
Maryam Kamali | Linas Laibinis | Luigia Petre | Kaisa
Sere

Reconstructing Coordination Links in
Sensor-Actor Networks

TUCS Technical Report
No 967, February 2010





Reconstructing Coordination Links in
Sensor-Actor Networks
Maryam Kamali

Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5, FIN-20520 Turku, Finland
maryam.kamali@abo.fi

Linas Laibinis
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5, FIN-20520 Turku, Finland
linas.laibinis@abo.fi

Luigia Petre
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5, FIN-20520 Turku, Finland
luigia.petre@abo.fi

Kaisa Sere
Åbo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5, FIN-20520 Turku, Finland
kaisa.sere@abo.fi

TUCS Technical Report

No 967, February 2010



Abstract

Wireless sensor-actor networks are a recent development of wireless networks
where both ordinary sensor nodes and more sophisticated and powerful nodes,
called actors, are present. The role of the actors is to take various decisions rele-
vant for the network based on the data retrieved and transmitted by the sensors. In
order to fulfill their role, actor nodes, independently of the sensor nodes, coordi-
nate with each other via their own communication links. However, when an actor
node fails, it may hinder the overall actor coordination. Hence, some backup
mechanisms need to be enforced. In this paper we present a novel method on
how to always enforce a reconstruction of the failed coordination links among
the remaining active actors in a manner that aims to achieve various optimality
properties. We argue that our method promotes a reusable coordination model of
employing existing infrastructure as a fault-tolerance mechanism. Moreover, var-
ious forms of the coordination links are emphasized.

Keywords: Wireless Sensor Actor Networks (WSANs); Coordination links; Co-
ordination recovery; Refinement; Event-B; Rodin Tool

TUCS Laboratory
Distributed Systems Lab



1 Introduction

Wireless Sensor Actor Networks (WSANs) are a rather new generation of sensor
networks [8], made of two kinds of nodes: sensors and actors. In a WSAN, sen-
sors detect the events that occur in the field, gather them and transmit the collected
data to actors. The actors react to the events in the environment based on the re-
ceived information. The sensor nodes are low-cost, low-power devices equipped
with limited communication capabilities, while the actor nodes are usually mo-
bile, more sophisticated and powerful devices compared to the sensor nodes. In
addition, the density of sensor nodes in WSANs is much bigger than that of actor
nodes.

WSANs are dynamic networks where the network topology continuously chan-
ges because some new links or nodes are added, or are removed due to their fail-
ure. A failure can occur due to hardware crashes, lack of energy, malfunctions,
etc. Two central research topics concerning WSANs are coordination and real-
time requirements. As there is no centralized control in a WSAN, sensors and
actors need to coordinate with each other in order to collect information and take
decisions on the next actions [8]. Also, depending on the application, it might be
essential to respond to sensor inputs within predefined time limits, e.g., in critical
applications such as forest fire detection.

There are three main types of WSAN coordination [11]: sensor-sensor, sensor-
actor and actor-actor coordination, out of which we are here concerned with the
latter. The sensor-sensor coordination in WSANs is similar to the Wireless Sensor
Network (WSN) coordination, i.e., it defines how sensors route information, how
information aggregates among them and which sensors are responsible for which
tasks. The sensor-actor coordination prescribes which sensors should send certain
data to certain actors. The actor-actor coordination focuses on the actor decisions
and the division of tasks among different actors. To achieve the actor-actor coordi-
nation in WSANs, actors need reliable connection links for communicating with
each other, which are established upon initializing the WSAN. However, actor
nodes may fail during operation of the network. As a result, a WSAN may trans-
form into several, disconnected WSAN sub-networks. This separation is called
network partitioning and is illustrated in Figure 1, where the actor nodes A1−A15

are shown to produce a network partitioning if actor node A1 fails.
Due to the real-time requirements of WSANs, the failure of an actor node

should not impact the whole actor network for too long. The problem of actor
failing in the actor-actor coordination has been already addressed in [7, 1] by
proposing the physical movement of actor nodes toward each other so that they
can re-establish connectivity. However, during this movement, nodes in different
partitions that have been created by the actor failure cannot coordinate. To shorten
the time of recovery, Kamali et all [10] have previously proposed an algorithm for
establishing new routes between non-failed actors via sensor nodes. This algo-
rithm allows us to quickly connect the separated partitions, before moving actor

1



Figure 1: Three partitions created by a failed actor (A1)

nodes as proposed in [7, 1]. In this paper, we further employ this recovery mech-
anism that alleviates the coordination failure.

There are several properties that are desirable to verify for this algorithm.
First, we need to show that there is always a path via sensor nodes that can be
established by the partitioned actor nodes. Second, it is desirable to guarantee that
this path is the shortest, in order not to overload the power-limited sensor nodes.
Third, to shorten the time of recovery as much as possible, it is desirable to es-
tablish the connection as soon as possible. In this paper we focus on ensuring the
first property of the algorithm.

The novelty of our contribution is twofold. First, we formally prove that there
is always a possibility to reconstruct a coordination link via sensor nodes between
two non-failed actor nodes. Second, we guarantee that the coordination links are
formed in a distributed manner and are (temporarily) delegated to sensors. Hence,
the reconstruction is based only on local knowledge that actors have of their neigh-
bor actors and the nearby sensors. These properties stress the WSAN strength as
an innovative coordination model. Specifically, actor nodes which are more so-
phisticated devices are used to implement varied, possibly quite complex decision
making behavior, based on the information provided by the sensors. In their turn,
the sensor nodes not only dutifully collect and transmit data but also act as fault
tolerance support for the coordination links between actor nodes. Therefore, the
sensor nodes provide the backup infrastructure on which the actor coordination
can rely while applying a simple distributed algorithm that essentially computes
the best alternatives for these links. Thus, our contribution puts forward an addi-
tional role for the data gathering infrastructure.

In order to prove the local path existence property, we employ the Event-B
formal method. Event-B [4, 2, 3] is an extension of the B formalism [5] for spec-
ifying distributed and reactive systems. A system model is gradually specified
on several levels of abstraction, always ensuring that a more concrete model is a

2



correct implementation of an abstract model. The language and proof theory of
Event-B are based on logic and set theory. The correctness of the stepwise con-
struction of formal models is ensured by discharging a set of proof obligations: if
these obligations hold, then the development is mathematically shown to be cor-
rect. Event-B comes with the associated tool Rodin [2, 12], which automatically
discharges part of the proof obligations and also provides the means for the user
to discharge interactively the remaining proofs.

This paper is organized as follows. In Section 2 we briefly overview the Event-
B formalism and present the recovery algorithm. In Section 3 we present the
recovery mechanism at four levels of abstraction in Event-B. In Section 4 we
conclude with some final remarks.

2 Preliminaries
This section briefly overviews our modeling formalism Event-B and also describes
the recovery algorithm to be modeled in this paper.

Event-B Each Event-B model consists of two components called context and
machine. A context describes the static part of the model, i.e., it introduces new
types and constants. The properties of these types and constants are gathered as
a list of axioms. An example of an Event-B context is shown in the appendix. A
machine represents the dynamic part of the model, consisting of model variables
and operations called events. The structure of an Event-B machine is given in
Figure 2. The system properties that should be preserved during the execution are
formulated as a list of invariant predicates over the state of the model.

An event, modeling state changes, is composed of a guard and an action. The
guard is the necessary condition under which an event might occur; if the guard
holds, we call the event enabled. The action determines the way in which the state
variables change when the event occurs. For initializing the system, a sequence
of actions is defined. When the guards of several events hold at the same time,
then only one event is non-deterministically chosen for execution. If some events
have no variables in common and are enabled at the same time, then they can be
considered to be executed in parallel since their sequential execution in any order
gives the same result.

A model is developed by a number of correctness preserving steps called re-
finements. One form of model refinement can add new data and new behavior
events on top of the already existing data and behavior but in such a way that
the introduced behavior does not contradict or take over the abstract machine be-
havior. In addition to this superposition refinement [9] we may also use other
refinement forms, such as algorithmic refinement [6]. In this case, an event of
an abstract machine can be refined by several corresponding events in a refined
machine. This will model different branches of execution, that can for instance

3



MACHINE machine-name
VARIABLES list of variables
INVARIANTS list of invariants/predicates
EVENTS

INITIALIZATION
BEGIN

list of actions
END
event-name
WHEN

list of guards
THEN

list of actions
END

END

Figure 2: MACHINE definition in Event-B

take place in parallel and thus can improve the algorithmic efficiency.

The recovery algorithm In this algorithm, the detection of a failed node leads
to the communication links among non-failed actor nodes to be reconstructed via
sensor nodes. The mechanism has three parts: detecting a failed actor, selecting
the shortest path, and establishing the selected path through sensor nodes. When
actor neighbors of an actor node do not receive any acknowledgment from that
actor node, they detect it as failed. At this time, the neighbors of the failed node
have to investigate whether this failure has produced separated partitions. If there
is no partitioning, then nothing is done except updating the neighbor lists in nodes.
However, if there are some separated partitions, a new path should be selected and
established.

In our algorithm, we refer to paths at two levels, one at the actor level and
the other at the sensor level. The length of a path refers to the number of edges
making up the path. To connect all the separated partitions, we need at least one
path of length equal to the number of partitions minus one. For instance, in order
to connect three partitions, we need at least one path among actors of length two.
We assume that each actor node has information about its immediate neighbors
(1-hop neighbors) and 2-hop neighbors (the neighbors of the neighbors).

Upon detecting a failed actor node, the actor neighbors of the failed actor node
need to re-establish their connections. These connections are formed based on the
node degree information (the number of immediate neighbors) and on the relative
distance between actor nodes.

4



3 Four levels of abstraction for the Recovery Algo-
rithm

In this section we formally develop the algorithm for reconstructing coordination
links among actor nodes as explained in Section 2. Our purpose is to show that,
given a network of sensors and a network of actors above them, the actors can
always reconstruct coordination links between themselves, by using local infor-
mation and sensors as intermediate nodes. In order to prove this property, we first
model the network at three increasing levels of detail so that each model is a re-
finement of the previous one. In the initial model, we very abstractly specify a
network of generic nodes and the recovery mechanism. In the second model, we
add new data and events to model the list of 1-hop and 2-hop neighbors for every
node. In the third model, we distinguish among sensor and actor nodes and their
corresponding networks. Moreover, the non-failed actor nodes aim to establish
the shortest path among themselves. We therefore have a fourth abstraction level
where details about the physical distance between actor nodes is taken into con-
sideration for establishing the path. In the following, we describe these models.

3.1 The Initial Model
The context of our initial model contains the definition of sets and constants as
well as our model assumptions as axioms. A finite (axiom 6) and non-empty
(axiom 7), generic set NODE describes all the network nodes. We assume at this
point that all the nodes are homogeneous, that is, we do not distinguish between
actors and sensors yet. We also define two constants, FAIL and closure. The
constant FAIL denotes the set {0, 1}, where 1 stands for a failed node and 0 for
a non-failed node (axiom 1). The constant closure models the transitive closure
of a binary relation on the set NODE (axioms 2-5).

axioms:
@axm1 FAIL = {0, 1}
@axm2 closure ∈ (NODE ↔ NODE) →

(NODE ↔ NODE)
@axm3 ∀r · r ⊆ closure(r)
@axm4 ∀r · closure(r); r ⊆ closure(r)
@axm5 ∀r, s · r ⊆ s ∧ s; r ⊆ s ⇒ closure(r) ⊆ s
@axm6 finite(NODE)
@axm7 NODE 6= ∅

In the machine part of our initial model we have five events and five invariants as
shown below. The status of each node (non-failed or failed) is modeled with the
function N mapping each node in NODE to 0 or 1 (invariant 1). The relation
NET denotes the bidirectional links that are non-failed (invariant 2 and 5). This

5



relation is non-reflexive (invariant 3) and symmetric (invariant 4). This means
that, a NET link from a node to itself is prohibited. Moreover, if node A has a
link with node B, then node B also has a link with the node A. We also model that
the network is active continuously with theorem THM1 that ensures that always,
at least one event is enabled (i.e., the disjunction of all the events guards is true).
An invariant has to be checked every time an event is chosen and executed, even
if it has been proven to hold at a previous execution of that event. In contrast,
once we prove a theorem for a model, we need not prove it again. We chose to
model the continuous activity of the network with a theorem to avoid reproving
this property at each execution.

INVARIANTS
@inv1 N ∈ NODE → FAIL
@inv2 NET ∈ dom(N) ↔ dom(N)
@inv3 dom(N) / id ∩NET = ∅
@inv4 NET = NET ∼
@inv5 ∀n,m · n 7→ m ∈ NET ⇒ n 7→ 0 ∈ N ∧m 7→ 0 ∈ N
theorem @THM1(∃l · l 7→ 1 ∈ N)

∨(∃n,m · n 7→ 0 ∈ N ∧m 7→ 0 ∈ N ∧ n 7→ m /∈ NET
∧m 7→ n /∈ NET ∧ n 6= m)
∨(∃p · p 7→ 1 ∈ N)
∨(∃i, j, k · i 7→ 0 ∈ N ∧ j 7→ 1 ∈ N ∧ k 7→ 0 ∈ N∧

i 7→ j /∈ NET ∧ k 7→ j /∈ NET∧
i 6= j ∧ j 6= k ∧ k 6= i ∧ i 7→ k /∈ closure(NET ))

The initialization event sets all the nodes to 1, i.e., failed (action 1); therefore, the
NET relation should be empty (action 2), based on invariant 5. Except initializa-
tion, the events in the initial model add nodes (AddNode) and links (AddLink),
remove nodes and their corresponding links (RemoveNode) and also abstractly
recovery connections when a node fails(FaultDetRec).

INITIALIZATION
then

@act1 N := NODE × {1}
@act2 NET := ∅

AddNode
any n where

@grd1 n 7→ 1 ∈ N
then

@act1 N := N C− {n 7→ 0}
end

In the AddNode event, every node that is added overwrites the function N , using
the overwriting operator C− in Event-B.

In the AddLink event, we add a link in both directions to meet invariant 4.

6



AddLink
any n m where

@grd1 n 7→ 0 ∈ N ∧m 7→ 0 ∈ N
@grd2 n 7→ m /∈ NET ∧m 7→ n /∈ NET
@grd3 n 6= m

then
@act1 NET := NET ∪ {n 7→ m} ∪ {m 7→ n}

end

The RemoveNode event changes the status of a node from 0 to 1; also, all the links
of that node are removed from NET , expressed with the domain substraction
operator C− and the range substraction operator B−.

RemoveNode
any n where

@grd1 n 7→ 0 ∈ N
then

@act1 N := N C− {n 7→ 1}
@act2 NET := {n}C−NET B− {n}

end

Removing a node from the network can lead to some separated network parti-
tions. The event FaultDetRec detects whether a removed node has created sepa-
rated partitions or not. If two nodes had no connection through other nodes (i.e.,
there was no path from one node to the other, expressed by guard 4 of FaultDe-
tRec), then a partition is formed and, at this abstract level, simply a new path is
established.

FaultDetRec
any n m k where

@grd1 n 7→ 0 ∈ N ∧m 7→ 1 ∈ N ∧ k 7→ 0 ∈ N
@grd2 n 7→ m /∈ NET ∧ k 7→ m /∈ NET
@grd3 m 6= n ∧m 6= k ∧ n 6= k
@grd4 n 7→ k /∈ closure(NET )

then
@act1 NET := NET ∪ {n 7→ k, k 7→ n}

end

Overall, our initial model abstractly describes the non-deterministic addition and
removal of nodes and links in a dynamic (wireless sensor-actor) network for whom
the network partitioning problem can be detected and recovered from. At this level
we only model that a failed node is detected and new links among remaining nodes
are established, without discussing the details of how these links can be added.

7



3.2 The Second Model
In the initial model we have considered the network having knowledge about itself
while in our algorithm we assume that each node has access only to information
of its 1-hop neighbors and 2-hop neighbors. We now refine the initial model
and define a new relation l net that, for each node, keeps track of the 1-hop and
2-hop neighbors. The relation l net relates three nodes as defined by invariant
1 below and is non-reflexive, modeled by invariant 2 below. The meaning of
this relation is that a 1-hop neighbor m of a node n is denoted by n 7→ m 7→
m ∈ l net and a 2-hop neighbor m of a node n is denoted by n 7→ m 7→ k ∈
l net. In the first example, m is locally related to n via m (itself, i.e., via a
direct link) and in the second example m is locally related to n via k (i.e., m
is a 2-hop neighbor of n, while k is a 1-hop neighbor of n). The relation l net
describes all these localized links between nodes. The goal of this refinement step
is to supplement the global knowledge of the network in the initial model with a
localized knowledge formalized with the relation l net.

@inv1 l net ∈ NODE ×NODE ↔ NODE
@inv2 dom(N) / id ∩ dom(l net) = ∅

When a new link is added between two nodes the l net relation also needs to be
updated. Therefore, the AddLink event is refined to also add links to l net. For
every two nodes n and m which have a direct link, n 7→ m 7→ m and m 7→ n 7→ n
are added, meaning that n has a link with m through m (m is a 1-hop neighbor n)
and m has a link with n through n (n is a 1-hop neighbor of m).

AddLink
extends AddLink
then

@act2 l net := l net ∪ {n 7→ m 7→ m,m 7→ n 7→ n}
end

The Addl net2hopLink event is a newly introduced event that handles the addi-
tion of 2-hop neighbor links for nodes. If a node has a direct link with two nodes,
then these nodes will be 2-hop neighbors of each other:

Addl net2hopLink
any n m k where

@grd1 n 7→ 0 ∈ N ∧m 7→ 0 ∈ N ∧ k 7→ 0 ∈ N
@grd2 m 7→ k 7→ k ∈ l net ∧ n 7→ m 7→ m ∈ l net∧

n 7→ k 7→ m /∈ l net ∧ k 7→ n 7→ m /∈ l net
@grd3 m 6= n ∧ n 6= k ∧m 6= k

then
@act1 l net := l net ∪ {n 7→ k 7→ m, k 7→ n 7→ m}

end

8



When removing a node, all its connections should be removed. Thus, in the Re-
moveNode event a new action is added which removes all the immediate links
with the failed node in the l net relation. The expression {n}×NODE×NODE
describes all the links of n, either direct connections (1-hop neighbors) or indirect
connections (2-hop neighbors) and the expression dom(NET ) × {n} × {n} de-
scribes all the links between immediate neighbors of n and n.

RemoveNode
extends RemoveNode
then

@act3 l net :| l net′ ⊆ l net\(({n}×NODE×NODE)∪
(dom(NET )× {n} × {n}))

end

Detecting failed nodes and recovering links should be managed locally instead
of being based on all the network topology described by NET . We now use
l net information in addition to NET for detecting an actor failure (guard 5) and
recovering links in the FaultDetRec event.

FaultDetRec
refines FaultDetRec
any n m k where

@grd5 n 7→ k 7→ m ∈ l net ∧ n 7→ m 7→ m /∈ l net∧
k 7→ n 7→ m ∈ l net ∧ k 7→ m 7→ m /∈ l net

then
@act2 l net :| l net′ ⊆ (l net \ ({n 7→ k 7→ m, k 7→ n 7→ m}∪

(NET [{n}]× {m} × {n}) ∪ (NET [{k}]× {m} × {k})))
∪(NET [{k}]× {n} × {k}) ∪ ({n} ×NET [{k}]× {k})
∪(NET [{n}]× {k} × {n}) ∪ ({k} ×NET [{n}]× {n})∪
({k}×{n}×(NODE \{m}))∪({n}×{k}×(NODE \{m}))

When node m is detected as a failed node, neighbors of m (n and k) that have
a connection with each other through m (n 7→ k 7→ m and k 7→ n 7→ m)
need to find an alternative path toward each other. If there is no other route in
NET (n 7→ k /∈ closure(NET )), then l net should be updated by removing
expired links and addding new routes. Since m is failed, links between n and k
through m are not valid, so n 7→ k 7→ m and k 7→ n 7→ m is removed from
l net. In addition, links describing the immediate neighbors of n (NET [{n}])
and of k (NET [{k}]) to m via n and k, respectively are removed from l net. The
second phase of the updating process is adding new links to connect n and k. In
this refinement, since we still have no information about sensors, we define that
node n can establish a link with k through any node except m which is failed:
{n} × {k} × (NODE \ {m}) and similarly for node k to establish a new link
with n: {k} × {n} × (NODE \ {m}). When node n establishes a link with k,

9



neighbors of n also need to add node k to their 2-hop neighbors list (NET [{n}]×
{k} × {n}). Moreover, neighbors of k need to add n to their 2-hop neighbors list
(NET [{k}] × {n} × {k}). The updating process of l net is described by action
2 in the FaultDetRec event.

We also add another new event FaultDetRec2. This event treats the situation
when a failure is detected but an alternative path already exists between the neigh-
bors of the failed node (n 7→ k ∈ closure(NET )). In this case, l net is simply
updated by removing all the links with the failed node or through it.

FaultDecRec2
any n m k where

@grd1 n 7→ 0 ∈ N ∧m 7→ 1 ∈ N ∧ k 7→ 0 ∈ N
@grd2 n 6= m ∧m 6= k ∧ n 6= k
@grd3 n 7→ k 7→ m ∈ l net ∧ n 7→ m 7→ m /∈ l net∧

k 7→ n 7→ m ∈ l net ∧ k 7→ m 7→ m /∈ l net
@grd4 n 7→ k ∈ closure(NET )
@grd5 n 7→ m /∈ NET ∧ k 7→ m /∈ NET

then
@act1 l net := l net \ ({n 7→ k 7→ m, k 7→ n 7→ m}∪

(NET [{n}]×{m}×{n})∪ (NET [{k}]×{m}×{k}))

We observe that l net is an elegant data structure relating two nodes in its
domain via a third node in its range. The following model further employs this
data structure.

3.3 The Third Model

In this model, we distinguish sensor and actor nodes and specify more concretely
how replacement links are added after detecting an actor failure. We introduce
two new relations on dom(N), SNET and SANET (invariant 1 and invariant
2), the former representing links among sensor nodes and the latter depicting links
between sensor and actor nodes.

10



@inv1 SNET ∈ dom(N) ↔ dom(N)
@inv2 SANET ∈ dom(N) ↔ dom(N)
@inv3 SNET ∩NET = ∅
@inv4 NET ∩ SANET = ∅
@inv5 SNET ∩ SANET = ∅
@inv6 SNET = SNET ∼
@inv7 SANET = SANET ∼
@inv8 dom(N) / id ∩ SNET = ∅
@inv9 dom(N) / id ∩ SANET = ∅
@inv10 ∀n,m · n 7→ m ∈ SANET ⇒ (K(n) = 0 ∧K(m) = 1)

∨(K(m) = 0 ∧K(n) = 1)
@inv11 ∀n,m · n 7→ m ∈ SNET ⇒ n 7→ 0 ∈ N ∧m 7→ 0 ∈ N
@inv12 ∀n,m · n 7→ m ∈ SANET ⇒ n 7→ 0 ∈ N ∧m 7→ 0 ∈ N
@inv13 NET ∈ (K ∼)[{0}] ↔ (K ∼)[{0}]
@inv14 SNET ∈ (K ∼)[{1}] ↔ (K ∼)[{1}]
@inv15 dom(l net) ∈ (K ∼)[{0}] ↔ (K ∼)[{0}]
@inv16 ∀n, k, x, y · n 7→ k 7→ x ∈ l net ∧ k 7→ n 7→ y ∈ l net∧

x 7→ 1 ∈ K ∧ y 7→ 1 ∈ K ⇒ x ∈ SANET [{n}]
∧ y ∈ SANET [{k}] ∧ x 7→ y ∈ closure(SNET )

These relations describe links between nodes at a different level, hence they are
disjoint from the actor links modeled by NET (invariant 3 and invariant 4).
SNET and SANET are also disjoint sets (invariant 5). Moreover, they are sym-
metric and non-reflexive sets as shown by invariants 6-9. To differentiate between
sensor and actor nodes, we define a constant K with the following axiom: 0 rep-
resents actor nodes and 1 represents sensor nodes.

@axm1 K ∈ NODE → {0, 1}

We also formalize that for each link n 7→ m in SANET one of these nodes should
be a sensor node and the other one should be an actor node (invariant 10). The
next two invariants (invariant 11 and 12) model that every node of a link in either
SNET or SANET should be non-failed. Invariant 13 and invariant 14 show that
the nodes of every link in NET and SNET should belong to actor nodes and
sensor nodes, respectively. We have defined the l net relation to connect 1-hop
and 2-hop neighbors via a third part. We now restrict the domain of l net to only
actors (invariant 15) as we are interested in re-establishing connections between
actors. At the same time, the range of l net is free: this models that actors that
are 2-hop neighbors can be connected via an actor or via a sensor. Invariant 16
models that if there is a link between two actor nodes via sensor nodes in l net,
the involved sensor nodes are within the range of l net, the respective actor-sensor
links belong to SANET and the sensors themselves have at least one path toward
each other within closure(SNET ).

11



In the previous model, removing a node and all its connections was modeled
by the RemoveNode event. In this model we refine RemoveNode by adding a
new action for updating SANET after omitting an actor node (action 4). Also,
all connections through sensor nodes towards a failed node should be removed
from l net (action 3). In addition, we add a guard restricting n to being an actor
(guard 2).

RemoveNode
refines RemoveNode
any n where

@grd2 n 7→ 0 ∈ K
then
@act3 l net := l net \ (({n} ×NODE ×NODE) ∪

(dom(NET )×{n}×{n})∪(dom(NET )×{n}×dom(SNET )))
@act4 SANET := {n}C− SANET B− {n}

end

The only differences in AddLink and Addl net2hopLink events with respect to
the previous model are their new guards. These guards prevent the addition of
links between two nodes which are not actor nodes because NET and l net sets
depict the links between just actor nodes.

AddLink
extends AddLink
where

@grd4 n 7→ 0 ∈ K
@grd5 m 7→ 0 ∈ K

end

Addl net2hopLink
extends Addl net2hopLink
where

@grd4 n 7→ 0 ∈ K ∧m 7→ 0 ∈ K ∧ k 7→ 0 ∈ K
end

In this model we have two new events for adding links between sensor nodes in
SNET and links between sensor and actor nodes in SANET : AddSLink and
AddSALink.

12



AddSLink
any n m where

@grd1 n 7→ 0 ∈ N ∧m 7→ 0 ∈ N
@grd2 n /∈ dom(NET ) ∧m /∈ dom(NET )
@grd3 n 7→ m /∈ SNET
@grd4 n 6= m
@grd5 n 7→ 1 ∈ K ∧m 7→ 1 ∈ K

then
@act1 SNET := SNET ∪ {n 7→ m, m 7→ n}

end

AddSALink
any n m where

@grd1 n 7→ 0 ∈ N ∧m 7→ 0 ∈ N
@grd2 (K(n) = 0 ∧K(m) = 1) ∨ (K(n) = 1 ∧K(m) = 0)
@grd3 n 7→ m /∈ SANET
@grd4 n 6= m

then
@act1 SANET := SANET ∪ {n 7→ m,m 7→ n}

end

The AddSLink event is similar to AddLink with a different guard that models
that, for every map n 7→ m added in AddSLink, n and m should be sensor nodes.
The AddSALink event is for adding links between sensor and actors.

The event FaultDetRec which models the recovery mechanism after an actor
failure is refined using information of SNET and SANET . Compared to the
previous version of the event, there are two additional parameters x, y as sen-
sor nodes, that have connections with actor nodes n and k, respectively. Also, x
and y have either a direct link or an indirect one towards each other (retrieved in
closure(SNET )). Moreover, the actors n and k have no connection with each
other (guard 9)

FaultDetRec
refines FaultDetRec
any n m k x y where

@grd6 x ∈ SANET [{n}] ∧ y ∈ SANET [{k}]
@grd7 x 7→ y ∈ closure(SNET )
@grd8 m 7→ 0 ∈ K
@grd9 n 7→ k /∈ dom(l net \ {n 7→ k 7→ m})

then
@act2 l net := (l net \ ({n 7→ k 7→ m, k 7→ n 7→ m}

∪(NET [{n}]× {m} × {n}) ∪ (NET [{k}]× {m} × {k})))
∪(NET [{k}]× {n} × {k}) ∪ ({n} ×NET [{k}]× {k})
∪(NET [{n}]× {k} × {n}) ∪ ({k} ×NET [{n}]× {n})
∪{n 7→ k 7→ x, k 7→ n 7→ y}

end

13



The action 2 in FaultDetRec was non-deterministic in the previous model. We
now refine this assignment to a deterministic one. We replace {k} × {n} ×
NODE \ {m} with k 7→ n 7→ y and similarly {n} × {k} × NODE \ {m}
is replaced with n 7→ k 7→ x.

The action in the FaultDetRec2 event is unchanged. However, we strengthen the
guard of the event by adding guard 6 that guarantees the existence of a link be-
tween two direct neighbors of a failed node via other nodes than the failed one.

FaultDetRec2
refines FaultDetRec2
where

@grd6 n 7→ k ∈ dom(l net \ {n 7→ k 7→ m})
end

3.4 The Fourth Model

Our machine in the second model re-establishes connections through sensor nodes
between pairs of actor nodes which were direct neighbors of a failed actor node.
However, this is not an optimal mechanism since actor nodes can be far from each
other and involve numerous sensor nodes to re-establish the connection, while
there might be a shorter path for this. To determine the shortest path between
these actor nodes we need to introduce information about the physical location of
the nodes. In this model we add two new (function) variables locX and locY that
store the cartesian coordinates (x, y) of each node (invariant 21 and invariant 22).

As explained in Section 2, one of the direct neighbors of a failed node with
highest degree starts to calculate its distance with other direct neighbors of the
failed node and select this sub-path as replacement alternative if a path can be
established through sensor nodes. Next, node with the second highest degree starts
to calculate its distance with others. This process continues till all sub-partitions
connect together.

We define the degree function to calculate the degree of each neighbor of the
failed node (invariant 20). To calculate the degree of such a neighbor of the failed
node, the list of the failed node neighbors is modeled by the failedNodeNeigh
variable (invariant 19). In order to establish a complete path between the parti-
tions, we need to disable all the events which are not involved in the recovery
procedure. We define the boolean variable flag (invariant 17) for this, with the
meaning that flag = TRUE enables all the events not involved in the recov-
ery mechanism and flag = FALSE disables them and enables the recovery
mechanism events. Invariant 24 models that when there is no needed recovery
(flag = TRUE), then the degree variable is also empty (we are not interested in
the degree function when there is no recovery model).

14



Invariants
@inv17 flag ∈ BOOL
@inv19 failedNodeNeigh ⊆ dom(N)
@inv20 degree ∈ dom(N) 7→ 0..card(dom(N))
@inv21 locX ∈ dom(N) → 0..1000
@inv22 locY ∈ dom(N) → 0..1000
@inv23 failedNodeNeigh ∩ dom(degree) = ∅
@inv24 flag = TRUE ⇒ degree = ∅

The refined AddNode event also stores the location of the node when a node is
added to the network.

AddNode
extends AddNode
any i j
where

@grd3 flag = TRUE
@grd4 i ∈ 1..1000
@grd5 j ∈ 1..1000

then
@act2 locX := locX C− {n 7→ i}
@act3 locY := locY C− {n 7→ j}
end

When a node fails in RemoveNode event, a flag sets to enable events to recover
this failure (action 5) in the network and the FailedNodeNeigh is filled by neigh-
bors of the failed node. Assume m 7→ k 7→ n ∈ l net. Then, l net ∼ is the in-
verse of l net, hence l net ∼ [{n}] denotes the neighbors (1 hop and 2 hop) hav-
ing either via n, in our example it denotes m 7→ k. Hence, dom(l net ∼ [{n}])
denotes the 1-hop neighbors of n, in our example which is modeled by action 6.

RemoveNode
extends RemoveNode
where

@grd3 flag = TRUE
then
@act5 flag := FALSE
@act6 failedNodeNeigh := dom(l net ∼ [{n}])
end

15



In this refinement, a new event is added to calculate the degree of nodes in failedNodeNeigh.
For each member n of this list, n adds to the degree variable the map n 7→
card(NET [{n}] (action 1). We also remove that node from the list failedNodeNeigh.
This ensures invariant 24. The degree and failedNodeNeigh are temporary vari-
ables needed in the recovering process. When the Degree event is enabled, the rest
of events are disabled and when failedNodeNeigh becomes empty then Fault-
DetRec becomes enabled. To model this sequentiality, in the same time when
we add elements to the degree variable (action 1), we remove them from the
failedNodeNeigh variable (action 2). When we have finished the degree calcu-
lation, then failedNodeNeigh is empty and FailedDetRec becomes enabled, in
order to start the recovery mechanism.

Degree
any n
where

@grd1 flag = FALSE
@grd2 failedNodeNeigh 6= ∅
@grd3 n ∈ failedNodeNeigh

then
@act1 degree := degree ∪ {n 7→ card(NET [{n}])}
@act2 failedNodeNeigh := failedNodeNeigh \ {n}
end

16



FaultDetRec
extends FaultDetRec
where

@grd10 flag = FALSE
@grd11 failedNodeNeigh = ∅
@grd12 n ∈ dom(degree) ∧ k ∈ dom(degree)
@grd13 degree(n) > min(dom(degree ∼))
@grd14 ∀i · i ∈ dom({n, k}B− degree) ⇒ (locX(n)− locX(k))

∗(locX(n)− locX(k)) + (locY (n)− locY (k))∗
(locY (n)− locY (k)) < (locX(n)− locX(i))∗
(locX(n)− locX(i)) + (locY (n)− locY (i))
∗(locY (n)− locY (i))

@grd15 degree(k) > degree(n) ⇒ (∃i · i ∈ dom({n, k}C− degree)
∧(locX(k)− locX(i)) ∗ (locX(k)− locX(i))+
(locY (k)− locY (i)) ∗ (locY (k)− locY (i))
< (locX(k)− locX(n)) ∗ (locX(k)− locX(n))
+(locY (k)− locY (n)) ∗ (locY (k)− locY (n)))

then
@act3 degree := {n}C− degree

end

As explained before, FaultDetRec is enabled when the flag variable evaluates to
FALSE (guard 10) and the failedNodeNeigh variable evaluates to∅ (guard 11).
Guard 12 ensures that nodes n and k are neighbors of the failed node m. As we in-
tended to create a path as short as possible its length should be the number of parti-
tions minus one. This means that the node with the lowest degree does not need to
calculate anything (guard 13). For any other neighbor of m except the node with
the minimum degree, the shortest distance to other nodes in degree is selected
(guard 14). Gaurd 14 ensures that the distance between n and k is the smallest,
i.e., any other neighbor i of m is further away from n than k. We also need to
ensure that the path between n and k has not already been chosen by k. This sit-
uation can not occur if degree(k) < degree(n), but if degree(k) > degree(n)
then we need to ensure that k already established a path to another neighbor i of
m. This is modeled by guard 15. The square distance d between nodes i and j is
calculated as pow(d) = (locX(i)− locX(j))∗ (locX(i)− locX(j))+(locY (i)−
locY (j)) ∗ (locY (i)− locY (j)).

When a node selects its path, it is removed from the degree (action 3). When all
needed sub-paths are established, then the flag should be changed to enable all
the other events relating to the recovery mechanism. This flag update is shown in
the Flag event.

17



Table 1: Proof Statistics
Model Number of Proof Automatically Interactively

Obligations Discharged Discharged

Context 4 4(100%) 0(0%)

Initial Model 26 15(58%) 11(42%)

1st Refinement 19 13(68%) 6(32%)

2nd Refinement 95 34(36%) 61(64%)

3rd Refinement 35 32(91%) 3(9%)

Total 179 98(54%) 81(46%)

Flag
where

@grd1 flag = FALSE
@grd2 card(dom(degree)) = 1
@grd3 failedNodeNeigh = ∅

then
@act1 flag := TRUE
@act2 degree := ∅

end

3.5 Proof Statistics
The proof statistics of our development are shown in Table 1. These figures ex-
press the number of proof obligations generated by the Rodin Platform as well
as the number of obligations automatically discharged by the platform and those
interactively proved.

4 Conclusion
In this paper, we have formalized a distributed recovery algorithm in Event-B.
The algorithm addresses the network partitioning problem in WSANs generated
by actor failures. We have modeled the algorithm and the correspondent actor co-
ordination links at four increasing levels of abstraction that refine each other. We
have proved the refinement formally using the theorem prover tool Rodin [12].
The most interesting aspect put forward with our refinement modeling is the de-
velopment of an actor coordination link that can be seen in three forms: a direct
actor-actor link, an indirect, not further specified path, or an indirect path through
sensor nodes. We have developed this link as a refinement with the precise pur-

18



pose of replacing the first (failed) form with the third one. However, the refine-
ment shows that all the three forms can be present in a network and thus provide
various coordination alternatives for actors. In this respect, one can define coordi-
nation classes, e.g., for delegating the most security sensitive coordination to the
direct actor-actor coordination links, the least real-time constrained coordination
to indirect links, and the safety critical coordination to both direct actor links and
indirect sensor paths between actors. This observation can prove very useful in
practice.

Using the sensor infrastructure as temporary backup for actor coordination
also aligns with the growing sustainability research of using resources without
depleting them. Upon detecting a direct actor-actor coordination link between
two actor nodes, all sensor nodes contributing to a communication link between
these actor nodes should be released of their backup task, a feature outside the
scope of this paper.

Our formal WSAN model is the first attempt at formalizing WSAN algorithms
in Event-B and hence the WSAN model can be much extended. For instance, non-
deterministically adding and removing nodes is a useful feature for these networks
as it models their dynamic scalability mechanism as well as their uncontrollable
failures. However, non-deterministically adding links is just an abstraction for
nodes detecting each other in wireless range and connecting via various protocols.
Hence, the WSAN formal modeling space is quite generous and we intend to
investigate it further, e.g., by modeling various temporal properties as well as
real-time aspects and verifying various other algorithms too.

References

[1] A. Abbasi, K. Akkaya, M. Younis, A Distributed Connectivity Restoration
Algorithm in Wireless Sensor and Actor Networks, 32nd IEEE Conference
on Local Computer Networks (LCN), Dublin, Ireland, March 2007.

[2] J. R. Abrial, A system development process with Event-B and the Rodin plat-
form, Butler, M., Hinchey, M. G. and Larrondo-Petrie, M. M. (eds.) ICFEM
2007. LNCS, vol. 4789, pp. 1-3. Springer, 2007.

[3] J. R. Abrial. Event Driven Distributed Program Construction.
http://www.atelierb.societe.com/ressources/articles/dis.pdf, 2001.

[4] J. R. Abrial, Modeling in Event-B: System and Software Design, Cam-
bridge University Press, Cambridge(to appear 2010).

[5] J. R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge Uni-
versity Press, 1996.

19



[6] R. J. Back and K. Sere. Stepwise Refinement of Action Systems. In J. L. A.
van de Snepscheut (ed), Proceedings of MPC’89 – Mathematics of Program
Construction, pp. 115-138, 1989.

[7] K. Akkaya and M. Younis, COLA: A Coverage and Latency Aware Actor
Placement for Wireless Sensor and Actor Networks, IEEE Vehicular Tech-
nology Conference (VTC-Fall06), Montreal, Canada, September 2006.

[8] I. F. Akyildiz, and I. H. Kasimoglu,Wireless Sensor and Actor Networks:
Research Challenges, Vol. 2, No. 4, pp. 351-367. Elsevier Ad hoc Network
Journal, 2004.

[9] S. Katz. A Superimposition Control Construct for Distributed Systems. In
ACM Transactions on Programming Languages and Systems, Vol. 15, No.
2, pp. 337-356, 1993.

[10] M. Kamali, S. Sedighian and M. Sharifi, A Distributed Recovery Mechanism
for Actor-Actor Connectivity in Wireless Sensor Actor Networks, pp. 183-
188, IEEE ISSNIP, Australia, 2008.

[11] T. Melodia, D. Pompili, V. C. Gungor and I. F. Akyildiz Communication
and Coordination in Wireless Sensor and Actor Networks, Vol. 6 No. 10, pp.
1116-1129 IEEE Transactions on Mobile Computing, 2007.

[12] RODIN tool platform, http://www.event-b.org/platform.html.

5 Appendix

An Event-B Specification of Model ctx
Creation Date: 28 Jan 2010 @ 01:28:41 PM

CONTEXT Model ctx
SETS

NODE

CONSTANTS
FAIL

closure

AXIOMS
axm1 : FAIL = {0 , 1}
axm2 : closure ∈ (NODE ↔ NODE )→ (NODE ↔ NODE )

axm3 : ∀r ·r ⊆ closure(r)

axm4 : ∀r ·closure(r); r ⊆ closure(r)



axm5 : ∀r , s ·r ⊆ s ∧ s ; r ⊆ s ⇒ closure(r) ⊆ s

axm6 : ∀r ·r = r−1 ⇒ closure(r) = (closure(r))−1

axm7 : finite(NODE )

axm8 : NODE 6= ∅
END

An Event-B Specification of Model
Creation Date: 28 Jan 2010 @ 01:32:03 PM

MACHINE Model
SEES Model ctx
VARIABLES

N

NET

INVARIANTS
inv1 : N ∈ NODE → FAIL

each node has just one state failed or non-failed
inv2 : NET ∈ dom(N )↔ dom(N )

inv3 : dom(N ) C id ∩ NET = ∅
non-reflexive NET

inv4 : NET = NET−1

symmetric NET
theoremthm1 : (∃l ·l 7→ 1 ∈ N ) ∨ (∃p ·p 7→ 0 ∈ N ) ∨ (∃n,m ·n 7→ 0 ∈

N ∧ m 7→ 0 ∈ N ∧ n 7→ m /∈ NET ∧ m 7→ n /∈ NET ∧ n 6=
m) ∨ (∃i , j , k ·i 7→ 0 ∈ N ∧ j 7→ 0 ∈ N ∧ k 7→ 0 ∈ N ∧ i 7→
j /∈ NET ∧ k 7→ j /∈ NET ∧ i 6= j ∧ i 6= k ∧ k 6= j ∧ i 7→ k /∈
closure(NET ))

inv6 : ∀n,m ·n 7→ m ∈ NET ⇒ n 7→ 0 ∈ N ∧m 7→ 0 ∈ N

EVENTS
Initialisation

begin
act1 : N := NODE × {1}

all nodes are failed
act2 : NET := ∅

NET without any link
end

Event AddNode =̂

any
n



where
grd1 : n 7→ 1 ∈ N

then
act1 : N := N C− {n 7→ 0}

a node becomes non-failed
end

Event RemoveNode =̂
remove (node+ all its connections)
any

n

where
grd1 : n 7→ 0 ∈ N

then
act1 : N := N C− {n 7→ 1}

a node fails
act2 : NET := {n}C− NET B− {n}

end
Event AddLink =̂

any
n
m

where
grd1 : n 7→ 0 ∈ N ∧m 7→ 0 ∈ N

nodes n,m are non-failed
grd2 : n 7→ m /∈ NET ∧m 7→ n /∈ NET
grd3 : n 6= m

then
act1 : NET := NET ∪ {n 7→ m} ∪ {m 7→ n}

end
Event FaultDetRec =̂

if partitioning happened in the NET it recovers the problem
any

n
m
k

where
grd1 : n 7→ 0 ∈ N ∧m 7→ 1 ∈ N ∧ k 7→ 0 ∈ N
grd2 : n 7→ m /∈ NET ∧ k 7→ m /∈ NET
grd3 : m 6= n ∧m 6= k ∧ n 6= k
grd4 : n 7→ k /∈ closure(NET )

then

22



act1 : NET := NET ∪ {n 7→ k , k 7→ n}
force to keep the NET connected (establish again the missing link
)

end
END

An Event-B Specification of Model r
Creation Date: 28 Jan 2010 @ 07:43:54 PM

MACHINE Model r
REFINES Model
SEES Model ctx
VARIABLES

N

NET

l net

INVARIANTS
inv1 : l net ∈ NODE × NODE ↔ NODE

inv2 : dom(N ) C id ∩ dom(l net) = ∅
EVENTS
Initialisation

begin
act3 : N := NODE × {1}
act2 : NET := ∅
act1 : l net := ∅

end
Event AddNode =̂

extends AddNode
any

n

where
grd1 : n 7→ 1 ∈ N

then
act1 : N := N C− {n 7→ 0}

a node becomes non-failed
end

Event RemoveNode =̂

extends RemoveNode
any



n

where
grd1 : n 7→ 0 ∈ N

then
act1 : N := N C− {n 7→ 1}

a node fails
act2 : NET := {n}C− NET B− {n}
act3 : l net : |l net ′ ⊆ l net\(({n}×NODE×NODE )∪(dom(NET )×

{n} × {n}))
immediate neighbors of a failed node delete their links with it

end
Event AddLink =̂

extends AddLink
any

n

m

where
grd1 : n 7→ 0 ∈ N ∧ m 7→ 0 ∈ N

nodes n,m are non-failed
grd2 : n 7→ m /∈ NET ∧ m 7→ n /∈ NET

grd3 : n 6= m

then
act1 : NET := NET ∪ {n 7→ m} ∪ {m 7→ n}
act2 : l net := l net ∪ {n 7→ m 7→ m,m 7→ n 7→ n}

end
Event Addl net2hoplink =̂

any
n
m
k

where
grd1 : n 7→ 0 ∈ N ∧m 7→ 0 ∈ N ∧ k 7→ 0 ∈ N
grd2 : m 7→ k 7→ k ∈ l net ∧ n 7→ m 7→ m ∈ l net ∧ n 7→ k 7→

m /∈ l net ∧ k 7→ n 7→ m /∈ l net
grd3 : m 6= n ∧ n 6= k ∧m 6= k

then
act1 : l net := l net ∪ {n 7→ k 7→ m, k 7→ n 7→ m}

adding 2hop neighbors of each node
end

Event FaultDetRec =̂

refines FaultDetRec

24



any
n on node
m failed node
k on node

where
grd1 : n 7→ 0 ∈ N ∧m 7→ 1 ∈ N ∧ k 7→ 0 ∈ N
grd2 : n 6= m ∧m 6= k ∧ n 6= k
grd3 : n 7→ k 7→ m ∈ l net ∧ n 7→ m 7→ m /∈ l net ∧ k 7→ n 7→

m ∈ l net ∧ k 7→ m 7→ m /∈ l net
grd4 : n 7→ k /∈ closure(NET )
grd5 : n 7→ m /∈ NET ∧ k 7→ m /∈ NET

then
act1 : NET := NET ∪ {n 7→ k , k 7→ n}
act2 : l net : |l net ′ ⊆ (l net \ (({n 7→ k 7→ m, k 7→ n 7→

m})∪ (NET [{n}]×{m}×{n})∪ (NET [{k}]×{m}×{k})))∪
(NET [{k}]×{n}×{k})∪({n}×NET [{k}]×{k})∪(NET [{n}]×
{k}×{n})∪ ({k}×NET [{n}]×{n})∪ ({k}×{n}×(NODE \
{m})) ∪ ({n} × {k} × (NODE \ {m}))

end
Event FaultDecRec2 =̂

any
n
m
k

where
grd1 : n 7→ 0 ∈ N ∧m 7→ 1 ∈ N ∧ k 7→ 0 ∈ N
grd2 : n 6= m ∧m 6= k ∧ n 6= k
grd3 : n 7→ k 7→ m ∈ l net ∧ n 7→ m 7→ m /∈ l net ∧ k 7→ n 7→

m ∈ l net ∧ k 7→ m 7→ m /∈ l net
grd4 : n 7→ k ∈ closure(NET )
grd5 : n 7→ m /∈ NET ∧ k 7→ m /∈ NET

then
act1 : l net := l net\({n 7→ k 7→ m, k 7→ n 7→ m}∪(NET [{n}]×

{m} × {n}) ∪ (NET [{k}]× {m} × {k}))
end

END

An Event-B Specification of Model ctx2
Creation Date: 28 Jan 2010 @ 07:59:34 PM

CONTEXT Model ctx2
EXTENDS Model ctx



CONSTANTS
K kind of a node: actor or sensor

AXIOMS
axm1 : K ∈ NODE →{0 , 1}

0=Actor 1=Sensor

END

An Event-B Specification of Model r2
Creation Date: 28 Jan 2010 @ 07:59:34 PM

MACHINE Model r2
adding sensor nodes to the network

REFINES Model r

SEES Model ctx2

VARIABLES
N

NET actor network
l net

SNET sensor network
SANET sensor actor network

INVARIANTS
inv1 : SNET ∈ dom(N )↔ dom(N )

inv2 : SANET ∈ dom(N )↔ dom(N )

inv3 : SNET ∩ NET = ∅
inv4 : NET ∩ SANET = ∅
inv5 : SNET ∩ SANET = ∅
inv6 : SNET = SNET−1

inv7 : SANET = SANET−1

inv8 : dom(N ) C id ∩ SNET = ∅
inv9 : dom(N ) C id ∩ SANET = ∅
inv10 : ∀n,m ·n 7→ m ∈ SANET⇒(K (n) = 0∧K (m) = 1 )∨(K (m) =

0 ∧K (n) = 1 )

inv11 : ∀n,m ·n 7→ m ∈ SNET ⇒ n 7→ 0 ∈ N ∧m 7→ 0 ∈ N

inv12 : ∀n,m ·n 7→ m ∈ SANET ⇒ n 7→ 0 ∈ N ∧m 7→ 0 ∈ N

inv13 : NET ∈ (K−1 )[{0}]↔ (K−1 )[{0}]
inv14 : SNET ∈ (K−1 )[{1}]↔ (K−1 )[{1}]
inv15 : dom(l net) ∈ (K−1 )[{0}]↔ (K−1 )[{0}]



inv16 : ∀n, k , x , y ·n 7→ k 7→ x ∈ l net∧k 7→ n 7→ y ∈ l net∧x 7→ 1 ∈
K ∧ y 7→ 1 ∈ K ⇒ x ∈ SANET [{n}] ∧ y ∈ SANET [{k}] ∧ x 7→
y ∈ closure(SNET )

inv17 : ∀n, k , x1 , x2 ·x1 7→ 1 ∈ K ∧ x2 7→ 1 ∈ K ∧ n 7→ k 7→ x1 ∈
l net ∧ n 7→ k 7→ x2 ∈ l net ⇒ x1 = x2

inv18 : l net B− (K−1 )[{0}] ∈ NODE × NODE 7→ (K−1 )[{1}]
inv19 : dom(l net B− (K−1 )[{0}]) = (dom(l net B− (K−1 )[{0}]))−1

inv20 : ∀n, k , x ·n 7→ k 7→ x ∈ l net ∧ x 7→ 1 ∈ K ⇒ x ∈ SANET [{n}]
EVENTS
Initialisation

extended

begin
act3 : N := NODE× {1}
act2 : NET := ∅
act1 : l net := ∅
act4 : SNET := ∅
act5 : SANET := ∅

end
Event AddNode =̂

extends AddNode

any
n

where
grd1 : n 7→ 1 ∈ N

then
act1 : N := N C− {n 7→ 0}

a node becomes non-failed
end

Event RemoveNode =̂

refines RemoveNode

any
n

where
grd1 : n 7→ 0 ∈ N
grd2 : n 7→ 0 ∈ K

then
act1 : N := N C− {n 7→ 1}

a node fails
act2 : NET := {n}C− NET B− {n}

27



act3 : l net := l net \ (({n}×NODE ×NODE ) ∪ (dom(NET )×
{n} × {n}) ∪ (NODE × {n} ×K−1 [{1}]))
immediate neighbors of a failed node delete their links with it

act4 : SANET := {n}C− SANET B− {n}
end

Event AddLink =̂

extends AddLink
any

n

m

where
grd1 : n 7→ 0 ∈ N ∧ m 7→ 0 ∈ N

nodes n,m are non-failed
grd2 : n 7→ m /∈ NET ∧ m 7→ n /∈ NET

grd3 : n 6= m

grd4 : n 7→ 0 ∈ K
grd5 : m 7→ 0 ∈ K

then
act1 : NET := NET ∪ {n 7→ m} ∪ {m 7→ n}
act2 : l net := l net ∪ {n 7→ m 7→ m, m 7→ n 7→ n}

end
Event Addl net2hoplink =̂

extends Addl net2hoplink
any

n

m

k

where
grd1 : n 7→ 0 ∈ N ∧ m 7→ 0 ∈ N ∧ k 7→ 0 ∈ N

grd2 : m 7→ k 7→ k ∈ l net ∧ n 7→ m 7→ m ∈ l net ∧ n 7→ k 7→ m /∈
l net ∧ k 7→ n 7→ m /∈ l net

grd3 : m 6= n ∧ n 6= k ∧ m 6= k

grd4 : n 7→ 0 ∈ K ∧m 7→ 0 ∈ K ∧ k 7→ 0 ∈ K
then

act1 : l net := l net ∪ {n 7→ k 7→ m, k 7→ n 7→ m}
adding 2hop neighbors of each node

end
Event FaultDetRec =̂

refines FaultDetRec
any

n non-failed node

28



m failed node
k non-failed node
x
y

where
grd1 : n 7→ 0 ∈ N ∧m 7→ 1 ∈ N ∧ k 7→ 0 ∈ N
grd2 : n 6= m ∧m 6= k ∧ n 6= k
grd3 : n 7→ k 7→ m ∈ l net ∧ n 7→ m 7→ m /∈ l net ∧ k 7→ n 7→

m ∈ l net ∧ k 7→ m 7→ m /∈ l net
grd4 : n 7→ k /∈ closure(NET )
grd5 : n 7→ m /∈ NET ∧ k 7→ m /∈ NET
grd6 : x ∈ SANET [{n}] ∧ y ∈ SANET [{k}]
grd7 : x 7→ y ∈ closure(SNET )
grd8 : m 7→ 0 ∈ K
grd9 : n 7→ k /∈ dom(l net \ {n 7→ k 7→ m})

then
act1 : NET := NET ∪ {n 7→ k , k 7→ n}
act2 : l net := (l net \ (({n 7→ k 7→ m, k 7→ n 7→ m}) ∪

(NET [{n}] × {m} × {n}) ∪ (NET [{k}] × {m} × {k}))) ∪
(NET [{k}]×{n}×{k})∪({n}×NET [{k}]×{k})∪(NET [{n}]×
{k} × {n}) ∪ ({k} × NET [{n}] × {n}) ∪ {n 7→ k 7→ x , k 7→
n 7→ y}

end
Event FaultDecRec2 =̂

extends FaultDecRec2

any
n

m

k

where
grd1 : n 7→ 0 ∈ N ∧ m 7→ 1 ∈ N ∧ k 7→ 0 ∈ N

grd2 : n 6= m ∧ m 6= k ∧ n 6= k

grd3 : n 7→ k 7→ m ∈ l net ∧ n 7→ m 7→ m /∈ l net ∧ k 7→ n 7→ m ∈
l net ∧ k 7→ m 7→ m /∈ l net

grd4 : n 7→ k ∈ closure(NET)
grd5 : n 7→ m /∈ NET ∧ k 7→ m /∈ NET

grd6 : n 7→ k ∈ dom(l net \ {n 7→ k 7→ m})
grd7 : m 7→ 0 ∈ K

then
act1 : l net := l net \ ({n 7→ k 7→ m, k 7→ n 7→ m} ∪ (NET[{n}]×

{m} × {n}) ∪ (NET[{k}]× {m} × {k}))
end

29



Event AddSLink =̂

any
n
m

where
grd1 : n 7→ 0 ∈ N ∧m 7→ 0 ∈ N
grd2 : n /∈ dom(NET ) ∧m /∈ dom(NET )
grd3 : n 7→ m /∈ SNET
grd4 : n 6= m
grd5 : n 7→ 1 ∈ K ∧m 7→ 1 ∈ K

then
act1 : SNET := SNET ∪ {n 7→ m,m 7→ n}

end
Event AddSAlink =̂

any
n
m

where
grd1 : n 7→ 0 ∈ N ∧m 7→ 0 ∈ N
grd2 : (K (n) = 0 ∧K (m) = 1 ) ∨ (K (n) = 1 ∧K (m) = 0 )
grd3 : n 7→ m /∈ SANET
grd4 : n 6= m

then
act1 : SANET := SANET ∪ {n 7→ m,m 7→ n}

end
END

An Event-B Specification of Model r3
Creation Date: 28 Jan 2010 @ 08:06:48 PM

MACHINE Model r3
REFINES Model r2
SEES Model ctx2
VARIABLES

N

NET actor network
l net

SNET sensor network
SANET sensor actor network
flag to create degree set



failedNodeNeigh

degree

locX

locY

INVARIANTS
inv17 : flag ∈ BOOL

inv19 : failedNodeNeigh ⊆ dom(N )

inv20 : degree ∈ dom(N ) 7→ 0 .. card(dom(N ))

inv21 : locX ∈ dom(N )→ 0 .. 1000

inv22 : locY ∈ dom(N )→ 0 .. 1000

inv23 : failedNodeNeigh ∩ dom(degree) = ∅
inv24 : flag = TRUE ⇒ degree = ∅

EVENTS
Initialisation

extended

begin
act3 : N := NODE× {1}
act2 : NET := ∅
act1 : l net := ∅
act4 : SNET := ∅
act5 : SANET := ∅
act6 : flag := TRUE
act8 : failedNodeNeigh := ∅
act9 : degree := ∅
act21 : locX := NODE × {0}
act22 : locY := NODE × {0}

end
Event AddNode =̂

extends AddNode

any
n

i
j

where
grd1 : n 7→ 1 ∈ N

grd2 : flag = TRUE
grd3 : i ∈ 1 .. 1000
grd4 : j ∈ 1 .. 1000

then

31



act1 : N := N C− {n 7→ 0}
a node becomes non-failed

act2 : locX := locX C− {n 7→ i}
act3 : locY := locY C− {n 7→ j}

end
Event RemoveNode =̂

extends RemoveNode

any
n

where
grd1 : n 7→ 0 ∈ N

grd2 : n 7→ 0 ∈ K

grd3 : flag = TRUE

then
act1 : N := N C− {n 7→ 1}

a node fails
act2 : NET := {n}C− NET B− {n}
act3 : l net := l net\ (({n}×NODE×NODE)∪ (dom(NET)×{n}×

{n}) ∪ (NODE× {n} × K−1[{1}]))
immediate neighbors of a failed node delete their links with it

act4 : SANET := {n}C− SANET B− {n}
act5 : flag := FALSE
act6 : failedNodeNeigh := dom(l net−1 [{n}])

end
Event AddLink =̂

extends AddLink

any
n

m

where
grd1 : n 7→ 0 ∈ N ∧ m 7→ 0 ∈ N

nodes n,m are non-failed
grd2 : n 7→ m /∈ NET ∧ m 7→ n /∈ NET

grd3 : n 6= m

grd4 : n 7→ 0 ∈ K

grd5 : m 7→ 0 ∈ K

grd6 : flag = TRUE

then
act1 : NET := NET ∪ {n 7→ m} ∪ {m 7→ n}
act2 : l net := l net ∪ {n 7→ m 7→ m, m 7→ n 7→ n}

end

32



Event Addl net2hoplink =̂

extends Addl net2hoplink

any
n

m

k

where
grd1 : n 7→ 0 ∈ N ∧ m 7→ 0 ∈ N ∧ k 7→ 0 ∈ N

grd2 : m 7→ k 7→ k ∈ l net ∧ n 7→ m 7→ m ∈ l net ∧ n 7→ k 7→ m /∈
l net ∧ k 7→ n 7→ m /∈ l net

grd3 : m 6= n ∧ n 6= k ∧ m 6= k

grd4 : n 7→ 0 ∈ K ∧ m 7→ 0 ∈ K ∧ k 7→ 0 ∈ K

grd5 : flag = TRUE

then
act1 : l net := l net ∪ {n 7→ k 7→ m, k 7→ n 7→ m}

adding 2hop neighbors of each node
end

Event FaultDetRec =̂

extends FaultDetRec

any
n on node
m failed node
k on node
x

y

where
grd1 : n 7→ 0 ∈ N ∧ m 7→ 1 ∈ N ∧ k 7→ 0 ∈ N

grd2 : n 6= m ∧ m 6= k ∧ n 6= k

grd3 : n 7→ k 7→ m ∈ l net ∧ n 7→ m 7→ m /∈ l net ∧ k 7→ n 7→ m ∈
l net ∧ k 7→ m 7→ m /∈ l net

grd4 : n 7→ k /∈ closure(NET)
grd5 : n 7→ m /∈ NET ∧ k 7→ m /∈ NET

grd6 : x ∈ SANET[{n}] ∧ y ∈ SANET[{k}]
grd7 : x 7→ y ∈ closure(SNET)
grd8 : m 7→ 0 ∈ K

grd9 : n 7→ k /∈ dom(l net \ {n 7→ k 7→ m})
grd10 : flag = FALSE
grd11 : failedNodeNeigh = ∅
grd12 : n ∈ dom(degree) ∧ k ∈ dom(degree)
grd13 : degree(n) > min(dom(degree−1 ))
grd14 : n 7→ k /∈ dom(l net \ {n 7→ k 7→ m})

33



grd15 : ∀i ·i ∈ dom({n, k} C− degree) ⇒ (locX (n) − locX (k)) ∗
(locX (n)−locX (k))+(locY (n)−locY (k))∗(locY (n)−locY (k)) <
(locX (n)−locX (i))∗(locX (n)−locX (i))+(locY (n)−locY (i))∗
(locY (n)− locY (i))
shortest distance

grd16 : degree(k) > degree(n)⇒ (∃i ·i ∈ dom({n, k} C− degree) ∧
(locX (k)−locX (i))∗(locX (k)−locX (i))+(locY (k)−locY (i))∗
(locY (k)−locY (i)) < (locX (k)−locX (n))∗(locX (k)−locX (n))+
(locY (k)− locY (n)) ∗ (locY (k)− locY (n)))

then
act1 : NET := NET ∪ {n 7→ k, k 7→ n}
act2 : l net := (l net\(({n 7→ k 7→ m, k 7→ n 7→ m})∪(NET[{n}]×

{m} × {n}) ∪ (NET[{k}] × {m} × {k}))) ∪ (NET[{k}] × {n} ×
{k})∪ ({n}×NET[{k}]×{k})∪ (NET[{n}]×{k}×{n})∪ ({k}×
NET[{n}]× {n}) ∪ {n 7→ k 7→ x, k 7→ n 7→ y}

act3 : degree := {n}C− degree
@act4 flag:= TRUE

end
Event FaultDecRec2 =̂

extends FaultDecRec2

any
n

m

k

where
grd1 : n 7→ 0 ∈ N ∧ m 7→ 1 ∈ N ∧ k 7→ 0 ∈ N

grd2 : n 6= m ∧ m 6= k ∧ n 6= k

grd3 : n 7→ k 7→ m ∈ l net ∧ n 7→ m 7→ m /∈ l net ∧ k 7→ n 7→ m ∈
l net ∧ k 7→ m 7→ m /∈ l net

grd4 : n 7→ k ∈ closure(NET)
grd5 : n 7→ m /∈ NET ∧ k 7→ m /∈ NET

grd6 : n 7→ k ∈ dom(l net \ {n 7→ k 7→ m})
grd7 : m 7→ 0 ∈ K

grd8 : flag = FALSE
grd9 : failedNodeNeigh = ∅
grd10 : n ∈ dom(degree) ∧ k ∈ dom(degree)
grd11 : n 7→ k ∈ dom(l net \ {n 7→ k 7→ m})

then
act1 : l net := l net \ ({n 7→ k 7→ m, k 7→ n 7→ m} ∪ (NET[{n}]×

{m} × {n}) ∪ (NET[{k}]× {m} × {k}))
act2 : degree := {n}C− degree

end

34



Event flag =̂

when
grd1 : flag = FALSE
grd2 : card(dom(degree)) = 1
grd3 : failedNodeNeigh = ∅

then
act1 : flag := TRUE
act2 : degree := ∅

end
Event AddSLink =̂

extends AddSLink
any

n

m

where
grd1 : n 7→ 0 ∈ N ∧ m 7→ 0 ∈ N

grd2 : n /∈ dom(NET) ∧ m /∈ dom(NET)
grd3 : n 7→ m /∈ SNET

grd4 : n 6= m

grd5 : n 7→ 1 ∈ K ∧ m 7→ 1 ∈ K

grd6 : flag = TRUE
then

act1 : SNET := SNET ∪ {n 7→ m, m 7→ n}
end

Event AddSALink =̂

extends AddSALink
any

n

m

where
grd1 : n 7→ 0 ∈ N ∧ m 7→ 0 ∈ N

grd2 : (K (n) = 0 ∧K (m) = 1 ) ∨ (K (n) = 1 ∧K (m) = 0 )
grd3 : n 7→ m /∈ SANET

grd4 : n 6= m

then
act1 : SANET := SANET ∪ {n 7→ m, m 7→ n}

end
Event Degree =̂

any
n

where

35



grd1 : flag = FALSE
grd3 : failedNodeNeigh 6= ∅
grd4 : n ∈ failedNodeNeigh

then
act1 : degree := degree ∪ {n 7→ card(NET [{n}])}
act2 : failedNodeNeigh := failedNodeNeigh \ {n}

end
END

36





Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi



University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Information Technologies

Turku School of Economics
• Institute of Information Systems Sciences

ISBN 978-952-12-2411-9
ISSN 1239-1891


