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Abstract

Systems of equations with sets of integers as unknowns are considered. It is
shown that the class of sets representable by unique solutions of equations
using the operations of union and addition, defined as S + T = {m + n |
m ∈ S, n ∈ T}, and with ultimately periodic constants is exactly the class of
hyper-arithmetical sets. Equations using addition only can represent every
hyper-arithmetical set under a simple encoding. All hyper-arithmetical sets
can also be represented by equations over sets of natural numbers equipped
with union, addition and subtraction S−· T = {m− n | m ∈ S, n ∈ T, m >
n}. Testing whether a given system has a solution is Σ1

1-complete for each
model. These results, in particular, settle the expressive power of the most
general types of language equations, as well as equations over subsets of free
groups.

Keywords: Language equations, computability, arithmetical hierarchy, hyper-
arithmetical hierarchy.
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1 Introduction

Language equations are equations with formal languages as unknowns. The
simplest such equations are the context-free grammars [4], as well as their
generalization, the conjunctive grammars [16]. Many other kinds of language
equations have been studied in the recent years, see a survey by Kunc [11],
and most of them were found to have strong connections to computability.
In particular, for equations with concatenation and Boolean operations it
was shown by Okhotin [20, 18] that the family of languages representable by
their unique (least, greatest) solutions is exactly the class of recursive (r.e.,
co-r.e.) sets. A computationally universal equation of the simplest form
was constructed by Kunc [10], who proved that the greatest solution of the
equation XL = LX, where L ⊆ {a, b}∗ is a finite constant language, may be
co-r.e.-complete.

A seemingly trivial case of language equations over a unary alphabet
Ω = {a} has recently come in the focus of attention. Strings over such an al-
phabet may be regarded as natural numbers, languages accordingly become
sets of numbers, and concatenation of such languages turns into elementwise
addition of sets. As established by the authors [8], these equations are com-
putationally as powerful as language equations over a general alphabet: a
set of natural numbers is representable by a unique solution of a system with
union and concatenation (elementwise addition) if and only if it is recursive.
Furthermore, even without the union operation these equations remain al-
most as powerful [9]: for every recursive set S ⊆ N, its encoding σ(S) ⊆ N
satisfying S = {n | 16n + 13 ∈ σ(S)} can be represented by a unique solu-
tion of a system using addition only, as well as ultimately periodic constants.
As shown by Lehtinen and Okhotin [12], another, more complicated encod-
ing π(S) of any recursive set of natural numbers S can be represented by
a unique solution of a system of two equations X + X + C = X + X + D,
X + E = F , where C, D, E, F ⊆ N are ultimately periodic constants. Be-
sides representing the expressive power of language equations in a system of
an ultimately simple form, these equations over sets of numbers provide yet
another instance of computational universality in a basic arithmetical object.

However, it must be noted that the cases of language equations consid-
ered in the literature surveyed above, do not exhaust all possible language
equations. The recursive upper bound on unique solutions [20] is applica-
ble only to equations with continuous operations on languages. Most of the
basic language-theoretic operations, such as concatenation, Kleene star, all
Boolean operations, non-erasing homomorphisms, etc., are indeed continu-
ous, and thus subject to the above methods. On the other hand, it has al-
ready been demonstrated that using the simplest non-continuous operations,
such as erasing homomorphisms or quotient [19], in language equations leads
out of the class of recursive solutions. In particular, quotient with regular
constants was used to represent all sets in the arithmetical hierarchy [19].
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How expressive can language equations be, if they are not restricted to
continuous operations? As long as operations on languages are expressible
in first-order arithmetic (which is true for every common operation), it is
not hard to prove that unique solutions of equations with these operations
always belong to the family of hyper-arithmetical sets, which are, roughly
speaking, the sets representable in first-order Peano arithmetic augmented
with quantifier prefixes of unbounded length [15, 21, 22]. This paper shows
that this rather obvious upper bound is in fact reached already in the case
of a unary alphabet.

To demonstrate this, two abstract models dealing with sets of numbers
shall be introduced. The first model are equations over sets of natural num-
bers with addition S + T = {m + n | m ∈ S, n ∈ T} and subtraction
S−· T = {m − n | m ∈ S, n ∈ T, m > n} (corresponding to concatena-
tion and quotient of unary languages), as well as set-theoretic union. The
other model has sets of integers, including negative numbers, as unknowns,
and the allowed operations are addition and union. The main result of this
paper is that unique solutions of systems of either kind can represent every
hyper-arithmetical set of numbers.

The base of the construction is the authors’ earlier result [8] on repre-
senting every recursive set by equations over sets of natural numbers with
union and addition. In Section 2, this result is adapted to the new models
introduced in this paper. The next task is representing every set in the arith-
metical hierarchy, which is achieved in Section 3 by simulating existential and
universal quantification applied to a recursive predicate. The elements of this
construction are then used in Section 4 for the construction of equations rep-
resenting hyper-arithmetical sets. The constructed equations are encoded in
Section 5 using equations over sets of integers with addition only and periodic
constant sets. The last question considered in the paper is the complexity of
testing whether a given systems of equations has a solutions: in Section 6,
this problem is proved to be Σ1

1-complete in the analytical hierarchy (vs. Π0
1-

complete for language equations with continuous operations [20, 8]).

This result brings to mind a study by Robinson [21], who considered equa-
tions, in which the unknowns are functions from N to N, the only constant
is the successor function and the only operation is superposition, and proved
that a function is representable by a unique solution of such an equation if
and only if it is hyper-arithmetical. Though these equations deal with ob-
jects different from sets of numbers, there is one essential thing in common:
in both results, unique solutions of equations over second-order arithmetical
objects represent hyper-arithmetical sets.

Some more related work can be mentioned. Halpern [5] studied the deci-
sion problem of whether a formula of Presburger arithmetic with set variables
is true for all values of these set variables, and showed that it is Π1

1-complete.
The equations studied in this paper can be regarded as a small fragment of
Presburger arithmetic with set variables.
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Another relevant model are languages over free groups, which have
been investigated, in particular, by Anisimov [3] and by d’Alessandro and
Sakarovitch [2]. Equations over sets of integers are essentially equations for
languages over a monogenic free group.

An important special case of equations over sets of numbers are expres-
sions and circuits over sets of numbers, which are equations without iterated
dependencies. Expressions and circuits over sets of natural numbers were
studied by McKenzie and Wagner [14], and a variant of these models defined
over sets of integers was investigated by Travers [23].

2 Equations and their basic expressive power

The subject of this paper are systems of equations of the form




ϕ1(X1, . . . , Xn) = ψ1(X1, . . . , Xn)
...

ϕm(X1, . . . , Xn) = ψm(X1, . . . , Xn)

where Xi ⊆ Z are unknown sets of integers, and the expressions ϕi and
ψi use such operations as union, intersection, complementation, as well as
the main arithmetical operation of elementwise addition of sets, defined as
S + T = {m + n | m ∈ S, n ∈ T}. Intersection has a higher precedence
than union, while addition has the highest precedence, so that an expression
X∪Y+Z∩U should be read as X∪((Y +Z)∩U). The constant sets contained
in a system sometimes will be singletons only, sometimes any ultimately
periodic constants1 will be allowed, and in some cases the constants will be
drawn from wider classes of sets, such as all recursive sets.

Systems over sets of natural numbers shall be considered as well. These
systems have subsets of N = {0, 1, 2, . . .} both as unknowns and as constant
languages. Besides addition and Boolean operations, subtraction S−· T =
{m− n |m ∈ S, n ∈ T, m > n} shall be occasionally used.

Consider systems with a unique solution. Every such system can be
regarded as a specification of a set, and for every type of systems, a natural
question is, what kind of sets can be represented by unique solutions of
these systems. For equations over sets of natural numbers with addition and
Boolean operations, these are the recursive sets:

Proposition 1 (Jeż, Okhotin [8, Thm. 4]). The family of sets of natural
numbers representable by unique solutions of systems of equations of the
form ϕi(X1, . . . , Xn) = ψi(X1, . . . , Xn) with union, addition and singleton
constants, is exactly the family of recursive sets. Using other Boolean oper-
ations and any recursive constants does not increase their expressive power.

1A set of integers S ⊆ Z is ultimately periodic if there exist numbers d > 0 and p > 1,
such that n ∈ S if and only if n + p ∈ S for all n with |n| > d.
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It is worth mentioning that addition and Boolean operations on sets
of natural numbers have an important property of continuity : for every
function ϕ : (2N)n → 2N defined as a superposition of these operations,

and for every convergent sequence {(S(i)
1 , . . . , S

(i)
n )}∞i=1 of n-tuples of sets2,

lim ϕ(S
(i)
1 , . . . , S

(i)
n ) exists and coincides with ϕ

(
lim(S

(i)
1 , . . . , S

(i)
n )

)
. This

property is crucial for the recursive upper bound in Proposition 1 to hold.
Turning to subtraction of sets of natural numbers, this operation is

not continuous, as witnessed by a sequence S(i) = {i} with lim S(i) = ∅
and a function ϕ(X) = X −· X, for which ϕ(lim S(i)) = ϕ(∅) = ∅, but
lim ϕ(S(i)) = lim{0} = {0}. Addition of sets of integers is also non-
continuous. Thus systems of equations with these operations are not subject
to the upper bound methods behind Proposition 1. An upper bound on
their expressive power can be obtained by reformulating a given system in
the notation of first-order arithmetic.

Lemma 1. For every system of equations in variables X1, . . . Xn using op-
erations expressible in first-order arithmetic there exists an arithmetical for-
mula Eq(X1, . . . , Xn), with free second-order variables X1, . . . , Xn (sets of
numbers), and with any bound first-order variables (numbers), such that
Eq(S1, . . . , Sn) is true if and only if Xi = Si is a solution of the system.

Constructing this formula is only a matter of reformulation. As an ex-
ample, an equation Xi = Xj + Xk is represented by

(∀n)n ∈ Xi ↔
[
(∃n′)(∃n′′)n = n′ + n′′ ∧ n′ ∈ Xj ∧ n′′ ∈ Xk

]
.

Now consider the following formulae of second-order arithmetic:

ϕ(x) = (∃X1) . . . (∃Xn)
[
Eq(X1, . . . , Xn) ∧ x ∈ X1

]

ϕ′(x) = (∀X1) . . . (∀Xn)
[
Eq(X1, . . . , Xn) → x ∈ X1

]

The formula ϕ(x) represents the membership of x in some solution of the
system, while ϕ′(x) states that every solution of the system contains x. Since,
by assumption, the system has a unique solution, these two formulae are
equivalent and each of them specifies the first component of this solution.
Furthermore, ϕ is a Σ1

1-formula and ϕ′ is a Π1
1-formula, and accordingly the

solution belongs to the class ∆1
1 = Σ1

1 ∩ Π1
1, known as the class of hyper-

arithmetical sets [15, 22].

Lemma 2. For every system of equations in variables X1, . . . Xn using op-
erations and constants expressible in first-order arithmetic that has a unique
solution Xi = Si, the sets Si are hyper-arithmetical.

2Such a sequence is called convergent if for every number m ∈ N and for every j-th
component, m belongs either to finitely many S

(i)
j ’s or to all except finitely many of them.
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Though this looks like a very rough upper bound, this paper actually
establishes the converse, that is, that every hyper-arithmetical set is repre-
sentable by a unique solution of such equations. The result shall apply to
equations of two kinds: over sets of integers with union and addition, and
over sets of natural numbers with union, addition and subtraction. In order
to establish the properties of both families of equations within a single con-
struction, the next lemma introduces a general form of systems that can be
converted to either of the target types:

Lemma 3. Consider any system of equations ϕ(X1, . . . , Xm) =
ψ(X1, . . . , Xm) and inequalities ϕ(X1, . . . , Xm) ⊆ ψ(X1, . . . , Xm) over sets
of natural numbers that uses the following operations: union; addition of a
recursive constant; subtraction of a recursive constant; intersection with a re-
cursive constant. Assume that the system has a unique solution Xi = Si ⊆ N.
Then there exist:

1. a system of equations over sets of natural numbers in variables
X1, . . . , Xm, Y1, . . . , Ym′ using the operations of addition, subtraction
and union and singleton constants, which has a unique solution with
Xi = Si;

2. a system of equations over sets of integers in variables
X1, . . . , Xm, Y1, . . . , Ym′ using the operations of addition and union,
singleton constants and the constants N and −N, which has a unique
solution with Xi = Si.

Inequalities ϕ ⊆ ψ can be simulated by equations ϕ ∪ ψ = ψ. For equa-
tions over sets of natural numbers, each recursive constant is represented
according to Proposition 1, and this is sufficient to implement each addi-
tion or subtraction of a recursive constant by a large subsystem using only
singleton constants. In order to obtain a system over sets of integers, a
straightforward adaptation of Proposition 1 is needed:

Lemma 3.1. For every recursive set S ⊆ N there exists a system of equations
over sets of integers in variables X1, . . . , Xn using union, addition, singleton
constants and constant N, such that the system has a unique solution with
X1 = S.

This is essentially the system given by Proposition 1, with additional
equations Xi ⊆ N.

A difference X −· R for a recursive constant R ⊆ N is represented as
(X + (−R)) ∩N, where the set −R = {−n | n ∈ R} is expressed by taking a
system for R and applying the following transformation:

Lemma 3.2 (Representing sets of opposite numbers). Consider a system
of equations over sets of integers, in variables X1, . . . , Xn, using Boolean
operations, addition and any constant sets, which has a unique solution Xi =
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Si. Then the same system, with each constant C ⊆ Z replaced by the set of
the opposite numbers −C, has the unique solution Xi = −Si.

Proof. Consider that for every expression ϕ(X1, . . . , Xn) using addition,
Boolean operations and constants, ϕ(−S1, . . . ,−Sn) = −ϕ(S1, . . . , Sn) for
any sets Si: this can be proved by induction on the structure of ϕ. There-
fore, if (S1, . . . , Sn) is a solution of the original system, then (−S1, . . . ,−Sn)
is a solution of the constructed system. The converse claim is symmetric and
holds by the same argument.

The last step in the proof of Lemma 3 is eliminating intersection with
recursive constants. This is done as follows:

Lemma 3.3 (Intersection with constants). Let R ⊆ N be a recursive
set. Then there exists a system of equations over sets of natural num-
bers using union, addition and singleton constants, which has variables
X, Y, Y ′, Z1, . . . , Zm, such that the set of solutions of this system is

{
(X = S, Y = S ∩R, Y ′ = S ∩R, Zi = Si)

∣∣ S ⊆ N }
,

where S1, . . . , Sm are some fixed sets.

In plain words, the constructed system works as if an equation Y = X∩R
(and also as another equation Y ′ = X ∩R, which may be ignored), and does
so without employing the intersection operation.

Proof. By Proposition 1, for each recursive set R (given by a Turing machine
T recognizing it and halting on every input) one can efficiently construct a
system with a unique solution, such that R is one of its components. As
the complement of a recursive set is effectively recursive, the set R is rep-
resentable as well. So consider a system with a unique solution, such that
R and R are the sets assigned to variables R and R in the solution. Add
equations

Y ⊆ R, Y ′ ⊆ R, Y ∪ Y ′ = X.

As Y ⊆ R and Y ′ ∪ Y = X, Y ⊆ X ∩R and similarly Y ′ ⊆ X ∩R. Consider
the following chain of inequalities

X = Y ∪ Y ′ ⊆ (X ∩R) ∪ (X ∩R) = X ∩ (R ∪R) = X.

Then all the inequalities are in fact equalities and therefore

Y = X ∩R Y ′ = X ∩R.

In particular, every solution of the system is of the form stated in the propo-
sition.
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This completes the proof of Lemma 3.
So far systems over sets of integers have been employed only for repre-

senting sets of natural numbers. A set of integers, both positive and negative,
can be specified by first representing its positive and negative subsets indi-
vidually:

Lemma 4 (Assembling positive and negative subsets). Let S ⊆ Z and as-
sume that the sets S∩N and (−S)∩N are representable by unique solutions of
equations over sets of integers using union, addition, and ultimately periodic
constants. Then S is representable by equations of the same kind.

Proof. Consider the systems representing S+ = S ∩ N and S− = (−S) ∩ N.
Applying the transformation of Lemma 3.2 to the system for S− and com-
bining these two systems into one leads to a system of equations in variables
X+, X−, X1, . . . , Xm, which has a unique solution with X+ = S ∩ N and
X− = S ∩ (−N). It remains to add one more equation

X = X+ ∪X−

to obtain a unique solution with X = S.

In conjunction with Proposition 1 and Lemma 3, the above Lemma 4
asserts the representability of every recursive set of integers. In the following,
these results shall be extended to hyper-arithmetical sets. To that goal, the
rest of this paper describes the construction of systems of the form required
by Lemma 3.

The following two technical properties of equations over sets of numbers
will be useful in proving the correctness of constructions. The first property
has earlier been established for sets of natural numbers with the operations
of union, intersection and addition, and it is now augmented to accommodate
for the subtraction operation:

Proposition 2 ([7, Lem. 4]). Let ϕ(X) be an expression defined as a com-
position of the following operations: (i) the variable X; (ii) constant sets;
(iii) union; (iv) intersection with a constant set; (v) addition of a constant
set; (vi) subtraction of a constant set. Then the function ϕ : 2N → 2N is
distributive over infinite union, that is, ϕ(X) =

⋃
n∈X ϕ({n}).

The existing proof in the cited paper can be straightforwardly extended
for the extra operation.

3 Representing the arithmetical hierarchy

A set of integers is called arithmetical, if the membership of a number n in
this set is given by a formula ϕ(n) of first-order Peano arithmetic. Each
arithmetical set can be represented by a recursive relation with a quantifier
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prefix, and arithmetical sets form the arithmetical hierarchy based on the
number of quantifier alternations in such a formula. At the bottom of the
hierarchy, there are the recursive sets, and every next level is comprised of
two classes, Σ0

k or Π0
k, which correspond to the cases of the first quantifier’s

being existential or universal. For every k > 0, a set is in Σ0
k if it can be

represented as
{w | ∃x1∀x2 . . . Qkxk R(w, x1, . . . , xk)}

for some recursive relation R, where Qk = ∀ if k is even and Qk = ∃ if k is odd.
A set is in Π0

k if it admits a similar representation with the quantifier prefix
∀x1∃x2 . . . Qkxk. By the duality, Π0

k = {S | S ∈ Σ0
k}. The sets Σ0

1 and Π0
1

are the recursively enumerable sets and their complements, respectively. The
arithmetical hierarchy is known to be strict: Σ0

k ⊂ Σ0
k+1 and Π0

k ⊂ Π0
k+1 for

every k > 0. Furthermore, for every k > 0 the inclusion Σ0
k∪Π0

k ⊂ Σ0
k+1∩Π0

k+1

is proper, that is, there is a gap between the k-th and (k + 1)-th level.
For this paper, the definition of arithmetical sets shall be arithmetized in

base-7 notation3 as follows: a set S ⊆ N is in Σ0
k if it is representable as

S = { (w)7 | ∃x1 ∈ {3, 6}∗ ∀x2 ∈ {3, 6}∗ . . . Qkxk ∈ {3, 6}∗ :

(1x11x2 . . . 1xk1w)7 ∈ R},
for some recursive set R ⊆ N, where (w)7 for w ∈ {0, 1, . . . , 6}∗ denotes
the natural number with base-7 notation w. It is usually assumed that w
has no leading zeroes, that is, w ∈ Ω∗

7 \ 0Ω∗
7. In particular, the number 0

is denoted by w = ε. The strings xi ∈ {3, 6}∗ represent binary notation of
some numbers, where 3 stands for zero and 6 stands for one. The notation
(x)2 for x ∈ {3, 6}∗ shall be used to denote the number represented by this
encoding. The digits 1 act as separators. Throughout this paper, the set of
base-7 digits {0, 1, . . . , 6} shall be denoted by Ω7.

of a system of equations representing the set S In general, the construction
begins with representing R, and proceeds with evaluating the quantifiers,
eliminating the prefixes 1x1, 1x2, and so on until 1xk. In the end, all numbers
(1w)7 with (w)7 ∈ S will be produced. These manipulations can be expressed
in terms of the following three functions, each mapping a set of natural
numbers to a set of natural numbers:

Remove1(X) = {(w)7 | w ∈ Ω∗
7 \ 0Ω∗

7, (1w)7 ∈ X},
E(X) = {(1w)7 | ∃x ∈ {3, 6}∗ : (x1w)7 ∈ X},
A(X) = {(1w)7 | ∀x ∈ {3, 6}∗ : (x1w)7 ∈ X}.

Then,

S = Remove1(Qk(. . . Remove1(A(Remove1(E(Remove1(R))))) . . .)).

3Base 7 is the smallest base, for which the details of the below constructions could be
conveniently implemented.
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The expression converting numbers of the form (1w)7 to (w)7 is con-
structed using a variant of the previously used method of adding a set and
immediately intersecting with another set to filter out unintended sums [6, 7].
Though in this case addition is replaced by subtraction, the general method
remains the same:

Lemma 5 (Removing leading digit 1). The value of the expression

⋃

t∈{0,1}

[
(X ∩ (1Ωt

7(Ω
2
7)
∗ \ 10Ω∗

7)7)−· (10∗)7

] ∩ (Ωt
7(Ω

2
7)
∗ \ 0Ω∗

7)7

on any S ⊆ N is Remove1(S) = {(w)7 | (1w)7 ∈ S}.
Proof. Denote the given expression by ϕ(X). According to Proposition 2, it
is distributive over infinite union, so it is sufficient to evaluate it on a single
number n, and then obtain ϕ(S) as

⋃
n∈S ϕ({n}).

The expression is designed to process a number n = (1w)7 with w ∈
Ω∗

7 \ 0Ω∗
7 by subtracting the particular number (10|w|)7, which removes the

leading digit as intended:

1 w1 w2 . . . w|w|
− 1 0 0 . . . 0

w1 w2 . . . w|w|

However, the subtraction of the entire set (10∗)7 yields as many as |w| other
differences, in which 1 is subtracted from other digits, and all these differences
need to be filtered out by the final intersection. Note that since the second
leading digit of n is nonzero by assumption, all these erroneous differences
have the same number of base-7 digits as n, while the correct difference has
one less digit. For this reason, the cases of an even and an odd number of
digits in n are treated separately, and the final intersection verifies that the
number of digits modulo two has changed, which happens only in the correct
differences.

The number (1)7 = 1 is processed correctly, because the only possible
subtraction is (1)7 − (1)7 = (ε)7, and hence ϕ({1}) = {0} = {(ε)7}, as in
the definition of Remove1.

Assume that n = (1iw)7 for some i ∈ Ω7 \ {0} and w ∈ Ω∗
7. Then the

only nonempty term in ϕ({n}) is the one corresponding to t = |iw| (mod 2),
and accordingly

ϕ({n}) =
[
({n} ∩ (1Ωt

7(Ω
2
7)
∗ \ 10Ω∗

7)7)−· (10∗)7

] ∩ (Ωt
7(Ω

2
7)
∗ \ 0Ω∗

7)7.

Consider any number m = (10`)7 subtracted from n. If ` = |iw|, the differ-
ence n−m = (iw)7 is in (Ωt

7(Ω
2
7)
∗ \ 0Ω∗

7)7 and hence in ϕ({n}). If ` 6 |w|,
then taking into account that i > 0, the difference is

(1iw)7 − (10`)7 > (1iw)7 − (10|w|)7 = (1(i− 1)w)7,
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and therefore has the same number of base-7 digits as n. Accordingly, it is
filtered out by the intersection with (Ωt

7(Ω
2
7)
∗ \ 0Ω∗

7)7. If ` > |w|, then the
resulting number is negative and it is filtered out as well. This shows that
ϕ({n}) produces only the numbers in Remove1({n}).

With Lemma 5 established and the expression given therein proved to
implement the function Remove1(X), the notation Remove1(X) shall be
used in equations to refer to this expression.

Next, consider the function E(X) representing the existential quantifier
ranging over strings in {3, 6}∗. This function is not continuous, and accord-
ingly, it cannot be expressed using addition and Boolean operations only. It
can be implemented by an expression involving subtraction as follows:

Lemma E (Representing the existential quantifier). The value of the expres-
sion

[
X ∩ (1Ω∗

7)7

] ∪ [(
(X ∩ ({3, 6}Ω∗

7)7)−· ({3, 6}+0∗)7

) ∩ (1Ω∗
7)7

]

on any S ⊆ ({3, 6}∗1Ω∗
7)7 is E(S) = {(1w)7 | ∃x ∈ {3, 6}∗ : (x1w)7 ∈ S}.

Note that E(X) can already produce any recursively enumerable set from
a recursive argument. Thus a single application of the non-continuous sub-
traction operation can already surpass the upper bound of Proposition 1.

Proof. Denote the whole expression by
[
X∩(1Ω∗

7)7

] ∪ ϕ(X), where ϕ(X) =[
(X ∩ ({3, 6}Ω∗

7)7)−· ({3, 6}+0∗)7

] ∩ (1Ω∗
7)7. The first subexpression X ∩

(1Ω∗
7)7 takes care of the case of x = ε, while the second subexpression ϕ(X)

represents the function {(1w)7 | ∃x ∈ {3, 6}+ : (x1w)7 ∈ S}, where the
quantification is over nonempty strings.

The expression ϕ(X) is constructed by generally the same method of sub-
traction followed by intersection as in Lemma 5. Since ϕ(X) is, by Propo-
sition 2, distributive over infinite union, it is enough to consider the value
of ϕ on a single number n = (x1w)7 ∈ S with x ∈ {3, 6}+, and show that
ϕ({(x1w)7}) = {(1w)7}.

The general plan is to subtract the number (x0|1w|)7 from n, which di-
rectly gives the required result:

x1 x2 . . . x|x| 1 w1 w2 . . . w|w|
− x1 x2 . . . x|x| 0 0 0 . . . 0

1 w1 w2 . . . w|w|

The subtraction is followed by a check that the leading digit of the result is
1, represented by an intersection with (1Ω∗

7)7. The question is, whether any
unintended numbers obtained by such a subtraction could pass through the
subsequent intersection.

In general, the expression {n}−· ({3, 6}+0∗)7 allows subtracting any num-
ber of the form (z0`)7 with ` > 0 and z ∈ {3, 6}+. It is claimed that as long
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as the difference (x1w)7− (z0`)7 is in (1Ω∗
7)7, the subtraction has been done

according to the plan (in other words, any unintended subtraction is filtered
out by the intersection).

Claim 1. Let x, z ∈ {3, 6}+, w,w′ ∈ Ω∗
7 and ` > 0 satisfy (x1w)7− (z0`)7 =

(1w′)7. Then x = z and w = w′.

Proof. It is first shown that these two numbers have the same number of
digits, that is, |x1w| = |z0`|. If |x1w| < |z0`|, then the subtraction results in
a negative number, and if |x1w| > |z0`|, the difference is positive, but since
the leading digit of (x1w)7 is at least 3, the leading digit (x1w)7 − (z0`)7 is
at least 2.

The claim is proved by induction on the length of x. Let x = x1x
′ and

z = z1z
′, where x1, z1 ∈ {3, 6} are the first digits of x and z. To see that

x1 = z1, consider that if z1 > x1, then the result is a negative number,
and if x1 > z1, then the leading digit in the result is at least 2. Therefore,
(x1x

′1w)7 − (z1z
′0`)7 = (x′1w)7 − (z′0`)7. If x′ 6= ε, the latter difference

is in (1Ω∗
7)7 by the induction assumption. If x′ = ε (which constitutes the

induction basis), then z′ = ε as well, as otherwise (1w)7 would begin with 1

and (z′0`)7 would begin with 3 or 6, and their difference would be a negative
number. Therefore, the difference is of the form (1w)7 − 0 = (1w)7.

Getting back to the proof of Lemma E, hence, for x ∈ {3, 6}+,

ϕ({(x1w)7}) = {(1w)7}.
The value of the entire expression for S ⊆ {3, 6}∗1Ω∗

7 is
[
S ∩ (1Ω∗

7)7

] ∪ ϕ(S) = {(1w)7 | ∃x ∈ {3, 6}∗ : (x1w)7 ∈ S} = E(S),

as claimed in the lemma.

With the existential quantifier implemented, the next task is to represent
a universal quantifier. Though it would be convenient to devise an expression
implementing A(X), this provably cannot be done, as long as the operations
are limited to addition, subtraction, union and intersection. Though a super-
position of these operations need not be continuous, it always has a weaker
property of ∪-continuity4. However, A(X) is not ∪-continuous, which is
witnessed by an ascending sequence S(i) = {(x1)7 | x ∈ {3, 6}∗, (x)7 6 i}
with A(lim S(i)) = A

({(x1)7 | x ∈ {3, 6}∗}) = {0}, but A(S(i)) = ∅ and

thus lim A(S(i)) = ∅. For this reason, the universal quantifier has to be
implemented implicitly, as a solution of an equation.

The equation representing the function A(X) shall use the another func-
tion representing the set of pre-images of E(X):

E−1(X) = {(x1w)7 | x ∈ {3, 6}∗ : (1w)7 ∈ X}.
4A function ϕ is ∪-continuous if lim(ϕ(S(i))) = ϕ(lim(S(i))) for every ascending se-

quence S(0) ⊆ S(0) ⊆ . . . ⊆ S(i) ⊆ . . .

11



It will be shown later that E−1 is a quasi-inverse of A(X), in the sense
that A(E−1(S)) = S for all S ⊆ (1Ω∗

7)7 and E−1(A(T )) ⊆ S for T ⊆
(1{3, 6}∗1Ω∗

7)7. Unlike A(X), the function E−1(X) can be represented by an
expression over sets of natural numbers.

Lemma E−1 (Inverse of the existential quantifier). The value of the expres-
sion

(X ∩ (1Ω∗
7)7) ∪

[(
(X ∩ (1Ω∗

7)7) + ({3, 6}+0∗)7

) ∩ ({3, 6}+1Ω∗
7)7

]

on any S ⊆ N is E−1(S) = {(x1w)7 | x ∈ {3, 6}∗, (1w)7 ∈ S}.
Proof. As in Lemma E, the expression is represented as

[
X ∩ (1Ω∗

7)7

] ∪
ϕ(X), where ϕ(X) =

(
(X ∩ (1Ω∗

7)7) + ({3, 6}+0∗)7

) ∩ ({3, 6}+1Ω∗
7)7. An

empty string x = ε is appended in the first subexpression, and ϕ(X) appends
nonempty strings. It is claimed that ϕ(X) = {(x1w)7 | x ∈ {3, 6}+, (1w)7 ∈
S}.

The structure of the expression ϕ(X) representing the function E−1(X)
mirrors the expression for the function E(X) constructed in Lemma E. As in
Lemma E, ϕ is distributive over infinite union, and it is sufficient to evaluate
it on a singleton {(1w)7}. This expression operates by adding an arbitrary
number of the form (x0`′)7, with x ∈ {3, 6}+, and its intended meaning is to
add (x0|1w|)7 as follows:

1 w1 w2 . . . w|w|
+ x1 x2 . . . x|x| 0 0 0 . . . 0

x1 x2 . . . x|x| 1 w1 w2 . . . w|w|

In the general case, note that the equality (1w)7 + (x0`)7 = (y1w′)7

can be equivalently reformulated as (y1w′)7 − (x0`)7 = (1w)7. Then the
assumptions of Claim 1 in the proof of Lemma E are satisfied, and therefore
x = y and w = w′.

This shows that for an arbitrary n = (1w)7,

ϕ({n}) = ({3, 6}+1w)7,

and accordingly the entire expression has the value ({3, 6}∗1w)7 =
E−1({(1w)7}), as claimed.

Now, for an arbitrary set S ⊆ ({3, 6}∗1Ω∗
7)7, the set A(S) shall be ex-

pressed by a system of equations with an unknown Y , which has a unique
solution Y = A(S). The condition Y ⊆ A(S) is specified by the inequal-
ity E−1(Y ) ⊆ S. In order to represent the converse inclusion A(S) ⊆ Y ,
the construction requires the complement of S up to a certain set, such as
S̃ = ({3, 6}∗1Ω∗

7)7 \ S (there is a more general definition below). Then this

inclusion is is equivalent to S ⊆ E−1(Y ∪ E(S̃)). The equivalence between
these conditions is verified in the following lemma.
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Lemma A (Representing the universal quantifier). Let S, S̃ ⊆ ({3, 6}∗1Ω∗
7)7

be two disjoint sets, and let their union S ∪ S̃ be of the form {(x1z)7 | x ∈
{3, 6}∗, z ∈ L0}, for some language L0 ⊆ Ω∗

7. Then the following system of
equations over sets of integers

Y ⊆ (1Ω∗
7)7 (1a)

E−1(Y ) ⊆ S ⊆ E−1(Y ∪ E(S̃)), (1b)

has the unique solution Y = A(S) = {(1w)7 | ∀x ∈ {3, 6}∗ : (x1w)7 ∈ S}.
Proof. The first claim is that E−1(Y ) ⊆ S if and only if Y ⊆ A(S).

⇒© Let E−1(Y ) ⊆ S. Applying A to both sides of the inequality
gives A(E−1(Y )) ⊆ A(S). Note that A(E−1(T )) = A({(x1w)7 | x ∈
{3, 6}∗, (1w)7 ∈ T}) = T for all T ⊆ (1Ω∗

7)7. Therefore, Y = A(E−1(Y )) ⊆
A(S), which proves the first statement.

⇐© Assume Y ⊆ A(S) and consider any number (x1w)7 ∈ E−1(Y ). Then
(1w)7 ∈ Y , and hence (1w)7 ∈ A(S) by the assumption. From this it follows
that (x1w)7 ∈ S.

The second claim needed to establish the lemma is that S ⊆ E−1(Y ∪
E(S̃)) if and only if A(S) ⊆ Y .

⇒© If S ⊆ E−1(Y ∪ E(S̃)), then A(S) ⊆ A(E−1(Y ∪ E(S̃))) = Y ∪ E(S̃).

Consider that the sets A(S) and E(S̃) are disjoint: indeed, if (1w)7 ∈ E(S̃),

then (x1w)7 ∈ S̃ for some x, and hence (x1w)7 /∈ S, which rules out the

membership of (1w)7 in A(S). Therefore, A(S) ⊆ Y ∪E(S̃) implies A(S) ⊆
Y .

⇐© Assume that A(S) ⊆ Y and consider any number (x1w)7 ∈ S. Then,

(x1w)7 /∈ S̃. Consider the following two possibilities:

• If there exists y ∈ {3, 6} with (y1w)7 ∈ S̃, then (1w)7 ∈ E(S̃).

• Let (y1w)7 /∈ S̃ for all y ∈ {3, 6}∗. Then (y1w)7 ∈ S for all such y,
and hence (1w)7 ∈ A(S). By the assumption, this implies (1w)7 ∈ Y .

In both cases, (1w)7 ∈ Y ∪E(S̃), and therefore (y1w)7 ∈ E−1(Y ∪E(S̃)).

Once the above quantifiers process a number (1xk1xk−1 . . . 1x11w)7, re-
ducing it to (1w)7, the actual number (w)7 is obtained from this encoding
by Lemma 5. Finally, this system is transformed according to Lemma 3 to
both target forms:

Theorem 1. Every arithmetical set S ⊆ Z (S ⊆ N) is representable as a
component of a unique solution of a system of equations over sets of integers
(sets of natural numbers, respectively) with ϕj, ψj using the operations of ad-
dition and union, singleton constants and the constants N and −N (addition,
subtraction, union and singleton constants, respectively).
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Proof. The statement will be first established in the case of S being a set of
nonnegative integers, and the system using union, intersection with recursive
constants, addition of a recursive constant and subtraction of a recursive
constant (as required by Lemma 3). If S ⊆ N is representable in first-order
Peano arithmetic, then it is in the arithmetical hierarchy, that is, S ∈ Σ0

k

or S ∈ Π0
k for some k > 0. A system of equations over sets of integers

representing S is constructed inductively on k.
The base case is S being recursive. Then it is representable by Proposi-

tion 1.
Let S ∈ Σ0

k for some k > 1. Then S can be represented in the form

S = {(w)7 | ∃x ∈ {3, 6}∗ : (x1w)7 ∈ T} = Remove1(E(T )),

for some T ∈ Π0
k−1. By the induction hypothesis, there is a system of equa-

tions in variables X,X1, . . . , Xm, which has a unique solution with Y = T .
Adding an extra equation

Y = Remove1(E(X)),

constructed according to Lemma 5 and Lemma E, yields a unique solution
with Y = S.

Assume S ∈ Π0
k with k > 1. Such a set is representable as

S = {(w)7 | ∀x ∈ {3, 6}∗ : (x1w)7 ∈ T} = Remove1(A(T )),

where T ∈ Σ0
k−1. The set

T ′ = {(x1w)7 | x ∈ {3, 6}∗, (x1w)7 /∈ T} = ({3, 6}∗1(Ω∗
7 \ 0Ω∗

7))7 \ T

is accordingly in Π0
k−1. By the induction hypothesis, both T and T ′ are

representable by a system of equations in variables X, X ′, X1, . . . , Xm, whose
unique solution has X = T and X ′ = T ′. The condition Y = A(T ), where
Y is a new variable, is represented by the following system of equations
constructed as in Lemma A:

Y ⊆ (1Ω∗
7)7

E−1(Y ) ⊆ X ⊆ E−1(Y ∪ E(X ′)).

According to the lemma, the resulting system has a unique solution with
Y = {(1w)7 | ∀x ∈ {3, 6}∗ : (x1w)7 ∈ T}. Adding an extra equation

Y ′ = Remove1(Y )

leads to a representation of S, which proves this last case of the induction
step.

An equivalent system of equations over sets of natural numbers, using
union, addition, subtraction and singleton constants, can be constructed ac-
cording to Lemma 3.

14



Consider an arithmetical set S ⊆ Z. Then the sets S+ = S ∩ N and
S− = (−S) ∩ (N \ {0}) are both arithmetical, and since S+, S− ⊆ N, each of
them is representable by a unique solution of some system of equations by
the above argument. By Lemma 3 and Lemma 4, this system is converted
to the target form.

Since every arithmetical set is representable by a unique solution,
Lemma 3.3 can now be strengthened to the following result to be used later
on:

Corollary 1 (Intersection with arithmetical constants). Let R ⊆ N be an
arithmetical set. Then there is a system of equations over sets of nat-
ural numbers using union, addition and singleton constants, in variables
X, Y, Y ′, Z1, . . . , Zm, such that the set of solutions of this system is

{
(X = S, Y = S ∩R, Y ′ = S ∩R, Zi = Si)

∣∣ S ⊆ N }
,

for some fixed sets S1, . . . , Sm.

With this statement established, Lemma 3 can be accordingly improved
to handle systems with arithmetical constants. Such systems shall now be
used to represent an even greater family of sets.

4 Representing hyper-arithmetical sets

Each arithmetical set is defined by applying a fixed quantifier prefix to a
base recursive set. In particular, it is not possible to evaluate quantifier pre-
fixes of varying (unbounded) length when testing the membership of different
numbers. The more general definition of hyper-arithmetical sets allows ex-
pressing the limit over all finite quantifier prefixes, and thus continues the
arithmetical hierarchy to transfinite levels. It turns out that the definition of
hyper-arithmetical sets can be represented in equations over sets of numbers
by further extending the methods established in the previous section.

4.1 Definition of hyper-arithmetical sets

Following Moschovakis [15, Sec. 8E] and Aczel [1, Thm. 2.2.3], hyper-
arithmetical sets shall be defined in set-theoretical terms, as an effective
σ-ring. Let f1, f2, . . . be an effective enumeration of all partial recursive
functions from N to N. A family of sets B = {Bi, Ci | i ∈ I}, where I ⊆ N is
an index set, is called an effective σ-ring, if there exist two injective recursive
functions τ1, τ2 : N→ N with disjoint images, such that

1. B contains the sets Bτ1(e) = N \ {e} and Cτ1(e) = {e} for all e ∈ N, and
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2. for all numbers e ∈ N, if fe is a total function and the image of fe is
contained in I, then B contains

Bτ2(e) =
⋃

n∈N
Cfe(n), Cτ2(e) =

⋂

n∈N
Bfe(n).

Informally, an effective σ-ring contains all singletons and co-singletons and is
closed under effective σ-union and effective σ-intersection 5. Note that the
only distinction between Bi and Ci is that the former is defined as a union
and the latter as an intersection. As the base sets are complements of each
other, the definitions are dual, and thus Bi = Ci.

Hyper-arithmetical sets are, by definition, the smallest effective σ-ring.
The existence of such an effective σ-ring is demonstrated constructively, by
defining the smallest set of indices I ⊆ N as a union of a transfinite sequence
of sets Iλ, indexed by countable ordinals λ. The below definition at the same
time establishes that every effective σ-ring must contain the indices in each
Iλ.

The base set of indices I0 = {τ1(e) |e ∈ N} represents singleton sets Bτ1(e)

and their complements Cτ1(e). The set of indices for every countable ordinal
is defined inductively as follows. For a successor ordinal λ + 1, let

Iλ+1 = {τ2(e) | e ∈ N : ∀n fe(n) ∈ Iλ} ∪ Iλ,

and for limit ordinal λ, define

Iλ =
⋃

α<λ

Iα.

The idea behind this definition is that when an index i ∈ Iλ is defined,
the sets Bi and Ci can be simultaneously defined by referring only to the
previously defined sets Bj and Cj.

The convergence of the sequence Iλ after a transfinite yet countable num-
ber of steps is established as follows.

Proposition 3 ([15, Thm. 1A.1]). There exists a countable ordinal λ, for
which Iλ = Iλ+1.

Proof. Suppose the contrary. Then, for all λ < ω1, where ω1 is the least
uncountable ordinal number, the set Iλ+1\Iλ is non-empty. Define iλ ∈ Iλ+1\
Iλ. Then |I| > |{λ | λ countable ordinal}| > ℵ0 and this is a contradiction,
as I ⊆ N is a countable set.

5And thus may be regarded as the recursion-theoretic counterpart of σ-rings considered
in descriptive set theory. A σ-ring is any family of sets closed under countable union and
countable intersection. The smallest σ-ring containing all open sets is known as the Borel
sets, and hyper-arithmetical sets are their counterpart in the recursion theory.
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Proposition 4. If Iα = Iα+1 for some ordinal α, then Bλ = {Bi, Ci | i ∈ Iλ}
is the smallest effective σ-ring.

Proof. Clearly, Bα contains all the sets {Bτ1(e), Cτ1(e) | e ∈ N}, as {τ1(e) | e ∈
N} ⊆ I0 ⊆ Iα. Moreover, if for e it holds that {fe(n) | n ∈ N} ⊆ Iα and
therefore τ2(e) ∈ Iα+1 = Iα and thus Bτ2(e) ∈ Bα. Similarly if it holds that
{Bfe(n) | n ∈ N} ⊆ Bα then Cτ2(e) ∈ Bα. Hence Bα is closed under effective
σ-union and effective σ-intersection and it is an effective σ-ring.

Now I can be defined as Iα, as in Proposition 4, which completes the
definition of hyper-arithmetical sets. Notably, the class of sets thus defined
does not depend upon the choice of the functions τ1 and τ2 [15, Sec. 8E],
and it forms the bottom of the analytical hierarchy:

The Suslin-Kleene Theorem ([15, Thm. 8E.1],[1, Thm. 2.2.3]). Hyper-
arithmetical sets are exactly the sets in Σ1

1 ∩ Π1
1.

4.2 Trees, well-founded orders and induction

Each hyper-arithmetical set is defined as a formula over the previously defined
sets. Its dependencies upon the other sets form a tree with internal nodes
of a countable degree representing infinite union or intersection. With every
index i ∈ I one can associate a tree of i labelled with indices from I: its root
is labelled with i, and each vertex τ2(e

′) in the tree has children labelled with
{fe′(n) | n ∈ N}. Vertices of the form τ1(e

′) have no children; these are the
only leaves in the tree. While formally the vertices are labelled with indices,
it is convenient to think that each node i denotes the corresponding set Bi

(or Ci), the the levels of B’s and C’s alternating as per the definition of these
sets. This convention is depicted in Figure 1.

Proofs involving hyper-arithmetical sets naturally tend to require induc-
tion on the structure of such trees. The following property of these trees is
essential for carrying out the induction:

Lemma 6. For every index i ∈ I, the tree of i has no infinite downward
path.

Proof. Suppose, for the sake of contradiction, that there exist such indices.
Consider the ordinals λ, such that Iλ contains at least one such i. As any
set of ordinals contains a minimal element, there exists the smallest such λ.
Fix any i ∈ Iλ, such that the tree of i has an infinite downward path.

The ordinal λ cannot be a limit ordinal, as then

Iλ =
⋃

α<λ

Iα

and therefore i ∈ Iα for α < λ, contradiction.
Similarly λ 6= 0, because no index in I0 depends on any other indices.
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Figure 1: The tree of dependencies of Bi0 , with Node(x1, x2, . . . , xk) = ik.

So λ = α+1. Let the children of the root of the tree of i be i1, . . . , in, . . ..
Then one of them, say ij, has an infinite downward path, and ij ∈ Iα,
contradiction with the minimality of λ.

Hence all the trees in I have no infinite downward paths.

This tree of dependencies naturally induces an order ≺ on the set I:
the indices i = τ1(n) are the minimal elements of this order and for each
i = τ2(e) ∈ I, the indices fe(n) are the direct predecessors of i. The absence
of infinite downward paths in the tree implies that the order≺ is well-founded,
that is, has no infinite descending chain.

Well-founded orders generalise the usual order on natural numbers; in
particular, they allow a variant of induction, the well-founded induction prin-
ciple: given a predicate P and a well founded order ≺ on a set A, if P (x) is
true for all ≺-minimal elements of A, and if

(∀y ≺ x P (y)) =⇒ P (x),

then P (x) holds for all x ∈ A. This principle shall be used in the proof of
the main construction, which is described in the rest of this section.

4.3 Equations representing hyper-arithmetical sets

Consider an arbitrary hyper-arithmetical set and let i0 be its index. The
definition of this set Bi0 is illustrated by the tree in Figure 1. The goal is to
encode the set Bi0 together with all the sets Bj and Cj it depends upon, in a
single set. The dependencies between these sets are then expressed uniformly,
by a self-reference to this encoding.
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Each of the sets in the tree in Figure 1 is identified by an address in
this tree, which is a finite sequence of natural numbers identifying a path
of length k leading to the set in question. Consider such a path, Bi0 , Ci1 ,
Bi2 , . . . , Cik (or Bik , depending on the parity of k). Then, for each j-th
set in this path, ij = fτ−1

2 (ij−1)(nj) for some number nj, and the path is
uniquely defined by the sequence of numbers n1, . . . , nk. Consider the binary
encoding of each of these numbers written using digits 3 and 6 (representing
zero and one, respectively), and let Node be a partial function that maps
finite sequences of such “binary” strings representing numbers n1, . . . , nk to
the index ik in the end of this path. The value of this function is formally
defined by induction as follows:

Node(〈〉) = i0,

Node(x1, . . . , xk) = fτ−1
2 (Node(x1,...,xk−1))((xk)2).

Note that Node(x1, . . . , xk) may be undefined if any of these τ2-preimages is
undefined.

The membership of a number (w)7 in the sets located under a valid
address (x1, . . . , xk) in the tree (that is, with well-defined Node(x1, . . . , xk))
shall be encoded as the number (1xk1xk−1 . . . 1x110w)7, where the digits 10
unambiguously separate the address from the encoded number. Denote the
set of all valid encodings of this kind by

Paths = {(1xk1xk−1 . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗,
Node(x1, . . . , xk) is defined}.

Since (w)7 belongs either to BNode(x1,...,xk) or to CNode(x1,...,xk), its membership
status is reflected by arranging the above encodings between the following
two sets:

T0 = {(1xk1xk−1 . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ BNode(x1,...,xk)},
T1 = {(1xk1xk−1 . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ CNode(x1,...,xk)}.

In particular, a number (10w)7 with an empty xi-prefix is in T0 if and only
if (w)7 ∈ BNode(〈〉) = Bi0 .

Note the following basic property of these sets:

Lemma 7. The sets T0 and T1 are disjoint, and their union is Paths.

Proof. Immediate, from the fact that Bi ∩ Ci = ∅ and Bi ∪ Ci = N for all
well-defined i ∈ I.

The goal is to construct such a system of equations, that the sets
T0 and T1 will be among the components of its unique solution. These
two sets encode all the sets in B needed to compute Bi0 . A system of
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equations involving these two variables will represent the (potentially) in-
finitely many dependencies between the required sets in B using finitely
many equations. The general idea is to implement an equation of the form
X0 = A(Remove1(E(Remove1(X0)))) ∪ const, in which the functions E(X)
and A(X) defined in Section 3 represent effective σ-union and σ-intersection,
respectively. However, since the function A(X) cannot be implemented as
an expression, this intuitive idea of an equation shall be executed using the
approach of Lemma A, by simulating universal quantification implicitly using
a pair of inequalities.

The equations will use the following constant sets representing the mem-
bership of numbers in the leaves of the tree of Bi0 :

R0 ={(1xk1xk−1 . . . 1x110w)7 |
k > 0, xi ∈ {3, 6}∗, ∃e ∈ N : Node(x1, . . . , xk) = τ1(e), (w)7 ∈ Bτ1(e)},

R1 ={(1xk1xk−1 . . . 1x110w)7 |
k > 0, xi ∈ {3, 6}∗, ∃e ∈ N : Node(x1, . . . , xk) = τ1(e), (w)7 ∈ Cτ1(e)}.

These sets Ri ⊆ Ti form the basis of the inductive definition encoded in the
equations.

Lemma 8. The function Node is partial recursive. The sets Paths, R0 and
Ri are recursively enumerable.

Proof. To see that Node is a partial recursive function, consider the follow-
ing semi-algorithm for computing its value. If the argument is an empty
sequence, the algorithm returns i0. If it is (x1, . . . , xk+1) for k > 0, the algo-
rithm recursively invokes itself to calculate Node(x1, . . . , xk) = ik, and then
considers all numbers e ∈ N until it finds one with τ2(e) = ik. If this ever
happens, the number fe((xk+1)2) is computed and returned. In case any of
the numbers do not exist, the algorithm does not terminate.

The set Paths is the just set of arguments, on which Node stops.

For R0, the semi-decision procedure is as follows: given a num-
ber with a base-7 notation 1xk1xk−1 . . . 1x110w, first calculate ik =
Node(x1, x2, . . . , xk), then search for e ∈ N with τ1(e) = ik, and finally
reject if (w)7 = e, otherwise accept. A semi-algorithm for R1 is similar, with
acceptance and rejection switched. If Node is not defined, or if ik is not τ1(e)
for any e, these semi-algorithms do not terminate.

Thus all these sets are arithmetical, and hence can be represented by
systems of equations with unique solutions. This allows using them in a new
system of equations simply as constants.

Consider the following system of equations, which uses subexpressions
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defined in Lemmata 5, E and E−1:

X0 = E(Remove1(X1)) ∪R0 (2a)

X1 = Y ∪R1 (2b)

Y ⊆ (1Ω∗
7)7 (2c)

E−1(Y ) ⊆ Remove1(X0) ⊆ E−1(Y ∪ E(Remove1(X1))) (2d)

X0 ∪X1 = Paths (2e)

X0 ∩R1 = X1 ∩R0 = ∅ (2f)

Its intended unique solution is X0 = T0, X1 = T1 and Y = A(Remove1(T0)).
The system implements the functions E(X) and A(X) to represent effective
σ-union and σ-intersection, respectively. For that purpose, the expression for
E(X) introduced in Lemma E, as well as the system of equations implement-
ing A(X) defined in Lemma A, are applied iteratively to the same variables
X0 and X1.

4.4 Proof of correctness

The goal is now to show that the constructed system indeed has a unique
solution of the stated form. The proof is by first verifying that it is a solution,
and then by showing that every solution must be of this form. Both parts
of the argument are based upon the following characterization of the self-
dependencies of T0 and T1 corresponding to a single node of the tree.

Lemma 9. Let x1, . . . , xk ∈ {3, 6}∗ and assume that X1 ∩
(1{3, 6}∗1xk . . . 1x110Ω

∗
7)7 = T1 ∩ (1{3, 6}∗1xk . . . 1x110Ω

∗
7)7. Then

(1xk1 . . . 1x110w)7 ∈ E(Remove1(X1)) if and only if Node(x1, . . . , xk) =
τ2(e) for some e ∈ N and (w)7 ∈ BNode(x1,...,xk).

Proof. By the definition of E,

(1xk . . . 1x110w)7 ∈ E(Remove1(X1)). (3a)

holds if and only if

∃xk+1 ∈ {3, 6}∗ : (xk+11xk . . . 1x110w)7 ∈ Remove1(X1), (3b)

which is in turn equivalent to

∃xk+1 ∈ {3, 6}∗ : (1xk+11xk . . . 1x110w)7 ∈ X1. (3c)

By the assumption, (1xk+11xk . . . 1x110w)7 ∈ X1 holds if and only if
(1xk+11xk . . . 1x110w)7 ∈ T1, and by the definition of T1, the latter is
equivalent to (w)7 ∈ CNode(x1,...,xk,xk+1), which additionally implies that
Node(x1, . . . , xk) = τ2(e) for some e ∈ N. Thus (3c) holds if and only if

∃xk+1 ∈ {3, 6}∗ : (w)7 ∈ Cfe((xk+1)2), (3d)
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or, equivalently,

(w)7 ∈
⋃

xk+1∈{3,6}∗
Cfe((xk+1)2), (3e)

because (xk+1)2 for all xk+1 ∈ {3, 6}∗ enumerates all natural numbers. The
latter set is Bi by definition.

The next lemma symmetrically asserts the representation of Ci by
A(Remove1(X0)).

Lemma 10. Let x1, . . . , xk ∈ {3, 6}∗ and let X0 ∩
(1{3, 6}∗1xk . . . 1x110Ω

∗
7)7 = T0 ∩ (1{3, 6}∗1xk . . . 1x110Ω

∗
7)7. Then

(1xk1 . . . 1x110w)7 ∈ A(Remove1(X0)) if and only if Node(x1, . . . , xk) =
τ2(e) with e ∈ N and (w)7 ∈ CNode(x1,...,xk).

The proof is the same as for Lemma 9, with A(Remove1(X0))
instead of E(Remove1(X1)), with “∀xk+1” instead of “∃xk+1”, with
(1xk+11xk . . . 1x110w)7 in X0 instead of X1, and with (w)7 in⋂

xk+1
Bfe((xk+1)2) = Ci instead of

⋃
xk+1

Cfe((xk+1)2) = Bi.
First, the above lemmata are used to obtain a short proof that the in-

tended solution is indeed a solution.

Lemma 11. The following assignment of sets to variables forms a solution
of the system of equations (2a)–(2f):

X0 = T0 = {(1xk . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ BNode(x1,...,xk)}
X1 = T1 = {(1xk . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ CNode(x1,...,xk)}
Y = A(Remove1(T0))

Proof. To see that the first equation (2a) holds true under this substitu-
tion, that is, T0 = E(Remove1(T1)) ∪ R0, consider that T0 ⊆ Paths and
E(Remove1(T1)), R0 ⊆ Paths, and hence it is sufficient to check that a num-
ber (1xk . . . 1x110w)7 ∈ Paths is in E(Remove1(T1)) ∪ R1 if and only if it
belongs to T0.

By Lemma 9, (1xk . . . 1x110w)7 ∈ E(Remove1(T1)) holds if and only if
Node(x1, . . . , xk) = τ2(e) for some e ∈ N and (w)7 ∈ BNode(x1,...,xk). At the
same time, by the definition of R1, (1xk . . . 1x110w)7 ∈ R0 if and only if
Node(x1, . . . , xk) = τ1(e) for e ∈ N and (w)7 ∈ BNode(x1,...,xk). Combining
these two cases together, (1xk . . . 1x110w)7 ∈ E(Remove1(T1)) ∪ R1 if and
only if Node(x1, . . . , xk) is defined and (w)7 ∈ BNode(x1,...,xk), which is exactly
the condition of the membership of n in T0.

The second equation (2b) is verified similarily. Both sides of the equality
T1 = A(Remove1(T1)) ∪ R1 are subsets of Paths, and hence it is sufficient
to check that every number of the form (1xk . . . 1x110w)7 with k > 0 and
xi ∈ {3, 6}∗ is in A(Remove1(T1)) ∪ R1 if and only if it is in T1. The proof
is the same as for (2a), this time using Lemma 10.
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The next pair of equations (2c)–(2d) is checked according to Lemma A,

with S = Remove1(T0) and S̃ = Remove1(T1). Firstly, one should vali-
date its assumptions. The sets Remove1(T0) and Remove1(T1) are disjoint,
because so are T0 and T1, due to Lemma 7. The union of these sets is

Remove1(T0) ∪Remove1(T1) = Remove1(T0 ∪ T1) = Remove1(Paths) =

= {(xk1xk−1 . . . 1x110w)7|k > 1, xi ∈ {3, 6}∗, Node(x1, . . . , xk) is defined} =

= {(x1w)7 | w ∈ L0},

for a suitable language L0 ⊆ Ω∗
7 representing the set of well-defined addresses

in the tree. Thus both assumptions of Lemma A hold, and it asserts that the
equations (2c)–(2d) hold true, that is, that A(Remove1(T0)) ⊆ (1Ω∗

7)7 and

E−1
(
A(Remove1(T0))

) ⊆ Remove1(T0) ⊆
⊆ E−1

(
A(Remove1(T0)) ∪ E(Remove1(T1))

)
.

The equation (2e) turns into an equality T0 ∪ T1 = Paths, which is true
by Lemma 7.

To see that the last equation (2f) is satisfied, consider that T0 ∩ R1 ⊆
T0 ∩ T1 = ∅ by Lemma 7, and similarly T1 ∩R0 ⊆ T1 ∩ T0 = ∅.

The second and the more difficult task is to demonstrate that every solu-
tion of the system must coincide with the given solution. The argument uses
the well-founded induction on the structure of the tree. The membership of
numbers of the form (1xk1xk−1 . . . 1x110w)7, with k > 0, xi ∈ {3, 6}∗ and
w ∈ Ω∗

7\0Ω∗
7, in the variables X0 and X1 is first determined for larger k’s and

then inductively extended down to k = 0. Lemmata 9 and 10 are specifically
designed to handle the induction step in this argument.

Lemma 12. If Node(x1, . . . , xk) = i is defined, then, for every solution of
the system, and for every number (1xk . . . 1x110w)7 with w ∈ Ω∗

7 \ 0Ω∗
7,

1. (1xk . . . 1x110w)7 is in X0 if and only if (w)7 is in Bi;

2. (1xk . . . 1x110w)7 is in X1 if and only if (w)7 is in Ci.

Proof. The proof proceeds by a well-founded induction on the index i ∈ I,
with respect to the ordering ≺ on I. Each descending sequence of indices
corresponds to a path in the tree of Bi0 , and all such paths are finite by
Lemma 6, which justifies the use of the well-founded induction principle.

Induction basis

Consider an index minimal according to ≺, which is of the form i =
Node(x1, . . . , xk) = τ1(e) with e ∈ N. The first claimed equivalence for
X0 and Bi is established as follows.
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⇐© If (w)7 ∈ Bi, then (1xk . . . 1x110w)7 ∈ R0, and, by the equation (2a),
(1xk . . . 1x110w)7 ∈ X0.

⇒© Conversely, if (1xk . . . 1x110w)7 ∈ X0, then, by (2f),
(1xk . . . 1x110w)7 /∈ R1, and accordingly (w)7 /∈ Ci, or, equivalently,
(w)7 ∈ Bi.

This proves the equivalence for X0 in the base case of the induction. The
other equivalnce for X1 is established by exactly the same argument.

Induction step

For the induction step, fix x1, . . . , xk, with i = Node(x1, . . . , xk) = τ2(e)
for some e ∈ N. Assume that the claim of the lemma holds for all i′ =
Node(x1, . . . , xk, xk+1). The task is to show that the same statement holds
for i. Note that, under the induction assumption, Lemmata 9 and 10 are
applicable.

Induction step: X0 and infinite union

By the equation (2a), (1xk . . . 1x110w)7 ∈ X0 holds if and only if this number
belongs to E(Remove1(X1)) or to R0. The former is equivalent to (w)7 ∈ Bi

by Lemma 9, while the latter is impossible because Node(x1, . . . , xk) = τ2(e)
for some e.

Induction step: X1 and infinite intersection

Consider the following consequence of the equation (2d), obtained by inter-
secting it with the set ({3, 6}∗1xk . . . 1x110Ω

∗
7)7:

E−1(Y ) ∩ ({3, 6}∗1xk . . . 1x110Ω
∗
7)7 ⊆

⊆ Remove1(X0) ∩ ({3, 6}∗1xk . . . 1x110Ω
∗
7)7 ⊆

⊆ E−1
(
Y ∪ E(Remove1(X1)

) ∩ ({3, 6}∗1xk . . . 1x110Ω
∗
7)7.

This equation shall now be equivalently transformed to match the form re-
quired by Lemma A. Consider that, for every set S ⊆ N,

E−1(S) ∩ ({3, 6}∗1xk . . . 1x110Ω
∗
7)7 = E−1

(
S ∩ (1xk . . . 1x110Ω

∗
7)7

)
,

E(S) ∩ (1xk . . . 1x110Ω
∗
7)7 = E

(
S ∩ ({3, 6}∗1xk . . . 1x110Ω

∗
7)7

)

and

Remove1(S) ∩ ({3, 6}∗1xk . . . 1x110Ω
∗
7)7 =

= Remove1
(
S ∩ (1{3, 6}∗1xk . . . 1x110Ω

∗
7)7

)
.
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Using these identities, the above consequence of the equation (2d) can be
restated as

E−1
(
Y ∩ (1xk . . . 1x110Ω

∗
7)7

) ⊆
⊆ Remove1

(
X0 ∩ (1{3, 6}∗1xk . . . 1x110Ω

∗
7)7

) ⊆
⊆ E−1

[(
Y ∩(1xk . . . 1x110Ω

∗
7)7

)∪E
(
Remove1(X1∩(1{3, 6}∗1xk . . . 1x110Ω

∗
7)7)

)]
,

which, introducing new variables

X ′
0 = Remove1

(
X0 ∩ (1{3, 6}∗1xk . . . 1x110Ω

∗
7)7

)
,

X ′
1 = Remove1

(
X1 ∩ (1{3, 6}∗1xk . . . 1x110Ω

∗
7)7

)
and

Y ′ = Y ∩ (1xk . . . 1x110Ω
∗
7)7,

is written as follows:

E−1(Y ′) ⊆ X ′
0 ⊆ E−1(Y ′ ∪ E(X ′

1)). (4a)

The equation (2c) has a similar consequence:

Y ′ ⊆ (1Ω∗
7)7. (4b)

The values of X ′
0 and X ′

1 are in fact uniquely determined. Consider that
(x1xk . . . 1x110w)7 ∈ X ′

0 if and only if (x1xk . . . 1x110w)7 ∈ Remove1(X0),
which is in turn equivalent to (1x1xk . . . 1x110w)7 ∈ X0. The latter, by the
induction hypothesis, holds if and only if (w)7 ∈ BNode(x1,...,xk,x). Hence,

X ′
0 = {(x1xk . . . 1x110w)7 | x ∈ {3, 6}∗, (w)7 ∈ BNode(x1,...,xk,x)}, and

X ′
1 = {(x1xk . . . 1x110w)7 | x ∈ {3, 6}∗, (w)7 ∈ CNode(x1,...,xk,x)}

by a similar argument. These two sets are thereby disjoint, as so are
BNode(x1,...,xk,x) and CNode(x1,...,xk,x) for any x. Furthermore, each number
(x1xk . . . 1x110w)7 is either in X ′

0 or in X ′
1, depending on whether (w)7

is in BNode(x1,...,xk,x) or in CNode(x1,...,xk,x), and thus the union of these two
variables is exactly

X ′
0 ∪X ′

1 = ({3, 6}∗1xk . . . 1x110Σ
∗
7)7.

This allows applying Lemma A to the equations (4), and according to this
lemma, the value of Y ′ is completely determined as Y ′ = A(X ′

0). In the
original variables,

Y ∩ (1xk . . . 1x110Ω
∗
7)7, = A(Remove1

(
X0 ∩ (1{3, 6}∗1xk . . . 1x110Ω

∗
7)7

))
.

Using the latter equality, the induction step for X1 is proved as follows.
By the equation (2b), a number (1xk . . . 1x110w)7 with w ∈ Ω∗

7 \ 0Ω∗
7 is in

X1 if and only if it is in Y or in R1. Since Node(x1, . . . , xk) = τ2(e) for
some e, the latter is impossible, and hence the statement is equivalent to
(1xk . . . 1x110w)7 ∈ Y . By the above arguments, this holds if and only if
the number (1xk . . . 1x110w)7 belongs to A(Remove1(X0)). The latter, by
Lemma 9, is equivalent to (w)7 ∈ CNode(x1,...,xk), as claimed.
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Now, Lemmata 11 and 12 together assert that there is exactly one solution
of the intended form:

Lemma 13. The system (2a)–(2f) has a unique solution X0 = T0, X1 = T1,
Y = A(Remove1(T0)).

Proof. This assignment is a solution by Lemma 11.
Let X0, X1, Y be an arbitrary solution of the system. The equation (2e)

ensures that every number in X0 or in X1 is of the form (1xk . . . 1x110w)7,
with Node(x1, . . . , xk) defined and with w ∈ Ω∗

7 \ 0Ω∗
7. Then, by Lemma 12,

(1xk . . . 1x110w)7 ∈ X0 if and only if (w)7 ∈ BNode(x1,...,xk), which in turn is
equivalent to (1xk . . . 1x110w)7 ∈ T0. The case of X1 is proved by the same
argument.

Thus it is proved that X0 = T0 and X1 = T1. Finally, applying Lemma A
with S = X0 and Ŝ = X1 to the equations (2c)–(2d) proves that Y is fixed
at A(Remove1(T0)).

4.5 Representing the actual set Bi0

Besides the desired sets Bi0 and Ci0 , the sets T0 and T1 represented by the
above system of equations encode all sets on which Bi0 and Ci0 depend.
Intersecting T0 with the constant set (10Ω∗

7)7 produces the set {10w | (w)7 ∈
Bi0}, and in order to obtain Bi0 as it is, one has to remove the leading digits
10 by the following function:

Remove10(X) = {(w)7 | w ∈ Ω∗
7 \ 0Ω∗

7, (10w)7 ∈ X}.
This function is implemented by a construction analogous to the one in
Lemma 5.

Lemma 14. The value of the expression
⋃

t∈{0,1,2}

[
(X ∩ (10Ωt

7(Ω
3
7)
∗ \ 100Ω∗

7)7)−· (10∗)7

] ∩ (Ωt
7(Ω

3
7)
∗ \ 100Ω∗

7)7

on any S ⊆ (10(Ω∗
7 \ 0Ω∗

7))7 is Remove10(S) = {(w)7 | (10w)7 ∈ S}.
The expression Remove10 works generally similarly to Remove1, and it

is intended to operate as follows:

1 0 w1 w2 . . . w0

− 1 0 0 0 . . . 0

w1 w2 . . . w0

In this way the correct subtraction reduces the number of digits by two, while
an incorrect subtraction of (10i)7 with i < |0w| may reduce the number of
digits by one or leave it unchanged. Accordingly, the expression considers
the cases of different number of digits modulo 3, rather than modulo 2, as in
Lemma 5. In all other respects, the proof of Lemma 14 is the same as the
proof of Lemma 5.
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Theorem 2. For every hyper-arithmetical set B ⊆ Z (B ⊆ N) there is
a system of equations over sets of integers (over sets of natural numbers,
respectively) using union, addition, singleton constants and the constants N
and −N (union, addition, subtraction and singleton constants, respectively),
which has a unique solution (B, . . .).

Proof. Assume first that B ⊆ N. Let B = Bi0 according to the enumera-
tion of hyper-arithmetical sets, and construct the corresponding system of
equations (2a)–(2f).

By Lemmata 13, this system has a unique solution with the X0-
component

T0 = {(1xk1xk−1 . . . 1x110w)7 | k > 0, xi ∈ {3, 6}∗, (w)7 ∈ BNode(x1,...,xk)}
Construct an additional equation

X = Remove10(X0 ∩ (10Ω∗
7)7).

Then its unique solution is

X = Remove10({(10w)7 | (w)7 ∈ Bi0}) = Bi0 .

Thus the set Bi0 has been represented by a system of equations in the
intermediate form required by Lemma 3, enhanced by Corollary 1 to allow
recursively enumerable constants. According to the lemma, the set Bi0 can
be represented by a system of equations over sets of natural numbers, using
union, addition and subtraction, with singleton constants.

For an arbitrary hyper-arithmetical set of integers, its positive and neg-
ative parts are first represented as shown above, and then Lemma 4 yields
the system representing the actual set.

This main result of the paper deserves being re-stated for language equa-
tions with the quotient operation, K · L−1 = {u | ∃v ∈ L : uv ∈ K}.
Corollary 2. For every hyper-arithmetical unary language L ⊆ a∗ there
is a system of language equations using union, concatenation, quotient and
constant {a}, such that (L, . . .) is its unique solution.

5 Equations with addition only

Equations over sets of natural numbers with addition as the only operation
can represent an encoding of every recursive set, with each number n ∈ N
represented by the number 16n + 13 in the encoding [9]. In order to define
this encoding, for each i ∈ {0, 1, . . . , 15} and for every set S ⊆ Z, denote:

τi(S) = {16n + i | n ∈ S}.
The encoding of a set of natural numbers Ŝ ⊆ N is defined as

S = σ0(Ŝ) = {0} ∪ τ6(N) ∪ τ8(N) ∪ τ9(N) ∪ τ12(N) ∪ τ13(Ŝ),
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Proposition 5 ([9, Thm. 5.3]). For every recursive set S there exists a
system of equations over sets of natural numbers in variables X, Y1, . . . , Ym

using the operation of addition and ultimately periodic constants, which has
a unique solution with X = σ0(S).

This result is proved by first representing the set S by a system with
addition and union, and then by representing addition and union of sets
using addition of their σ0-encodings.

The purpose of this section is to obtain a similar result for equations over
sets of integers: namely, that they can represent the same kind of encoding
of every hyper-arithmetical set. For every set Ŝ ⊆ Z, define its encoding as
the set

S = σ(Ŝ) = {0} ∪ τ6(Z) ∪ τ8(Z) ∪ τ9(Z) ∪ τ12(Z) ∪ τ13(Ŝ).

The subset S ∩ {16n + i | n ∈ Z} is called the i-th track of S.
The first result on this encoding is that the condition of a set X being an

encoding of any set can be specified by an equation of the form X + C = D.

Lemma 15 (cf. [9, Lemma 3.3]). A set X ⊆ Z satisfies an equation

X + {0, 4, 11} =
⋃

i∈{0,1,3,4,6,7,
8,9,10,12,13}

τi(Z) ∪ {11}

if and only if X = σ(X̂) for some X̂ ⊆ Z.

Proof. Denote
tracki(S) = {n | 16n + i ∈ S}.

A set S is said to have an empty (full) track i if tracki(S) = ∅
(tracki(S) = Z, respectively).

⇒© Let X be any set that satisfies the equation. Then the sum
track2(X + {0, 4, 11}) has empty tracks 2, 5, 14 and 15:

track2(X + {0, 4, 11}) = track5(X + {0, 4, 11}) =

= track14(X + {0, 4, 11}) = track15(X + {0, 4, 11}) = ∅

For this condition to hold, X must have many empty tracks as well. To be
precise, each track t with t, t + 4 or t + 11 (mod 16) being in {2, 5, 14, 15}
must be an empty track in X. Calculating such set of tracks, {2, 5, 14, 15}−
{0, 4, 11} (mod 16) = {1, 2, 3, 4, 5, 7, 10, 11, 14, 15} are the numbers of tracks
that must be empty in X.

Similar considerations apply to track 11, as track11(X + {0, 4, 11}) =
{0}. For every track t with t = 11, t + 4 = 11 (mod 16) or t + 11 = 11
(mod 16), it must hold that the t-th track of X is either an empty track or
trackt(X) = {0}. The latter must hold for at least one such t. Let us
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calculate all such tracks t: these are tracks with numbers {11} − {0, 4, 11}
(mod 16) = {0, 7, 11}. Since it tracks number 7 and 11 are already known
to be empty, it follows that track0(X) = {0}.

In order to prove that X is a valid encoding of some set, it remains
to prove that tracks number 6, 8, 9, 12 in X are full. Consider first that
track3(X + {0, 4, 11}) = Z. Let us calculate the track numbers t such that
there is t′ ∈ {0, 4, 11} with (t + t′) (mod 16) = 3: these are {3} − {0, 4, 11}
(mod 16) = {3, 8, 15}. Since tracks 3, 15 are known to be empty, then

Z = track3(X + {0, 4, 11}) =

= track3(X) ∪ (track15(X) + 1) ∪ (track8(X) + 1) =

= ∅ ∪∅ ∪ (track8(X) + 1) = track8(X) + 1,

and thus track 8 of X is full. The analogous argument is used to prove
that tracks 12, 9, 6 are full. Consider track7(X + {0, 4, 11}) = Z. Then
{7} − {0, 4, 11} (mod 16) = {7, 3, 12}. Since it is already known that tracks
3, 7 are empty, the track 12 is full:

Z = track7(X + {0, 4, 11}) =

= track7(X) ∪ track3(X) ∪ (track12(X) + 1) =

= ∅ ∪∅ ∪ (track12(X) + 1) = track12(X) + 1.

In the same way consider track9(X +{0, 4, 11}) = Z. Then {9}−{0, 4, 11}
(mod 16) = {9, 5, 14} and tracks 5, 14 are empty, thus track 9 is full:

Z = track9(X + {0, 4, 11}) =

= track9(X) ∪ track5(X) ∪ (track14(X) + 1) =

= track9(X) ∪∅ ∪∅ = track9(X).

Now let us inspect track10(X + {0, 4, 11}). Then {10} − {0, 4, 11}
(mod 16) = {10, 6, 15}. Since the tracks 10, 15 are empty, then the 6th
track is full:

Z = track10(X + {0, 4, 11}) =

= track10(X) ∪ track6(X) ∪ 1 + track15(X) =

= ∅ ∪ track6(X) ∪∅ = track6(X).

Thus it has been proved that X = σ(track13(X)).

⇐© It remains to show the converse, that is, that if X = σ(X̂), then

X + {0, 4, 11} =
⋃

i∈{0,1,3,4,6,7,
8,9,10,12,13}

τi(Z) ∪ {11}.
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+0 +4 +11

0 : {0} 0 : {0} 4 : {0} 11 : {0}
6 : Z 6 : Z 10 : Z 1 : Z
8 : Z 8 : Z 12 : Z 3 : Z
9 : Z 9 : Z 13 : Z 4 : Z
12 : Z 12 : Z 0 : Z 7 : Z
13 : X̂ 13 : X̂ 1 : X̂ + 1 8 : X̂ + 1

Table 1: Tracks in the sum σ(X̂)+{0, 4, 11}, only non-empty tracks of σ(X̂)
are included.

Since X =
⋃15

i=0 τi(tracki(X)), then

X + {0, 4, 11} =
( ⋃

i

τi(tracki(X)) + 0
)
∪

( ⋃
i

τi(tracki(X)) + 4
)
∪

∪
( ⋃

i

τi(tracki(X)) + 11
)
,

and Table 1 presents the form of each particular term in this union. Each
ith row represents track number i in X, and each column labeled +j for
j ∈ {0, 4, 11} corresponds to the addition of a number j. The cell (i, j) gives
the set tracki(X)+ j and the number of the track in which this set appears
in the result (this is track i+j (mod 16)). Then each `-th track X+{0, 4, 11}
is obtained as a union of all the appropriate sets in the Table 1.

According to the table, the values of the set X̂ are reflected in three tracks
of the sum X + {0, 4, 11}: in tracks 13, 1 and 8 (in the last two cases, with
offset 1). However, at the same time the sum contains full tracks 1, 8 and

13, and the contributions of X̂ to the sum are subsumed by these numbers,
as τ13(X̂) ⊆ τ13(Z), τ1(X̂ + 1) ⊆ τ1(Z) and τ8(X̂ + 1) ⊆ τ8(Z). Therefore,

the value of the expression does not depend on X̂. Taking the union of all
entries of the Table 1 proves that X + {0, 4, 11} equals

⋃

i∈{0,1,3,4,6,7,
8,9,10,12,13}

τi(Z) ∪ {11},

as stated in the lemma.

Now, assuming that the given system of equations with union and addi-
tion is decomposed to have all equations of the form X = Y +Z, X = Y ∪Z
or X = const, these equations can be simulated in a new system as follows:

Lemma 16 (cf. [9, Lemma 4.1]). For all sets X, Y, Z ⊆ Z,

σ(Y ) + σ(Z) + {0, 1} = σ(X) + σ({0}) + {0, 1} if and only if Y + Z = X

σ(Y ) + σ(Z) + {0, 2} = σ(X) + σ(X) + {0, 2} if and only if Y ∪ Z = X.
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Proof. The goal is to show that that for all Y, Z ⊆ Z, the sum

σ(Y ) + σ(Z) + {0, 1}
encodes the set Y +Z +1 on one of its tracks, while the contents of all other
tracks does not depend on Y or on Z. Similarly, the sum

σ(Y ) + σ(Z) + {0, 2}
has a track that encodes Y ∪Z, while the rest of its tracks also do not depend
on Y and Z.

The common part of both of the above sums is σ(Y ) + σ(Z), so let us
calculate it first. Since

σ(Y ) = {0} ∪ τ6(Z) ∪ τ8(Z) ∪ τ9(Z) ∪ τ12(Z) ∪ τ13(Y ) and

σ(Z) = {0} ∪ τ6(Z) ∪ τ8(Z) ∪ τ9(Z) ∪ τ12(Z) ∪ τ13(Z),

by the distributivity of union, the sum σ(Y ) + σ(Z) is a union of 36 terms,
each being a sum of two individual tracks. Every such sum is contained in
a single track as well, and Table 3 gives a case inspection of the form of all
these terms. Each of its six rows corresponds to one of the nonempty tracks
of σ(Y ), while its six columns refer to the nonempty tracks in σ(Z). Then
the cell gives the sum of these tracks, in the form of the track number and
track contents: that is, for row representing tracki(σ(Y )) and for column
representing trackj(σ(Z)), the cell (i, j) represents the set tracki(σ(Y ))+
trackj(σ(Z)), which is bound to be on track i + j (mod 16). For example,
the sum of track 8 of σ(Y ) and track 9 of σ(Z) falls onto track 1 = 8 + 9
(mod 16) and equals

τ8(Z) + τ9(Z) = {8 + 9 + 16(m + n) |m,n ∈ Z} = {1 + 16n | n ∈ Z} = τ1(Z),

while adding track 13 of σ(Y ) to track 13 of σ(Z) results in

τ13(Y ) + τ13(Z) = {26 + 16(m + n) |m ∈ Y, n ∈ Z} = τ10(Y + Z + 1),

which is reflected in the table 3. Each question mark denotes a track with
unspecified contents. Though this contents can be calculated, it is actually
irrelevant, because it does not influence the value of the subsequent sums
σ(Y ) + σ(Z) + {0, 1} and σ(Y ) + σ(Z) + {0, 2}.

Now the value of each i-th track of σ(Y ) + σ(Z) is obtained as the union
of all sums in Table 3 that belong to the i-th track. The final values of these
tracks are presented in the corresponding column of Table 2.

Now the contents of the tracks in σ(Y )+σ(Z)+{0, 1} can be completely
described. The calculations are given in Table 2, and the result is that for
all Y and Z,

track11(σ(Y ) + σ(Z) + {0, 1}) = Y + Z + 1

tracki(σ(Y ) + σ(Z) + {0, 1}) = Z for i 6= 11
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σ(Y ) σ(Z) σ(Y )+σ(Z) σ(Y )+σ(Z)+{0, 1} σ(Y )+σ(Z)+{0, 2}
0 {0} {0} Z Z Z
1 ∅ ∅ Z Z Z
2 ∅ ∅ Z Z Z
3 ∅ ∅ ? Z Z
4 ∅ ∅ Z Z Z
5 ∅ ∅ Z Z Z
6 Z Z Z Z Z
7 ∅ ∅ ∅ Z Z
8 Z Z Z Z Z
9 Z Z Z Z Z
10 ∅ ∅ Y + Z + 1 Z Z
11 ∅ ∅ ∅ Y + Z + 1 Z
12 Z Z Z Z Z
13 Y Z Y ∪ Z Z Y ∪ Z
14 ∅ ∅ Z Z Z
15 ∅ ∅ Z Z Z

Table 2: Tracks in the sums of σ(Y ) + σ(Z) with constants.

It easily follows that
X = Y + Z

iff
σ(X) + σ({0}) + {0, 1} = σ(Y ) + σ(Z) + {0, 1},

as, clearly, X = X + {0}.
For the set σ(Y ) + σ(Z) + {0, 2}, in the same way, for all Y and Z,

track13(σ(Y ) + σ(Z) + {0, 2}) = Y ∪ Z

trackj(σ(Y ) + σ(Z) + {0, 2}) = Z for j 6= 13

and therefore for all X, Y, Z,

X = Y ∪ Z

iff
σ(X) + σ(X) + {0, 2} = σ(Y ) + σ(Z) + {0, 2},

since X = X ∪X.
Both claims of the lemma follow.

Using these two lemmata, one can simulate any system with addition
and union by a system with addition only. Taking systems representing
different hyper-arithmetical sets, the following result on the expressive power
of systems with addition can be established:
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0 : {0} 6 : Z 8 : Z 9 : Z 12 : Z 13 : Z

0 : {0} 0 : {0} 6 : Z 8 : Z 9 : Z 12 : Z 13 : Z
6 : Z 6 : Z 12 : Z 14 : Z 15 : Z 2 : Z 3 :?
8 : Z 8 : Z 14 : Z 0 : Z 1 : Z 4 : Z 5 :?
9 : Z 9 : Z 15 : Z 1 : Z 2 : Z 5 : Z 6 :?
12 : Z 12 : Z 2 : Z 4 : Z 5 : Z 8 : Z 9 :?
13 : Y 13 : Y 3 :? 5 :? 6 :? 9 :? 10 : (Y +Z)+1

Table 3: Tracks in the sum σ(Y ) + σ(Z). Question marks denote sets that
depend on X or Y and whose actual values are unimportant.

Theorem 3. For every hyper-arithmetical set S ⊆ Z there exists a system of
equations over sets of integers using the operation of addition and ultimately
periodic constants, which has a unique solution with X1 = T , where S =
{n | 16n ∈ T}.
Sketch of a proof. A system of equations with union and addition repre-
senting S exists by Theorem 2. This system is first decomposed to have
all equations of the form X = Y + Z, X = Y ∪ Z or X = C. For
every variable X of this system, the new system has a variable X ′ with
an equation as in Lemma 15. Next, according to Lemma 16, the equa-
tions Y + Z = X, Y ∪ Z = X or X = C are transformed to equations
Y ′+Z ′+{0, 1} = X ′+σ({0})+{0, 1}, Y ′+Z ′+{0, 2} = X ′+X ′+{0, 2} and
X ′ = σ(C), respectively, and the resulting system should have a unique solu-
tion with X ′ = σ(X). Thus the constructed system represents the set σ(S),
and adding an extra equation X1 = X + {−13} yields the set T = σ(S)− 13
with the desired properties.

6 Decision problems

Having a solution (solution existence) and having exactly one solution (so-
lution uniqueness) are basic properties of a system of equations. For lan-
guage equations with continuous operations, testing solution existence is a
Π0

1-complete decision problem [20], and it remains Π0
1-complete already in

the case of a unary alphabet, concatenation as the only operation and reg-
ular constants [9], that is, for equations over sets of natural numbers with
addition only. For the same formalisms, solution uniqueness is Π0

2-complete.
Consider equations over sets of integers. Since their expressive power

extends beyond the arithmetical hierarchy, the decision problems should ac-
cordingly be harder. In fact, the solution existence is Σ1

1-complete, which
will now be proved using a reduction from the following problem:

Proposition 6 (Rogers [22, Thm. 16-XX]). Consider trees with
nodes labeled by finite sequences of natural numbers, such that a node
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(x1, . . . , xk−1, xk) is a son of (x1, . . . , xk−1), and the empty sequence ε is the
root. Then the following problem is Π1

1-complete: “Given a description of
a Turing machine recognizing the set of nodes of a certain tree, determine
whether this tree has no infinite paths”.

In other words, a given Turing machine recognizes sequences of natural
numbers, and the task is to determine whether there is no infinite sequence
of natural numbers, such that all of its prefixes would be accepted by the
machine. The Σ1

1-complete complement of the problem is testing whether
such an infinite sequence exists, and it can be reformulated as follows:

Corollary 3. The following problem is Σ1
1-complete: “Given a Turing ma-

chine M working on natural numbers, determine whether there exists an
infinite sequence of strings {xi}∞i=1 with xi ∈ {3, 6}∗, such that M accepts
(1xk1xk−1 . . . 1x11)7 for all k > 0”.

This problem can be reduced to testing existence of a solution of equations
over sets of numbers.

Theorem 4. The problem of whether a given system of equations over sets
of integers with addition and ultimately periodic constants has a solution is
Σ1

1-complete.

Proof. For any fixed system of equations, the statement that it has a solution
naturally belongs to Σ1

1: taking the arithmetical formula Eq(X1, . . . , Xn),
from Lemma 1, it suffices to write a second-order statement

(∃X1) . . . (∃Xn) Eq(X1, . . . , Xn).

Furthermore, note that a given system can be effectively transformed to such
a formula.

Consider that the condition of a given closed Σ1
1-formula’s being true can

be specified by a certain universal Σ1
1-formula ϕ(x), with ϕ(n) true if and

only if n is a number representing a true closed Σ1
1-formula [22, Cor. 16-

XX(a)], this leads to a Σ1
1 formula representing the existence of solution of

a system.
In order to prove that testing solution existence is Σ1

1-hard, it is sufficient
to reduce the problem from Corollary 3 to it. Let M be the given Turing
machine. Since L(M) ∈ Σ0

1, there is a system of equations over sets of
integers in variables Y, Y1, . . . , Ym, which has a unique solution with Y =
L(M), and this system can be effectively constructed from the description of
M . Introducing extra variables X and Y , consider the following additional
equations, where the expressions E and Remove1 are taken from Lemma E
and Lemma 5:

X ⊆ Y

{1} ⊆ X

X = E(Remove1(X)))
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The variable X represents a subset of Y containing the set of finite prefixes of
one or more infinite sequences. The claim is that this system has a solution
if and only if there exists an infinite sequence x1, x2, . . . , xk, . . ., such that
each number (1xk1xk−11 . . . 1x11)7, for k > 0, is accepted by M .

⇒© Assume that the system has a solution. Then an infinite sequence
x1, . . . , xk, . . ., with (xk1xk−11 . . . 1x11)7 ∈ X for each k > 0, is constructed
inductively as follows. The base case is that all elements up to k = 0 are
defined, and it is ensured by the equation {1} ⊆ X. Assume that the
elements are defined up to k > 0. Then, (xk1xk−11 . . . 1x11)7 ∈ X =
E(Remove1(X)). As E(Remove1(X)) = {1w | ∃x (1x1w)7 ∈ X}, there
exists x with (1x1xk1 . . . , 1x1)7 ∈ X. Let xk+1 = x. Since X ⊆ Y = L(M),
each of the numbers (1x1xk1 . . . , 1x1)7 is accepted by M .

⇐© Conversely, assume that there is an infinite sequence x1, x2, . . . , xk, . . .,
such that each (1xk1xk−11 . . . 1x11)7, for all k > 0, is accepted by M . Then
let X = {(1xk1xk−11 . . . 1x11)7 | k > 0} be the set of finite prefixes of this
particular sequence. This X, together with Y = L(M), forms a solution of
the constructed system. Indeed,

E(Remove1(X))) = E(Remove1({(1xk1xk−11 . . . 1x11)7 | k > 0}))
= E({(xk1xk−11 . . . 1x11)7 | k > 0})
= {(1xk−11 . . . 1x11)7 | k > 0}
= {(1xk−11 . . . 1x11)7 | k > 1}
= {(1xk1 . . . 1x11)7 | k > 0}
= X,

and the rest of the equations clearly hold, as X ⊆ Y and, by the construction,
1 ∈ X. Thus the system has a solution.

Now consider the solution uniqueness property. The following upper
bound on its complexity naturally follows by definition:

Proposition 7. The problem of whether a given system of equations over sets
of integers using addition and ultimately periodic constants has a unique so-
lution can be represented as a conjunction of a Σ1

1-formula and a Π1
1-formula,

and is accordingly in ∆1
2.

Proof. The property of having at most one solution can be expressed by the
following Π1

1-formula:

(∀X1) . . . (∀Xn)(∀X ′
1) . . . (∀X ′

n)
[
Eq(X1, . . . , Xn) ∧ Eq(X ′

1, . . . , X
′
n)

] →
→ (∀n)(∀i)(n ∈ Xi ↔ n ∈ X ′

i

)

Then the condition of having a unique solution is a conjunction of the latter
formula with the Σ1

1-formula expressing solution existence. The resulting
conjunction can be reformulated both as a Σ1

2-formula and as a Π1
2-formula.
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Sets representable Complexity of decision problems
by unique solutions solution existence sol. uniqueness

over 2N, with {+,∪} ∆0
1 (recursive) [8] Π0

1-complete [8] Π0
2-complete [8]

over 2N, with {+} encodings of ∆0
1 [9] Π0

1-complete [9] Π0
2-complete [9]

over 2N, with {+,−· ,∪} ∆1
1 (hyper-arithm.) Σ1

1-complete in ∆1
2

over 2Z, with {+,∪} ∆1
1 Σ1

1-complete in ∆1
2

over 2Z, with {+} encodings of ∆1
1 Σ1

1-complete in ∆1
2

Table 4: Summary of the results.

The exact hardness of testing solution uniqueness is still open. The prop-
erties of different families of equations over sets of numbers are summarized
in Table 4.

7 Conclusion and open problems

The paper has determined the natural limit of the expressive power of lan-
guage equations involving erasing operations. Just like the recursive sets are
the natural upper bound for equations with continuous operations [20], and
this upper bound is reached by ultimately simple specimens of such equa-
tions [8, 9, 13], the hyper-arithmetical sets, which might have looked as a
very rough upper bound, have been found representable by equations with
the simplest sets of erasing operations. In addition, these simple equations
can be regarded as a basic arithmetical object representing an important
variant of formal arithmetic.

There is an important question left unanswered in this paper: what is the
exact complexity of the solution uniqueness problem for equations over sets
of integers? In particular, is it Σ1

1-hard or Π1
1-hard?
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