
Moazzam Fareed Niazi | Tiberiu Seceleanu |
Hannu Tenhunen

An Emulation solution for the SegBus
Platform

TUCS Technical Report
No 958, October 2009

An Emulation solution for the SegBus
Platform

Moazzam Fareed Niazi
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
moazzam.niazi@utu.fi

Tiberiu Seceleanu
ABB Corporate Research
Västerås, Sweden
tiberiu.seceleanu@se.abb.com

Hannu Tenhunen
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
hannu.tenhunen@utu.fi

TUCS Technical Report

No 958, October 2009

Abstract

The report presents an emulation solution for a multi-core segmented bus plat-
form, SegBus, to assess the performance aspects of any specific application on a
particular platform configuration, modeled in UML. We present method to trans-
form Platform Specific Model (PSM) of application into Java source code using
modeling tool and how the generated code can be utilized by the emulator program
to get the execution results. The solution enables us to estimate performance as-
pects with different platform configurations together withthe application at early
stages of the design process.

Keywords: Emulator, Domain Specific Language, UML, SegBus, Model Trans-
formation

TUCS Laboratory
Distributed Systems Design

1 Introduction

In recent years, the complexity of the digital systems has increased tremendously,
along with the decreased technological figures. The time to market is also shrink-
ing, imposing challenges for the designers to adopt new design methods. The
designers must do a better job of supporting platform-baseddesign, which is be-
coming the most popular approach to developing complex systems. The platform-
based approach may refer to either single chip or multi-chipsolution. We address
here issues related to the former case.

The use of a hardware emulator for platform-based design canincrease the
efficiency of the development team and improve both design verification and
embedded-software development at early stages of the design process. Design
decisions taken at early stages of the development process,impact heavily on the
quality of the eventual system implementation. Therefore,the application running
on such platforms can take full benefits from all the featuresexposed by the plat-
form, if it is configured optimally. The specific platform we consider in this study
is theSegBusplatform [13].

The Unified Modeling Language(UML) [1] has been utilized in novel de-
sign methods proposing a solution for the challenge. We continue here the work
towards establishing a full functional unitary framework for platform modeling,
application mapping and system (platform+application) emulation, such that per-
formance aspects are targeted, estimated and adjusted to optimal levels in a correct
and fast manner. While the main aspects of the platform modeling and application
mapping has already been introduced in the form of aDomain Specific Language
(DSL) in [10], we address here issues related to system emulation. Model-to-text
(M2T) transformation [2] plays a key role in Model-Driven Architecture (MDA)
based development [6]. The outcomes produced by M2T usuallyare source code
files in any desired high-level programming language like Java, C++, etc.

The approach we deliver in this report is based on the activities for building
an emulator program targeting theSegBusplatform. An emulator is a program
that imitates the behavior of a device/hardware (theSegBusplatform in our case)
or a program, while a simulator is a software that duplicatessome real process
and environment in almost all possible ways e.g. flight simulator - simulates the
functionalities of an aircraft, etc. TheSegBusemulator enables us to evaluate
the performance aspects of any given application running ona specific platform
configuration, defined during modeling.

In addition, the emulator will support the analysis of variousSegBusinstances
that may answer, better or worse, to specific application requirements. It helps to
decide at early stages of design process which platform configuration will be most
suitable for any particular application before moving towards lower abstraction
levels. The code generation engine, supplied by theMagicDraw UML [5] tool
transforms PSM of the system into Java Source code. The generated source code
is then employed by the emulator application to estimate theutilization of platform

1

elements with respect to data transfers and total executiontime. After the analysis
of the returned results, the designer is able to make decision at this stage whether
emulated configuration will be best/optimal or not for the target application, and
can change the platform configuration before moving towardslower levels of the
design process.

Related work. The primary objective while designing emulator applications is to
get as much as possible accuracy in estimating the executionresults that we can
expect from the real platform. Several research studies have been presented in
recent years where the target was to achieve an emulation program for different
hardware platforms, specially for the Network-on-Chip (NoC) [8], but there exists
a number of emulation tools for other areas as well.

Schelle et al. [12] introduced an emulation tool -NoCem, for NoC explo-
ration. The tool provides capability to emulate memory architectures, asymmetric
processor configuration, special purpose offload, etc. The tool is able to deliver
path latencies used for any particular transfer between processor cores and pro-
vides a true picture of the communication bottlenecks within the NoC platform.

Liu et al. [9] presentedNoCOP- an emulation and verification framework
for exploring the on-chip interconnection architecture. An instruction-set simu-
lator and universal serial bus communicator has also been introduced to set the
parameters for the emulation environment. Through the experimental results us-
ing both software and hardware, the authors proved that the proposed emula-
tion/verification framework can speed up the simulation, preserve the cycle ac-
curacy and decrease the usage of the resources of the Field Programmable Gate
Array (FPGA).

Genko et al. [7] presented a NoC emulation platform implemented on FPGA.
The NoC hardware platform has been implemented on a Virtex-II FPGA, which
consists of network injection, reception and controller components. The proces-
sor core PowerPC has been integrated into the hardware platform and functions
as a controller. Instead of merely being the platform where the circuit is proto-
typed, the method can speed up functional validation and addflexibility to the
NoC configuration exploration. The major drawback in their approach is the use
of processor core in the hardware to control and monitor the network at the cost
of FPGA resources, already limited.

Overview of the report. In the rest of the report, we proceed as follows. In
section 2, we provide a short description of theSegBusplatform, its structural
characteristics and associated Domain Specific Language. Next, in section 3, we
provide description of proposed emulation solution with its all involved phases.
Furthermore, in section 4 we provide an example of a simplified stereo MP3 de-
coder in the context of proposed solution to show the significance of the method,
followed by conclusion of work in section 5.

2

2 Background

2.1 Segmented Bus Architecture

A segmented bus is a “collection” of individual buses (segments), interconnected
with the use of FIFO like structures. Each segment acts as a normal bus between
modules that are connected to it and operates in parallel with other segments.
Neighboring segments can be dynamically connected to each other to establish a
connection between modules located in different segments.Due to the segmen-
tation of the bus lines, and their relative isolation, parallel transactions can take
place, thus increasing the performance. A high level block diagram of the seg-
mented bus system which we consider in the following sections is illustrated in
Figure 1.

Figure 1: Segmented bus structure.

TheSegBuscommunication platform is built of components that providethe
necessary separation of segments -Border units(BU), arbitration units - theCen-
tral Arbiter (CA) and local,Segment Arbiters(SA). The application then is real-
ized with the support of (library available)Functional Units(FU).

TheSegBusplatform has a singleCA unit and severalSAs, one for each seg-
ment. TheSA of each bus segment decides which device (FU), within the seg-
ment, will get access to the bus in the following transfer burst.
Platform communication. Within a segment, data transfers follow a “traditional”
package based bus protocol, withSAs arbitrating the access to local resources.

3

The inter-segment communication, is also a package based, circuit switched ap-
proach, with theCA having the central role. The interface components between
adjacent segments, theBUs, are basically FIFO elements with some additional
logic, controlled by theCA and the neighboringSAs. A brief description of the
communication is given as follows.

Figure 2: Inter-segment package transfer.

Whenever oneSA recognizes that a request for data transfer targets a module
outside its own segment, it forwards the request to theCA. The later identifies
the target segment address and decides which segments need to be dynamically
connected in order to establish a link between the initiating and targeted devices.
When this connection is ready, the initiating device is granted the bus access, and it
starts filling the buffer of the appropriate bridge with the package data. Following
a signaling protocol, the data is taken into account by the corresponding next
segmentSA, which forwards it further, towards the destination. At this point, the
SA of the targeted segment routes the package to the own segmentlines, from
where it is collected by the targeted device.

A transfer from the initiating segmentk to the target segmentn is represented
in Figure 2. The segments fromk ton are released for possible other inter-segment
operations in a cascaded manner, from the sourcek to the destination,n.

The arbitration atCA level implements the application data flow, with respect
to these transfers. Hence, one has to implement accurate control procedures for
inter-segment transfers, as possible conflicting requestsmust be appropriately sat-
isfied, in order to reach performance requirements and to correctly implement
applications.

2.2 DSL for the SegBus Platform

TheDomain Specific Language(DSL) [10] for theSegBusplatform is the spec-
ification language that is used to model theSegBusplatform at higher-level of
abstraction. The DSL provides ability to model platform elements in the form of
high-level graphical constructs and provide methods to mappartitioned applica-
tion components on particular segment in a fast and correct manner.

The DSL comprises of a number of structural constraints related to the plat-
form, written inObject Constraint Language(OCL) [3], to implement the correct
component approach to platform design. These constraints are used to validate

4

our models. Upon breach of any constraint requirement during the design pro-
cess, the tool provides appropriate error message, so that the designer can take
proper action to make the model correct according to platform requirements.

The relationship between all platform elements are defined usingCustomiza-
tion classes. The customization classes comprise of tags that store user-defined
DSL customization rules. The customization rules are parsed and interpreted by
theDSL Customization Engine(provided by the tool) to assist validation process.

Once we model the platform and map the application components on to the
platform correctly, we apply validation process to get the correctPlatform Specific
Model (PSM) of the application. If there exists some errors in the model, we get
error message(s) and associated model element become highlighted.

Finally, the PSM model can be transformed into source code ofany desired
high-level programming language (Java in our case) to further analysis of the de-
sired platform configuration. We employ the generated source code for emulating
the performance aspects of the configured system, as described in the next section.

3 The SegBus Emulator

Generally, emulation is necessary while designing applications targeting hard-
ware devices and platforms. The huge design and manufacturing costs of such
hardware platforms motivate designers to develop emulators and verify the execu-
tion results. An emulator provides the same functionality as the original hardware
platform or computer program. Designing an emulator requires a thorough under-
standing of the target device or platform. We have developedtheSegBusemulator
to test platform configuration and estimate performance aspects before moving
towards the final implementation.

Figure 3 illustrates a general overview of theSegBusdesign process employing
DSL and emulation. At the top level, the transformation of the platform concepts
into the high-level graphical constructs has already been done in [10] to form a
DSL, specific for theSegBusplatform. The DSL provides a graphical environment
where a designer can mapPlatform Independent Model(PIM) of the application
on to platform quickly and assign pre-existing components from theSegBus Com-
ponent Libraryduring modeling. The application should be already partitioned
before mapping it on to the platform according to available library components.
The model can be validated for possible mistakes to get a correct PSM. Thecon-
figuration datais built from the PSM. The configuration data contain information
about relative placement of each application components ondifferent segments
and other necessary information like IDs of all elements, placement information,
etc. Finally, we transform the PSM of the application into Java source code us-
ing M2T transformation supplied by the tool for code generation. The generated
source code is then configured using configuration data and compiled along with
the emulator source code to get an executable application.

5

Figure 3: Design process of the SegBus platform using DSL andemulation.

The communication matrixis the specification of device-to-device transac-
tions between application components. Each entity in the communication matrix
describe how many data items need to be transfered from one device to any other
device. Based on the matrix, thePlaceToolapplication [14] finds the optimal
device allocation solution, given the platform specifics (the number of segments).

Before the emulation, the emulator application reads the communication ma-
trix and considers the structure (segment organization andresource allocation)
from the DSL description. Upon completion of the emulation,the tool returns
results of the transactions from each platform element, performed during execu-
tion. Figure 4 shows the flow of activities involved in the proposed design process.
The major phases involved between modeling in DSL and emulation are:Model
TransformationandSetup for emulation, which we briefly discuss below.

6

Figure 4: Flow of activities in the design process.

3.1 Model Transformation

The first phase for performing emulation on any modeledSegBusconfiguration in
DSL is to transform the model into source code so that the configuration can be
used by the emulator program for further analysis.

The emulator application is written in Java language [4]. Wechoose Java as
a target language for the source code generated from the model to make it com-
patible with the emulator program. The code generation engine of the tool does
provide capability to transform model into source code as per M2T specification
[2].

A code engineering setneeds to be introduced in the tool where we specify
required type of transformation i.e. Model-to-Model, Model-to-Text (as in our
case), etc. The code engineering set consists of a set of model elements whose
source code we want to generate during transformation. We make a code engi-
neering set consisting of platform elements (SAs, CA, BUs) and all application
components in the form of processes (P0, P1, etc.). A directory is also specified
where the generated source code to be saved. After applying transformation on

7

Figure 5: Hierarchical structure of the SegBus elements.

our model, we get the required source code in mentioned directory.
The generated source code contains a set of files. Each file corresponds to a

particular platform element or application component. Figure 5 shows the hierar-
chical structure of the platform elements. At the top level is theSegBusPlatform
itself composed ofSegment(s) and exactly oneCA. Every segment is composed of
at least oneFU, and exactly oneSA. Each segment is connected with other neigh-
boring segment throughBU. OneFU may containMaster(s) andSlave(s). The
generated code also follow the same hierarchy as depicted inFigure 5. TheFUs
andSA always instantiate in the segment’s source code as class attributes. The
source file ofSegBusPlatforminstantiates required number of segments, match-
ing number ofBUs and exactly oneCA in the form of class attributes. The scope
of all attributes is keptpublic for the ease in programming.

3.2 Setup for emulation

The next phase of the design methodology is to generate the source files and
make them ready for execution with the emulator application. The emulator has
been programmed in a way to exhibit the exact behavior of actual platform in-
stance. The functionality and behavior of each platform element (SA, CA, BU,
etc) are programmed and stored in individual java source files. A number of mon-
itoring statements are introduced in different section ofSA, CA andBU codes.
These monitoring statements count clock ticks involved in any transfer, either
intra-segment or inter-segment. Thearbitratemethod inCA andSA source code
performs arbitration and called by the emulator application several times during
execution.

At theSA level, we put statements inarbitratemethod to count requests com-
ing from the application processes. Separate counters are also put to count both
kinds of requests (intra and inter-segment). These statements help us later to ana-
lyze the configured system and provides means to take optimaldecision according
to needs. In case of inter-segment transfers, there exist separate counters to count
how many packages transfered to left and right sideBU.

At the CA level, monitoring statements inarbitratemethod count the number

8

of clock ticks CA consumed whilesettingand resettingrelated grant signal in
response to inter-segment requests. The monitoring statements atBU level counts
how many packages received from, and transfered to, left andright-side segment.
It also counts total number of clock ticks during all transfers.

When we get the source code after model transformation, the emulator appli-
cation performssetupoperation on the generated source code to make it ready to
work with existing emulator application. The steps involved in this setup process
are:

• Copy the functionality (source code) of each platform element to its associ-
ated file.

• IntroduceConstructormethod in each source file.

• Setup each file to be executable in a multi-threaded environment (discussed
in section 3.3) by providing proper interface (Runnable) and method (run()).

Manual configuration is also required before emulation. Thetasks associated
with manual configuration are:

• Setup of thread pool in the platform’s class.

• Instantiation of threads in proper segment class.

• Setting IDs for processes.

• Assignment of all threads to the Java’sExecutorService- a class that handles
the execution of threads.

3.3 Implementation approach

The microprocessor in a personal computer (PC) has the characteristics to run
computer program instructions in sequential order. On the other hand, the hard-
ware devices have the characteristics to run in parallel with other devices. The
main challenge in emulator development for us to transform the parallel behav-
ior of hardware elements associated with platform into somespecial form that
can be run on microprocessor and exhibit the correct characteristics of hardware.
Multi-threadingis not a new idea and is exists since many years. Generally, every
running program in a PC is called aprocess. Multi-threading is the task of cre-
ating a newthreadof execution within an existing process rather than starting a
new process to begin function. All the threads in a process share the same allo-
cated memory. The parallel execution of threads within the same process is often
considered as a more efficient use of the resources of the PC. Multi-threading
employs time-division multiplexing to executes threads inparallel. Threads are

9

Figure 6: Partitioned application model of MP3 decoder.

Figure 7: The communication matrix for the example.

obtained from the pool of available ready-to-run threads and run on the available
microprocessor(s).

We employ Java’s multi-threading feature in our emulator application. All
classes related with emulator application, including the generated source code
from the model run as threads during execution. Each class implementsRunnable
interface fromjava.langpackage by introducingrun() method. The method ex-
ecutes when emulation starts and performs dedicated functionality. The platform
class creates a thread pool using an instance ofExecutorServiceclass from the
java.util.concurrentpackage. The size of the thread pool depends on the number
of FUs and platform elements (BUs, SAs, etc). We add allFUs and platform el-
ements into the thread pool before emulation. During execution of emulator, all
threads execute in parallel to depict intrinsic characteristics of hardware.
Emulation and estimation. The final step of the design methodology is to em-
ulate the platform configuration after file setup. In general, application processes
communicates with each other at different time instant after performing specific
computation on the supplied data. We assume here that all processes try to com-
municate with each other as soon the emulation starts. During emulator devel-
opment, we skip some timing factors that are less important in estimating perfor-
mance. For instance, we didn’t include the time necessary tosynchronize between
two adjacent clock domains, converging at theBUs. This time is parameterized,
but a value of two clock ticks is usually considered, at the translation of any sig-
nal across two clock domains. We also did not computed the time necessary for

10

theSAs to set the grant signal for a particular request and corresponding master
responds, due to a similarly low value, which is also overlapping in time with the
on-going activities within the segments.

We compared the estimated results that we get from the emulator with the
application running on the real platform and we conclude that the estimated results
are more than 90% accurate in the absence of previously mentioned timing factors.

After we supply the communication matrix to the emulator, the tool instanti-
ates the threads correponding to platform elements, supplyparticular value from
communication matrix to eachFU and starts the simulation process. Upon com-
pletion, the emulator returns results from the platform elements’ execution. Some
of the results are listed below:

• Total clock ticks consumed for the operation of theCA and each of theSAs.

• Total inter-segment requests received byCA and by each of theSAs.

• Total clock ticks consumed by each of theBUs.

• etc.

The clock tick’s counter is incremented inSA andCA at various moments.
EachSA has its own counter for counting clock ticks and the execution time for
each device is computed separately (discussed in next section). For instance, the
SA increments the clock tick’s counter while checking the incoming requests from
FUs in the segment. It increments the counter when it receives intra or inter-
segment transfer request from one of theFU in the segment. If the request is for
inter-segment transfer, it forwards the request toCA and increments the counter.
While setting and resetting grant signal in response to any request, it also updates
the clock tick’s counter. During the time limit for any transfer, theSA always
increments the clock tick’s counter continuously till the time limit ends. TheCA
increments the clock tick’s counter every time when it checks for any incoming
inter-segment transfer request from aSA. It increments the counter while setting
and resetting grant signal for any inter-segment transfer request. Furthermore,
when one of the segment finishes its job in an inter-segment transfer, theCA resets
the necessary signal associated with particular segment and increments the clock
tick’s counter.

4 Example using the Emulator program

We demonstrate our approach with an example of modeling a simplified stereo
MP3 decoder [11] on theSegBusplatform and associated emulation results. The
modeling is done using DSL [10]. The application has alreadybeen partitioned
up to a right granularity level [15]. Here, we map application processes in three
different platform configuration, using one, two and three segments, with linear

11

topology in all configuration. The package size is set to 36 data items in each
package. Figure 8 illustrates the allocation of application processes on each plat-
form configuration, where segment borders are marked as ‘||’. The communi-
cation matrix is generated from the partitioned-application model (see Figure 6).
Figure 7 illustrates the communication matrix associated with the example ap-
plication. For instance, the transaction betweenP0 andP1 consists of 576 data
items, packed into 16 packages. We emulate each configuration on theSegBus
emulator to analyze the performance aspects. We intentionally skip here the emu-
lation results of one and two segments configuration. But, the emulation results of
3 segments platform configuration are given below in which ‘CA’ represents the
central arbiter of the platform, ‘Segment X’ represents thesegment and X denotes
the ID (1,2,3,..), ‘SAn’ represents the segment arbiter associated with segment n’,
‘BUxy’ represent the border unit between segment ‘x’ and segment ‘y’. We set
clock frequency of segment 1, 2, 3 and central arbiter as 91MHz, 98MHz, 89MHz
and 111MHz respectively.

Figure 8: Allocation of processes on different platform configuration.

• Three Segments configuration: In this configuration, processes (0,1,2,3,8,9,10)
are on segment 1, processes (5,6,7,11,12,13,14) are on segment 2 while process 4
is on segment 3. Border unit (BU12) is between segment 1 and 2,while border
unit (BU23) is between segment 2 and 3.

P4 finished its task at 2808750 ps
P10 finished its task at 2747250 ps
P11 finished its task at 81632000 ps
P13 finished its task at 81632000 ps
P12 finished its task at 81632000 ps
P2 finished its task at 82417500 ps
P7 finished its task at 163264000 ps
P5 finished its task at 163264000 ps
P6 finished its task at 163264000 ps
P9 finished its task at 164835000 ps
P1 finished its task at 175824000 ps
P8 finished its task at 175824000 ps
P0 finished its task at 351648000 ps
P3 finished its task at 457142400 ps

CA total ticks = 52465
Time consumed = 472657185 ps @ 111MHz

BU12:
Total input packets = 32,
Total output packets = 32

Packet Received from Segment 1 = 32,

12

Figure 9: Progress on time of each application process in 3 segment, linear topol-
ogy with package size of 36 data items configuration.

Packet Transfered to Segment 1 = 0
Packet Received from Segment 2 = 0,
Packet Transfered to Segment 2 = 32

Total Clock Ticks = 4362

BU23:
Total input packets = 2,
Total output packets = 2

Packet Received from Segment 2 = 1,
Packet Transfered to Segment 2 = 1

Packet Received from Segment 3 = 1,
Packet Transfered to Segment 3 = 1

Total Clock Ticks = 149

Segment 1:
Packets transfered to Left = 0,
Packets transfered to Right = 32

Segment 2:
Packets transfered to Left = 0,
Packets transfered to Right = 0

Segment 3:
Packets transfered to Left = 1,
Packets transfered to Right = 0

SA1 total ticks = 42120,
Total intra-segment requests = 123,
Total inter-segment requests = 32
Time consumed = 462856680 ps @ 91MHz

SA2 total ticks = 48527,
Total intra-segment requests = 96,
Total inter-segment requests = 0
Time consumed = 495169508 ps @ 98MHz

SA3 total ticks = 43699,

13

Figure 10: Activity graph of different platform elements in3 Segment and linear
topology configuration for 18 and 36 bit package sizes.

Total intra-segment requests = 0,
Total inter-segment requests = 1
Time consumed = 490958265 ps @ 89MHz

The total time consumed bySA1 to finish all associated jobs istSA1
. This time

can be calculated by multiplying total clock ticks with the associated segment’s
clock period. The execution time is calculated when allFUs finish their jobs, all
packages are transmitted to its relevant destination and grant signal of all arbiters
areclear. EachFU inform the emulator about its status by setting a flag in the
emulator. Hence, the total execution time of the application can be calculated by
taking the maximum of time consumed by central arbiter and all segment arbiters
that ismax(tSA1

, tSA2
, ..., tCA). Figure 9 shows the progress of eachFU on time

line using 3 segments, linear topology with package size of 36 data items. The
figure shows the time instant on which any specific process finished its dedicated
job. ProcessP3 takes the longest time of 457.14µs to complete its task in the
given configuration, while the estimated total execution time for the application
is 495.17µs. After running the same partitioned-application on the real platform
instance, we get the actual execution time as 515.2µs. So, the estimated results
we get are 96% accurate. When the same platform configurationis emulated with
reduced package size that is 18 data items in a package, we getthe estimated
execution time of 560.16µs.

In addition, we change the platform configuration by shifting processP9 from
segment 1 to segment 3 with the previously mentioned design process to estimate
the execution results. While, rest of the configuration willremain same with pack-
age size of 36 data items. The emulation result shows that theestimated execution
time of updated configuration is 540.4µs.

Figure 10 illustrates the activity graph of 3 segment, linear topology config-
uration with different package sizes (18 and 36 data items).Based on emulation

14

results, it’s the job of the designer to decide which configuration would be best
suited for final implementation. Such decisions at early stages of design process
not only improve the quality of eventual system in terms of performance, but also
improves power consumption up to some extent. The granularity level of applica-
tion components can also be adjusted to eliminate the trafficcongestion introduced
by someFUs that will further improve the overall performance.

5 Conclusions

The report presented methods for specifying, modeling and implementing multi-
core embedded systems using UML-based methodology. We introduced emula-
tion technique for estimating performance aspects of desired SegBusconfigura-
tion. We described how the source code can be generated from the models, spec-
ified in DSL, and introduced mechanism to emulate the modeledconfiguration in
early stages of the development process.

The emulation-based solution enables us to analyze any platform configuration
with respect to performance. The design decisions to get optimal performance
from the platform has now become easy using the proposed methodology. The
methodology allows a designer to adjust the high-level design in a way to take full
benefits from the features exposed by the platform.

15

References

[1] Unified Modeling Language (UML) Superstructure Specification, version 2.0.
. http://www.omg.org

[2] Eclipse Modeling - Model-to-Text Transformation. .
http://www.eclipse.org/modeling/m2t/

[3] OMG. Object Constraint Language (OCL) 2.0 Revised Submission, version
1.6. January 2003.

[4] Java Programming Language. http://java.sun.com

[5] MagicDraw UML. http://www.magicdraw.com

[6] Model-Driven Architecture. http://www.omg.org/mda/

[7] N. Genko, D. Atienza, G. D. Micheli, L. Benini.Feature-NOC emulation: a
tool and design flow for MPSoC.IEEE Circuits and Systems Magazine, vol.
7, 2007, pp. 42-51.

[8] A. Jantsch, H. Tenhunen.Networks on Chip.Kluwer Academic Publishers,
2003.

[9] P. Liu, C. Xiang, X. Wang, B. Xia, Y. Liu, W. Wang, Q. Yao.A NoC Emula-
tion/Verification Framework.In Proceedings of 6th International Conference
on Information Technology: New Generations, 2009, pp. 859-864.

[10] M. F. Niazi, K. Latif, T. Seceleanu, H. Tenhunen.A DSL for the SegBus
Platform.In proceedings of 22nd IEEE International System-on-Chip Confer-
ence (SOCC), 2009, pp. 393-398.

[11] C. Park, J. Jang and S. Ha.Extended Synchronous Dataflow for Efficient
DSP System Prototyping.Journal Design Automation for Embedded Sys-
tems, Springer Netherlands, vol. 6, no. 3, 2002, pp. 295-322.

[12] G. Schelle, D. Grunwald.Onchip Interconnect Exploration for Multicore
Processors utilizing FPGAs.2nd Workshop on Architecture Research using
FPGA Platforms, 2006.

[13] T. Seceleanu. The SegBus Platform - Architecture and Com-
munication Mechanisms. Journal of Systems Architecture (2006),
doi:10.1016/j.sysarc.2006.07.002

[14] T. Seceleanu, V. Leppänen, O. Nevalainen.Improving the Performance of
Bus Platforms by Means of Segmentation and Optimized Resource Allocation.
The EURASIP Journal on Embedded Systems, Volume 2009 (2009), Article
ID 867362, doi:10.1155/2009/867362.

16

[15] D. Truscan, T. Seceleanu, J. Lilius, H. Tenhunen.A Model-based Design
Process for the SegBus Distributed Architecture.In Proceedings of the 15th

IEEE International Conference and Workshop on the Engineering of Com-
puter Based Systems (ECBS), 2008, pp. 307-316.

17

Joukahaisenkatu 3-5B, FIN-20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2340-2
ISSN 1239-1891

