
Alexander Okhotin

Fast parsing for Boolean grammars:
a generalization of Valiant’s algorithm

TUCS Technical Report
No 953, February 2010

Fast parsing for Boolean grammars:
a generalization of Valiant’s algorithm

Alexander Okhotin
Academy of Finland, and
Department of Mathematics, University of Turku, and
Turku Centre for Computer Science
Turku FIN–20014, Finland
alexander.okhotin@utu.fi

TUCS Technical Report

No 953, February 2010

Abstract

The well-known parsing algorithm for the context-free grammars due to
Valiant (“General context-free recognition in less than cubic time”, Jour-
nal of Computer and System Sciences, 10:2 (1975), 308–314) is refactored
and generalized to handle Boolean grammars. The algorithm reduces con-
struction of the parsing table to computing multiple products of Boolean
matrices of various size. Its time complexity on an input string of length n
is Θ(BM(n)), where BM(n) is the number of operations needed to multiply
two Boolean matrices of size n × n, which is O(n2.376) as per the current
knowledge.

Keywords: Boolean grammars, conjunctive grammars, context-free gram-
mars, matrix multiplication, parsing, recognition.

TUCS Laboratory
Discrete Mathematics for Information Technology

1 Introduction

Context-free grammars are the universally accepted mathematical model of
syntax, and their status is well-justified. On the one hand, their expressive
means are natural, in the sense whatever they define is intuitively seen as
the syntax of something. On the other hand, they can be implemented in a
variety of efficient algorithms, including a straightforward cubic-time parser,
as well as many practical parsing algorithms working much faster in special
cases.

The main idea of the context-free grammars is inductive definition of
syntactically correct strings. For example, a context-free grammar S →
aSb | ε represents a definition of the form: a string has the property S if and
only if either it is representable as awb for some string w with the property
S, or if it is the empty string. Note that the vertical line in the above
grammar is essentially a disjunction of two syntactical conditions. Boolean
grammars, introduced by the author [10], are an extension of the context-free
grammars, which maintains the main principle of inductive definition, but
allows the use of any Boolean operations to combine syntactical conditions in
the rules. At the same time, they inherit the basic parsing algorithms from
the context-free grammars, including the Cocke–Kasami–Younger [10] along
with its variant for unambiguous grammars [13], the Generalized LR [11], as
well as the linear-time recursive descent [12].

The straightforward upper bound on the complexity of parsing for
Boolean grammars is the same as in the context-free case: O(n3), where
n is the length of the input string [10]. However, for the context-free gram-
mars, there also exists an asymptotically faster parsing algorithm due to
Valiant [17]: this algorithm computes the same parsing table as the simple
Cocke–Kasami–Younger algorithm, but does so by offloading the most inten-
sive computations into calls to a Boolean matrix multiplication procedure.
The latter can be efficiently implemented in a variety of ways. Given two
n×n Boolean matrices, a straightforward calculation of their product requires
n3 conjunctions and (n − 1)n2 disjunctions. An algorithm by Arlazarov et
al. [2] reduces the number of bit operations to O

(
n3

log n

)
, which has been fur-

ther improved to O
(

n3

(log n)1.5

)
in the algorithm of Atkinson and Santoro [3],

and to O
(

n3

(log n)2

)
in Rytter’s [14] algorithm. An asymptotically more signif-

icant acceleration is obtained by using fast algorithms for multiplying n× n
numerical matrices, such as Strassen’s [16] algorithm that requires O(n2.81)
arithmetical operations, or the algorithm of Coppersmith and Winograd [4]
with the theoretical running time O(n2.376); using such algorithms to multiply
Boolean matrices is explained in the paper by Adleman at al. [1].

Taking a closer look at Valiant’s algorithm, one can see that first the entire
grammar is encoded in a certain semiring, then the notion of a transitive
closure of a Boolean matrix is extended to matrices over this semiring, so

1

that the desired parsing table could be obtained as a closure of this kind, and
finally it is demonstrated that such a closure can be efficiently computed using
Boolean matrix multiplication. This approach essentially relies on having two
operations in a grammar, concatenation and union, which give rise to the
product and the sum in the semiring. Because of that, Valiant’s algorithm
as it is cannot be applied to Boolean grammars.

This paper aims at refactoring Valiant’s algorithm to make it work in
the more general case of Boolean grammars. It is shown that using matrices
over a semiring as an intermediate abstraction is in fact unnecessary, and it
is sufficient to employ matrix multiplication to compute the concatenations
only, with the Boolean operations evaluated separately. Furthermore, the
proposed algorithm maintains one fixed data structure, the parsing table,
and whenever the matrix is to be cut as per Valiant’s divide-and-conquer
strategy, the new algorithm only distibutes the ranges of positions in the
input string among the recursive calls. This leads to an improved parsing
algorithm, which, besides being applicable to a larger family of grammars, is
also better understandable than Valiant’s algorithm, has a succinct proof of
correctness and is ready to be implemented.

2 Boolean grammars

Let Σ be a finite nonempty set used as an alphabet, let Σ∗ be the set of all
finite strings over Σ. For a string w = a1 . . . a` ∈ Σ∗ with ai ∈ Σ, the length
of the string is denoted by |w| = `. The unique empty string of length 0 is
denoted by ε. For a string w ∈ Σ∗ and for every its partition w = uv, u is a
prefix of w and v is its suffix ; furthermore, for every partition w = xyz, the
string y is a substring of w.

Any subset of Σ∗ is a language over Σ. The basic operations on languages
are the concatenation K · L = {uv | u ∈ K, v ∈ L } and the Boolean set
operations: union K∪L, intersection K∩L, and complementation L. Boolean
grammars are a family of formal grammars in which all these operations can
be explicitly specified.

Definition 1. [10] A Boolean grammar is a quadruple G = (Σ, N, P, S),
where Σ and N are disjoint finite non-empty sets of terminal and nonterminal
symbols respectively; P is a finite set of rules of the form

A → α1& . . . &αm&¬β1& . . . &¬βn, (1)

where m+n > 1, αi, βi ∈ (Σ∪N)∗; S ∈ N is the start symbol of the grammar.

If negation is not allowed, that is, m > 1 and n = 0 in every rule, the
resulting grammars are known as conjunctive grammars [9]. If conjunction
is also prohibited, and thus every rule must have m = 1 and n = 0, then the
context-free grammars are obtained.

2

The intuitive semantics of a Boolean grammar is fairly clear: a rule (1)
specifies that every string that satisfies each of the conditions αi and none
of the conditions βi is therefore generated by A. However, formalizing this
definition has proved to be rather nontrivial in the general case. In the case of
conjunctive grammars (including the context-free grammars), the semantics
can be equivalently defined by a least solution of language equations and by
term rewriting. The definition by language equations carries on to Boolean
grammars of the general form as follows.

A grammar is interpreted as a system of language equations in variables
N , in which the equation for each A ∈ N is

A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[m⋂
i=1

αi ∩
n⋂

j=1

βj

]
(2)

The vector (. . . , LG(A), . . .) of languages generated by the nonterminals of
the grammar is defined by a solution of this system. In general, such a
system may have no solutions (as in the equation S = S corresponding to
the grammar S → ¬S) or multiple solutions (with S = S being the simplest
example), but the below simplest definition of Boolean grammars dismisses
such systems as ill-formed, and considers only systems with a unique solution;
to be more precise, a subclass of such systems:

Definition 2. Let G = (Σ, N, P, S) be a Boolean grammar, let (2) be the
associated system of language equations. Suppose that for every number ` > 0
there exists a unique vector of languages (. . . , LC , . . .)C∈N (LC ⊆ Σ6`), such
that a substitution of LC for C, for each C ∈ N , turns every equation (2)
into an equality modulo intersection with Σ6`.

Then G complies to the semantics of a strongly unique solution, and, for
every A ∈ N , the language LG(A) can be defined as LA from the unique
solution of this system. The language generated by the grammar is L(G) =
LG(S).

This fairly rough restriction ensures that the membership of a string in
the language depends only on the membership of shorter strings, which is
essential for the grammars to represent inductive definitions.

Example 1. The following Boolean grammar generates the language
{ ambncn | m,n > 0,m 6= n }:

S → AB&¬DC
A → aA | ε
B → bBc | ε
C → cC | ε
D → aDb | ε

The rules for the nonterminals A, B, C and D are context-free, and they
define LG(AB) = { aibncn | i, n > 0 } and LG(DC) = { ambmcj | j, m > 0 }.

3

Then the propositional connectives in the rule for S specify the following
combination of the conditions given by AB and DC:

L(AB)∩L(DC) = { aibjck | j = k and i 6= j } = { ambncn | m,n > 0,m 6= n }︸ ︷︷ ︸
L(S)

Assuming Definition 2, every Boolean grammar can be transformed to an
equivalent grammar in the binary normal form [10], in which every rule in
P is of the form

A → B1C1& . . . &BnCm&¬D1E1& . . . &¬DnEn&¬ε

(m > 1, n > 0, Bi, Ci, Dj, Ej ∈ N)

A → a

S → ε (only if S does not appear in right-hand sides of rules)

An alternative, more general definition of the semantics of Boolean gram-
mars will be presented in Section 7.

3 Simple cubic-time parsing

Let G = (Σ, N, P, S) be a Boolean grammar in binary normal form, let
w = a1 . . . an be an input string. The simple cubic-time parsing algorithm
constructs a table T ∈ (2N)n×n, with

Ti,j = {A ∈ N | ai+1 . . . aj ∈ LG(A) }
for all 0 6 i < j 6 n. The elements of this table can be computed induc-
tively on the length j − i of the substring, starting with the elements Ti,i+1

that depend only on the symbol ai+1, and continuing with larger and larger
substrings, until the element T0,n is computed. The induction step is given
by the equality

Ti,j = f
(j−1⋃

k=i+1

Ti,k × Tk,j

)
,

where the function f : 2N×N → 2N is defined by

f(R) = {A | ∃A → B1C1& . . . &BmCm&¬D1E1& . . . &¬Dm′Em′ ∈ P :

(Bt, Ct) ∈ R and (Dt, Et) /∈ R for all t}.
In total, there are Θ(n2) elements, and each of them takes Θ(n) operations
to compute, which results in a cubic time complexity.

The full algorithm can be stated as follows:

Algorithm 1. Let G = (Σ, N, P, S) be a Boolean grammar in the binary nor-
mal form. Let w = a1 . . . an, where n > 1 and ai ∈ Σ, be an input string. For
all 0 6 i < j 6 n, let Ti,j be a variable ranging over subsets of N . Let R be a
variable ranging over subsets of N ×N .

4

Figure 1: Product of two Boolean matrices in Example 2.

1: for i = 1 to n do
2: Ti−1,i = {A | A → ai ∈ P }
3: for ` = 2 to n do
4: for i = 0 to n− ` do
5: R = ∅
6: for all k = i + 1 to i + `− 1 do
7: R = R ∪ (Ti,k × Tk,i+`)
8: Ti,i+` = f(R)
9: accept if and only if S ∈ T0,n

The most time-consuming operation in the algorithm is computing the
unions Ri,j =

⋃j−1
k=i+1 Ti,k × Tk,j, in which Ri,j represents all concatenations

BC that generate the substring ai+1 . . . aj and the index k is a cutting point of
this substring, with B generating ai+1 . . . ak and with C generating ak+1 . . . aj.
If each union is computed individually, as it is done in the above algorithm,
then spending linear time for each Ri,j is unavoidable. However, if such
unions are computed for several sets Ti,j at a time, much of the work can
be represented as Boolean matrix multiplication. This is illustrated in the
following example:

Example 2. Let w = a1a2a3a4a5 be an input string and consider the partially
constructed parsing table depicted in Figure 1, with Ti,j constructed for 1 6
i < j 6 3 and for 3 6 i < j 6 5, that is, for the substrings a1a2a3 and

a3a4a5 together with their substrings. Denote by (A
?∈ Ti,j) the Boolean

value indicating whether A is in Ti,j or not. Then the following product of
Boolean matrices

(
B

?∈ T0,2 B
?∈ T0,3

B
?∈ T1,2 B

?∈ T1,3

)
×

(
C

?∈ T2,4 C
?∈ T2,5

C
?∈ T3,4 C

?∈ T3,5

)
=

(
X0,4 X0,5

X1,4 X1,5

)

represents partial information on whether the pair (B, C) should be in the

following four elements:
(

R0,4 R0,5

R1,4 R1,5

)
. To be precise, X1,4 computes the

membership of (B,C) in R1,4 exactly; X0,4 does not take into account the

5

factorization a1 · a2a3a4, which actually requires a fully computed element
T1,4; the element X1,5 is symmetrically incomplete; finally, X0,5 misses the
factorizations a1 · a2a3a4a5 and a1a2a3a4 · a5, which can be properly obtained
only using T0,4 and T1,5. In total, this matrix product computes 8 conjunctions
out of 12 needed for these four elements of R.

Already in this simple example, using one matrix product requires chang-
ing the order of computation of the elements {Ti,j}: the elements T0,3 and T2,5

need to be calculated before T1,4. In the next section, the whole algorithm
will be restated as a recursive procedure, which arranges the computation
so that as much work as possible is offloaded into products of the largest
possible matrices.

4 Parsing reduced to matrix multiplication

Let w = a1 . . . an be an input string. For the time being, assume that n + 1
is a power of two, that is, the length of the input string is a power of two
minus one; this restriction can be relaxed in an implmentation, which will
be discussed in the next section.

The algorithm uses the following data structures. First, there is an (n +
1)× (n + 1) table T with Ti,j ⊆ N , as in Algorithm 1, and the goal is to set
each entry to Ti,j = {A | ai+1 . . . aj ∈ L(A) } for all 0 6 i < j 6 n. The
second table R has elements Ri,j ⊆ N×N each corresponding to the value of
R computed by Algorithm 1 in the iteration (` = j − i, i). The target value
is Ri,j = { (B, C) | ai+1 . . . aj ∈ L(B)L(C) } for all 0 6 i < j 6 n.

Initially, the elements of the tables are set as follows: Ti−1,i = {A |
A → ai ∈ P } for all 1 6 i 6 n, and the rest of values of T are undefined;
Ri,j = ∅. The rest of the entries are gradually constructed using the following
two recursive procedures:

• The first procedure, compute(`,m), constructs the correct values of Ti,j

for all ` 6 i < j < m.

• The other procedure, complete(`,m, `′,m′), assumes that the elements
Ti,j are already constructed for all i and j with ` 6 i < j < m, as well
as for all i, j with `′ 6 i < j < m′; it is furthermore assumed that for
all ` 6 i < m and `′ 6 j < m′, the current value of Ri,j is

Ri,j = { (B, C) | ∃k(m 6 k < `′) : ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈ L(C) },

which is a subset of the intended value of Ri,j.

Then complete(`,m, `′,m′) constructs Ti,j for all ` 6 i < m and `′ 6
j < m′.

6

Figure 2: Matrix partition in complete(`,m, `′,m′).

• Matrix multiplication is performed by one more procedure,
product(d, `, `′, `′′), whose task is to add to each Ri,j, with ` 6 i < `+d,
and `′′ 6 j < `′′+d, all such pairs (B,C), that B ∈ Ti,k and C ∈ Tk,j for
some k with `′ 6 k < `′ + d. This can generally be done by computing
|N |2 products of d× d Boolean matrices, one for each pair (B, C).

Algorithm 2 (Parsing through matrix multiplication).
Main procedure:

1: for i = 1 to n do
2: Ti−1,i = {A | A → ai ∈ P }
3: compute(0, n + 1)
4: Accept if and only if S ∈ T0,n

Procedure compute(`,m):

5: if m− ` > 4 then
6: compute(`, `+m

2
)

7: compute(`+m
2

,m)
8: complete(`, `+m

2
, `+m

2
,m)

Procedure complete(`,m, `′,m′), which requires m− ` = m′ − `′:

9: if m− ` > 1 then
10: /* compute C */
11: complete(`+m

2
,m, `′, `′+m′

2
)

12: /* compute D1 */
13: product(m−`

2
, `, `+m

2
, `′) /* D1 ← B1 × C */

7

14: complete(`, `+m
2

, `′, `′+m′
2

)
15: /* compute D2 */
16: product(m−`

2
, `+m

2
, `′, `′+m′

2
) /* D2 ← C × B2 */

17: complete(`+m
2

,m, `′+m′
2

,m′)
18: /* compute E */
19: product(m−`

2
, `, `+m

2
, `′+m′

2
) /* E ← B1 ×D2 */

20: product(m−`
2

, `, `′, `′+m′
2

) /* E ← D1 × B2 */

21: complete(`, `+m
2

, `′+m′
2

,m′)
22: else if m 6= `′ then
23: T`,`′ = f(R`,`′)

No code for the product() procedure is included, because of its being just
an interface between the representation of T and R in the memory and the
Boolean matrix multiplication algorithm. A call to product(d, `, `′, `′′) should
have the following effect: for each B, C ∈ N , let MB and MC be d×d Boolean
matrices with MB

i−`+1,j−`′+1 = 1 if and only if B ∈ Ti,j, and MC
i−`′+1,j−`′′+1 = 1

if and only if C ∈ Ti,j; then the procedure computes MBC = MB ×MC and
for each MBC

i−`+1,j−`′′+1 = 1 it puts (B,C) into Ri,j. How exactly this is to be
done is a detail of implementation.

Lemma 1. Let ` < m < `′ < m′ with m − ` = m′ − `′ being a power of
two, and assume that Ti,j = {A | ai+1 . . . aj ∈ L(A) } for all i and j with
` 6 i < j < m, as well as for all i, j with `′ 6 i < j < m′. Furthermore,
assume that, for all ` 6 i < m and `′ 6 j < m′,

Ri,j = { (B,C) | ∃k (m 6 k < `′) : ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈ L(C) }.

Then complete(`,m, `′,m′) returns with Ti,j = {A | ai+1 . . . aj ∈ L(A) } for
all ` 6 i < m and `′ 6 j < m′.

Proof. Induction on m− `.
Basis m− ` = 1. In this case there is only one element to compute, T`,`′ ,

and the current value of R`,`′ is { (B,C) | ∃k (` < k < `′) : a`+1 . . . ak ∈
L(B), ak+1 . . . a`′ ∈ L(C) } = { (B, C) | a`+1 . . . a`′ ∈ L(B)L(C) }. Then
line 23 of complete() computes f(R`,`′) = {A | a`+1 . . . a`′ ∈ L(A) } and thus
sets T`,`′ correctly.

Induction step. Let ` < m < `′ < m′ with m − ` = m′ − `′ > 1 and
assume that complete(`1,m1, `2,m2) works correctly for m1 − `1 < m − `.
Consider the computation of complete(`,m, `′,m′), which begins with the
submatrices A1, A2, B1, A3, A4 and B2 of T already computed.

The first call to complete(`+m
2

,m, `′, `′+m′
2

) in line 11 requires that the

current value of each Ri,j with `+m
2

6 i < m and `′ 6 j < `′+m′
2

(that is, in the
C-submatrix) is { (B,C) | ∃k (m 6 k < `′) : ai+1 . . . ak ∈ L(B), ak+1 . . . aj ∈
L(C) }, which is true by the assumption. Then, by the induction hypothesis,
this call to complete() computes all values of T in the submatrix C.

8

compute(0, 8)
compute(0, 4)

compute(0, 2)
compute(2, 4)
complete(0, 2, 2, 4)

complete(1, 2, 2, 3)
T0,1 × T1,2

complete(0, 1, 2, 3)
T0,2 = f(R0,2)

T1,2 × T2,3

complete(1, 2, 3, 4)
T1,3 = f(R1,3)

T0,1 × T1,3

T0,2 × T2,3

complete(0, 1, 3, 4)
T0,3 = f(R0,3)

compute(4, 8)
compute(4, 6)
compute(6, 8)
complete(4, 6, 6, 8)

complete(5, 6, 6, 7)
T4,5 × T5,6

complete(4, 5, 6, 7)
T4,6 = f(R4,6)

T5,6 × T6,7

complete(5, 6, 7, 8)
T5,7 = f(R5,7)

T4,5 × T5,7

T4,6 × T6,7

complete(4, 5, 7, 8)
T4,7 = f(R4,7)

complete(0, 4, 4, 8)
complete(2, 4, 4, 6)

complete(3, 4, 4, 5)
T2,3 × T3,4

complete(2, 3, 4, 5)
T2,4 = f(R2,4)

T3,4 × T4,5

complete(3, 4, 5, 6)
T3,5 = f(R3,5)

T2,3 × T3,5

T2,4 × T4,5

complete(2, 3, 5, 6)
T2,5 = f(R2,5)(

T0,2 T0,3

T1,2 T1,3

)
×

(
T2,4 T2,5

T3,4 T3,5

)

complete(0, 2, 4, 6)
complete(1, 2, 4, 5)

T1,4 = f(R1,4)
T0,1 × T1,4

complete(0, 1, 4, 5)
T0,4 = f(R0,4)

T1,4 × T4,5

complete(1, 2, 5, 6)
T1,5 = f(R1,5)

T0,1 × T1,5

T0,4 × T4,5

complete(0, 1, 5, 6)
T0,5 = f(R0,5)(

T2,4 T2,5

T3,4 T3,5

)
×

(
T4,6 T4,7

T5,6 T5,7

)

complete(2, 4, 6, 8)
complete(3, 4, 6, 7)

T3,6 = f(R3,6)
T2,3 × T3,6

complete(2, 3, 6, 7)
T2,6 = f(R2,6)

T3,6 × T6,7

complete(3, 4, 7, 8)
T3,7 = f(R3,7)

T2,3 × T3,7

T2,6 × T6,7

complete(2, 3, 7, 8)
T2,7 = f(R2,7)(

T0,2 T0,3

T1,2 T1,3

)
×

(
T2,6 T2,7

T3,6 T3,7

)

(
T0,4 T0,5

T1,4 T1,5

)
×

(
T4,6 T4,7

T5,6 T5,7

)

complete(0, 2, 6, 8)
complete(1, 2, 6, 7)

T1,6 = f(R1,6)
T0,1 × T1,6

complete(0, 1, 6, 7)
T0,6 = f(R0,6)

T1,6 × T6,7

complete(1, 2, 7, 8)
T1,7 = f(R1,7)

T0,1 × T1,7

T0,6 × T6,7

complete(0, 1, 7, 8)
T0,7 = f(R0,7)

Figure 3: The general form of a computation for n = 7.

9

The call to product() in line 13 adds to each Ri,j with ` 6 i < `+m
2

and

`′ 6 j < `′+m′
2

(in the submatrix D1), all pairs (B, C) with ai+1 . . . ak ∈ L(B)
and ak+1 . . . aj ∈ L(C) and `+m

2
6 k < m. Taking into account that all

such pairs with m 6 k < `′ were already there by the assumption, Ri,j now
contains these pairs for all `+m

2
6 k < `′. Then the induction hypothesis is

applicable to the subsequent call to complete(`, `+m
2

, `′, `′+m′
2

) in line 14, and
so it computes all values of T in the D1-submatrix.

Symmetrically, the next lines 16–17 compute all Ti,j with `+m
2

6 i < m

and `′+m′
2

6 j < m′, that is, the submatrix D2.

At this moment, the elements Ri,j with ` 6 i < `+m
2

and `′+m′
2

6 j < m′

(the E-submatrix of R) contain all pairs (B,C) with ai+1 . . . ak ∈ L(B) and
ak+1 . . . aj ∈ L(C) and m 6 k < `′. The subsequent line 19 adds to each Ri,j

all pairs with `+m
2

6 k < m, and line 20 adds pairs with `′ 6 k < `′+m′
2

. With
these additions, each Ri,j contains all pairs (B, C) satisfying ai+1 . . . ak ∈
L(B) and ak+1 . . . aj ∈ L(C) for some `+m

2
6 k < `′+m′

2
. The conditions for

the call complete(`, `+m
2

, `′+m′
2

,m′) are now fulfilled, and, by the induction
hypothesis, line 21 constructs all elements Ti,j with ` 6 i < `+m

2
. This is the

last remaining submatrix E , and now Ti,j is computed for all ` 6 i < m and
`′ 6 j < m′, which completes the proof.

Lemma 2. The procedure compute(`,m), executed on ` and m with m − `
being a power of two, returns with Ti,j = {A | ai+1 . . . aj ∈ L(A) } for all
` 6 i < j < m.

Proof. Induction on m− `.
The base cases are m−` ∈ {2, 4}, in which the procedure compute() makes

no recursive calls. If m−` > 8, then compute() will first call itself to compute
the values of Ti,j for all ` 6 i < j < `+m

2
and for all `+m

2
6 i < j < m. If

m − ` = 2, then no values i, j are within these bounds. If m − ` = 4, then
`+m

2
= ` + 2 and m = ` + 4, and the only elements Ti,j satisfying these

conditions are T`,`+1 and T`+2,`+3, which are computed by the algorithm in
the beginning.

Accordingly, in all cases, when complete(`, `+m
2

, `+m
2

,m) is called, the
first condition of Lemma 1 is safisfied. Its second condition is that each Ri,j

contains all pairs (B,C) corresponding to some k with `+m
2

6 k < `+m
2

, and
since there are no such k’s, this condition is satisfied as well. Therefore,
Lemma 1 is applicable to this call, and it asserts that Ti,j will be correctly
set for all ` 6 i < `+m

2
and `+m

2
6 j < m, which are all the remaining values

of i and j.

It remains to estimate the running time of the algorithm. Let BM(n) be
the time needed to multiply two n× n Boolean matrices.

Lemma 3. Assuming that BM(n) = Ω(n2+ε) for some ε > 0, Algorithm 2
works in time Θ(BM(n)).

10

Proof. The first claim is that complete(`,m, `′,m′) works in time Θ(BM(m−
`)). Let T (m− `) denote its running time. Then T (n) = 4T (n

2
) + 4BM(n

2
),

and since BM(n
2
) = Ω(nlog2 4+ε) by assumption, the Master Theorem on

recursive algorithms asserts that T (n) = Θ(BM(n
2
)).

The proof that the running time of compute(`,m) is also Θ(BM(m− `))
follows by the same argument.

5 Notes on implementation

The restriction on the length of the string being a power of two minus one
has been very convenient in the above argument, but it would be rather
annoying for any implementation of the algorithm. This essential condition
can be circumvented as follows.

Let w = a1 . . . an be an input string of any length n > 1. The algorithm
shall construct a table of size (n + 1) × (n + 1), yet while doing so, it will
imagine a larger table of size rounded up to the next power of two. In the
main procedure, the call to compute(0, n + 1) in line 3 shall be replaced
with

3: compute(0, 2dlog2(n+1)e)
The procedure compute(`,m) may now be called for a number m pointing
beyond the end of the string, and it will split this range of positions into two
halves as usual. The subsequent recursive calls to compute(`, m) may have
the entire range of positions beyond the end of the string, in which case there
is nothing to compute. Accordingly, the procedure compute(`,m) is modified
to begin with a conditional statement checking that n > `+1, and returning
immediately if it does not hold. Similar changes are made to the procedure
complete(), which needs to be invoked only if there is at least one symbol
in the second part. For this purpose, complete(`,m, `′,m′) shall begin with
testing that n > `′, returning otherwise.

Finally, the calls to the matrix multiplication procedure will now also
occasionally refer to submatrices lying partially or completely beyond the
(n+1)× (n+1) matrices T and R. If one of the matrices being multiplied is
completely beyond the end of the string, this product need not be computed.
If it is only partially beyond, then it is sufficient to multiply only the portions
of the matrices that fit into the (n+1)×(n+1) area. For instance, consider the
call to product(m−`

2
, `, `′, `′+m′

2
) in line 19, in which the m−`

2
× m−`

2
submatrix

B1 beginning at (`, `′) is multiplied by the m−`
2
×m−`

2
submatrix D2 beginning

at (`′, `′+m′
2

). Assume that `′+m′
2

6 n < m. Then the second matrix, D2, does
not entirely fit into the (n+1)×(n+1) area, and the algorithm shall multiply
B1 by the m−`

2
×(

n− `′+m′
2

)
rectangular matrix beginning at (`′, `′+m′

2
). Their

product is also a matrix of size m−`
2
× (

n − `′+m′
2

)
, which is placed to R

beginning at (`, `′+m′
2

). Note that if n is strictly less than `′+m′
2

, then this
product is not computed at all. Similar modifications apply to all matrix

11

products computed by the algorithm.

Another question concerns the possible data structures for the algorithm.
In general, not everything mentioned in the theoretical presentation of the
algorithm would need to be computed for an actual grammar. First assume
that the grammar is context-free. In this case, whenever a pair (B,C) is
added to Ri,j, it will eventually make all nonterminals A with a rule A → BC
be added to Ti,j; and if there are no such nonterminals, then there is no
need to consider the pair (B,C). Accordingly, the data structure R is not
needed at all, and all matrix multiplication procedures can output their result
directly into the appropriate elements of T .

If the grammar is conjunctive or Boolean, there is a genuine need for using
R, yet only for the rules involving multiple conjuncts. Simple context-free
rules with a unique conjunct can be treated in the simplified way described
above, with all matrix products being directly flushed into T . If there exists
a rule A → BC& . . . with at least two conjuncts, or any rule A → ¬BC& . . .,
then all data about the pair (B, C) needs to be stored in R as described in
the algorithm. This data shall be used in the calculation of f , which takes
into account the complex rules.

With this optimization of the algorithm, the following data structures
naturally come to mind:

• For each nonterminal A ∈ N , an (n + 1) × (n + 1) upper-triangular
Boolean matrix TA, with TA

i,j representing the membership of A in the
set Ti,j. All matrix products computed in the algorithm shall have some
submatrices of this matrix as the arguments.

• For every such pair (B, C) ∈ N × N that occurs in multiple-conjunct
rules A → BC& . . . or is negated in any rule A → ¬BC& . . ., the
algorithm maintains an (n + 1) × (n + 1) upper-triangular Boolean
matrix RBC .

6 Generalized algorithm

Valiant’s algorithm has been presented in a generalized form, in which it
computes a certain kind of closure of a matrix over a semiring. While the
updated algorithm no longer uses any semiring, its computation can also be
generalized to operations over abstract structures.

Let X and Y be two sets, let ◦ : X × X → Y be a binary operator
mapping pairs of elements of X to elements of Y , let t : Y × Y → Y be
an associative and commutative binary operator on Y , and let f : Y → X
be any function. Let x = x1 . . . xn−1 with xi ∈ X be a sequence of elements
of X and consider the matrix T = T (x) ∈ Xn×n defined by the following

12

equations:

Ti−1,i = xi

Ti,j = f
(j−1⊔

k=i+1

Ti,k ◦ Tk,j

)

Theorem 1. There is an algorithm, which, given a string x = x1 . . . xn−1 of
length n− 1, computes the matrix T (x) in time O(M(n)).

In this generalized form, the algorithm can be applied to different families
of grammars. For example, for context-free grammars in the binary normal
form one can set X = 2N , Y = 2N×N , ◦ = ×, t = ∪, xi = {A ∈ N | A →
ai ∈ P } and f(y) = {A ∈ N | ∃A → BC ∈ P : (B, C) ∈ y }. For Boolean
grammars, the only difference is in f , which has to take into account more
complicated Boolean logic in the rules.

The same extended algorithm can be applied to probabilistic context-free
grammars, as well as to the fuzzy generalization of Boolean grammars defined
by Ésik and Kuich [5].

The next section presents an application of the generalized algorithm to
an alternative, more general definition of Boolean grammars.

7 Application to the well-founded semantics

The well-founded semantics of Boolean grammars was proposed by Kountou-
riotis, Nomikos and Rondogiannis [7]. This semantics is applicable to every
syntactically valid Boolean grammar, and defines a three-valued language
generated by each nonterminal symbol.

Three-valued languages are mappings from Σ∗ to {0, 1
2
, 1}, where 1 and 0

indicate that a string definitely is or definitely is not in the language, while 1
2

stands for “undefined”. Equivalently, three-valued languages can be defined
by pairs (L,L′) with L ⊆ L′ ⊆ Σ∗, where L and L′ represent a lower bound
and an upper bound on a language that is not known precisely. A string in
both L and L′ definitely is in the language, a string belonging to neither of
them definitely is not, and if a string is in L′ but not in L, its membership is
not defined. In particular, if L = L′, then the language is completely defined,
and a pair (∅, Σ∗) means a language about which nothing is known. The set
of such pairs shall be denoted by 3Σ∗ .

Boolean operations and concatenation are generalized from two-valued to
three-valued languages as follows:

(K,K ′) ∪ (L,L′) = (K ∪ L, K ′ ∪ L′)

(K,K ′) ∩ (L,L′) = (K ∩ L, K ′ ∩ L′)

(L,L′) = (L′, L)

(K,K ′)(L,L′) = (KL, K ′L′)

13

Two different partial orderings on three-valued languages are defined.
First, they can be compared with respect to the degree of truth:

(K,K ′)vT (L,L′) if K ⊆ L and K ′ ⊆ L′.

This means that whenever a string belongs to the lesser language, it must
be in the greater language as well, and if the membership of a string in the
lesser language is uncertain, then it must be either uncertain or true for the
greater language.

The other ordering is with respect to the degree of information:

(K, K ′)vI(L,L′) if K ⊆ L and L′ ⊆ K ′.

It represents the fact that (K, K ′) and (L, L′) are approximations of the
same language, and that (L,L′) is more precise, in the sense of having fewer
uncertain strings. If a string is definitely known to belong or not to belong
to the lesser language, then it must have the same status in the greater
language, and if a string is uncertain in the lesser language, then the greater
language might have any value of this string (that is, keep it as uncertain or
define it as a member or a non-member).

Both orderings are extended to vectors of three-valued languages.
The truth-ordering has a bottom element ⊥T =

(
(∅,∅), . . . , (∅,∅)

)
,

that is, every language is completely defined as ∅; the top element is(
(Σ∗, Σ∗), . . . , (Σ∗, Σ∗)

)
. For the information-ordering, the bottom element

is ⊥I =
(
(∅, Σ∗), . . . , (∅, Σ∗)

)
, that is, the languages are fully undefined.

There is no top element for vI .

Lemma 4. Concatenation and all Boolean operations (including complemen-
tation) are monotone and continuous with respect to the information order-
ing. The same applies to every combination of these operations.

Lemma 5. Concatenation, union and intersection, as well as every combina-
tion thereof, are monotone and continuous with respect to the truth ordering.

Definition 3. Let G = (Σ, N, P, S) be a Boolean grammar, let N =
{A1, . . . , An} and define a function ϕ : (3Σ∗)n → (3Σ∗)n by

[ϕ(L)]A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[m⋂
i=1

αi(L) ∩
n⋂

j=1

βj(L)

]
(for each A ∈ N)

Definition 4 (Well-founded semantics [7]). Let G = (Σ, N, P, S) be a
Boolean grammar, let N = {A1, . . . , An}. Fix any vector of three-valued
languages K = ((K1, K

′
1), . . . , (L1, L

′
1)) and define a function ΘK : (3Σ∗)n →

(3Σ∗)n by

[ΘK(L)]A =
⋃

A→α1&...&αm&¬β1&...&¬βn∈P

[m⋂
i=1

αi(L) ∩
n⋂

j=1

βj(K)

]
(for each A ∈ N)

14

Furthermore, define

Ω(K) = T
⊔

`>0

Θ`
K(⊥T).

and let
M = I

⊔

k>0

Ωk(⊥I)

Then, according to the well-founded semantics of Boolean grammars,
LG(A) = [M]A.

The binary normal form has the following generalization to the well-
founded semantics:

Proposition 1 (Kountouriotis et al. [7]). Every Boolean grammar, as in Def-
inition 4, can be effectively transformed to a grammar in the binary normal
form, in which every rule is of the form

A → B1C1& . . . &BnCm&¬D1E1& . . . &¬DnEn&¬ε

(m > 1, n > 0, Bi, Ci, Dj, Ej ∈ N)

A → a (a ∈ Σ)

A → a&U (a ∈ Σ)

U → ¬U (a special symbol generating uncertainty)

S → ε (only if S does not appear in right-hand sides of rules)

The transformation maintains the three-valued language generated by the
grammar.

Kountouriotis et al. [7] used this normal form to construct an extension of
the cubic-time parsing algorithm to the well-founded semantics, which, given
an input string w, computes its membership status as a value in {0, 1

2
, 1}.

The data constructed in that algorithm can be computed more efficiently
using matrix multiplication, which will now be demonstrated by encoding it
into the abstract form of the proposed algorithm. Let

X = 3N ,

Y = 3N×N ,

(U1, V1) ◦ (U2, V2) = (U1 × U2, V1 × V2),

(Q1, R1) t (Q2, R2) = (Q1 ∪Q2, R1 ∪R2),

I(a) = ({A | A → a ∈ P }, {A | A → a ∈ P or A → a&U ∈ P }),
and finally

f(Q,R) =
({A | ∃A → B1C1& . . . &BmCm&¬D1E1& . . . &¬Dm′Em′&¬ε :

(Bi, Ci) ∈ Q and (Dj, Ej) /∈ R for all applicable i, j},
{A | ∃A → B1C1& . . . &BmCm&¬D1E1& . . . &¬Dm′Em′&¬ε :

(Bi, Ci) ∈ R and (Dj, Ej) /∈ Q for all applicable i, j}).

15

References

[1] L. Adleman, K. S. Booth, F. P. Preparata, W. L. Ruzzo, “Improved time
and space bounds for Boolean matrix multiplication”, Acta Informatica
11:1 (1978), 61–70.

[2] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, I. A. Faradzhev, “On
economical construction of the transitive closure of an oriented graph”,
Soviet Mathematics Doklady, 11 (1970), 1209–1210.

[3] M. D. Atkinson, N. Santoro, “A practical algorithm for boolean matrix
multiplication”, Information Processing Letters, 29:1 (1988), 37–38.

[4] D. Coppersmith, S. Winograd, “Matrix multiplication via arithmetic
progressions”, Journal of Symbolic Computation, 9:3 (1990), 251–280.

[5] Z. Ésik, W. Kuich, “Boolean fuzzy sets”, International Journal of Foun-
dations of Computer Science, 18:6 (2007), 1197–1207.

[6] M. A. Harrison, Introduction to Formal Language Theory, Addison-
Wesley, 1978.

[7] V. Kountouriotis, Ch. Nomikos, P. Rondogiannis, “Well-founded se-
mantics for Boolean grammars”, Information and Computation, 207:9
(2009), 945–967.

[8] L. Lee, “Fast context-free grammar parsing requires fast Boolean matrix
multiplication”, Journal of the ACM, 49:1 (2002), 1–15.

[9] A. Okhotin, “Conjunctive grammars”, Journal of Automata, Languages
and Combinatorics, 6:4 (2001), 519–535.

[10] A. Okhotin, “Boolean grammars”, Information and Computation, 194:1
(2004), 19–48.

[11] A. Okhotin, “Generalized LR parsing algorithm for Boolean grammars”,
International Journal of Foundations of Computer Science, 17:3 (2006),
629–664.

[12] A. Okhotin, “Recursive descent parsing for Boolean grammars”, Acta
Informatica, 44:3–4 (2007), 167–189.

[13] A. Okhotin, “Unambiguous Boolean grammars”, Information and Com-
putation, 206 (2008), 1234–1247.

[14] W. Rytter, “Fast recognition of pushdown automaton and context-free
languages”, Information and Control 67:1–3 (1986), 12–22.

16

http://dx.doi.org/10.1007/BF00264600
http://dx.doi.org/10.1007/BF00264600
http://dx.doi.org/10.1016/0020-0190(88)90130-5
http://dx.doi.org/10.1016/0020-0190(88)90130-5
http://dx.doi.org/10.1142/S0129054107005248
http://dx.doi.org/10.1016/j.ic.2009.05.002
http://dx.doi.org/10.1016/j.ic.2009.05.002
http://doi.acm.org/10.1145/505241.505242
http://doi.acm.org/10.1145/505241.505242
http://dx.doi.org/10.1016/j.ic.2004.03.006
http://dx.doi.org/10.1142/S0129054106004029
http://dx.doi.org/10.1007/s00236-007-0045-0
http://dx.doi.org/10.1016/j.ic.2008.03.023
http://dx.doi.org/10.1016/S0019-9958(85)80024-3
http://dx.doi.org/10.1016/S0019-9958(85)80024-3

[15] W. Rytter, “Context-free recognition via shortest paths computation:
a version of Valiant’s algorithm”, Theoretical Computer Science, 143:2
(1995), 343–352.

[16] V. Strassen, “Gaussian elimination is not optimal”, Numerische Math-
ematik, 13 (1969), 354–356.

[17] L. G. Valiant, “General context-free recognition in less than cubic time”,
Journal of Computer and System Sciences, 10:2 (1975), 308–314.

17

http://dx.doi.org/10.1016/0304-3975(94)00265-K
http://dx.doi.org/10.1016/0304-3975(94)00265-K
http://dx.doi.org/10.1016/S0022-0000(75)80046-8

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku

• Department of Information Technology

• Department of Mathematical Sciences

Åbo Akademi University

• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration

• Institute of Information Systems Sciences

ISBN 978-952-12-2330-3
ISSN 1239-1891

	Introduction
	Boolean grammars
	Simple cubic-time parsing
	Parsing reduced to matrix multiplication
	Notes on implementation
	Generalized algorithm
	Application to the well-founded semantics

