + i ∈ S ′ + S ′ + D by the equation, and then which
holds if and only if n ∈ S + S + Di.

Claim 3. For every i ∈ {0, . . . , m′ − 1}, S + Ei = Fi if and only if (S ′ +
E) ∩ τ p

i (N) = F ∩ τ p
i (N).

Proved in the same way as the previous claim.

5 Representable sets and decision problems

Theorem 4. For every recursive (r.e., co-r.e.) set S ⊆ N0 there exist num-
bers p, d > 1, finite sets C,D ⊆ N0 and ultimately periodic sets E, F ⊆ N0,
such that the system of two equations

{
X + X + C = X + X + D

X + E = F

with an unknown X ⊆ N0 has a unique (least, greatest, respectively) solution
X = S ′, such that n ∈ S if and only if pn + d ∈ S ′.

Given a Turing machine recognizing S (the complement of S in the case of
a greatest solution), such p, d, C, D, E and F can be effectively constructed.

Proof. Consider the system given by Theorem 2 for S, which has variables
X1, . . . , Xm̃ and all equations of the form Xk1 + . . .+Xks +C = Xks+1 + . . .+
Xkt +D. The unique (least, greatest) solution of this system is (S1, . . . , Sm̃),
where p0n + d0 ∈ S1 if and only if n ∈ S, where p0 = 16 and d0 = 13.
Furthermore, since each Si is a σ-encoding of some set, it is known that
0 ∈ Si.

This system can be transformed to a system in variables X1, . . . , Xm for
some m > m̃, and with equations of the form Xk1 + Xk2 = Xk3 + Xk4 and
X1 = Ci, . . . , Xm′ = Cm′ for some 1 6 m′ 6 m. This is done by separating
subexpressions into extra variables, and by permuting the variables so that
variables with equations of the form Xi = C have smaller numbers. The
unique (least, greatest) solution of the latter system is (S ′1, . . . , S

′
m), with all

S ′i containing zero, and there is an index i0 with S ′i0 = S1.

By the constructions in Section 3, there exists a system with a unique
variable X and with all equations of the form X +X +Ci = X +X +Di and
X + Ei = Fi, and its solutions correspond to the solutions of the previous
system in variables (X1, . . . Xm) as stated in Proposition 1. In particular,
if the previous system has a unique (least, greatest) solution Xi = Si, then

X = Ŝ = π(S ′1, . . . , S
′
m) will be the unique (least, greatest) solution of the

constructed system, with p1n+ d1 ∈ Ŝ if and only if n ∈ S ′i0 , for some p1 > 1
and d1 > 0.

8



Finally, applying Lemma 4 to the latter system gives the system of two
equations X + X + C = X + X + D and X + E = F , which has a unique
(least, greatest) solution X = S ′, with p2n + d2 ∈ S ′ if and only if n ∈ Ŝ.

Now n ∈ S if and only if p0n+d0 ∈ S1 if and only if p1(p0n+d0)+d1 ∈ Ŝ
if and only ig p2(p1(p0n + d0) + d1) + d2 ∈ S ′, and setting p = p0p1p2 and
d = d0p1p2 + d1p2 + d2 proves the theorem.

Since the constructions preserve the cardinality of the set of solutions,
the decision problems about this cardinality maintain their level of undecid-
ability:

Theorem 5. The problem of whether a given system of two equations
{

X + X + C = X + X + D
X + E = F

with an unknown X ⊆ N0 has a solution (unique solution, finitely many
solutions) is Π1-complete (Π2-complete, Σ3-complete), respectively.

6 Limitations of one variable

It was recently proved by the authors [10] that systems of equations with
multiple variables using addition only cannot represent sets that are both
prime and fragile. At the same time, some fragile sets that are not prime can
be represented [10]. It turns out that none of these sets are representable
using a single variable.

Lemma 5. If a fragile set is the greatest solution of a univariate system,
then it is co-finite.

Proof. Let S be this fragile set.
For every equation of the form X + . . . + X + C = X + . . . + X + D,

if there are multiple X’s in either side or |C| > 1 or |D| > 1, then the
substitution of S yields a co-finite set. In this case, consider the number,
starting from which all elements are there. Otherwise the equation is of the
form X + {m} = X + {m} and let the number be 0.

For each equation of the form X + . . . + X + E = F , if there are multiple
X’s or |E| > 1, then F is co-finite and consider the number, starting from
which all elements are there. Otherwise the equation is X +{m} = F , which
immediately proves that S is co-finite.

Let n0 be the maximum of the above numbers. Then N + {n0} ⊆ S +
. . . + S + E for all sums appearing in the system of equations. This yields

(
S ∪ (N+ {n0})

)
+ . . . +

(
S ∪ (N+ {n0})

)
+ E =

= S + . . . + S + E ∪ (
(N+ {n0}) + (. . .)

)
︸ ︷︷ ︸

⊆N+{n0}

= S + . . . + S + E,
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and all equations in the system are satisfied. Since S is the greatest solution,
it follows that N+ {n0} ⊆ S and thus S is co-finite.

Lemma 6. If a fragile set is the least solution of a univariate system, then
it is co-finite.

π(S1, . . . , Sm) =

p
4
−1⋃

i=0

τ p
i (N) ∪

m⋃
j=1

τ p
dj

(Sj). (3)

Proof. Let S be a fragile solution of the system.
If the system contains an equation of the form X + {m} = F , then it has

a unique solution, which is co-finite. Every set satisfies an equation of the
form X + {m} = X + {m} and they don’t have to be considered. Equations
X + {m} = X + {n} with m 6= n have the emtpty set as the only solution
so they cannot appear.

Suppose then there are only equations of the forms X + . . . + X + C =
X + . . . + X + D and X + . . . + X + E = F , where the sides have multiple
occurrences of X or a constant with at least two elements.

Let k be bigger than the differences of the two smallest numbers in S or
in any constant with at least two elements appearing in the system.

Since S is fragile, there is a number `, such that every pair of missing
numbers m,n /∈ S with n > m > ` satisfies n−m > k.

Let `′ > ` be such that {`′, `′ + 1, . . . , `′ + 2k} ⊆ S. Such `′ exists
by the fragility of S. Now S \ {`′ + k} is a solution also. Consider the
sum (S \ {`′ + k}) + . . . + (S \ {`′ + k}) + E. It is obviously a subset of
S + . . . + S + E, to prove the lemma it is to be shown that also the converse
inclusion holds. So let m1 +m2 + · · ·+mn + e ∈ S + . . .+S +E with mi ∈ S
and e ∈ E. If all mi are different from `′ + k, then mi ∈ S \ {`′ + k} and
m1 + m2 + · · ·+ mn + e ∈ (S \ {`′ + k}) + . . . + (S \ {`′ + k}) + E. Suppose
then that mi = `′ + k for some set of indexes i. For every pair of such i
and i′ the numbers can be replaced by mi + 1 and mi′ − 1. So it can be
assumed that there is only one such i, say i = 1. Let a1 < a2 be the two
smallest numbers in S, (or in the case that the equation only has one X the
two smallest numbers of E). Then one of m1 + m2 − a1 or m1 + m2 − a2

(m1 +e−a1 or m1 +e−a2 in the second case) is in S \{`′+k}, since they are
bigger than ` and their difference is less than k. Suppose it is m1 + m2− a1.
Now

(m1 + m2 − a1) + a1 + m3 + . . . + mn + e =

= m1 + m2 + · · ·+ mn + e ∈ (S \ {`′ + k}) + . . . + (S \ {`′ + k}) + E.

Thus S + . . . + S + E ⊆ (S \ {`′ + k}) + . . . + (S \ {`′ + k}) + E and the
sets are equal. It follows that S \ {`′ + k} is a solution of the system, and S
cannot be a minimal solution.
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Theorem 6. There exists a set of natural numbers representable by a unique
solution of a multivariate system of equations with addition, which, however,
is not a unique (least, greatest) solution of any univariate system.

7 Limitations of one equation

Systems of two equations
{

X + X + C = X + X + D
X + E = F

constructed in Theorems 4 and 5 have one equation a constant side one
equation without a constant side. It turns out that systems with all equations
of the same type (that is, either all with constant sides or all without constant
sides) have quite limitated expressive power.

If all equations in a system are without constant sides, their least solution
is trivial: Xi = ∅. Greatest solutions are bound to be trivial as well: as
shown in the next lemma, they are always co-finite.

Lemma 7. If a system of equations of the form Xi1 + . . . + Xi` + C =
Xj1 + . . . + Xjm + D has a solution (S1, . . . , Sn), then (S1 + N, . . . , Sn + N)
is a solution as well.

Proof. Consider the smallest number in Si1 + . . .+Si` +C. Then (Si1 +N)+
. . . + (Si` + N) + C contains this number and all numbers that are greater.
The claim follows, since all equations have the same smallest numbers in the
both sides.

The other type of systems have all equations with constant sides. It
can be shown that every non-periodic solution can be extended to a greater
periodic solution, which will have the same period as the common period of
the constant sides.

Lemma 8. If a system of equations of the form X1 + . . .+Xm +E = F has a
solution (S1, . . . , Sn), then it has an ultimately periodic solution (S ′1, . . . , S

′
n)

with Si ⊆ S ′i.

Such a statement holds in a much more general case of language equations,
and can be inferred from the syntactic monoid and Conway’s [1] results.

Proof. Let p and d be numbers, such that for every equation X1 + . . .+Xm +
E = F , F has period p starting from d. Define S ′i = Si∪(Si∩N+d)+{np|n >
0}. Then it is easy to check that Xi = S ′i is still a solution.

Such an argument does not work for least solutions. In fact, it is easy to
construct an equation with uncountably many pairwise incomparable solu-
tions [7]:

X + {0, 1} = N

11



In case there exists a least solution (or at least countably many solutions),
no examples of nontrivial expressive power are known. Though it cannot be
ruled out that these equations might be able to represent some nonperiodic
set, constructing such a representation is beyond the current knowledge on
equations over sets of numbers. It is more likely that equations with con-
stant right-hand sides cannot, after all, express anything beyond ultimately
periodic sets.
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[3] A. Jeż, A. Okhotin, “Conjunctive grammars over a unary alphabet:
undecidability and unbounded growth”, Theory of Computing Systems,
to appear.
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