Moazzam Fareed Niazi | Tiberiu Seceleanu |
Hannu Tenhunen

An Emulation solution for the SegBus
Platform

TurkuU CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 958, October 2009

1

An Emulation solution for the SegBus
Platform

Moazzam Fareed Niazi _
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
moazzam ni azi @it u. fi

Tiberiu Seceleanu
ABB Corporate Research

Vasteras, Sweden
tiberiu.secel eanu@e. abb. com
Hannu Tenhunen
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
hannu. t enhunen@t u. fi

TUCS Technical Report
No 958, October 2009

Abstract

The report presents an emulation solution for a multi-cegngented bus plat-
form, SegBus, to assess the performance aspects of anficpgglication on a

particular platform configuration, modeled in UML. We presmethod to trans-

form Platform Specific Model (PSM) of application into Javaisce code using
modeling tool and how the generated code can be utilizeddogrttulator program
to get the execution results. The solution enables us tmastiperformance as-
pects with different platform configurations together viltle application at early
stages of the design process.

Keywords: Emulator, Domain Specific Language, UML, SegBus, Model $ran
formation

TUCS Laboratory
Distributed Systems Design

1 Introduction

In recent years, the complexity of the digital systems haseimsed tremendously,
along with the decreased technological figures. The timeatket is also shrink-
ing, imposing challenges for the designers to adopt newgdesiethods. The
designers must do a better job of supporting platform-bdestyn, which is be-
coming the most popular approach to developing complexryst The platform-
based approach may refer to either single chip or multi-sblption. We address
here issues related to the former case.

The use of a hardware emulator for platform-based desigrirtanase the
efficiency of the development team and improve both desigificegion and
embedded-software development at early stages of therdpsigess. Design
decisions taken at early stages of the development praogsact heavily on the
quality of the eventual system implementation. Thereftire application running
on such platforms can take full benefits from all the featesgsosed by the plat-
form, if it is configured optimally. The specific platform wertsider in this study
is theSegBugplatform [13].

The Unified Modeling Languag€UML) [1] has been utilized in novel de-
sign methods proposing a solution for the challenge. Weicoathere the work
towards establishing a full functional unitary framewodk platform modeling,
application mapping and system (platform+applicationykation, such that per-
formance aspects are targeted, estimated and adjustetint@blgvels in a correct
and fast manner. While the main aspects of the platform niagieahd application
mapping has already been introduced in the form Dbanain Specific Language
(DSL) in [10], we address here issues related to system dimuldodel-to-text
(M2T) transformation [2] plays a key role in Model-Driven ¢hitecture (MDA)
based development [6]. The outcomes produced by M2T usaadlgource code
files in any desired high-level programming language lik@,J&++, etc.

The approach we deliver in this report is based on the aets/for building
an emulator program targeting tisegBugplatform. An emulator is a program
that imitates the behavior of a device/hardware @egBugplatform in our case)
or a program, while a simulator is a software that duplica@®se real process
and environment in almost all possible ways e.g. flight satarl- simulates the
functionalities of an aircraft, etc. Th®egBusmulator enables us to evaluate
the performance aspects of any given application running specific platform
configuration, defined during modeling.

In addition, the emulator will support the analysis of vas&egBusnstances
that may answer, better or worse, to specific applicationirements. It helps to
decide at early stages of design process which platformgunafiion will be most
suitable for any particular application before moving todglower abstraction
levels. The code generation engine, supplied byMagicDraw UML [5] tool
transforms PSM of the system into Java Source code. Theajedesource code
is then employed by the emulator application to estimatetifization of platform

1

elements with respect to data transfers and total exectitnen After the analysis
of the returned results, the designer is able to make decadithis stage whether
emulated configuration will be best/optimal or not for they& application, and
can change the platform configuration before moving towbnaer levels of the

design process.

Related work. The primary objective while designing emulator applicasiés to
get as much as possible accuracy in estimating the exeaetsoitts that we can
expect from the real platform. Several research studies baen presented in
recent years where the target was to achieve an emulatigmngonofor different
hardware platforms, specially for the Network-on-Chip @Y¢8], but there exists
a number of emulation tools for other areas as well.

Schelle et al. [12] introduced an emulation todNeCem for NoC explo-
ration. The tool provides capability to emulate memory dedtures, asymmetric
processor configuration, special purpose offload, etc. dbkis able to deliver
path latencies used for any particular transfer betweeoggsor cores and pro-
vides a true picture of the communication bottlenecks withe NoC platform.

Liu et al. [9] presentedNoCOP- an emulation and verification framework
for exploring the on-chip interconnection architecturen iAstruction-set simu-
lator and universal serial bus communicator has also bdevsdinced to set the
parameters for the emulation environment. Through theraxeatal results us-
ing both software and hardware, the authors proved that thpoped emula-
tion/verification framework can speed up the simulatioesprve the cycle ac-
curacy and decrease the usage of the resources of the FegjcaRimable Gate
Array (FPGA).

Genko et al. [7] presented a NoC emulation platform impleted¢ion FPGA.
The NoC hardware platform has been implemented on a VittERGA, which
consists of network injection, reception and controllemponents. The proces-
sor core PowerPC has been integrated into the hardwarenohagnd functions
as a controller. Instead of merely being the platform whbeedircuit is proto-
typed, the method can speed up functional validation andfledibility to the
NoC configuration exploration. The major drawback in th@ipmach is the use
of processor core in the hardware to control and monitor #iteork at the cost
of FPGA resources, already limited.

Overview of the report. In the rest of the report, we proceed as follows. In
section 2, we provide a short description of tBegBuslatform, its structural
characteristics and associated Domain Specific Languagt, M section 3, we
provide description of proposed emulation solution withatl involved phases.
Furthermore, in section 4 we provide an example of a simgdlsiereo MP3 de-
coder in the context of proposed solution to show the sigamfie of the method,
followed by conclusion of work in section 5.

2

2 Background

2.1 Segmented Bus Architecture

A segmented bus is a “collection” of individual buses (segtsg interconnected
with the use of FIFO like structures. Each segment acts asmatdus between
modules that are connected to it and operates in parallél @ther segments.
Neighboring segments can be dynamically connected to eheh to establish a
connection between modules located in different segméddui® to the segmen-
tation of the bus lines, and their relative isolation, pletaransactions can take
place, thus increasing the performance. A high level blaekjdm of the seg-
mented bus system which we consider in the following sestierillustrated in
Figure 1.

MP core I

ALU

1]

Figure 1: Segmented bus structure.

The SegBusommunication platform is built of components that provide
necessary separation of segmer@erder units(BU), arbitration units - th&€en-
tral Arbiter (CA) and local,Segment ArbiteréSA). The application then is real-
ized with the support of (library availabl&unctional Units(FU).

The SegBugplatform has a singl€A unit and severabAs, one for each seg-
ment. TheSA of each bus segment decides which devieg), within the seg-
ment, will get access to the bus in the following transfeshur
Platform communication. Within a segment, data transfers follow a “traditional”
package based bus protocol, wiBAs arbitrating the access to local resources.

3

The inter-segment communication, is also a package basedit switched ap-
proach, with theCA having the central role. The interface components between
adjacent segments, tii&dJs, are basically FIFO elements with some additional
logic, controlled by theCA and the neighborin@As. A brief description of the
communication is given as follows.

A LY >
\ Time >
Segment k, initiator, Idle time. The buffer Data is transferred from Segment n, target,
fills the holds data until the one buffer to the other receives data
corresponding buffer next segment is buffer surrounding an
ready to receive intermediate segment.

Figure 2: Inter-segment package transfer.

Whenever on&A recognizes that a request for data transfer targets a module
outside its own segment, it forwards the request toGAe The later identifies
the target segment address and decides which segmentsoneedlynamically
connected in order to establish a link between the initigéind targeted devices.
When this connection is ready, the initiating device is tgdithe bus access, and it
starts filling the buffer of the appropriate bridge with treckage data. Following
a signaling protocol, the data is taken into account by theesponding next
segmenBA, which forwards it further, towards the destination. Atstpibint, the
SA of the targeted segment routes the package to the own sedimes)tfrom
where it is collected by the targeted device.

A transfer from the initiating segmehtto the target segmentis represented
in Figure 2. The segments frokrto n are released for possible other inter-segment
operations in a cascaded manner, from the sokitoethe destination;.

The arbitration aCA level implements the application data flow, with respect
to these transfers. Hence, one has to implement accuratekprocedures for
inter-segment transfers, as possible conflicting requresss be appropriately sat-
isfied, in order to reach performance requirements and teectly implement
applications.

2.2 DSL for the SegBus Platform

The Domain Specific Languag®SL) [10] for the SegBugplatform is the spec-
ification language that is used to model tBegBusplatform at higher-level of
abstraction. The DSL provides ability to model platformneéts in the form of
high-level graphical constructs and provide methods to patitioned applica-
tion components on particular segment in a fast and corraoner.

The DSL comprises of a number of structural constraintdedl|#o the plat-
form, written inObject Constraint Languag@CL) [3], to implement the correct
component approach to platform design. These constraiatased to validate

4

our models. Upon breach of any constraint requirement dutie design pro-
cess, the tool provides appropriate error message, sohbatesigner can take
proper action to make the model correct according to plati@quirements.

The relationship between all platform elements are defirsgtgCustomiza-
tion classes. The customization classes comprise of tags tivatser-defined
DSL customization rules. The customization rules are phasel interpreted by
theDSL Customization Enging@rovided by the tool) to assist validation process.

Once we model the platform and map the application compsramto the
platform correctly, we apply validation process to get togectPlatform Specific
Model (PSM) of the application. If there exists some errors in tloelal, we get
error message(s) and associated model element becomighigtl

Finally, the PSM model can be transformed into source codengfdesired
high-level programming language (Java in our case) to éurdimalysis of the de-
sired platform configuration. We employ the generated sooocle for emulating
the performance aspects of the configured system, as desganithe next section.

3 The SegBus Emulator

Generally, emulation is necessary while designing aptiiina targeting hard-
ware devices and platforms. The huge design and manufagtaasts of such
hardware platforms motivate designers to develop ematod verify the execu-
tion results. An emulator provides the same functionaktyte original hardware
platform or computer program. Designing an emulator rexgugrthorough under-
standing of the target device or platform. We have develdpeS8egBugmulator
to test platform configuration and estimate performanceespbefore moving
towards the final implementation.

Figure 3illustrates a general overview of thegBuslesign process employing
DSL and emulation. At the top level, the transformation @& patform concepts
into the high-level graphical constructs has already bemredn [10] to form a
DSL, specific for thé&SegBugplatform. The DSL provides a graphical environment
where a designer can m&atform Independent ModéPIM) of the application
on to platform quickly and assign pre-existing componermsftheSegBus Com-
ponent Libraryduring modeling. The application should be already partiid
before mapping it on to the platform according to availaildeaky components.
The model can be validated for possible mistakes to get @oRSM. Thecon-
figuration datais built from the PSM. The configuration data contain infotio
about relative placement of each application componentdifterent segments
and other necessary information like IDs of all elementa¢c@ment information,
etc. Finally, we transform the PSM of the application intealaource code us-
ing M2T transformation supplied by the tool for code generat The generated
source code is then configured using configuration data amgited along with
the emulator source code to get an executable application.

5

SegBus Platform

-Structure Platform Independent
-Constraints Model of Partitioned
-Communication Application

DSL for SegBus

-Stereotypes Se C icati

- gBus ommunication
-UML_Pere Component Matrix
-Constraints

Library

-Customizations

Graphical
—> Interface for
Modeling

[Not OK]

Model Validation

[OK]

Platform

pecific Model
(PSM)
Configuration
data \i/
@odel-to-Text (M2T) TransformatioD

[NOT OK] J/

Source Code of
the System

Source code for
emulation
engine

Compilation

System Emulation

[OK]

Implementation phase

Figure 3: Design process of the SegBus platform using DSLeamdlation.

The communication matrixs the specification of device-to-device transac-
tions between application components. Each entity in timengonication matrix
describe how many data items need to be transfered from aeede any other
device. Based on the matrix, thidaceToolapplication [14] finds the optimal
device allocation solution, given the platform specifi¢ge(bumber of segments).

Before the emulation, the emulator application reads timenconication ma-
trix and considers the structure (segment organizationrasdurce allocation)
from the DSL description. Upon completion of the emulatitire tool returns
results of the transactions from each platform elementppeed during execu-
tion. Figure 4 shows the flow of activities involved in the posed design process.
The major phases involved between modeling in DSL and eioulatre: Model
TransformatiorandSetup for emulationwhich we briefly discuss below.

6

PSM Model in
SegBus DSL

Model-to-Text transformation (automatic process)

Java source code
of the system
(app. + platform)

Configuration of source code (manual process)

Configured source Emulation engine’s

code of the system source code in
(app. + platform) Java

Compilation of the system

Executable
emulation program

Execution results

Figure 4: Flow of activities in the design process.

3.1 Model Transformation

The first phase for performing emulation on any modé&edBusonfiguration in
DSL is to transform the model into source code so that the gordtion can be
used by the emulator program for further analysis.

The emulator application is written in Java language [4]. dWeose Java as
a target language for the source code generated from thel tooahake it com-
patible with the emulator program. The code generationrengf the tool does
provide capability to transform model into source code as\i&T specification
[2].

A code engineering seteeds to be introduced in the tool where we specify
required type of transformation i.e. Model-to-Model, Mbtle Text (as in our
case), etc. The code engineering set consists of a set ofl mledeents whose
source code we want to generate during transformation. Wes raaode engi-
neering set consisting of platform elements (SAs, CA, BUg) all application
components in the form of processes (PO, P1, etc.). A dingecsalso specified
where the generated source code to be saved. After apphgngformation on

7

SegBus Platform
I Central Arbiter | | Segment | ------- — I Segment | | Border Unit | - - Border Unit

| Slave l——{ Master | | Slave Master | |S]ave I——{ Master | |Slave}J—‘ Master |

Figure 5: Hierarchical structure of the SegBus elements.

our model, we get the required source code in mentionedtdimec

The generated source code contains a set of files. Each fiklespoinds to a
particular platform element or application component.uFégs shows the hierar-
chical structure of the platform elements. At the top legghieSegBusPlatform
itself composed oBegmerfs) and exactly on€A. Every segmentis composed of
at least oné€-U, and exactly on&A. Each segment is connected with other neigh-
boring segment througBU. OneFU may containMastels) andSlavds). The
generated code also follow the same hierarchy as depictedjume 5. The=Us
and SA always instantiate in the segment’s source code as clagsusgs. The
source file ofSegBusPlatfornmstantiates required number of segments, match-
ing number oBUs and exactly on€A in the form of class attributes. The scope
of all attributes is keppublicfor the ease in programming.

3.2 Setup for emulation

The next phase of the design methodology is to generate tneesdiles and
make them ready for execution with the emulator applicatibime emulator has
been programmed in a way to exhibit the exact behavior ofahgiatform in-
stance. The functionality and behavior of each platfornmelet GA, CA, BU,
etc) are programmed and stored in individual java source flenumber of mon-
itoring statements are introduced in different sectior8af CA andBU codes.
These monitoring statements count clock ticks involvedng &ansfer, either
intra-segment or inter-segment. Tasbitrate method inCA andSA source code
performs arbitration and called by the emulator applicageveral times during
execution.

At the SA level, we put statements arbitrate method to count requests com-
ing from the application processes. Separate counterdsargoat to count both
kinds of requests (intra and inter-segment). These statisrhelp us later to ana-
lyze the configured system and provides means to take opdiecadion according
to needs. In case of inter-segment transfers, there exiata® counters to count
how many packages transfered to left and right &tde

At the CA level, monitoring statements arbitrate method count the number

8

of clock ticks CA consumed whilesettingand resettingrelated grant signal in
response to inter-segment requests. The monitoring statsmaBU level counts
how many packages received from, and transfered to, leftighttside segment.
It also counts total number of clock ticks during all tramsfe

When we get the source code after model transformation rthiator appli-
cation performsetupoperation on the generated source code to make it ready to
work with existing emulator application. The steps invalwe this setup process
are:

e Copy the functionality (source code) of each platform elette its associ-
ated file.

e IntroduceConstructormethod in each source file.

e Setup each file to be executable in a multi-threaded enviemifadiscussed
in section 3.3) by providing proper interfadeynnablg¢ and methodrun()).

Manual configuration is also required before emulation. fHs&s associated
with manual configuration are:

Setup of thread pool in the platform’s class.

Instantiation of threads in proper segment class.

Setting IDs for processes.

Assignment of all threads to the JavEsecutorServicea class that handles
the execution of threads.

3.3 Implementation approach

The microprocessor in a personal computer (PC) has the atbasdics to run
computer program instructions in sequential order. On therchand, the hard-
ware devices have the characteristics to run in paralléi wiher devices. The
main challenge in emulator development for us to transfdrengarallel behav-
ior of hardware elements associated with platform into sepecial form that
can be run on microprocessor and exhibit the correct charatits of hardware.
Multi-threadingis not a new idea and is exists since many years. Generadgy ev
running program in a PC is calledpocess Multi-threading is the task of cre-
ating a newthreadof execution within an existing process rather than stgrén
new process to begin function. All the threads in a proceasesthe same allo-
cated memory. The parallel execution of threads within #raesprocess is often
considered as a more efficient use of the resources of the R@i-thteading
employs time-division multiplexing to executes threadpanallel. Threads are

9

36 |
Decode

1,3 15,4

Figure 6: Partitioned application model of MP3 decoder.

0
=)

P1 P2 P3
576 (1]

h
o
b
o
0
~

P8
576

e
©
o
=)
hl
Blololo|=

[=)

=y
'l

o|eleld|e|e|e|e|e|e|ele|e|e|e|S
bl
w
o

olo|N[o|o|o|o|e|e|e|e|e|e|o|o|=
o
ON‘OOOOOEOOOOOOO:

PO
P1
P2
P3
P4
P5
P6
P7
P8
P9

P10

P11

P12

P13

P14

w
o
oloo|=

=)
U'd

o

°°°°°°°°°3°°°°°

o

OOOOOOOO;OOOOOO

w °d
Slo|o|o|o|eo|r
o

o

ololo|o|o|bs
=)

o
o

o
o

o
o

olo|olo|o[o|o|o|o|o|e|g|e|e|e|R

o|o|o|o|o|o(o|o|o|o|o|o|o|o|o
olofo|o|e|o|o|o|e|o|o|e|e|e
@
QQOOOQQOOOOOOso
w|@
o[o|o|o|o|o(o(o(o|o|g|B(e(e|e
o|o|o|o|o|o(o|o|o|o|o|o|o|o
*d
QQOOOQSOOOOOOOO
o|o|o|o|o|o|o|o|e|e|e|g

ololo|eo(g|e|e|e|e|e|e

Figure 7: The communication matrix for the example.

obtained from the pool of available ready-to-run threadsram on the available
microprocessor(s).

We employ Java’s multi-threading feature in our emulatgoliaption. All
classes related with emulator application, including teeeyated source code
from the model run as threads during execution. Each clagkementRunnable
interface fromjava.langpackage by introducingun() method. The method ex-
ecutes when emulation starts and performs dedicated @unadify. The platform
class creates a thread pool using an instandexefcutorServicelass from the
java.util.concurrenpackage. The size of the thread pool depends on the number
of FUs and platform element8Us, SAs, etc). We add alFUs and platform el-
ements into the thread pool before emulation. During execuf emulator, all
threads execute in parallel to depict intrinsic charasties of hardware.
Emulation and estimation. The final step of the design methodology is to em-
ulate the platform configuration after file setup. In genexpplication processes
communicates with each other at different time instantr gdfegforming specific
computation on the supplied data. We assume here that akgses try to com-
municate with each other as soon the emulation starts. Dwnnulator devel-
opment, we skip some timing factors that are less importaastimating perfor-
mance. For instance, we didn’t include the time necessayrtohronize between
two adjacent clock domains, converging at Bids. This time is parameterized,
but a value of two clock ticks is usually considered, at tla@station of any sig-
nal across two clock domains. We also did not computed the tietessary for

10

the SAs to set the grant signal for a particular request and casreipg master
responds, due to a similarly low value, which is also ovesiag in time with the
on-going activities within the segments.

We compared the estimated results that we get from the eonulath the
application running on the real platform and we concludétti@aestimated results
are more than 90% accurate in the absence of previously omexttiming factors.

After we supply the communication matrix to the emulatoe thol instanti-
ates the threads correponding to platform elements, syggsticular value from
communication matrix to eadhU and starts the simulation process. Upon com-
pletion, the emulator returns results from the platfornmedats’ execution. Some
of the results are listed below:

e Total clock ticks consumed for the operation of & and each of th&As.
e Total inter-segment requests receivedd#yand by each of th&As.
e Total clock ticks consumed by each of tBés.

e eftc.

The clock tick’s counter is incremented 8A and CA at various moments.
EachSA has its own counter for counting clock ticks and the exeautiime for
each device is computed separately (discussed in nexbseckor instance, the
SAincrements the clock tick’s counter while checking the maag requests from
FUs in the segment. It increments the counter when it receiviea or inter-
segment transfer request from one of B¢ in the segment. If the request is for
inter-segment transfer, it forwards the requestfoand increments the counter.
While setting and resetting grant signal in response to agyest, it also updates
the clock tick’s counter. During the time limit for any trdeg the SA always
increments the clock tick’s counter continuously till th@é limit ends. TheCA
increments the clock tick’s counter every time when it clsefdk any incoming
inter-segment transfer request fronA. It increments the counter while setting
and resetting grant signal for any inter-segment trangfquest. Furthermore,
when one of the segment finishes its job in an inter-segmamsfer, theCA resets
the necessary signal associated with particular segmenharements the clock
tick’s counter.

4 Example using the Emulator program

We demonstrate our approach with an example of modeling pli$ied stereo
MP3 decoder [11] on thEegBugplatform and associated emulation results. The
modeling is done using DSL [10]. The application has alrelaglgn partitioned
up to a right granularity level [15]. Here, we map applicatjwrocesses in three
different platform configuration, using one, two and thregraents, with linear

11

topology in all configuration. The package size is set to 3@ d@ms in each
package. Figure 8 illustrates the allocation of applicapoocesses on each plat-
form configuration, where segment borders are marked|asThe communi-
cation matrix is generated from the partitioned-applmatnodel (see Figure 6).
Figure 7 illustrates the communication matrix associatét the example ap-
plication. For instance, the transaction betw&hand P1 consists of 576 data
items, packed into 16 packages. We emulate each configuratidgheSegBus
emulator to analyze the performance aspects. We intefiyakap here the emu-
lation results of one and two segments configuration. Betethulation results of
3 segments platform configuration are given below in which ‘@presents the
central arbiter of the platform, ‘Segment X’ representssbgment and X denotes
the ID (1,2,3,..), ‘SAn’ represents the segment arbiteo@ssed with segment n’,
‘BUxy’ represent the border unit between segment ‘X’ andhsewgt ‘y’. We set
clock frequency of segment 1, 2, 3 and central arbiter as 94,BMHz, 89MHz
and 111MHz respectively.

Configuration Allocation
One Segment All FU on the same segment
Two Segments 45671011121314]]/012389
Three Segments 01238910||56711121314 || 4

Figure 8: Allocation of processes on different platform foguration.

e Three Segments configurationIn this configuration, processes (0,1,2,3,8,9,10)
are on segment 1, processes (5,6,7,11,12,13,14) are oresegnvhile process 4

is on segment 3. Border unit (BU12) is between segment 1 amdhike border
unit (BU23) is between segment 2 and 3.

P4 finished its task at 2808750 ps

P10 finished its task at 2747250 ps

P11 finished its task at 81632000 ps
P13 finished its task at 81632000 ps
P12 finished its task at 81632000 ps
P2 finished its task at 82417500 ps

P7 finished its task at 163264000 ps
P5 finished its task at 163264000 ps
P6 finished its task at 163264000 ps
P9 finished its task at 164835000 ps
P1 finished its task at 175824000 ps
P8 finished its task at 175824000 ps
PO finished its task at 351648000 ps
P3 finished its task at 457142400 ps

CA total ticks = 52465
Ti me consuned = 472657185 ps @111VHz

BU12
Total input packets = 32
Total output packets = 32
Packet Received from Segnent 1 = 32

12

3 Segment with Linear topology

T T T T T T T T

0 50 100 150 200 250 300 350 400 450 500

M Time (micro-seconds)

Figure 9: Progress on time of each application process ig@ert, linear topol-
ogy with package size of 36 data items configuration.

Packet Transfered to Segnent 1 = 0
Packet Received from Segnent 2 = 0,

Packet Transfered to Segnent 2 = 32
Total O ock Ticks = 4362

BU23:

Total input packets = 2,

Total output packets = 2
Packet Received from Segnent 2 = 1,
Packet Transfered to Segnent 2 =1
Packet Received from Segnent 3 = 1,
Packet Transfered to Segnent 3 =1
Total Cock Ticks = 149

Segment 1:
Packets transfered to Left = O,
Packets transfered to Right = 32

Segnent
Packet s
Packet s

Segnent
Packet s
Packet s

SAl total

2:
transfered to
transfered to

3:

transfered to
transfered to

Left = 0,
Right =0

Left = 1,
Right =0

ticks = 42120,
Total intra-segnent requests = 123,
Total inter-segnent requests = 32

Ti me consuned = 462856680 ps @ 91MHz

SA2 total

ticks = 48527,
Total intra-segnment requests = 96,
Total inter-segnent requests =0

Ti me consuned = 495169508 ps @ 98MHz

SA3 total

ticks = 43699,

13

70000

60000 ..,

50000 = .

40000 \/\\ 3

30000 \
20000 \
10000 \

CA SA1 SA2 SA3 BU12 BU23

| <4+ Package Size=18 data items —m— Package Size=36 data items |

Figure 10: Activity graph of different platform elements3rSegment and linear
topology configuration for 18 and 36 bit package sizes.

Total intra-segnent requests 0,
Total inter-segnent requests 1
Ti me consuned = 490958265 ps @ 89MHz

The total time consumed I8A1 to finish all associated jobs#g,,. This time
can be calculated by multiplying total clock ticks with thesaciated segment’s
clock period. The execution time is calculated wherFls finish their jobs, all
packages are transmitted to its relevant destination aartt gignal of all arbiters
areclear. EachFU inform the emulator about its status by setting a flag in the
emulator. Hence, the total execution time of the applicatian be calculated by
taking the maximum of time consumed by central arbiter ahsegment arbiters
that ismax¢sa,, tsa,, ---»tca). Figure 9 shows the progress of edt on time
line using 3 segments, linear topology with package sizecofl&a items. The
figure shows the time instant on which any specific processhad its dedicated
job. Proces$3 takes the longest time of 457.44 to complete its task in the
given configuration, while the estimated total executionetifor the application
is 495.17us. After running the same partitioned-application on tre ptatform
instance, we get the actual execution time as 515.250, the estimated results
we get are 96% accurate. When the same platform configuratemulated with
reduced package size that is 18 data items in a package, waeestimated
execution time of 560.16s.

In addition, we change the platform configuration by shgftproces$?9 from
segment 1 to segment 3 with the previously mentioned desapeps to estimate
the execution results. While, rest of the configuration rethain same with pack-
age size of 36 data items. The emulation result shows thastimated execution
time of updated configuration is 54Q.4.

Figure 10 illustrates the activity graph of 3 segment, lim@@ology config-
uration with different package sizes (18 and 36 data itef@ased on emulation

14

results, it's the job of the designer to decide which configjon would be best
suited for final implementation. Such decisions at earlgestaof design process
not only improve the quality of eventual system in terms afg@enance, but also
improves power consumption up to some extent. The gramylaviel of applica-
tion components can also be adjusted to eliminate the traffigestion introduced
by someFUs that will further improve the overall performance.

5 Conclusions

The report presented methods for specifying, modeling ayplementing multi-
core embedded systems using UML-based methodology. Wedinted emula-
tion technique for estimating performance aspects of ddSegBusonfigura-
tion. We described how the source code can be generated immadels, spec-
ified in DSL, and introduced mechanism to emulate the modsediguration in
early stages of the development process.

The emulation-based solution enables us to analyze arfgipratonfiguration
with respect to performance. The design decisions to getapiperformance
from the platform has now become easy using the proposedoaigtigy. The
methodology allows a designer to adjust the high-levelgtesi a way to take full
benefits from the features exposed by the platform.

15

References

[1] Unified Modeling Language (UML) Superstructure Specifmatiersion 2.0.
. http://lwww.omg.org

[2] Eclipse Modeling - Model-to-Text Transformation.
http://www.eclipse.org/modeling/m2t/

[3] OMG. Object Constraint Language (OCL) 2.0 Revised Submissiersion
1.6. January 2003.

[4] Java Programming Language. http://java.sun.com
[5] MagicDraw UML. http://www.magicdraw.com
[6] Model-Driven Architecture. http://www.omg.org/mda/

[7] N. Genko, D. Atienza, G. D. Micheli, L. BeniniFeature-NOC emulation: a
tool and design flow for MPSoGQEEE Circuits and Systems Magazine, vol.
7,2007, pp. 42-51.

[8] A. Jantsch, H. TenhunenVetworks on Chip.Kluwer Academic Publishers,
2003.

[9] P. Liu, C. Xiang, X. Wang, B. Xia, Y. Liu, W. Wang, Q. YaA NoC Emula-
tion/Verification Frameworkln Proceedings of ‘6 International Conference
on Information Technology: New Generations, 2009, pp. 869-

[10] M. F. Niazi, K. Latif, T. Seceleanu, H. Tenhuned DSL for the SegBus
Platform.In proceedings of 22 IEEE International System-on-Chip Confer-
ence (SOCC), 2009, pp. 393-398.

[11] C. Park, J. Jang and S. H&xtended Synchronous Dataflow for Efficient
DSP System PrototypingJournal Design Automation for Embedded Sys-
tems, Springer Netherlands, vol. 6, no. 3, 2002, pp. 295-322

[12] G. Schelle, D. Grunwald.Onchip Interconnect Exploration for Multicore
Processors utilizing FPGAL"® Workshop on Architecture Research using
FPGA Platforms, 2006.

[13] T. Seceleanu. The SegBus Platform - Architecture and Com-
munication Mechanisms. Journal of Systems Architecture (2006),
doi:10.1016/j.sysarc.2006.07.002

[14] T. Seceleanu, V. Leppanen, O. Nevalainémproving the Performance of
Bus Platforms by Means of Segmentation and Optimized Resaillocation.
The EURASIP Journal on Embedded Systems, Volume 2009 (2009gle
ID 867362, d0i:10.1155/2009/867362.

16

[15] D. Truscan, T. Seceleanu, J. Lilius, H. TenhuneéhModel-based Design
Process for the SegBus Distributed ArchitectureProceedings of the 15
IEEE International Conference and Workshop on the Engingesf Com-
puter Based Systems (ECBS), 2008, pp. 307-316.

17

TURKU

CENTRE for

COMPUTER

SCIENCE

Joukahaisenkatu 3-5B, FIN-20520 Turku, Finland | www.tucs.fi

\ ?‘ , University of Turku
§ /é e Department of Information Technology
-
[N e Department of Mathematics
A S
O

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 978-952-12-2340-2
ISSN 1239-1891

