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Abstract

It is shown that the recently discovered computational universality in systems
of equations over sets of numbers occurs already in systems of the simplest
form, with one unknown X and two equations X + X +C = X + X + D and
X+ FE =F, where C, D, E, F C N are four ultimately periodic constants
and + denotes the operation of elementwise addition of sets, S+7 = {m+n |
meS,neT}.
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1 Introduction

Equations over sets of natural numbers are a particular case of language
equations [9], with an alphabet consisting of a single letter. Until recently,
nothing was known about these equations beyond the fact that they are
nontrivial: this was demonstrated by Leiss [11], who constructed an equation
with a non-periodic solution.

Recently Jez [2] has introduced a new method of constructing systems of
equations of the form

Xl = ng(Xl,...,Xn)

Xn = ou(Xy,..., X0)

where X; are unknown sets of numbers and the right-hand sides (; may con-
tain the following operations: union, intersection, addition of sets defined
as S+ T ={m+n|m € S, n €T}, and singleton constant sets. These
equations correspond to conjunctive grammars [12] over a one-letter alpha-
bet. The method of Jez [2] was further explored by Jez and Okhotin [3, 4],
who have subsequently used it [5] to establish computational completeness
of equations over sets of numbers of a more general form

Qpl(Xla e ,Xn) = ’le(Xl, e ,Xn)

Som(Xlu cee 7Xn) = wm(Xh cee 7Xn)

where both left-hand and right-hand sides may use union, addition and sin-
gleton constants. To be precise, it was proved that a set of numbers is
represented by a unique (least, greatest) solution of such a system if and
only if it is recursive (r.e., co-r.e., respectively).

The next result due by Jez and Okhotin [6] was a simulation of a system
with union and addition by a system using addition only, such that every
solution X; = S; of the original system is represented by a solution X; =
Sl = o(S;) of the new system, with 16n 4+ 13 € S! if and only if n € S;.
This, in particular, leads to a representation of a set ¢(.S) by unique (least,
greatest) solutions of systems , for every recursive (r.e., co-r.e., respectively)
set S. On the other hand, it was proved by Lehtinen and Okhotin [10] that
some quite simple sets cannot be specified by equations using only addition
without any encoding, and therefore equations with addition only are slightly
less powerful that equations with union and addition.

This paper continues to explore simple cases of equations over sets of num-
bers by demonstrating computational universality of systems of two equations

of the form
{X+X+C = X+X+D

X+EF = F



where X is the unique unknown and C', D, FE and F' are ultimately periodic
constant sets. The final result is stated as follows: for every recursive (r.e.,
co-r.e.) set S there is a system of two equations of the above form with a
unique (least, greatest, respectively) solution S, satisfying np+t € S if and
only if n € S;, for some constants p > 1 and ¢ > 0. At the same time, some
limitations of the expressive power of univariate equations are exposed, and
thus these systems are again a little less powerful than systems with multiple
variables.

2 Existing construction

Let N = {0,1,2,...} be the set of natural numbers including 0, and let
S, T C N be its subsets. The sum of these sets is the set S+7T = {m+n|m €
S, neT}.

Define a partial order of componentwise inclusion on vectors of sets of
numbers by (S1,...,5,) C (51,...,5})) if S; C S; for all i. For systems with
multiple solutions, there is sometimes the least or the greatest solution with
respect to this order.

Equations over sets of numbers using two operations, union and addition,
have recently been proved computationally complete.

Theorem 1 (Jez, Okhotin [5]). For every recursive (r.e., co-r.e.) set S C N
there exists a system of equations

e1( Xy, X)) = (X, X)

gOm(Xl, Ce ,Xn) = 1/Jm(X1, e ,Xn)

with j,1; using singleton constants and the operations of union and addi-
tion, which has a unique (least, greatest, respectively) solution with X; = S.

As a matching upper bound, unique (least, greatest) solutions of equa-
tions over sets of numbers with any Boolean operations and addition are
known to be recursive (r.e., co-r.e., respectively), so this result precisely char-
acterizes the families of sets representable by solutions of such equations.

For systems of equations over sets of numbers with addition as the only
operation, a computational universality result was recently established by
Jez and Okhotin [5]. The idea was to take any recursive (r.e., co-r.e.) set S
and consider its encoding: another set S’ with 16n + 13 € S’ if and only if
n € S. Then it was proved that any system as in Theorem [1/ (that is, with
the operations of union and addition) can be simulated by another system
using addition only, which manipulates such encodings of sets instead of the
sets in their original form.



This encoding of sets requires the following notation: for each S C N,
p=>1landie€{0,1,...,p— 1}, define

7 (S)={pn+1i|n e S}

A set of this form will be called a track, and it will be said that the set S' is
encoded on the i-th track. Tracks of the form 77°(N) are called full tracks, and
whenever a set S” has S’ N 77(N) = &, it will be said that S’ has an empty
1-th track.

Now, setting p = 16, the encoding of a set is defined as follows:

Definition 1 (Jez, Okhotin [6]). For every set S C N, its encoding is the
set

0(8) = {0} Un"(N) Un"(N) U " (N) Uy (N) U (5).

Theorem 2 (Jez, Okhotin [6]). For every recursive (r.e., co-r.e.) set S C Ny
there exists a system of equations

(Pl(Xla cee 7Xn) = wl(le cee 7Xn)

QOm(Xl, Ce ,Xn) = ¢m(X1, Ce ,Xn)

with pj,1; using the operation of addition and ultimately periodic constants,
which has a unique (least, greatest, respectively) solution with X; = o(S;) for
some S; C N, of which S; = S.

Given a Turing machine recognizing S (the complement of S in the case
of a greatest solution), such a system can be effectively constructed.

Though every set can be represented in an encoded form, not all sets can
be represented as they are. A class of non-representable sets has been found.
These are sets satisfying the following two conditions. First, they must be
prime in the sense of having no nontrivial representation as a sum of two
sets:

Definition 2. A set S C N is prime if S = S; + Sy implies S; = {0} or
Se = {0}.

Second, they are fragile, which means that the sum of this set with any
set containing at least two elements is co-finite.

Definition 3. A set S C N is fragile if S + {n1,ns} is co-finite for all
ny, ne € N with ny # no.

This definition is equivalent to the statement that for every k& > 1 there
are only finitely many numbers n € N with n,n 4+ k ¢ S.

Theorem 3 (Lehtinen, Okhotin [10]). No set that is prime and fragile is
representable by systems of equation over natural numbers with operation of
addition and ultimately periodic constants.

There exist computationally easy sets that are prime and fragile.



3 Encoding into one variable

In this section a system of equations over multiple variables is simulated by a
system with only one variable. The constructed system will then be further
simulated by a system with one variable and only two equations.

Assume that the simulated system has m variables X7, X, ..., X,,. The
equations with constants are X; = F; for ¢ = 1,2, ..., ¢, where F; is an ulti-
mately periodic constant containing zero. The rest of the equations contain
only variables and are of the form Xy + X, = X + Xy. The system will be
simulated in such a way that solutions X; = .S; for ¢« = 1,...,m of the orig-
inal system are encoded into tracks of solutions of the new equation. Only
solutions that have zero in all the sets S; are considered, other solutions are
not represented in the new system.

The sets Sy, ..., Sy, are encoded with p = 22 tracks so that the set S;
will be on the track d; = % + 277t — 1. The encoding is given by:

ﬂ&mﬁm:'ﬁNUUﬁ@) (1)

The idea of the encoding is that in the sum 7(Sy,...,S,) + 7(S1,...,Sn)
the encoding of the sum Sy + .5, is on track dj + d;. Note that the numbers
dy + dy are pairwise different (cf. the encoding for conjunctive grammars due
to Jez and Okhotin [4]).

The simulation represents three different conditions. One equation guar-
antees that all solutions of the new system are valid m-encodings of some
m sets: this equation is formulated in Lemma [1. All equations X; = E;
are verified by a single equation given in Lemma 2. And for every equation
X + Xy = Xy + Xy there is a corresponding equation stated in Lemma 3.

The following Lemma formalizes an equation that has only correct 7-
encodings as a solution.

Lemma 1. A set S C N is of the form S = w(Si,...,Sn) for some
Sty S €N with 0 € S; for all i if and only if it satisfies the equation

X+ (@M U{F}) = UL 77N VUL 7 (N U UL, ()
Proof. Let 0 € S; C N and S =7(Sy,...,Sn). Then

m

s+ﬂM=UﬁNUU@m)

Jj=1

and

S+ {2} = U AN UUL 7 (S + (1)
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The union of these sets gives the right-hand side of the equation and thus S
is a solution.
Conversely, let X = S be a solution of the equation. All tracks that are
empty in the right-hand side are empty in S. To see that tracks 37’ 3p +1,
.., p—1 are empty in S, suppose that there is n € S with n = 22 —H mod P

for some i € {0,...,% — 1}; but then the number n + % cannot be in the
right-hand side, because it belongs to track £ + i that is empty in the right-
hand side, which is a contradiction. Since these tracks %, % +1,...,p—1
are full on the right-hand side, they can only be obtained by shifting full
tracks in S by 7 3. that is, tracks 0, 1, ..., 2 — 1 are full in S. It remains to
show that each data track d;, for j = 1, 2, . ,m, contains the encoding of 0,

that is, the number d;. Since the right-hand side contains a full track d; and
d; — 3{ < 0, this number can be obtained only by having d; € S. It follows
that S = m(Sy,...,Sn), for some Si,..., S, CN. ]

The constant equations of the original system are checked by the following
equation:

Lemma 2. The sets0 € S; C N fori=1,...,c satisfy the equations X, = E,
for ¢ =1,... cif and only if m(S1,...,Sm) satzsﬁes the equation

X+ (N)u{p—1-d.}) =

P_1 m p—l—de+2—1
-UrmvyuJrmmu Y uU (B (2)
i=0 j=1 k=p—1—d.

7(S1,...,Sn) + T'(N) = ' 7N U7 W)

When summed to {p — 1 — d.} the tracks are just moved, the full tracks to
tracks p—1—d,...,p—1—d.+ 5§ - 1:

L p—1-de+2-1
TN +{p-1-d}= |J 7N
i=0 k=p—1—d.

And the sums 75 (S;) + {p — 1 = d.}) yield 77, _; . ,.(S;) for j =1,....¢,

c
which are reflected in the right-hand side of (2 ) while 75, (S; +{1}) €
i 01 7P(N) for j = (¢+1),...,m is overwritten by U?;OI 7P (N). O

(2 K3

Lemma 3. The sets Sy, ..., S, C N satisfy the equation X+ X, = Xp+ Xy
if and only if m(S1,...,Sm) satisfies the equation

X+X+{0,8p—1—dp—dp} =X+ X+{0,8,p—1—dp —dp}



Proof. The sum Sy 4+ S, will be on the track dy + d, = %p 42kl L ot=1 9
of m(S1, ..., 8m) + (S, ..., Sm):

322
7r<Sl7 trt Sm) + ’/T(Sla s >Sm) = U sz(N> U U Tkordz(Sk + Sg)
=0 k<l

By adding the constant {0,%,p — 1 — dy — d¢} to w(S1,...,5,) +

(51, ..., Sy) the sum Sg + Sy ends up to track p — 1, while all other tracks
are full:

m(St, -, Sm)+7(S1, -, S H{B, p—1—dp—de} = U=y 7P (N)UT,_1(Sk+Sk)
The claim of the lemma is a direct consequence of this. Il

To sum up the construction, the original system has variables X, ..., X,,,
equations with constants

X,=FE;, fori=1,...,c
and equations without constants
X+ Xp= Xy + Xp, (/{Z,f, /{3/,6/) evV.

The new system has only one variable X, equations X + Fy = Fy, X + Fy =
F;, where F; and F; are given in Lemmas [1 and 2/ and equations

X+X+{0.2p—1—di—dp} =X+ X+{0,2,p—1—dy —dp}

for all (k,¢,k',¢') € V. The correctness of the construction is stated as
follows:

Proposition 1. A set S is a solution of the constructed system if and only
if there are sets 0 € S; C N fori = 1,...,m such that S = w(S1,...,5m)
and X; = S; 1s a solution of the original system.

4 Encoding into two equations

The equations produced in the previous section are defined uniformly and
differ only by the constants. They can be merged into four constants as
follows:

Lemma 4. Consider a system of equations of the form {X + X + C; =
X+X+D|0<i<m—-1}JU{X+E =F|0<i<m—1} with
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m >0, m >1and C;,D;, E;, F; C N, and assume E; # & for all i. Let
p = max(m,m' + 1) and define

m—1 m—1
C=|J{m+ilnec}, D= |J{pn+i|ne D},

i=0 i=0

m'—1 m/—1
E:U{pn—l—ilneEi}, F:U{pn—l—ilnEEi}.

i=0 i=0

Then X = S is a solution of the above system if and only if X = S =
{np|n € S} is a solution of the following system of two equations:

X+X4+C=X+X+D
X+E=F,

and all solutions of the latter system are of this form.

Proof. The first claim is that every solution X = S’ of the second system
contains only numbers equivalent to 0 modulo p, that is, S" C {np | n > 0}.
Suppose there is a number np + i € S’, where 1 < ¢ < p — 1, and let
j=min(p—1—4m —1). Then0<j<m —landm' <j+i<p—1
Since it is known that E; # @, there exists a number n' with n'p+ j € E.
Then (np +1i) + (W'p+j) € S’ + E, and thus (n +n')p + (i + j) must be in
F, which is a contradiction, as all numbers in F' are between 0 and m' — 1
modulo p.

Let S C N and define S = {np|n € S}. It should be proved that S
is a solution of the original system if and only if S’ is a solution of the new
system.

Claim 1. For alli andn,n € S+ S+ C; if and only if pn+i e 8"+ 5" +C

Ifne S+ 54 C;, then n = ny 4+ ny + n3 with ny,ny € S and n3 € C;.
Then pny,pny € S" and pns + ¢ € C, and therefore pn +i € 5"+ 5"+ C.

Conversely, if pn +1 € S"+ 5" + C, then pn +1i = pny + pno + pnz + 1
for some numbers pny, pny € S” and pns + i € C, since all numbers in S’ are
equivalent to 0 modulo p, and so the number taken from C' can only be equal
to ¢ modulo p. Then, by the definition of S" and C ny,ny € S and ng € Cj,
and thus n € S+ S + C;.

Claim 2. For eachi € {0,...,m—1}, S+ S+ C; =S+ S+ D; if and only
if (S"+S8"+C)N7TP(N)=(S"+ S5+ D)n7P(N)

tS+S+C; =854+ S+ D,;, then, by Claim [1, a number np + ¢ is in
S"+ 8"+ C if and only if n € S+ S+ C;, which equivalent to n € S+ S+ D;
by the equation. The latter holds if and only if np +i € S’ + 5" + D, by
Claim [I'again. Thus the new equation holds modulo intersection with 77°(N).
Conversely, assuming that (" + 5"+ C) N7/ (N) = (8" + 5 + D) N 77(N),
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consider that n € S+ S+ C; if and only if np+i € S’ 4+ 5" + C by Claim 1
which is the same as np +i € S’ + 5"+ D by the equation, and then which
holds if and only if n € S+ 5 + D;.

Claim 3. For everyi € {0,....,m' — 1}, S+ E; = F; if and only if (S' +
Eynt/(N)=Fn7/(N).

Proved in the same way as the previous claim. O]

5 Representable sets and decision problems

Theorem 4. For every recursive (r.e., co-r.e.) set S C Ny there exist num-
bers p,d > 1, finite sets C, D C Ny and ultimately periodic sets E, F C Ny,
such that the system of two equations

X+X+C = X+X+D
X+ FE F

with an unknown X C Ny has a unique (least, greatest, respectively) solution
X =5, such that n € S if and only if pn +d € 5.

Given a Turing machine recognizing S (the complement of S in the case of
a greatest solution), such p, d, C, D, E and F' can be effectively constructed.

Proof. Consider the system given by Theorem 2 for .S, which has variables
Xi,..., X5 and all equations of the form X, +... + X3, +C =X}, +...+
Xk, +D. The unique (least, greatest) solution of this system is (51, ..., Sm),
where pon + dy € S; if and only if n € S, where py = 16 and dy = 13.
Furthermore, since each S; is a o-encoding of some set, it is known that
0es;.

This system can be transformed to a system in variables X, ..., X, for
some m > m, and with equations of the form X, + X, = X, + X, and
X1 =0, ..., X,y = C,y for some 1 < m' < m. This is done by separating
subexpressions into extra variables, and by permuting the variables so that
variables with equations of the form X; = C' have smaller numbers. The
unique (least, greatest) solution of the latter system is (S7,...,S.,), with all
S; containing zero, and there is an index iy with Si = S;.

By the constructions in Section 3, there exists a system with a unique
variable X and with all equations of the form X + X +C; = X + X + D; and
X + E; = F;, and its solutions correspond to the solutions of the previous
system in variables (X7i,...X,,) as stated in Proposition [I. In particular,
if the previous system has a unique (least, greatest) solution X; = S;, then
X =8 =mn(9),...,5,) will be the unique (least, greatest) solution of the
constructed system, with pyn+d; € S if and only if n € S!

i,» for some p; > 1
and d; > 0.



Finally, applying Lemma 4/ to the latter system gives the system of two
equations X + X +C' = X + X + D and X + FE = F', which has a unique
(least, greatest) solution X = S, with pon + dy € S’ if and only if n € S.

Now n € S if and only if pon +dy € Sy if and only if p; (pon+dy) +d; € S
if and only ig p2(p1(pon + do) + d1) + dy € S’, and setting p = pop1pe and
d = dop1p2 + dips + dy proves the theorem. O

Since the constructions preserve the cardinality of the set of solutions,
the decision problems about this cardinality maintain their level of undecid-
ability:

Theorem 5. The problem of whether a given system of two equations

X+X+C = X+X+D
X+EF = F

with an unknown X C Ny has a solution (unique solution, finitely many
solutions) is I1y-complete (1ly-complete, 3-complete), respectively.

6 Limitations of one variable

It was recently proved by the authors [10] that systems of equations with
multiple variables using addition only cannot represent sets that are both
prime and fragile. At the same time, some fragile sets that are not prime can
be represented [10]. It turns out that none of these sets are representable
using a single variable.

Lemma 5. If a fragile set is the greatest solution of a univariate system,
then it is co-finite.

Proof. Let S be this fragile set.

For every equation of the form X +... + X +C =X+ ...+ X + D,
if there are multiple X’s in either side or |C| > 1 or |D| > 1, then the
substitution of S yields a co-finite set. In this case, consider the number,
starting from which all elements are there. Otherwise the equation is of the
form X + {m} = X + {m} and let the number be 0.

For each equation of the form X +...4+ X + E = F, if there are multiple
X’s or |E| > 1, then F' is co-finite and consider the number, starting from
which all elements are there. Otherwise the equation is X +{m} = F, which
immediately proves that S is co-finite.

Let ng be the maximum of the above numbers. Then N + {ng} C S +
...+ S+ F for all sums appearing in the system of equations. This yields

(SUN+{ne})) +...+ (SUN+{ne})) + E =
:S+...+S+Eu((N+{n0})+(...))/:S+...+S+E,

[

CN+{no}



and all equations in the system are satisfied. Since S is the greatest solution,
it follows that N+ {ng} C S and thus S is co-finite. O

Lemma 6. If a fragile set is the least solution of a univariate system, then
it 1s co-finite.

7(S1,...,Sm) = A PNy U7 (). (3)

Proof. Let S be a fragile solution of the system.

If the system contains an equation of the form X + {m} = F, then it has
a unique solution, which is co-finite. Every set satisfies an equation of the
form X + {m} = X + {m} and they don’t have to be considered. Equations
X + {m} = X + {n} with m # n have the emtpty set as the only solution
so they cannot appear.

Suppose then there are only equations of the forms X + ...+ X + C =
X+...+X+Dand X +...+ X + F = F, where the sides have multiple
occurrences of X or a constant with at least two elements.

Let k£ be bigger than the differences of the two smallest numbers in S or
in any constant with at least two elements appearing in the system.

Since S is fragile, there is a number ¢, such that every pair of missing
numbers m,n ¢ S with n > m > ( satisfies n — m > k.

Let ¢ > ¢ be such that {¢',¢' +1,...,0' + 2k} C S. Such ¢ exists
by the fragility of S. Now S\ {¢' + k} is a solution also. Consider the
sum (S\{¢'+k})+ ...+ (S\{¢ +k})+ E. It is obviously a subset of
S+...+ 5+ E, to prove the lemma it is to be shown that also the converse
inclusion holds. So let m; +mg+---4+m,+e€ S+...+ 5+ FE withm; € S
and e € E. If all m; are different from ¢ + k, then m; € S\ {¢' + k} and
my+mo+---+my+ec (S\{{+Ek})+...+(S\{¢'+k})+ E. Suppose
then that m; = ¢ + k for some set of indexes i. For every pair of such i
and i’ the numbers can be replaced by m; + 1 and my — 1. So it can be
assumed that there is only one such 7, say i« = 1. Let a; < ay be the two
smallest numbers in S, (or in the case that the equation only has one X the
two smallest numbers of E). Then one of my + mg — ay or my + my — as
(m1+4e—ay or my +e—as in the second case) is in S\ {¢'+k}, since they are
bigger than ¢ and their difference is less than k. Suppose it is mq + mg — a;.
Now

(mi4+mo—a)+ar+mg+...+m,+e=
=mi+ma+--+mpt+eec(S\{'+k})+...+(S\{{'+k})+E.

Thus S+ ...+ S+ EC (S\{{'+k})+ ...+ (S\{¢'+k}) + E and the
sets are equal. It follows that S\ {¢' + k} is a solution of the system, and S
cannot be a minimal solution. O
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Theorem 6. There exists a set of natural numbers representable by a unique
solution of a multivariate system of equations with addition, which, however,
is not a unique (least, greatest) solution of any univariate system.

7 Limitations of one equation

Systems of two equations

X+X+C = X+X+D
X+EFE = F

constructed in Theorems 4/ and 5 have one equation a constant side one
equation without a constant side. It turns out that systems with all equations
of the same type (that is, either all with constant sides or all without constant
sides) have quite limitated expressive power.

If all equations in a system are without constant sides, their least solution
is trivial: X; = @. Greatest solutions are bound to be trivial as well: as
shown in the next lemma, they are always co-finite.

Lemma 7. If a system of equations of the form X;, + ...+ X,;, + C =
X, + ...+ X, + D has a solution (Sy,...,S,), then (S1 +N,...,S, +N)
15 a solution as well.

Proof. Consider the smallest number in S;, +...+S;, +C. Then (5;, +N) +
...+ (Si;, + N) + C contains this number and all numbers that are greater.

The claim follows, since all equations have the same smallest numbers in the
both sides. O

The other type of systems have all equations with constant sides. It
can be shown that every non-periodic solution can be extended to a greater
periodic solution, which will have the same period as the common period of
the constant sides.

Lemma 8. If a system of equations of the form X1 +...+X,,+E = F has a
solution (S1,...,Sy), then it has an ultimately periodic solution (S1,...,S})

with S; C ..

Such a statement holds in a much more general case of language equations,
and can be inferred from the syntactic monoid and Conway’s [1] results.

Proof. Let p and d be numbers, such that for every equation Xy +...+ X,, +
E = F, F has period p starting from d. Define S} = S;U(S;N\N+d)+{np|n >
0}. Then it is easy to check that X; = S/ is still a solution. ]

Such an argument does not work for least solutions. In fact, it is easy to
construct an equation with uncountably many pairwise incomparable solu-
tions [7]:

X+{0,1} =N

11



In case there exists a least solution (or at least countably many solutions),
no examples of nontrivial expressive power are known. Though it cannot be
ruled out that these equations might be able to represent some nonperiodic
set, constructing such a representation is beyond the current knowledge on
equations over sets of numbers. It is more likely that equations with con-
stant right-hand sides cannot, after all, express anything beyond ultimately
periodic sets.
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