
Pontus Boström

Creating sequential programs from Event-B
models

TUCS Technical Report
No 955, August 2009

Creating sequential programs from Event-B
models

Pontus Boström
Department of Information Technology,
Åbo Akademi University,
Joukainengatan 3-5,
FIN-20520 Åbo
pontus.bostrom@abo.fi

TUCS Technical Report

No 955, August 2009

Abstract

Event-B is an emerging formal method with good tool support for various kinds
of system modelling. However, efficient implementation of event based speci-
fications created in Event-B as imperative programs has not been thoroughly
explored. This paper explores methods to create efficient sequential code from
Event-B models. The methods are based on a scheduling language for describ-
ing the flow of control in programs. The aim is to be able to express schedules
of events, reasoning about their correctness and for creating and verifying im-
plementation patterns. The conclusion is that using patterns, it is feasible to
derive efficient sequential code from event based specifications in many cases.
However, the extra proof obligations required in the process might sometimes
make this approach infeasible.

Keywords: Event-B, Implementation, Sequential program development, Schedul-
ing, Patterns

TUCS Laboratory
Distributed Systems Design Laboratory

1 Introduction

Event-B [3] has emerged as a well known method for high-level specification of
a wide variety of different types of systems. It has good tool support in the
form of theorem provers [3], animators [13] and model checkers [13] to anal-
yse specifications. The specifications can also be developed and analysed in
a stepwise manner using the notion of refinement. However, when developing
software, the final step from specification to executable program code has not
been thoroughly explored.

An Event-B model consists of a set of events inside a do od -loop, where
one enabled event is non-deterministically chosen for execution in each iteration
of the loop. If there are no enabled events, the loop terminates. To implement
an Event-B model, this loop is translated in some manner to an (imperative)
programming language. In [1, 2] Abrial gives a method for development of se-
quential programs in Event-B and patterns for introducing flow control, such as
while-loops and if-statements, to obtain the final imperative program. Those
patterns work well in many cases, but they fairly limited in the type of sequen-
tial behaviour that can be introduced. A translator has also been developed
for translating Event-B to C [15]. This translator translates events to their
corresponding C constructs and directly creates a loop body where one of the
events is executed in each iteration of the loop. This approach always works,
but the programs might be very inefficient. By inefficient we here mean that the
program runs slower than necessary, e.g., due to unnecessary tests and branches
because of the simplistic control flow. Event-B is based on action systems [4, 5].
Implementation strategies for action systems and Event-B models have also been
investigated for parallel programs e.g. in [4, 11].

This paper investigates methods to create efficient sequential programs from
event based specifications. By creation of a sequential program, we mean that
flow control constructs such as while-loops, if-statements and sequential com-
position have been introduced to schedule the events from the Event-B model.
The methods are based on using a scheduling language to describe the flow of
control. If the events are executed according to the schedule and the schedule
has been verified, the resulting sequential program is a refinement of the original
event loop. The main goal is to show how to verify scheduling of events and to
be able to actually derive the conditions under which the schedule is correct. We
also investigate how to develop and reason about reusable patterns to simplify
development of sequential programs in practice. To illustrate the approach, the
methods are, for example, used to prove the loop introduction pattern in [1, 2]
correct. A number of additional patterns are also presented.

The paper starts with an overview of Event-B. Event-B has no fixed seman-
tics and we first present a semantics based on a set transformer semantics of
events similar to [12] and action systems. This semantics is compatible with the
proof obligations generated by the Event-B tools. We then present sequential
program construction using Event-B as described in [1, 2]. To create sequential
programs from the Event-B models, a scheduling language is then developed.
We then show how scheduling events according to the schedule will lead to a
refinement of the original model. Patterns for verified schedules, as well as
creation of executable program statements from the scheduled events are also
presented. A small example applying the method is then finally given to illus-
trate our approach.

1

2 Event-B

An Event-B model is referred to as a machine [3]. A machine consists of a set
of variables constituting the state of the model, an invariant that describes the
valid states and a collection of events that describes the evolution of the state
of the model. The model can also use a context machine, with constant and
set definitions. The properties of these constants and sets are given by a set of
axioms.

2.1 Events as set transformers

The events in Event-B can be viewed as set or predicate transformers [6, 12].
The presentation here follows the presentation of set transformer semantics of
events in [12]. The state space of an Event-B model is modelled as the Carte-
sian product of the types of the variables. Variables v1, . . . , vn having types
Σ1, . . . , Σn give the state space Σ = Σ1 × . . .× Σn.

An event E has the form E =̂ when G(v, c) then v : |S(v′, v, c) end .
Here v denotes the variables, c the constants, G(v, c) denotes the guard of the
event and v : |S(v′, v, c) denotes a non-deterministic assignment to the variables.
Whenever G(v, c) is true the substitution v : |S(v′, v, c) can be executed. The
substitution assigns variables v any value v′ such that S holds. The events of
the machine are then considered to be inside a loop, where one event is executed
in each iteration of the loop as long as there are enabled events. To describe
the valid subset of the state space an invariant I is used. A model has a special
initialisation event initialisation, which has a a substitution of the form v : |A.
We have the following definitions:

Σ = {v|>}
i = {v|I(v, c)}
g = {v|G(v, c)}
s = {v 7→ v′|S(v, v′, c)}
a = {v′|A(v′, c)}

(1)

The sets i and g describe the sets where the invariant and the guard G holds,
respectively. The relation s describes the possible before-after states that can
be achieved by the assignment. Note that the initialisation results in a set a
instead of a relation, since it does not depend on the previous values of the
variables. In this paper, we do not consider properties of constants c separately,
as it is not important on this level of reasoning. The axioms that describe the
properties of the constants are here considered to be part of the invariant.

To simplify the definitions and increase readability we will introduce the
following notation. The symbol true will be used to denote the complete state
space of an Event-B model. In the above definition we have that trueΣ = Σ.
We will use negation to denote the complement of a set ¬q =̂ true\q 1. For
completeness false is defined as false =̂ ∅. This is similar to the approach in [6].

We give the semantics of the events as set transformers. A set transformer
applied to a set q describes the set of states from where the set transformer will
reach a state in q (cf. weakest precondition semantics of programs). We have

1\ denotes set subtraction

2

the following set transformers

[g](q) =̂ ¬g ∪ q (Assumption) (2)
{g}(q) =̂ g ∩ q (Assertion) (3)
[s](q) =̂ {v|s[{v}] ⊆ q} (Non− deterministic update) (4)
(S1 u S2)(q) =̂ S1(q) ∩ S2(q) (Non− deterministic choice) (5)
S1; S2(q) =̂ S1(S2(q)) (Sequential composition) (6)
Sω(q) =̂ µX.(S; X u skip)(q) (Strong iteration) (7)
S∗(q) =̂ νX.(S;X u skip)(q) (Weak iteration) (8)
skip(q) =̂ q (Skip) (9)
magic(q) =̂ [false](q) (Magic) (10)
abort(q) =̂ {false}(q) (Abort) (11)

The sequential composition ; has higher precedence than u here. The set trans-
formers here are similar to the predicate transformers in e.g. [6]. The first four
set transformers (2)-(6) also occur in [12]. The two set transformers (7) and
(8) model iteration of a set transformer S using the least and greatest fixpoint
[6, 7], respectively. The three last set transformers are important special cases:
skip is a set transformer that does nothing, magic(q) is always true and abort(q)
is always false.

We have the following rules that will be useful later. Here g and h denotes
two sets. These rules are easy to prove directly from the definitions and proofs
can also be found in [6].

{g}; {h} = {g ∩ h} [g]; [h] = [g ∩ h]
{g} u {h} = {g ∩ h} [g] u [h] = [g ∪ h]
abort u S = abort magic u S = S

abort;S = abort magic;S = magic

(12)

The guard g of a set transformer denotes the states where it will not behave
miraculously (establish false) and the termination guard t denotes the states
where it will terminate properly (reach a state in the state space).

g(S) = ¬S(false) (13)
t(S) = S(true) (14)

These functions have the following useful properties:

g({g}) = true g([g]) = g
t({g}) = g t([g]) = true

t(S1 u S2) = t(S1) ∩ t(S2) g(S1 u S2) = g(S1) ∪ g(S2)
(15)

The proofs are again easy to do directly from the definitions.
Using the definitions in (1) and the set transformers in (2) and (4), an

event E =̂ when G(v, c) then v : |S(v′, v, c) end can be modelled as the
set transformer [E] =̂ [g]; [s] [12]. Note that the proof obligations for Event-B
guarantee that g([E]) = g and t([E]) = true for all events [12]. The initialisation
event initialisation is modelled by the set transformer [initialisation] =̂ [a]. For
simplicity, we usually use the event E to directly denote the set transformer [E]
when it is clear from the context which one is meant.

A traditional Event-B model can be modelled as an action system. Action
systems [4, 5] were originally developed to reason about distributed and reactive

3

systems, but has since been used for a wide variety of systems. An action system
essentially consists of a list of variables, an initialisation of the variables and a
set of actions given as set transformers. The variables form the state space of
the system and the actions describe the evolution of the system. The actions
are inside a do od -loop and one action is non-deterministically chosen for ex-
ecution in each iteration of the loop. If there are no enabled actions the loop
terminates. Consider an Event-B model M that has variables v, initialisation
event initialisation and events E1, . . . , En. The corresponding action system
MA is then:

MA =̂ |[var v; init [initialisation]; do [E1] u . . . u [En] od]| (16)

The action system MA has a list of variables v corresponding to the variables
in the Event-B model. The initialisation event, initialisation, of the Event-B
model becomes the initialisation of the action system. The do od -loop denotes
non-deterministic execution of the events [E1] u . . . u [En]. In each execution
of the loop body, one event is non-deterministically chosen. In terms of the set
transformers presented earlier, the semantics of the loop is defined as [7]:

do S od =̂ Sω; [¬g(S)] (17)

This means S is executed zero or more times. The assumption at the end
ensures that the loop does not terminate before the guard of S is false. Action
systems have been explored thoroughly before. We base this work mainly on
the algebraic rules for loops (and thus action systems) in [7].

2.2 Invariants

The invariant describes the valid part of the state space. From the Event-B
proof obligations we have that the initialisation initialisation and every event
in E preserves an invariant i, i.e. we will not reach a state where the invariant
does not hold.

a ⊆ i (18)
i ⊆ E(i) (19)

This gives the following properties on the set transformer level [6]:

initialisation = initialisation; {i} (20)
{i}; E = {i}; E; {i} (21)

These assumptions can be used to introduce invariant assertions into loops as
shown in Lemma 1. The assertions will be useful later for refinement and for
creating sequential statements from the loops.

Lemma 1. Using the assumption (21) above then {i}; Eω = ({i}; E; {i})ω.

Proof. We have the induction rule (Corollary 8 in [7]): S;XuT v X ⇒ Sω;T v

4

X. Assume X =̂ ({i}; E; {i})ω, S =̂ E and T =̂ {i}
{i}; Eω

v {Assumption (21) : {i}; E = {i};E; {i}}
Eω; {i}

v {Induction}
• E; ({i}; E; {i})ω u {i} v ({i}; E; {i})ω

= {Rule : S u {i} = {i}; (S u skip)}
{i}; (E; ({i}; E; {i})ω u skip) v ({i};E; {i})ω

= {Propagation of assertion}
{i}; ({i};E; ({i}; E; {i})ω u skip) v ({i};E; {i})ω

= {Assumption (21) : {i}; E = {i}; E; {i}}
{i}; ({i};E; {i}; ({i};E; {i})ω u skip) v ({i}; E; {i})ω

= {Unfolding [7] : Sω = S; Sω u skip}
{i}; ({i};E; {i})ω v ({i}; E; {i})ω

⇐ {{i} v skip}
({i};E; {i})ω v ({i}; E; {i})ω

= {Reflexivity of v, S v S}
>

({i};E; {i})ω

The proof in the other direction is straightforward using unfolding [7], Sω =
S; Sω u skip, and the property: {i}; S u skip = {i}; (S u skip). ¤

This means that we can propagate invariant assertions through loops and
over other statements (see also (20) and (21)). These invariant assertions will
not always be written out. However, they can be added anywhere in a program
and to prove their introduction is straightforward although sometimes a bit
tedious.

2.3 Data refinement

The underlying idea behind development in Event-B is the notion of refinement.
An Event-B model can be developed stepwise, where each step introduces more
features or more implementation details while preserving properties already
proved in more abstract (simpler) models. A refinement Event-B model has
the same structure as an abstract Event-B model. The only differences are that
it contains a field to describe which model it refines and an abstraction invariant
J that describes how the concrete and abstract state spaces relate. Here the re-
fined Event-B model has variables w, which give a state space Γ = Γ1× . . .×Γm.
A refined event has the general form E′ =̂ when H(w) then w : |T (w,w′) end .
We then have the following set theoretic definitions [12]:

Γ = {w|>}
k = {v 7→ w|I(v) ∧ J(v, w)}
h = {w|H(w)}
t = {w 7→ w′|T (w, w′)}
b = {w|B(w)}

(22)

Here I is the invariant of the abstract model, J the abstraction invariant, H the
guard of the concrete event E′ and w : |T (w, w′) the substitution of event E′.
The initialisation in the concrete model is given by the assignment of w : |B .
To describe data refinement, a special decoding statement (set transformer) D
is introduced that maps the concrete state space into the abstract state space.

5

For forward data refinement (normal Event-B refinement), we use a D such
that D(φ) =̂ k[φ]2 [12]. Note that the only requirement in general is that D is
monotonic [8]. However, the proof obligations generated by the Event-B tools
are only valid if D has the form above. Note also that D is then non-miraculous
(strict), D(false) = false. A statement S is data-refined by a statement S′,
S vD S′, iff [6, 8, 12]:

∀s ·D;S(s) ⊆ S′;D(s) (23)
Intuitively, this means that if S can reach a state in the subset s of the abstract
state space then S′ should reach the corresponding state in the concrete state
space.

Assume we have an Event-B model M with variables v, initialisation initia-
lisation and events E, as well as an concrete Event-B model M1 with variables
w, initialisation initialisation′, events E′ and En. We then have the following
action system representations of the Event-B models M and M1:

MA =̂ |[var v; init initialisation; do E od]| (24)

M1A =̂ |[var w; init initialisation′; do E′ u En od]| (25)

We have the definition that M is data refined by M1, MvD M1, iff MA vD

M1A. We then have that MA vD M1A if the following conditions hold [7]:

D; initialisation v initialisation′;D (26)
D; E v E′; D (27)

D; skip v En;D (28)
D; [¬g(E)] v [¬g(E′ u En)]; D (29)

D(true) ⊆ do En od (true) (30)

The first condition states that the abstract initialisation should be refined by
the concrete one. Each old event E should then be refined by a corresponding
event E′. Each new event En should refine skip. The forth condition states
the concrete system should not terminate more often than the abstract system.
The last condition requires that the new events terminate when executed in
isolation. We have chosen to present this algebraic form of the data refinement
rules, which can be easily used in the proofs presented here. All conditions
above except for condition (29) are generated by the tools of Event-B [12].

To make the paper more self-contained a few useful refinement rules con-
cerning assumptions and assertions are presented. These rules are frequently
used later. The proofs are straightforward and can be found in e.g. [6]. Here g
and h again denote predicates (sets):

{g} v {h} ≡ g ⊆ h [g] v [h] ≡ h ⊆ g
{g} v skip skip v [g] (31)

3 Sequential program development in Event-B

Abrial has outlined [1, 2] a method for developing sequential programs using an
event based approach. The idea is to first model the program as one event that
performs the calculation in one step. The event non-deterministically assigns the
variables a value satisfying the post-condition of the program. The parameters
of the program are defined as constants and the pre-condition as axioms in a
context of the Event-B model. Data refinement is then used to derive, in a
stepwise manner, an algorithm satisfying the specification.

2r[s] denotes the relational image of r from set s

6

3.1 Formal definitions

The idea [1, 2] can also be formalised in our action system setting. Since the
result should be computed in one step according to the method for sequential
program construction, there is no loop in the initial action system representation
of the Event-B model. The initial specification consists of one event that is not
inside a do od -loop:

E =̂ |[var v; init initialisation;E0]| (32)

There is one event that calculates the result in one step, E0. Here the pre-
condition is given by the invariant and the constant properties (axioms) of the
Event-B model. These properties are here carried in the invariant i. Note that
due to (20), E0 can be rewritten as {i}; E0. This is similar to the program
specification statement {p}; [v := v′|S] [6], where p is the precondition and
[v := v′|S] denotes a non-deterministic assignment to the variables satisfying
post-condition S. The specification model E is then refined into an event system
E1 that implements the specification.

E1 =̂ |[var w; init initialisation′; do En od ; E′
0]| (33)

Here En denotes new events that describe the algorithm used to compute the
desired result. The old event E′

0 that described the post-condition has usually
been reduced to only assigning the output variables the final result from the
calculation.

Using the properties proved by the Event-B tools, the action systems with
the semantics above are also correctly refined. We have proved:

D; initialisation v initialisation′;D (34)
D;E0 v E′

0; D (35)
D; skip v do En od ;D (36)
D; [¬g(E0)] v [¬g(E′

0 u En)]; D (37)
D(true) ⊆ do En od (true) (38)

Note that we are only interested in the case when E0 is non-miraculous, i.e.,
when the program is implementable. Using this fact, g({i}; E0) = true, then
deadlock freeness condition (37) gives the condition:

D(true) ⊆ g(E′
0 u En) (39)

That event E0 is non-miraculous can be ensured syntactically by not having a
guard on the event [12].

Using the conditions above, we can now prove that E vD E1 and that E1

is also non-miraculous. However, first we need a few additional properties. To
prove that the refined system is non-miraculous, we need to take advantage of
the invariant property stated in Lemma 2.

Lemma 2. D; {i} v {D(i)};D
Proof.

D; {i} v {D(i)}; D
≡ {Definition}

∀s ·D; {i}(s) ⊆ {D(i)}; D(s)
≡ {wp− calculations : (3) and (6)}

∀s ·D(i ∩ s) ⊆ D(i) ∩D(s)
≡ {i ∩ s ⊆ i and i ∩ s ⊆ s and D monotonic}

>

7

¤

We also need to prove that invariant assertions can be introduced in the
refined specification. This means that the abstract invariant should be estab-
lished by the concrete initialisation initialisation′ and maintained by each event
E ∈ E′ ∪ En in the concrete model:

initialisation′ = initialisation′; {D(i)} (40)
{D(i)}; E = {D(i)};E; {D(i)} (41)

This can be proved from the invariant preservation of abstract events and the
refinement conditions. The proof is omitted here for brevity. See e.g. [8] (The-
orem 34) for how the proof can be carried out. This means that the assertion
{D(i)} can be used in the same manner as the invariant assertion {i} in the
abstract specification.

Lemma 3. If g({i};E0) = true and the refinement proof obligations (34)-(38)
has been discharged then E vD E1 and E1 will not behave miraculously.

Proof. Refinement of the events gives:

D; E0

v {E0 = skip; E0 and (36) : D; skip v do En od ; D}
do En od ; D; E0

v {D; E0 v E′
0; D}

do En od ; E′
0; D

Then we prove that the refinement is non-miraculous, i.e. g(S) = true:

do En od ; E′
0; D (false)

= {Property of D: D(false) = false}
do En od ; E′

0 (false)
= {Definition of do od }

Eω
n ; [¬g(En)]; E′

0 (false)
= {Rule :[g] = [g]; {g}}

Eω
n ; [¬g(En)]; {¬g(En)}; E′

0 (false)
= {Invariant introduction}

Eω
n ; [¬g(En)]; {D(i)}; {¬g(En)};E′

0 (false)
⊆ {i ⊆ true and D(i) ⊆ D(true) since D monotonic,

Rule : g ⊆ h ≡ {g} v {h}}
Eω

n ; [¬g(En)]; {D(true)}; {¬g(En)};E′
0 (false)

⊆ {Assumption (39) : D(true) ⊆ g(E′
0) ∪ g(En)}

Eω
n ; [¬g(En)]; {g(E′

0) ∪ g(En)}; {¬g(E′
n)};E0 (false)

= {{g}; {h} = {g ∩ h} and set theory}
Eω

n ; [¬g(En)]; {¬g(En) ∩ g(E′
0)}; E′

0 (false)
= {Rule : {g ∩ h} = {g}; {h}}

Eω
n ; [¬g(En)]; {¬g(En)}; {g(E′

0)}; E′
0 (false)

= {Rule : {g(S)};S (false) = false}
Eω

n ; [¬g(En)]; {¬g(En)} (false)
= {Rule : {g} (false) = false}

Eω
n ; [¬g(En)] (false)

= {Rule (Lemma 17b in [7]) : Sω; [¬g(S)](false) = false}
false

¤

8

In [12] introduction of while-loops is done in a similar way. However, here we
are interested in implementable specifications and consequently the abstract
event needs to be non-miraculous. Hallerstede assumes introduction of loops
in a more general setting where the abstract event can have a guard and that
the guard is interpreted as the pre-condition of the complete loop. The proof
obligation required in that setting is exactly the traditional deadlock freeness
proof obligation in (37). We have a slightly stronger version where the abstract
event is assumed to be always enabled and we also only prove that deadlock
freeness proof obligation is sufficient. The proof in [12] could, of course, also be
reused here.

3.2 Example

To illustrate the development approach, a small example involving a program
for summing the elements in an array is presented. The array with the elements
to sum is denoted by f and the size of the array is given by m. The result is
given by the variable sum.

context C
constants m, f
axioms

m ∈ N1
f ∈ 1..m → Z

end

machine M
sees C
variables sum
invariant

sum ∈ Z
events
initialisation =̂
begin

sum := 0
end
calc =̂
begin

sum := Σm
i=1f(i)

end
end

In the abstract specification the computation is performed in one step, sum :=
Σm

i=1f(i). The event thus encodes that the variables are assigned values sat-
isfying the post-condition of the computation. In the refinement, a new event
progress is introduced to iteratively calculate the result. Here s holds the in-
termediate result and j is the end of the sub-array summed so far. We get the
following model:

machine M1
refines M
sees C
variables sum, j, s
invariant

s ∈ Z
j ∈ 0..m

j > 0 ⇒ (s = Σj
i=1f(i))

events
initialisation =̂
begin

sum := 0
s := 0
j := 0

end

progress =̂
where j < m
then

j := j + 1
s := s + f(j + 1)

end
calc =̂
where j = m
then sum := s
end
end

The models M and M1 above give the action system representations:

MA =̂ |[var sum; init [initialisation]; [calc]]| (42)

M1A =̂
|[var sum, j, s; init [initialisation]; do [progress] od ; [calc]]| (43)

9

According to the patterns for mapping events to imperative programming con-
structs [1, 2], the model M1 would be implemented as following statement:

sum := 0;
s := 0;
j := 0;
while j < m
then

j := j + 1
s := s + f(j + 1)

end ;
sum := s

The patterns in [1, 2] give a convenient way to implement sequential programs
from Event-B models. However, the patterns do not handle general sequential
composition. For example, consider the example above where it is known that
m = 3 and we would like to implement the summation as an unrolled loop. Loop
unrolling is a common optimisation technique applied by hand or automatically
by the compiler to make loops that are iterated only a few times run faster. We
can further refine M1 to do the unrolling:

machine M2
refines M1
sees C
variables sum, j, s
invariant

s ∈ Z
j ∈ 0..m

j > 0 ⇒ (s = Σj
i=1f(i))

events
initialisation =̂
begin

sum := 0
s := 0
j := 0

end

progress1 =̂
where j = 0
then

j := 1
s := s + f(1)

end
progress2 =̂
where j = 1
then

j := 2
s := s + f(2)

end
progress3 =̂
where j = 2
then

j := 3
s := s + f(3)

end
calc =̂
where j = 3
then sum := s
end
end

The desired implementation of this model is:

sum := 0;
s := 0;
s := s + f(1); s := s + f(2); s := s + f(3)
sum := s

This implementation cannot be obtained by the implementation patterns in
[1, 2]. In the following sections we develop a method where it is possible to
prove that the implementation above refines the Event-B model M2.

4 Creation of sequential program statements by
scheduling events

To create efficient sequential programs, we like to introduce more precise flow of
control. This means that we create a schedule for the events which they should
be executed according to. In order for the schedule to be correct, we have to
show that executing the events according to it leads to a refinement of the old
loop of events. First we describe a scheduling language. Based on this language,

10

the events from the Event-B model are scheduled to obtain a sequential program
statement. We then show how to prove the correctness of this statement. Then
we present a few reusable patterns for scheduling, as well as a few patterns to
refine the statement obtained by scheduling events into an imperative program.

4.1 The scheduling language

First we introduce a scheduling language to describe the scheduling of events.
It has the following grammar:

DoStmnt ::= [{g} →] do Stmnt od

ChoiceStmnt ::= E (‖ E)∗

Stmnt ::= (DoStmnt | ChoiceStmnt)(→ DoStmnt | ChoiceStmnt)∗

→ hlt

(44)

Here exp∗ denotes zero or more occurrences of exp, [exp] optional occurrence
of exp, g is a predicate and E is the name of an event. We can have sequential
composition of events →, choice of events ‖ and iteration of events do od . We
can also have assertions {g} before a loop. This is often needed for the proofs
of loop correctness. The label hlt denotes the end of a statement. It could
be omitted, but it is used here to make the scheduling rules presented later
simpler. The language is not very flexible. However, the aim is that it should
be possible to automatically generate proof obligations for schedule satisfaction,
as well as easily map the statement obtained after scheduling to an imperative
programming language. It is possible to calculate the necessary proof obligations
from the guards and the assertions given in the schedule. Extra events or extra
variables are not necessary for verification. There are usually many ways to show
that a schedule can be satisfied and general rules that are usable are therefore
difficult to obtain. Often specialised proof strategies that take advantage of
model-specific properties about events are needed. To remedy this problem
this language can easily be used to develop and verify reusable patterns for
scheduling with known verification conditions.

The correctness criteria for the statement obtained by scheduling the events
is that it refines the original loop of events. The scheduled statement should also
be non-miraculous. The verification of the scheduling is here done incrementally
in a top-down manner. Assume that we have a recursive decent parser sched
of schedules that conform to the grammar in (44), which also acts as one-pass
compiler from schedule to sequential statement. We show that each recursive
call to sched will create a refinement of the previous call. Due to monotonicity of
all set transformers involved, this will ensure that at the end the final statement
obtained from the schedule refines the original Event-B model. This type of
stepwise verification of scheduling seems to be well suited for creation and veri-
fication of reusable patterns for introducing different types of flow control. This
is not the only option for scheduling. The creation of sequential programs in
[1, 2] is done in a more bottom-up manner, where individual events are merged
to form a larger units. There are often side-conditions for the scheduling pat-
terns stating that the rest of the system does not interfere. In our approach
those side conditions are explicitly taken into account, which might be more
difficult to do in a bottom-up approach.

11

4.2 Verification of Scheduling

Let the schedule compiler function sched(E,S) be a function from a set of events
E and a schedule S to the statement obtained after scheduling of events accord-
ing to the schedule. The events E are here the events in schedule S. Below
E, E1 and E2 denote sets of events. E.g. the set E1 is assumed to consist
of events E11, . . . , E1n and thus E1 in the schedule denotes E11 ‖ . . . ‖ E1n .
Here we use the notation [E1] to mean the demonic choice of all events in E1,
[E1] =̂ [E11] u . . . u [E1n]. The function sched is recursively defined as follows:

sched(E ∪ E1 ∪ E2, E1 → E2 → S) −→
[E1]; {g([E2])}; sched(E ∪ E2, E2 → S)

sched(E ∪ E1 ∪ E2, E1 → {g} → do S2 od → S) −→
[E1]; {g}; sched(E ∪ E2, {g} → do S2 od → S)

sched(E ∪ E1 ∪ E2, {g} → do S1 od → E2 → S) −→
{g}; ([g([E1])]; sched(E1, S1))ω; [¬g(E1)]; {g(E2)};
sched(E ∪ E1, E2 → S)

sched(E ∪ E1 ∪ E2, {g1} → do S1 od → {g2} → do E2 od → S) −→
{g1}; ([g([E1])]; sched(E1, S1))ω; [¬g([E1])]; {g2};
sched(E ∪ E1, {g2} → do E2 od → S)

sched(E1, E1 → hlt) −→
[E1]

sched(E1, {g} → do S1 od → hlt) −→
{g}; ([g([E1])]; sched(E1, S1))ω; [¬g([E1])]

(45)

To emphasize the direction of function application, we have used −→ instead of
= for definition of the function sched. We have also here omitted the case when
the assertion {g} is not present before the loop, since it can be handled using the
identity {true} = skip. To verify that the events can be scheduled according to
the desired schedule, each application of a scheduling function should lead to a
refinement of the previous step. The function application sched(E, S) above thus
refers to events that have not been scheduled yet and its semantics is therefore
[E]ω; [¬g([E])]. Hence, we prove that the left-hand side is always refined by the
right hand side. Furthermore, it might also be desirable to prove that the right
hand side is non-miraculous. For simplicity, from here on we directly denote the
set transformer [E] corresponding to the event names E with only E.

Note that on the right hand side, scheduling statements of the form sched(E∪
Ei, Si → S) are always preceded by a assertion that ensures that the following
statement in the schedule is enabled and that it terminates. This means that
we can usually do the desired refinement proofs in a context [6] where a context
assertion holds. In the proof obligation below we have assumed that all applica-
tions of sched in (45) were done in a context, where the assertion {c} holds. We
then have refinement conditions of the form {c}; sched(E ∪ Ei, Si → S) v

The proof obligations for the scheduling using sched from (45) become:

{c}; (E u E1 u E2)ω; [¬g(E u E1 u E2)] v
E1; {g(E2)}; (E u E2)ω; [¬g(E u E2)]

(46)

{c}; (E u E1 u E2)ω; [¬g(E u E1 u E2)] v
E1; {g}; (E u E2)ω; [¬g(E u E2)]

(47)

{c}; (E u E1 u E2)ω; [¬g(E u E1 u E2)] v
{g}; ([g(E1)]; sched(E1, S1))ω; [¬g(E1)]; {g(E2)}; (E u E2)ω; [¬g(E u E2)]

(48)

12

{c}; (E u E1 u E2)ω; [¬g(E u E1 u E2)] v
{g1}; ([g(E1)]; sched(E1, S1))ω; [¬g(E1)]; {g2}; (E u E2)ω; [¬g(E u E2)]

(49)

{c}; Eω
1 ; [¬g(E1)] v E1 (50)

{c}; Eω
1 ; [¬g(E1)] v {g}; ([g(E1)]; sched(E1, S1))ω; [¬g(E1)] (51)

The function application sched(E1, S1) is interpreted as a still unsched-
uled loop and thus it is equal to Eω

1 ; [¬g(E1)]. Lemma 4 can then be used
to simplify the statement ([g(E1)]; sched(E1, S1))ω, which has the semantics
([g(E1)]; Eω

1 ; [¬g(E1)])ω; [¬g(E1)].

Lemma 4. Sω; [¬g(S)] = ([g(S)]; Sω; [¬g(S)])ω; [¬g(S)]

Proof.

([g(S)];Sω; [¬g(S)])ω; [¬g(S)]
= {Unfolding [7] : Sω = S;Sω u skip}

([g(S)];Sω; [¬g(S)]; ([g(S)]; Sω; [¬g(S)])ω u skip); [¬g(S)]
= {Leapfrog (Lemma 11 in [7]) : S; (T ;S)ω = (S;T)ω;S}

([g(S)];Sω; ([¬g(S)]; [g(S)]; Sω)ω; [¬g(S)] u skip); [¬g(S)]
= {[¬g(S)]; [g(S)] = magic and magic; S = magic and magicω = skip}

([g(S)];Sω; [¬g(S)] u skip); [¬g(S)]
= {Unfolding [7] : Sω = S;Sω u skip}

([g(S)]; (S;Sω u skip); [¬g(S)] u skip); [¬g(S)]
= {Distribution over u and [g(S)]; [¬g(S)] = magic}

(([g(S)];S;Sω; [¬g(S)] umagic) u skip); [¬g(S)]
= {Definition of g and S umagic = S}

(S;Sω; [¬g(S)] u skip); [¬g(S)]
= {Distribution over u and rule : [g]; [g] = [g]}

(S;Sω u skip); [¬g(S)]
= {Unfolding [7] : Sω = S;Sω u skip}

Sω; [¬g(S)]

¤

4.3 Scheduling patterns

The proof obligations in (46)-(51) cannot be proved for arbitrary events. They
can only be proved when the events involved satisfy certain constraints. There
are also many possibilities for the schedules to actually be satisfied. The best
approach to scheduling is probably to develop a set of patterns with known cor-
rectness conditions. The key to the development of patterns is that we can prove
incrementally that each application of the scheduling function sched result in a
non-miraculous refinement. This can be used to show that a certain sequence of
scheduling steps (i.e. a pattern) results in a refinement even though the Event-B
model has not been fully scheduled. A pattern P consists of a pre-condition for
the pattern, a schedule describing the pattern and a list of assumptions about
the events in the schedule. The pre-condition states under which conditions the
pattern can be applied. It can thus be used as a context assertion when proving
the correctness of the pattern. The schedule describes the scheduling statement
the pattern concerns. The list of assumptions describes the assumptions about
the events that have to hold before the pattern can be applied.

13

Loop introduction Here we will first prove the correctness of the pattern for
loop introduction in [1, 2]. The pattern states that a loop of events with non-
deterministic choice can be refined into a loop where the first event is iterated
until it becomes disabled and the second event is then executed. The goal is
to introduce an inner while-loop so that the Event-B model to the left below is
refined by the one to the right.

E1 =̂ when G1 then S1 end
E2 =̂ when G2 then S2 end v E =̂

when G1 ∨G2 then
while G1 then S1 end ;
S2

end

The pattern above can be described as the scheduling pattern P1 in (52), which
has the parameters E1 and E2 denoting two sets of events, as well as S1 denoting
an arbitrary schedule. Here we do the generalisation of the pattern in [1, 2] that
we assume that the events E1 in the inner loop are scheduled according to some
unknown schedule S1.

P1(E1, E2, S1) =̂
Precondition : true
Schedule : do do S1 → hlt od → E2 od → hlt
Assumption 1 : {i ∩ g(E1 u E2)};E1 =

{i ∩ g(E1 u E2)};E1; {g(E1 u E2)}

(52)

Application of function sched results in the statement:

sched(E1 ∪ E2,do S1 → hlt od → E2 → hlt) −→
([g(E1 u E2)]; ([g(E1)]; sched(E1, S1))ω; [¬g(E1)]; {g(E2)}; E2)ω; [¬g(E1 u E2)]

Note that we still have one un-scheduled part sched(E1, S1), which is unknown.
As before, this statement is interpreted as Eω

1 ; [¬g(E1)] at this level. We get
the following condition to prove:

(E1 u E2)ω; [¬g(E1 u E2)]
v
([g(E1 u E2)]; ([g(E1)]; Eω

1 ; [¬g(E1)])ω; [¬g(E1)]; {g(E2)}; E2)ω; [¬g(E1 u E2)]

This refinement condition does not hold in general and Assumption 1 about
the events is needed. This assumption states that E1 does not disable both
events. This is the case if E1 was introduced after E2 in the refinement chain
and the value of g(E1 u E2) depends only on variables introduced before or
simultaneously with E2 (E1 cannot change the value of this condition then).
This requirement is also discussed in [2]. The refinement can now be proved.
Note again that in all the proofs here, we do not write out invariant assertions.
They can, however, be added between each statement.

14

Proof.

(E1 u E2)ω; [¬g(E1 u E2)]
= {Decomposition (Lemma 12 in [7]) : (S u T)ω = Sω; (T ; Sω)ω}

Eω
1 ; (E2; Eω

1)ω; [¬g(E1 u E2)]
= {Leapfrog (Lemma 11 in [7]) : S; (T ; S)ω = (S; T)ω; S}

(Eω
1 ; E2)ω; Eω

1 ; [¬g(E1 u E2)]
v {Rule : Sω v skip}

(Eω
1 ; E2)ω; [¬g(E1 u E2)]

v {Assumption introduction : skip v [g]}
(Eω

1 ; [¬g(E1)]; E2)ω; [¬g(E1 u E2)]
= {g(E1) ⊆ g(E1 u E2) and g ⊆ h ⇒ [g] = [h]; [g]}

([g(E1 u E2)];Eω
1 ; [¬g(E1)]; E2)ω; [¬g(E1 u E2)]

= {Rule : [g] = [g]; {g}}
([g(E1 u E2)]; {g(E1 u E2)};Eω

1 ; [¬g(E1)]; E2)ω; [¬g(E1 u E2)]
v {Assumption 1 and Lemma 14c in [7] : S; T v U ; S ⇒ S; Tω v Uω; S}

([g(E1 u E2)];Eω
1 ; {g(E1 u E2)}; [¬g(E1)]; E2)ω; [¬g(E1 u E2)]

v {Distribution of assertions over assumptions and rule : [g] = [g]{g}}
([g(E1 u E2)];Eω

1 ; [¬g(E1)]; {¬g(E1)}; {g(E1 u E2)}; E2)ω; [¬g(E1 u E2)]
= {Assertion properties : {g}; {h} = {g ∩ h} and definition of g}

([g(E1 u E2)];Eω
1 ; [¬g(E1)]; {¬g(E1) ∩ (g(E1) ∪ g(E2))}; E2)ω;

[¬g(E1 u E2)]
= {Set theory}

([g(E1 u E2)];Eω
1 ; [¬g(E1)]; {¬g(E1) ∩ g(E2)}; E2)ω; [¬g(E1 u E2)]

= {Rule : {g ∩ h} = {g}; {h} and [g] = [g]; {g}}
([g(E1 u E2)];Eω

1 ; [¬g(E1)]; {g(E2)}; E2)ω; [¬g(E1 u E2)]
= {Lemma 4}

([g(E1 u E2)]; ([g(E1)];Eω
1 ; [¬g(E1)])ω; [¬g(E1)]; {g(E2)};E2)ω;

[¬g(E1 u E2)]

In order to ensure that the refined statement is non-miraculous, we prove that
g([g(E1 u E2)]; ([g(E1)]; E1)ω; [¬g(E1)];E2) = g(E1 u E2) and then use Lemma
17b in [7], Sω; [¬g(S)](false) = false.

g([g(E1 u E2)]; ([g(E1)]; Eω
1 ; [¬g(E1)])ω; [¬g(E1)]; {g(E2)}; E2)

= {Lemma 4}
g([g(E1 u E2)]; Eω

1 ; [¬g(E1)]; {g(E2)}; E2)
= {Definition of g }

¬[g(E1 u E2)]; Eω
1 ; [¬g(E1)]; {g(E2)};E2 (false)

= {{g(E2)}; E2 (false) = false}
¬[g(E1 u E2)]; Eω

1 ; [¬g(E1)] (false)
= {Rule (Lemma 17b in [7]) : Sω; [¬g(S)](false) = false}

¬[g(E1 u E2)] (false)
= {Definitions}

¬(¬g(E1 u E2) ∪ false)
= {Set theory}

g(E1 u E2)

¤

This demonstrates one possible proof of one simple schedule. Note that the user
of this scheduling pattern will only have to prove Assumption 1.

15

Sequential composition One of the most important types of patterns con-
cerns the introduction of sequential composition of events. These patterns are
already given as the equations one, two and five in the definition of sched (45).
They are thus patterns that concern only one application of sched. Here we
focus on the pattern from equation one:

Pseq(E1, E2, S
′) =̂

Precondition : g(E1)
Schedule : E1 → (E2 → S′)
Assumption 1 : {i ∩ ¬g(E1)}; (E2 u E) =

{i ∩ ¬g(E1)}; (E2 u E); {¬g(E1)}
Assumption 2 : {i}; E1 = {i}; E1; {¬g(E1) ∩ g(E2)}

(53)

To verify this pattern, we have to prove condition (46). This condition cannot
be proved directly and we therefore need the additional assumptions about the
events. There are also no unique assumptions that would enable the proofs, but
there are several possibilities. We here show how to prove correctness of the
scheduling based on the strategy that event E1 occurs only once in a schedule
and once it has become disabled it remains disabled. This property is stated
in Assumption 1, where E denotes the events in S′. This assumption is not
sufficient. To discharge the proof obligation, Assumption 2 is also needed. The
assumption states that E1 should disable itself and enable the event E2 after it.
We also use the context assertion {g(E1)} from the pre-condition of the pattern.

Proof.

{g(E1)}; (E u E1 u E2)ω; [¬g(E u E1 u E2)]
= {Unfolding [7] : Sω = S;Sω u skip}

{g(E1)}; ((E u E1 u E2); (E u E1 u E2)ω u skip); [¬g(E u E1 u E2)]
v {Refinement of u}

{g(E1)};E1; (E u E1 u E2)ω; [¬g(E u E1 u E2)]
v {Refinement of u and Lemma 9a in [7] : S v T ⇒ Sω v Tω}

{g(E1)};E1; (E u E2)ω; [¬g(E u E1 u E2)]
= {Assumption 2 and rule : {g ∩ h} = {g}; {h}}

{g(E1)};E1; {g(E2)}; {¬g(E1)}; (E u E2)ω; [¬g(E u E1 u E2)]
= {Assumption 1 and Lemma 14c in [7] : S;T v U ; S ⇒ S;Tω v Uω; S}

{g(E1)};E1; {g(E2)}; {¬g(E1)}; (E u E2)ω; {¬g(E1)}; [¬g(E u E1 u E2)]
= {Rules : [g ∩ h] = [g]; [h] and {g}; [g] = {g}}

{g(E1)};E1; {g(E2)}; {¬g(E1)}; (E u E2)ω; {¬g(E1)}; [¬g(E u E2)]
v {Assertion removal : {g} v skip}

{g(E1)};E1; {g(E2)}; (E u E2)ω; [¬g(E u E2)]

That the refinement is non-miraculous can be shown using Lemma 17b in [7],
Sω; [¬g(S)](false) = false, and {g(S)};S(false) = false. ¤

The pattern obtained from equation two from sched (45) is similar. The
resulting proof obligation (47) can be proved in the same manner as (46) above.
However, Assumption 2 need to be modified to take into account assertion {g}
instead of assertion {g(E2)}.

{i}; E1 = {i}; E1; {i ∩ ¬g(E1) ∩ g} (54)

The last pattern obtained from equation five gives proof obligation (50).
This pattern is used when the symbol hlt occurs after E1 in the schedule. This

16

proof obligation can be proved using unfolding [7], the rule Sω v skip and the
refinement rules for u.

Note that the verification conditions for the patterns are not local. That
means the correctness of the patterns together with the assumptions about the
events does not depend on only E1 and E2, but also on the rest of the events
E. This is not the only way to prove these patterns correct, but the correctness
will always in the end depend also on the events E.

This way of proving sequencing of events is not without problems. Consider
again Assumption 1. We prove that each event does not become re-enabled.
Assume we have n events that should be executed after each other. We need
to show for each step that the event just scheduled is not re-enabled by any
event that comes after. Furthermore, each condition of the form g ⊆ (E1 u
E2)(h) is divided into two separate proof obligations g ⊆ E1(h) and g ⊆ E2(h).
Taking these properties into account, there will be O(n2) proof obligations (more
exactly n(n− 1)/2) from the schedule due to Assumption 1. For long sequences
of events this means there are a huge number of proof obligations to prove.

Sequential composition in loops Here we like to show that we can sequence
events inside a loop. Assume we have two sets of events E1 and E2. We are
interested in scheduling them according to the scheduling pattern P2.

P2(E1, E2, S
′) =̂

Precondition : ¬g(E2)
Schedule : {¬g(E2)} → do E1 → E2 → hlt od → S′

Assumption 1 : {i};E1 = {i};E1; {g(E2)}
Assumption 2 : {i};E2 = {i};E2; {¬g(E2)}

(55)

Here we have the pre-condition ¬g(E2) for the pattern, which again is used as a
context assertion in the refinement proofs. The reason for the pre-condition will
become clear when proving that the refinement is non-miraculous. Applying
the function sched to the schedule we get:

{¬g(E2)}; sched(E1 ∪ E2 ∪ E, S) −→
{¬g(E2)}; ([g(E1 u E2)]; sched(E1 ∪ E2, E1 → E2 → hlt))ω; [¬g(E1 u E2)];
sched(E, S′)

This step is verified by proof obligation (48). Here we focus on verification of
the part of the pattern before S′. Applying the first instance of sched gives:

sched(E1 ∪ E2, E1 → E2 → hlt) −→ E1; {g(E2)}; E2

After discharging proof obligation (48) and applying Lemma 4, we have to prove
that:

{¬g(E2)}; (E1 u E2)ω; [¬g(E1 u E2)] v
{¬g(E2)}; ([g(E1 u E2)];E1; {g(E2)};E2)ω; [¬g(E1 u E2)]

This cannot be proved to be a refinement in general and Assumption 1 is there-
fore needed. This assumption states that E1 must enable E2. Using this as-
sumption, the pattern can be proved correct.

17

Proof.

{¬g(E2)}; (E1 u E2)ω; [¬g(E1 u E2)]
= {Decomposition (Lemma 12 in [7]) : (S u T)ω = Sω; (T ; Sω)ω}

{¬g(E2)}; Eω
2 ; (E1; Eω

2)ω; [¬g(E1 u E2)]
v {Sω v skip}

{¬g(E2)}; (E1; Eω
2)ω; [¬g(E1 u E2)]

= {Assumption 1}
{¬g(E2)}; (E1; {g(E2)}; Eω

2)ω; [¬g(E1 u E2)]
= {Unfolding [7] : Sω = S; Sω u skip}

{¬g(E2)}; (E1; {g(E2)}; (E2; Eω
2 u skip))ω; [¬g(E1 u E2)]

v {Refinement of u and Sω v skip}
{¬g(E2)}; (E1; {g(E2)}; E2)ω; [¬g(E1 u E2)]

= {g(E1) ⊆ g(E1 u E2) and g ⊆ h ⇒ [g] = [h]; [g]}
{¬g(E2)}; ([g(E1 u E2)];E1; {g(E2)}; E2)ω; [¬g(E1 u E2)]

¤

The obtained statement is not guaranteed to be non-miraculous, since the ef-
fective guard of the loop body is g(E1). Assumption 2 which states that the
event E2 must disable itself, is needed to prove this property. The reason for
this, perhaps unintuitive, assumption is that it guarantees that the guard of the
loop body equals g(E1 u E2).

Proof.

{¬g(E2)}; ([g(E1 u E2)]; E1; {g(E2)}; E2)ω; [¬g(E1 u E2)] (false)
= {Assumption 2}

{¬g(E2)}; ([g(E1 u E2)]; E1; {g(E2)}; E2; {¬g(E2)})ω;
[¬g(E1 u E2)] (false)

= {Leapfrog (Lemma 11 in [7]) : S; (T ; S)ω = (S; T)ω; S}
({¬g(E2)}; ([g(E1 u E2)]; E1; {g(E2)}; E2)ω; {¬g(E2)};

[¬g(E1 u E2)] (false)
= {Rule : [g ∩ h] = [g]; [h] and {g} = {g}; [g]}

({¬g(E2)}; ([g(E1 u E2)]; E1; {g(E2)}; E2)ω; {¬g(E2)}; [¬g(E1)] (false)
⊆ {Assertion removal : {g} v skip, g(E1) ⊆ g(E1 u E2) and

g ⊆ h ⇒ [g] = [h]; [g]}
((E1; {g(E2)}; E2)ω; [¬g(E1)] (false)

= {g(E1; {g(E2)}; E2) = g(E1) and rule (Lemma 17b in [7]) :
Sω; [¬g(S)](false) = false}

false

¤

Note that here we proved the whole pattern in one step. We could also have
proved the final sequential composition E2 → hlt using the pattern for intro-
ducing sequential composition.

Loops in sequential composition Consider again the pattern in (52), where
we had a nested loop of events. Here we verify a variant of that scheduling

18

pattern:

P3(E1, E2, S1, S
′) =̂

Precondition : g(E1 u E2)
Schedule : {g(E1 u E2)} → do S1 od → E2 → S′

Assumption 1 : {i ∩ g(E1 u E2)}; E1 =
{i ∩ g(E1 u E2)}; E1; {g(E1 u E2)}

Assumption 2 : {¬g(E1)}; (E2 u E) =
{¬g(E1)}; (E2 u E); {¬g(E1)}

(56)

This schedule differs from the one in (52) in that the outer loop should here
be executed exactly once. The schedule can also be followed with several other
events in S′. To make the schedule possible, we use pre-condition {g(E1 uE2)}
for the pattern. This condition states that one of the events in the loop must
be enabled. Application of function sched leads to the following statement:

{g(E1 u E2)}; sched(E1 ∪ E2 ∪ E, S) −→
{g(E1 u E2)}; ([g(E1)]; sched(E1, S1))ω; [¬g(E1)]; {g(E2)};
sched(E2 ∪ E, E2 → S′)

This leads to the proof obligation (48), which we prove here for this pattern.
We have the pre-condition {g(E1uE2)} and we can therefore use Assumption 1
similarly to the corresponding assumption in pattern P1 (52). We also need an
assumption that events E2 u E do not enable E1 again, similar to Assumption
1 needed in the sequential composition pattern.

Proof.

{g(E1 u E2)}; (E1 u E2 u E)ω; [¬g(E1 u E2 u E)]
= {Rule (Lemma 9c in [7]) : Sω = Sω; Sω}

{g(E1 u E2)}; (E1 u E2 u E)ω; (E1 u E2 u E)ω; [¬g(E1 u E2 u E)]
v {Refinement of u and Lemma 9a in [7] : S v T ⇒ Sω v Tω}

{g(E1 u E2)};Eω
1 ; (E2 u E)ω; [¬g(E1 u E2 u E)]

v {Assumption introduction : skip v [g]}
{g(E1 u E2)};Eω

1 ; [¬g(E1)]; (E2 u E)ω; [¬g(E1 u E2 u E)]
= {Rule : [g]; {g} = [g]}

{g(E1 u E2)};Eω
1 ; [¬g(E1)]; {¬g(E1)}; (E2 u E)ω; [¬g(E1 u E2 u E)]

v {Assumption 2 and Lemma 14c in [7] : S; T v U ;S ⇒ S; Tω v Uω;S}
{g(E1 u E2)};Eω

1 ; [¬g(E1)]; (E2 u E)ω; {¬g(E1)}; [¬g(E1 u E2 u E)]
= {Rule : {g} = {g}; [g] and [g ∩ h] = [g]; [h]}

{g(E1 u E2)};Eω
1 ; [¬g(E1)]; (E2 u E)ω; {¬g(E1)}; [¬g(E2 u E)]

v {Assumption 1 and Lemma 14c in [7] : S; T v U ;S ⇒ S; Tω v Uω;S}
{g(E1 u E2)};Eω

1 ; {g(E1 u E2)}; [¬g(E1)]; (E2 u E)ω;
{¬g(E1)}; [¬g(E2 u E)]

= {Propagation of assertion and {g}; {h} = {g ∩ h}
{g(E1 u E2)};Eω

1 ; {g(E1 u E2)}; [¬g(E1)]; {¬g(E1) ∩ g(E1 u E2)};
(E2 u E)ω; {¬g(E1)}; [¬g(E2 u E)]

= {Rule : g(S1 u S2) = g(S1) ∪ g(S2) and set− theory}
{g(E1 u E2)};Eω

1 ; {g(E1 u E2)}; [¬g(E1)]; {¬g(E1) ∩ g(E2)}; (E2 u E)ω;
{¬g(E1)}; [¬g(E2 u E)]

v {Removal of assertions : {g} v skip}
{g(E1 u E2)};Eω

1 ; [¬g(E1)]; {g(E2)}; (E2 u E)ω; [¬g(E2 u E)]

That the refinement is non-miraculous can easily be shown using Lemma 17b
in [7], Sω; [¬g(S)](false) = false. To finalize the verification of the pattern, we

19

apply one of the sequential composition patterns e.g. Pseq in (53):

{g(E2)}; sched(E2 ∪ E, E2 → S′) = {g(E2)}; E2; sched(E, S′)

¤

We have here given a collection of patterns that can be used to introduce
complex control flow such as nested loops and sequential composition to Event-B
specifications. The choice of patterns that are presented here is rather ad-hoc.
There is no attempt to present the most useful patterns and the usefulness
of the patterns has not been validated on larger case-studies. The focus has
been on how patterns are developed and verified. These examples show how
we can use assumptions about the events to prove that patterns are correct.
Wherever in the schedule a schedule fragment matching the pattern occurs, we
can introduce the statement obtained by applying the pattern. This requires
that the assumptions the pattern rely on are fulfilled. To efficiently use the
scheduling method, a library of scheduling patterns with associated verification
conditions would be needed.

One might ask why the scheduling language and the patterns are needed
at all. It would also be possible to directly use the algebraic rules to reason
about the Event-B model as a whole. The problem with that approach is that
the derivations and proofs have to be done for each developed program, which
might be demanding especially for people who are not formal methods experts.
The patterns expressed in the scheduling language encode reusable structures
that have known verification conditions. The idea is that the scheduling method
and patterns partition the scheduling problem into smaller parts. New patterns
can then be applied separately on the parts themselves. This will hopefully
make the scheduling problem more manageable. The hypothesis is that it is
useful to develop a specification using an event based approach and then create
a sequential program from that. However, assumptions used in the patterns
need to be proved as well, which can sometimes be demanding.

4.4 After scheduling

The scheduling of events does not yet provide a deterministic program, only
a statement that is known to be implementable. Here we give a number of
patterns that can be applied to create an executable program from the statement
obtained by scheduling the events. First recall that an event of the form E =
when G then S end corresponds to a set transformer [E] = [g]; [s] as discussed
in Section 2. Note that each set transformer [s] needs to be deterministic in order
for the whole program to be deterministic. The implementation patterns here
are complete in the sense that all statements obtained by scheduling events can
be implemented using them. The symbol Ã denotes that the statement on the
left hand side in the pattern can be replaced by the one on the right hand side.

If [E] =̂ [g]; [s] then we have the pattern:

{g(E)}; [E] Ã [s] (57)

since {g([E])}; [E] v [s]. In general if [E] = [g1]; [s1] u . . . u [gn]; [sn] then

{g([E])}; [E] Ã if g1 then [s1] elsif g2 then [s2] . . . else [sn] end (58)

since {g([E])}; [E] v if g1 then [s1] elsif g2 then [s2] . . . else [sn] end
[6]. This is similar to the implementation pattern for choice between events

20

given in [2]. Patterns can also be given for loops. The definition of while-loop
while g then S end is given as Sω; [¬g] [6]. Due to how loops are verified in
the schedule, they will always be of the form Sω; [¬g([E1])], where g([E1]) is the
guard of some events E1 in S. We then have the following pattern:

Sω; [¬g([E1])] Ã while g([E1]) then {g([E1])};S end (59)

Using these patterns sequential composition, non-deterministic choice, and
iteration of events in the schedule can be implemented as imperative program
flow constructs. Normal programming languages contain many more types of
control flow, such as switch-case statements and for-loops. However, we have
only introduced the most fundamental ones.

4.5 Example

Consider again the array summation example from Section 3. In the first case,
when the summation is modelled by one event progress, the schedule is simple.
The event is executed in a loop until it becomes disabled, which leads to the
schedule do progress → hlt od → hlt. After applying Lemma 4 and the rule
[g] = [g]; {g}, the scheduled statement is:

sched({progress},do progress → hlt od → hlt) =
[progress]ω; [¬g([progress])]; {¬g(progress)};

The scheduling of the initialisation and the original event calc is given by
the structure of the action system that defines the Event-B model semantics
(see Section 3). The result from applying the pattern for while-loop introduc-
tion is shown to the left below. Using the fact that we have already proved
{¬g(progress)} = {¬g(progress)}; {g(calc)} (deadlock freeness proof obliga-
tion from Section 3) together with implementation patterns (57) and (59), the
final program to the right is obtained.

[initialisation];
while g([progress])
then
{¬g(progress)}; [progress]

end ; {¬g(progress)};
[calc]

sum := 0;
s := 0;
j := 0;
while j < m
then

j := j + 1
s := s + f(j + 1)

end ;
sum := s

In the second case where the summation is implemented as an unrolled loop
we have the following schedule progress1 → progress2 → progress3 → hlt.
Using the pattern for sequential composition (53) three times the statement
after scheduling becomes:

{g([progress1])}; sched({progress1, progress2, progess3},
progress1 → progress2 → progress3 → hlt)

=
{g([progress1])}; [progress1] ;
{g([progress2])}; [progress2] ;
{g([progress3])}; [progress3] ;
{¬g([progress1]) ∩ ¬g([progress2]) ∩ ¬g([progress3])};

The assertion at the end comes from the fact that when sched(E, S) is viewed
as not applied yet, then it has the interpretation [E]ω; [¬g(E)]. Together with

21

the rule [g] = [g]; {g} this means an assertion that states that none of the events
are enabled can always be added at the end. The statement obtained from
the Event-B model after scheduling is shown below to the left below. We have
already proved that i ∩ ¬g([progress1]) ∩ ¬g([progress2]) ∩ ¬g([progress3]) ⊆
g(calc). This followed from the deadlock freeness proof obligation in Section
3 (assuming that the abstract version of calc was not guarded). Note that
we still have the context assertion {g([progress1])}. In order to ensure that
the statement refines the original Event-B model, we therefore have to prove
the assumption [initialisation] = [initialisation]; {g([progress1])}. Using this
property and implementation pattern (57) the following program to the right is
obtained.

[initialisation] ;
{g([progress1])}; [progress1];
{¬g([progress1])};
{g([progress2])}; [progress2];
{¬g([progress2])};
{g([progress3])}; [progress3];
{¬g([progress1]) ∩ ¬g([progress2])∩
¬g([progress3])}; [calc]

sum := 0;
s := 0;
j := 0;
s := s + f(1); j := 1;
s := s + f(2); j := 2;
s := s + f(3); j := 3
sum := s

Note that in this case there is an unnecessary scheduling variable j. This variable
does not affect the computation of the value of sum and it would be desirable
to remove it. This can be done as an extra data refinement step.

5 Data refinement

After the creation of the sequential program, data refinement can still be applied
to the result. However, the proof tools for Event-B currently has no support
for this type of development. Therefore, we like to use data refinement patterns
that depend on pre-conditions that can be verified using syntactic checks. As
seen above, it seems like there will often be scheduling variables that become
unnecessary when the program has been scheduled. Data refinement can be
used to remove these variables.

Assume we have a compound statement S assigning a variable x. If x is
assigned a constant value and all sub-statements of S not assigning x are in-
dependent of x then we can move the assignment of x. We can move the final
assignment of x such that S = (x := c;S′), where S′ is equal to S but all as-
signments to x have been removed. The assignment x := c assigns x the last
value it was assigned in S. We can then use a data refinement

D; x := c;S′ v S′′; D (60)

Here the refinement statement used for this refinement is defined as D(φ) =
{((v 7→ x) 7→ v′)|v = v′ ∧ x = c}[φ]. The statement S′′ the same as S′, but uses
the variables v′ instead of v, S′[v′/v] = S′′.

In the summation example at the end of the previous section, the scheduling
variable j is unnecessary. We can thus use the data refinement step above to
remove j. The final program becomes:

sum′ := 0;
s′ := 0;
s′ := s′ + f(1); s′ := s′ + f(2); s′ := s′ + f(3);
sum′ := s′

The data refinement statement D used in this case is defined as D(φ) = {(sum 7→
s 7→ j) 7→ (sum′ 7→ s′)|sum′ = sum ∧ s′ = s ∧ j = 3}[φ]. We now have the
desired program from Section 3.

22

6 Conclusions

This paper describes a method for deriving sequential programs from event
based specifications. We first presented a suitable semantics for Event-B mod-
els to develop sequential programs, which was based on set transformers and
action systems. A scheduling language was then presented for describing the
flow of control. Throughout the paper, we used the algebraic approach from [7]
to analyse the models and the scheduling. Using this approach we developed
and verified different scheduling patterns. A simple example was also given to
illustrate how the scheduling and the derivations are done in practise. The ad-
vantage of this approach is that much of the development of sequential programs
can be carried out using the tools of Event B. Only the final scheduling step to
introduce flow control constructs may require a few additional proof obligations.

Scheduling of events in Event-B or actions in action system has been done
in CSP before [9, 10]. In this approach, program counters are introduced in
the (Event-)B model to verify the scheduling. Here we use a more direct ap-
proach were we directly derive the needed proof obligations for a schedule. Our
approach is not as flexible as scheduling using CSP, but it might be easier to ap-
ply since the condition under which the schedule is possible is explicit. It is also
easy to derive proved reusable scheduling patterns using our approach, which
might help the develop sequential code from the Event-B models in practice.
Furthermore, the scheduled events map directly to imperative programming
constructs. Scheduling of actions in action systems have also been done with a
special scheduling language [14] for hardware synthesis. The language is similar
to ours, but schedules actions within one iteration of the system. That means
there are no loops in their schedules. They also use program counters to verify
scheduling.

There are limitations to creating sequential programs from event based spec-
ifications in this way. The proof obligations needed by the scheduling can create
a lot of extra work. For example, the pattern presented for sequential composi-
tion might problematic in practice due to the large number of proof obligations
that would be generated. Another limitation is that there is currently no tool
support to generate the proof obligations needed for the different patterns. The
expressiveness of the scheduling language is also a limitation. For example, the
choice operator ‖ operates on events and not on statements. This was a design
decision to simplify the methods in this paper. However, this limitation will
be removed in the future. Furthermore, the scheduling language also has no
support for structuring mechanisms such as procedures and modules.

This paper gives one approach how to schedule events and prove the cor-
rectness of schedules. It shows how scheduling patterns can be developed and
proved. The algebraic approach used in the paper seems to be useful for rea-
soning about Event-B models on a higher level than the traditional proof obli-
gations.

References

[1] J.-R. Abrial. Event driven sequential program construction. Clearsy, http:
//www.atelierb.eu/php/documents-en.php, 2001.

[2] J.-R. Abrial. Event based sequential program development: Application to
constructing a pointer program. In FME 2003: Formal Methods, volume
2805 of LNCS, pages 51–74. Springer-Verlag, 2003.

23

[3] J. R. Abrial. Modelling in Event B: System and Software Engineering.
Cambridge University Press, 2009. To appear.

[4] R.-J. R. Back and R. Kurki-Suonio. Decentralization of process nets with
centralized control. In Proceedings of the 2nd ACM SIGACT-SIGOPS Sym-
posium of Principles of Distributed Computing, pages 131–142, 1983.

[5] R.-J. R. Back and K. Sere. Stepwise refinement of action systems. Struc-
tured Programming, 12:17–30, 1991.

[6] R.-J. R. Back and J. von Wright. Refinement Calculus: A Systematic
Introduction. Graduate Texts in Computer Science. Springer-Verlag, 1998.

[7] R.-J. R. Back and J. von Wright. Reasoning algebraically about loops.
Acta Informatica, 36:295–334, 1999.

[8] R.-J. R. Back and J. von Wright. Encoding, decoding and data refinement.
Formal Aspects of Computing, 12:313–349, 2000.

[9] M. Butler. Stepwise refinement of communicating systems. Science of
Computer Programming, 27:139–173, 1996.

[10] M. Butler. csp2b: A practical approach to combining CSP and B. Formal
Aspects of Computing, 12(3):182–198, 2000.

[11] F. Degerlund, M. Waldén, and K. Sere. Implementation issues concern-
ing the action systems formalism. In Eighth International Conference on
Parallel and Distributed Computing, Applications and Technologies, 2007.
PDCAT ’07, pages 471–479. IEEE, 2007.

[12] S. Hallerstede. On the purpose of Event-B proof obligations. In Abstract
State Machines, B and Z, volume 5238 of LNCS, pages 125–138, 2008.

[13] Michael Leuschel and Michael Butler. ProB: An Automated Analysis
Toolset for the B Method. Journal Software Tools for Technology Transfer,
10(2):185–203, 2008.

[14] J. Plosila, K. Sere, and M. Waldén. Asynchronous system synthesis. Science
of Computer Programming, 55:259–288, 2005.

[15] Steve Wright. Automatic generation of C from Event-B. In Work-
shop on Integration of Model-based Formal Methods and Tools.
http://www.lina.sciences.univ-nantes.fr/apcb/IM_FMT2009/im_
fmt2009_proceedings.html, February 2009.

24

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Computer Science
• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2338-9
ISSN 1239-1891

