
Antonio Cano Gomez | Magnus Steinby

Generalized contexts and n-ary syntactic

semigroups of tree languages

TUCS Technical Report

No 968, March 2010





Generalized contexts and n-ary syntactic
semigroups of tree languages

Antonio Cano Gomez
Departamento de Sistemas Informáticos y Computación, Universidad

Politénica de Valencia, Camino de Vera s/n,

P.O. Box: 22012, E-46020 - Valencia,

Work supported by the AuthoMathA Programme of the

European Science Foundation and by the project

Técnicas de Inferencia Gramatical y aplicación

al procesamiento de biosecuencias

(TIN2007-60769) supported by

the Spanish Ministry of Education and Sciences.

acano@dsic.upv.es

Magnus Steinby
Department of Mathematics, University of Turku,

FIN-20014 Turku, Finland,

and Turku Centre for Computer Science,

steinby@utu.fi

TUCS Technical Report

No 968, March 2010



Abstract

A new type of syntactic monoid and semigroup of tree languages is introduced. For

each n ≥ 1, we define for any tree language T its n-ary syntactic monoid Mn(T )

and its n-ary syntactic semigroup Sn(T ) as quotients of the monoid or semigroup,

respectively, formed by certain new generalized contexts. For n = 1 these contexts

are just the ordinary contexts (or ’special trees’) and M1(T ) is the syntactic monoid

introduced by W. Thomas (1982,1984). Several properties of these monoids and

semigroups are proved. For example, it is shown that Mn(T ) and Sn(T ) are isomor-

phic to certain monoids and semigroups associated with the minimal tree recognizer

of T . Using these syntactic monoids or semigroups, we can associate with any variety

of finite monoids or semigroups, respectively, a variety of tree languages. Although

there are varieties of tree languages that cannot be obtained this way, we prove that

the definite tree languages can be characterized by the syntactic semigroups S2(T ),

which is not possible using the classical syntactic monoids or semigroups.
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1 Introduction

The classification theory of regular (string) languages based on syntactic monoids

and syntactic semigroups has been a great success ever since M.P. Schützenberger

[21] characterized the star-free languages using syntactic monoids, and S. Eilenberg’s

[5] variety theory has served well as a general framework for such studies (cf. [5,

16, 2] for expositions of these matters). Hence, it is quite natural to try something

similar for tree languages. In [28] W. Thomas introduced syntactic monoids of

tree languages and characterized the aperiodic tree languages in terms of them.

Many fundamental properties of these monoids were presented by K. Salomaa in

his Master’s Thesis [20], and later an essentially equivalent notion for languages

of binary trees was studied by M. Nivat and A. Podelski [13, 17]. By a natural

modification, one can also define the syntactic semigroups of tree languages.

Let M be a variety of finite monoids (or semigroups), i.e., a class of finite monoids

closed under submonoids, homomorphic images and finite direct products. As noted

in [25], it follows from results of [20] that the tree languages whose syntactic monoid

belongs to M, form a variety of tree languages, that is to say, it is closed under

certain operations, and if the ranked alphabet is not fixed, they form a generalized

variety of tree languages (cf. [25]). On the other hand, T. Wilke [29] proved that the

variety of frontier-testable (i.e., reverse definite) tree languages cannot be defined

this way by syntactic monoids or semigroups, and V. Piirainen [15] shows that this is

the case also for the piecewise testable tree languages (cf. [25] for a further example).

Finally, S. Salehi [18, 19] characterized the varieties of tree languages that can be

defined by syntactic monoids (or semigroups). His result confirms the impression

that the defining power of syntactic monoids or semigroups of tree languages is

limited compared with that of syntactic algebras (cf. [1, 23, 24, 25, 26]. In particular,

it shows that definite tree languages cannot be defined by them (contrary to what

has been claimed in the literature).

In this paper we propose a family of new syntactic monoids and semigroups

of tree languages: for any tree language T , we define for each n ≥ 1, its n-ary

syntactic monoid Mn(T ) and its n-ary syntactic semigroup Sn(T ). If T ⊆ TΣ(X)

is a ΣX-tree language, where Σ is a ranked alphabet and X is a leaf alphabet,

then Mn(T ) is the quotient monoid of the monoid of (what we call) ΣXn-contexts

with respect to the n-ary syntactic monoid congruence of T . A ΣXn-context is an

n-tuple 〈u1, . . . , un〉 of terms u1, . . . , un ∈ TΣ(X ∪ {ξ1, . . . , ξn}) with variables such

that each one of the variables ξ1, . . . , ξn appears exactly once in some component
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ui. For n = 1, we get the usual contexts, but for values n > 1 the new contexts

may represent more informative horizontal cross-sections of trees. Similarly, the

n-ary syntactic semigroup Sn(T ) is a quotient of the semigroup of the proper ΣXn-

contexts in which no component is just a variable. We shall also introduce and

study n-ary translation monoids of algebras and n-ary transformation monoids of

tree recognizers, and show that for any regular tree language T , the n-ary syntactic

monoid Mn(T ) is isomorphic to the n-ary transformation monoid of the minimal

recognizer of T as well as to the n-ary translation monoid of the underlying algebra.

Similar facts hold for the semigroups Sn(T ). For any n ≥ 1, each variety M of

finite monoids (or semigroups) the tree languages T such that Mn(T ) ∈ M (or

Sn(T ) ∈ M, resp.) form a variety of tree languages in the sense of [24, 26], for

example.

This paper is mainly a study of the general properties of our new syntactic

monoids and semigroups, as well as of the related translation and transformation

monoids and semigroups, but we shall demonstrate the potential of the new notions

by showing that the variety of definite tree languages can be characterized by 2-ary

syntactic semigroups. On the other hand, we show that not all varieties of tree

languages are definable by our monoids or semigroups.

The paper is organized as follows. In Section 2 we recall and introduce some

general notions. In Section 3 we consider terms with variables and n-tuples of

such terms and some operations on them. In Section 4 we define ΣXn-contexts

and present some basic properties of the monoids and semigroups formed by them.

The following section deals with n-ary translations of a given Σ-algebra and the

monoids and semigroups formed by them. In particular, we show how the n-ary

translation monoids or semigroups of subalgebras, homomorphic images and direct

products of any given algebras relate to the n-ary translation monoids or semigroups

of the original algebras. In Section 6, we consider the monoids and semigroups of

state transformations induced in a ΣX-tree recognizer by ΣXn-contexts and proper

ΣXn-contexts, respectively. For a connected ΣX-recognizer, these are shown to

be isomorphic to the n-ary translation monoids and semigroups of the underlying

Σ-algebra, and that they are finite if and only if the recognized tree language is

regular.

Our n-ary syntactic monoid and semigroup congruences of tree languages are

introduced in Section 7. Moreover, we prove that the syntactic congruences of

the Boolean combinations, quotients or homomorphic pre-images of some given tree

languages, relate to the syntactic congruences of the original tree languages similarly
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as in the cases of other syntactic congruences. In Section 8 we define the n-ary

syntactic monoid Mn(T ) and the n-ary syntactic semigroup Sn(T ) of a tree language

T in the natural way. It is shown that they are isomorphic, respectively, to the

n-ary transformation monoid and semigroup of the minimal ΣX-recognizer of T .

This implies that Mn(T ) and Sn(T ) are finite for every n ≥ 1, if and only if the

tree language T is recognizable. The n-ary syntactic monoids and semigroups of

the Boolean combinations, quotients or homomorphic pre-images of any given tree

languages relate again to the syntactic monoids or semigroups of the original tree

languages as one would expect. We also show that the n-ary syntactic monoids and

semigroups of any tree language T form ascending chains M1(T ) v M2(T ) v . . . and

S1(T ) ¹ S2(T ) ¹ . . ., where M v M ′ means that M is isomorphic to a submonoid

of M ′ and S ¹ S ′ means that S is a homomorphic image of a subsemigroup of S ′.

In Section 9, we recall the notion of a variety of Σ-tree languages (a Σ-VTL,

for short) [24, 26] and show then that for any n ≥ 1 and any variety M of finite

monoids, the tree languages T such that Mn(T ) ∈ M form a Σ-VTL Vn
M

. Similarly,

any variety S of finite semigroups defines a Σ-VTL Vn
S

by the condition Sn(T ) ∈ S,

but we show that not every Σ-VTL is obtained this way from a variety of finite

monoids or a variety of finite semigroups. On the other hand, in Section 10 we

prove that for any k ≥ 0, there is a variety Dk of finite semigroups such that V2
DK

is the Σ-VTL of the k-definite Σ-tree languages, and then that the family of all the

definite Σ-tree languages can be characterized as the Σ-VTL V2
D

for a certain variety

D of finite semigroups. In Section 11 we make some concluding remarks and note a

few further questions to be considered.

2 Preliminaries

We shall often write A := B to indicate that some object A is defined to be B. For

any integer n ≥ 0, let [n] denote the set {1, . . . , n}. For any relation ρ ⊆ A × B,

the fact that (a, b) ∈ ρ for some a ∈ A and b ∈ B, will usually be expressed by

writing a ρ b. For any a ∈ A, let aρ := {b | aρb}. In case of an equivalence relation,

we write [a]ρ, or just [a], for aρ. Moreover, for any A′ ⊆ A, we denote by A′ρ the

set of all b ∈ B such that aρb for some a ∈ A′. The converse of ρ is the relation

ρ−1 := {(b, a) | aρb} (⊆ B × A). The domain and the range of ρ are Bρ−1 and Aρ,

respectively. The composition of two relations ρ ⊆ A × B and ρ′ ⊆ B × C is the

relation

ρ ◦ ρ′ := {(a, c) | a ∈ A, c ∈ C, (∃b ∈ B) aρb and bρ′c}.
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The diagonal relation {(a, a) | a ∈ A} of a set A is denoted by ∆A. A mapping

ϕ : A → B may also be viewed as a relation (⊆ A × B), and aϕ (a ∈ A) denotes

either the image ϕ(a) of a or the set formed by it. Especially homomorphisms will

be written this way as right operators that are also composed from left to right, i.e.,

the composition of ϕ : A → B and ψ : B → C is written as ϕψ.

In what follows, Σ is always a ranked alphabet, i.e., a finite set of symbols each

of which has a given nonnegative integer arity. For any m ≥ 0, the set of m-ary

symbols in Σ is denoted by Σm. We suppose that Σm ∩ Σn = ∅ for m 6= n. In

addition to ranked alphabets, we use ordinary finite alphabets X,Y, . . . that we

call leaf alphabets. These are assumed to be disjoint from the ranked alphabets. If

Σ0 6= ∅, we may allow also the empty leaf alphabet.

The set TΣ(X) of Σ-terms over X is the smallest set T such that X ∪ Σ0 ⊆ T ,

and f(t1, . . . , tm) ∈ T whenever m > 0, f ∈ Σm and t1, . . . , tm ∈ T . Such terms are

regarded in the usual way as representations of labelled trees, and we call them ΣX-

trees. Subsets of TΣ(X) are called ΣX-tree languages. We may also speak simply

about trees and tree languages without specifying the alphabets.

Let ξ be a special symbol that appears neither in Σ nor in any of the leaf

alphabets. A Σ(X ∪ {ξ})-tree in which ξ appears exactly once, is called a ΣX-

context. The set of all ΣX-contexts is denoted by CΣ(X). The elements of C+
Σ (X) :=

CΣ(X) \ {ξ} are called proper ΣX-contexts. If p, q ∈ CΣ(X), then p · q = q(p) is the

ΣX-context obtained from q by replacing the ξ in it with p. Similarly, if t ∈ TΣ(X)

and p ∈ CΣ(X), then t ·p = p(t) is the ΣX-tree obtained when the ξ in p is replaced

with t. The ξ-depth dξ(p), i.e., the distance of the ξ-labelled leaf from the root, of

a ΣX-context p ∈ CΣ(X) is defined as follows:

(1) dξ(ξ) = 0;

(2) dξ(p) = dξ(q) + 1 for any p = f(t1, . . . , ti−1, q, ti+1, . . . , tm) where m > 0,

f ∈ Σm, i ∈ [m], t1, . . . , ti−1, ti+1, . . . , tm ∈ TΣ(X) and q ∈ CΣ(X).

The ranked alphabet Σ is also used as a set of operation symbols, and a Σ-algebra

A consists of a nonempty set A of elements and a Σ-indexed family of operations

(fA | f ∈ Σ) on A such that if f ∈ Σm is a m-ary symbol, then fA : Am → A is an

m-ary operation on A. In particular, any nullary symbol c ∈ Σ0 fixes a constant in

A that we write as cA (rather than cA()). We write simply A = (A, Σ) without any

symbol for the assignment f 7→ fA. Subalgebras, homomorphisms, direct products

of such algebras are defined as usual (cf. [3] or [4], for example). If there is an

isomorphism ϕ : A → B, then A and B are isomorphic, A ∼= B in symbols, and
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if there is an epimorphism ϕ : A → B, then B is an (epimorphic) image of A,

A ´ B in symbols. A monomorphism ϕ : A → B is also called an embedding. Such

an embedding exists exactly in case A is isomorphic to a subalgebra of B, and we

express this situation by writing A v B. Furthermore, B is said to cover A if A is

an image of some subalgebra of B. This we express by writing A ¹ B. Clearly, ¹

generalizes both the subalgebra relation v and the epimorphic image relation ´.

A mapping p : A → A is called an elementary translation of A = (A, Σ) if there

exist an m > 0, an f ∈ Σm, an i ∈ [k], and elements a1, . . . , ai−1, ai+1, . . . , am ∈ C

such that p(a) = fA(a1, . . . , ai−1, a, ai+1, . . . , am) for every a ∈ A. Let ETr(A) de-

note the set of elementary translations of A. The set Tr(A) of all translations of

A is defined as the smallest set of unary operations on A that contains the identity

map 1A : A → A, a 7→ a, and all the elementary translations, and is closed under

composition. It is well known (cf. [3, 4], for example) that any congruence of an

algebra A is invariant with respect to every translation of A, and that an equiva-

lence on A is a congruence on A if it is invariant with respect to every elementary

translation of A.

The following lemma (cf. [24]) will be needed several times.

Lemma 2.1 Let ϕ : A → B be a homomorphism between two Σ-algebras A = (A, Σ)

and B = (B, Σ). For every translation p ∈ Tr(A) of A there is a translation

pϕ ∈ Tr(B) of B such that p(a)ϕ = pϕ(aϕ) for every a ∈ A. If ϕ is surjective, then

there exists for every q ∈ Tr(B) a p ∈ Tr(A) such that q = pϕ. ¤

If TΣ(X) 6= ∅, i.e., if Σ0 ∪ X 6= ∅, then the ΣX-trees form the ΣX-term algebra

TΣ(X) = (TΣ(X), Σ), where cTΣ(X) = c for any c ∈ Σ0, and fTΣ(X)(t1, . . . , tm) =

f(t1, . . . , tm) for all m > 0, f ∈ Σm and t1, . . . , tm ∈ TΣ(X). The ΣX-term algebra

TΣ(X) is freely generated by X over the class of all Σ-algebras, that is to say, it is

generated by X and any mapping α : X → A of X into any Σ-algebra A = (A, Σ)

has a unique extension to a homomorphism α̂ : TΣ(X) → A. There is a bijective

correspondence between the translations of the term algebra TΣ(X) and the ΣX-

contexts: for any p ∈ Tr(TΣ(X)), there is a unique q ∈ CΣ(X) such that p(t) = q(t)

for every t ∈ TΣ(X), and conversely every ΣX-context defines a translation of

TΣ(X).

Let A be a nonempty set and let n ≥ 1. If ϕ1 : An → A, . . . , ϕn : An → A are

any n-ary operations on A, then the n-tuple 〈ϕ1, . . . , ϕn〉 defines an operation

ϕ : An → An, a 7→ 〈ϕ1(a), . . . , ϕn(a)〉 (a ∈ An).
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We write ϕ = 〈ϕ1, . . . , ϕn〉 and call such mappings An → An the n-operations on

A. Let TMn(A) denote the set of all n-operations on A. The composition of two

n-operations ϕ = 〈ϕ1, . . . , ϕn〉 and ψ = 〈ψ1, . . . , ψn〉 on A is the mapping

ϕ ◦ ψ : An → An, a 7→ ψ(ϕ(a)),

i.e., (ϕ ◦ ψ)(a) = 〈ψ1(ϕ(a)), . . . , ψn(ϕn(a))〉 for every a ∈ An. Obviously, ϕ ◦ ψ ∈

TMn(A). Moreover, it is clear that ϕ◦ (ψ ◦η) = (ϕ◦ψ)◦η for all ϕ, ψ, η ∈ TMn(A),

and that 1An◦ϕ = ϕ◦1An = ϕ for every ϕ ∈ TMn(A). Moreover, 1An = 〈π1, . . . , πn〉,

where πi : An → A, a 7→ ai, is the ith n-ary projection (i ∈ [n]). This means

that (TMn(A), ◦, 1An) is a monoid. Note, however, that TMn(A) is not the full

transformation monoid of An because its elements consist of n independent n-ary

operations on A.

3 Terms with variables

In this section we consider terms with variables and various related notions and

some technical facts about them.

We arbitrarily fix a ranked alphabet Σ and a leaf alphabet X. Let Ξ :=

{ξ1, ξ2, . . .} be a countably infinite set of symbols that are treated as variables

and do not appear in Σ or X. For any n ≥ 0, let Ξn := {ξ1, . . . , ξn}. The ele-

ments of TΣ(X ∪ Ξn) we call n-ary ΣX-terms, and the elements of TΣ(X ∪ Ξ) =⋃
n≥0 TΣ(X ∪ Ξn) are called ΣX-terms with variables.

For a ΣX-term with variables t ∈ TΣ(X ∪ Ξ), let nv(t) be the number of occur-

rences of variables ξi ∈ Ξ in t. Furthermore, we define root(t) (the label of the root

of t), the height hg(t) and the depth dp(t) (the minimal distance of a Ξ-labelled leaf

from the root) as follows:

(1) root(ξi) = ξi and hg(ξi) = dp(ξi) = 0 for ξi ∈ Ξ,

(2) root(t) = t, hg(t) = 0 and dp(t) = ∞ for t ∈ X ∪ Σ0, and

(3) if t = f(t1, . . . , tm), then root(t) = f , hg(t) = max{hg(t1), . . . , hg(tm)}+1 and

dp(t) = 1 + min{dp(t1), . . . , dp(tm)}.

Obviously, these notions are generalizations of the usual ones defined for ΣX-trees

or ΣX-contexts (cf. [7, 8], for example).

Let TΣ(X ∪ Ξ)∗ be the set of all finite sequences of ΣX-terms with variables,

including the empty sequence 〈〉, i.e., TΣ(X∪Ξ)∗ =
⋃

n≥0 TΣ(X∪Ξ)n, where for each
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n ≥ 0, TΣ(X ∪Ξ)n is the set of all n-tuples 〈u1, . . . , un〉 of ΣX-terms with variables.

The concatenation 〈u1, . . . , uh, v1, . . . , vi〉 of any two such sequences u = 〈u1, . . . , uh〉

and v = 〈v1, . . . , vi〉 is denoted by u ⊕ v.

Definition 3.1 For any n,m, k ≥ 0, v ∈ TΣ(X∪Ξm), p ∈ CΣ(X), u = 〈u1, . . . , um〉 ∈

TΣ(X ∪ Ξn)m and v = 〈v1, . . . , vk〉 ∈ TΣ(X ∪ Ξm)k, let

(1) v · p = p(v) be the m-ary ΣX-tree obtained when the ξ in p is replaced with t,

(2) u · v = v(u) be the n-ary ΣX-term obtained by replacing each variable ξi in

v with the corresponding ui (i ∈ [m]), and let

(3) u · v = v(u) := 〈u · v1, . . . ,u · vk〉.

Furthermore, let 1n := 〈ξ1, . . . , ξn〉. ¤

Clearly, u ·v ∈ TΣ(X ∪Ξn)k for any u ∈ TΣ(X ∪Ξn)m and v ∈ TΣ(X ∪Ξm)k (as

above). In particular, t · v ∈ TΣ(X)k for every m-tuple t = 〈t1, . . . , tm〉 ∈ TΣ(X)m

of ΣX-trees. The following properties of these products are also quite obvious.

Lemma 3.2 For any k, l,m, n ≥ 0, and any u ∈ TΣ(X ∪ Ξn)m, v ∈ TΣ(X ∪ Ξm)l,

w ∈ TΣ(X ∪ Ξl)
k, t ∈ TΣ(X)n, u ∈ TΣ(X ∪ Ξm), v ∈ TΣ(X ∪ Ξn), and p ∈ CΣ(X),

(a) (u · v) · w = u · (v · w) (b) t · (u · v) = (t · u) · v

(c) 1n · u = u (d) u · 1m = u

(e) (u · u) · p = u · (u · p) (f) (t · v) · p = t · (v · p)

(g) t · (u · u) = (t · u) · u.

¤

4 Generalized contexts

In this section we introduce the generalized contexts that will be used for defining

our new syntactic monoids and semigroups of tree languages.

Definition 4.1 For any n ≥ 0, a ΣXn-context is an n-tuple u = 〈u1, . . . , un〉 of

n-ary ΣX-terms in which each of the variables ξ1, . . . , ξn appears exactly once (in

exactly one of the components ui). A ΣXn-context u is proper if none of its com-

ponents ui is a variable (in Ξn). Let us denote the sets of ΣXn-contexts and proper

ΣXn-contexts by Mn
Σ(X) and Sn

Σ(X), respectively.

7



Obviously, Sn
Σ(X) ⊆ Mn

Σ(X) ⊆ TΣ(X∪Ξn)n for every n ≥ 0. Note that M1
Σ(X) =

CΣ(X) if we replace ξ1 with ξ and identify any ΣX1-context 〈u〉 with the ΣX-context

u. It is also immediately clear that

(a) if u,v ∈ Mn
Σ(X), then u · v ∈ Mn

Σ(X),

(b) if u,v ∈ Sn
Σ(X), then u · v ∈ Sn

Σ(X), and that

(c) t · u ∈ TΣ(X)n for any t ∈ TΣ(X)n and u ∈ Mn
Σ(X).

Moreover, from Lemma 3.2 it follows, that for any u,v,w ∈ Mn
Σ(X),

(d) (u · v) · w = u · (v · w) and 1n · u = u · 1n = u,

and hence (Mn
Σ(X), · , 1n) is a monoid and (Sn

Σ(X), ·) is a semigroup. As usual,

they are denoted simply by Mn
Σ(X) and Sn

Σ(X), respectively. Note that M0
Σ(X) =

S0
Σ(X) = {〈〉} is the trivial semigroup (and monoid). We shall mostly ignore this

special case.

Lemma 4.2 Mn
Σ(X) v Mn+1

Σ (X) and Sn
Σ(X) ¹ Sn+1

Σ (X) for every n ≥ 0.

Proof. It is easy to see that ϕ : Mn
Σ(X) → Mn+1

Σ (X), u 7→ u⊕〈ξn+1〉, is a monomor-

phism of monoids, and hence Mn
Σ(X) v Mn+1

Σ (X) holds. As to the second claim, it

suffices to note that

S := {〈u1, . . . , un, un+1〉 ∈ Sn+1
Σ (X) | 〈u1, . . . , un〉 ∈ Sn

Σ(X)}

is a subsemigroup of Sn+1
Σ (X) and that

ψ : S → Sn
Σ(X), 〈u1, . . . , un, un+1〉 7→ 〈u1, . . . , un〉,

is an epimorphism. ¤

The following lemma is quite obvious.

Lemma 4.3 If X ⊆ Y , then Mn
Σ(X) v Mn

Σ(Y ) and Sn
Σ(X) v Sn

Σ(Y ) for all n ≥ 1.

¤
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5 n-ary translations of algebras

It is easy to see that the translations of a Σ-algebra A = (A, Σ) are defined in a

natural way by ΣA-contexts. We shall now generalize this idea by introducing for

each n ≥ 1, the n-ary translations of an algebra defined by ΣAn-contexts.

Let us consider any Σ-algebra A = (A, Σ) and any n ≥ 1. We associate with any

n-ary ΣA-term u ∈ TΣ(A ∪ Ξn) an n-ary operation uA : An → A on A as follows:

for any a = 〈a1, . . . , an〉 ∈ An, let

(1) ξAi (a) = ai for every i ∈ [n] (i.e., ξAi is the ith n-ary projection operation),

aA(a) = a for every a ∈ A, and cA(a) = cA for every c ∈ Σ0, and let

(2) tA(a) = fA(uA
1 (a), . . . , uA

m(a)) if t = f(u1, . . . , um) for some m ≥ 1, f ∈ Σm

and u1, . . . , um ∈ TΣ(A ∪ Ξn).

Hence, aA and cA are constant operations (a ∈ A, c ∈ Σ0). Note that the n-ary

ΣA-terms are actually the n-ary polynomial symbols of A, and the operations uA

we just defined are, in fact, the n-ary polynomial functions of A (cf. [3, 12], for

example).

Now, any n-tuple u = 〈u1, . . . , un〉 of n-ary ΣA-terms, defines an n-operation

uA : An → An, a 7→ 〈uA
1 (a), . . . , uA

n (a)〉,

on A. The composition of any two such n-operations uA and vA, where u =

〈u1, . . . , un〉 and v = 〈v1, . . . , vn〉 are n-tuples of n-ary ΣA-terms, is the n-operation

uA ◦ vA : An → An, a 7→ 〈vA

1 (uA(a)), . . . , vA

n (uA(a))〉.

It is easy to verify the following facts.

Lemma 5.1 Let A = (A, Σ) be a Σ-algebra and let n ≥ 1. For any n-tuples u and

v of n-ary ΣA-terms, uA ◦ vA = (u · v)A. Furthermore, 1A
n = 1An. ¤

The lemma implies that the mappings uA form a submonoid of the monoid

TMn(A) of n-operations on A. We shall be mainly interested in the following

submonoid and subsemigroup of this monoid.

Definition 5.2 For any Σ-algebra A = (A, Σ) and any n ≥ 1,

TMn(A) := {uA | u ∈ Mn
Σ(A)} and TSn(A) := {uA | u ∈ Sn

Σ(A)}

are called the monoid of n-translations and the semigroup of proper n-translations

of A, respectively. ¤

9



Since u · v ∈ Mn
Σ(A) for any u,v ∈ Mn

Σ(A) and 1n ∈ Mn
Σ(A), it follows from

Lemma 5.1 that TMn(A) indeed forms a monoid. Similarly, TSn(A) forms a semi-

group because u ·v ∈ Sn
Σ(A) for all u,v ∈ Sn

Σ(A). Let us also note that the monoids

TMn(A) are submonoids of the monoids considered by Sommerhalder in [22]. More-

over, Lemma 5.1 yields the following facts.

Corollary 5.3 For any algebra A = (A, Σ) and any n ≥ 1, the mappings

Mn
Σ(A) → TMn(A), u 7→ uA, and Sn

Σ(A) → TSn(A), u 7→ uA,

are epimorphisms of monoids and semigroups, respectively. ¤

Let us now establish some of the basic properties of these monoids and semi-

groups.

Proposition 5.4 Let A be a Σ-algebra. For every n ≥ 1,

(a) TMn(A) v TMn+1(A), and

(b) TSn(A) ¹ TSn+1(A).

Proof. To prove (a), it suffices to verify that

ϕ : TMn(A) → TMn+1(A), uA 7→ (u ⊕ 〈ξn+1〉)
A,

is a well-defined monomorphism of monoids. To prove (b), we first note that

S := {〈u1, . . . , un, un+1〉
A ∈ TSn+1(A) | 〈u1, . . . , un〉 ∈ Sn

Σ(A)}

is a subsemigroup of TSn+1(A). Then it suffices to verify that

ψ : S → TSn(A), 〈u1, . . . , un, un+1〉
A 7→ 〈u1, . . . , un〉

A,

is an epimorphism. ¤

The following observation is easy to verify.

Lemma 5.5 If A = (A, Σ) is a subalgebra of B = (B, Σ), then uA = uB ¹A for any

n ≥ 1 and any n-tuple of n-ary ΣA-terms u. ¤

Proposition 5.6 Let A = (A, Σ) and B = (B, Σ) be Σ-algebras. If A v B, then

TMn(A) ¹ TMn(B) and SMn(A) ¹ SMn(B) for every n ≥ 1.
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Proof. Let us prove the statement that concerns monoids; the other one has a similar

proof. We may assume that A is a subalgebra of B, and let us consider any n ≥ 1.

Then Mn
Σ(A) ⊆ Mn

Σ(B) and clearly M := {uB | u ∈ Mn
Σ(A)} is a submonoid of

TMn(B). It is immediately clear that

ϕ : M → TMn(A), uB 7→ uA,

is well-defined and surjective. Moreover, for any u,v ∈ Mn
Σ(A),

(uB ◦ vB)ϕ = (u · v)Bϕ = (u · v)A = uA ◦ vA = uBϕ ◦ vBϕ.

and 1Bnϕ = 1B
nϕ = 1A

n = 1An . Hence ϕ is an epimorphism. ¤

Proposition 5.7 Let A = (A, Σ) and B = (B, Σ) be any Σ-algebras. If A ´ B,

then TMn(A) ´ TMn(B) and SMn(A) ´ SMn(B) for every n ≥ 1.

Proof. Again, we consider the monoid case. Let ϕ : B → A be an epimorphism. It is

easy to verify that it can be extended to an epimorphism ϕ : TΣ(B∪Ξn) → TΣ(A∪Ξn)

of term algebras by the following conditions:

(1) bϕ = bϕ for b ∈ B; ξiϕ = ξi for i ∈ [n]; cϕ = c for c ∈ Σ0;

(2) f(t1, . . . , tn)ϕ = f(t1ϕ, . . . , tmϕ) for m > 0, f ∈ Σm and t1, . . . , tm ∈ TΣ(B ∪

Ξn).

If we write bϕ := 〈b1ϕ, . . . , bnϕ〉 for any b = 〈b1, . . . , bn〉 ∈ Bn, then it is easy to

show by induction on t that

tB(b)ϕ = (tϕ)A(bϕ), (1)

for all t ∈ TΣ(B ∪ Ξn) and b ∈ Bn. It is also easy to verify that

ψ : Mn
Σ(B) → Mn

Σ(A), 〈u1, . . . , un〉 7→ 〈u1ϕ, . . . , unϕ〉,

is a monoid epimorphism, i.e., uψ ∈ Mn
Σ(A) for every u ∈ Mn

Σ(B), (u·v)ψ = uψ ·vψ

for all u,v ∈ Mn
Σ(B), 1nψ = 1n, and ψ is surjective. Now we are ready to show that

η : TMn(B) → TMn(A), uB 7→ (uψ)A,

yields the required epimorphism.
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1. To show that η is well-defined, let u = 〈u1, . . . , un〉,v = 〈v1, . . . , vn〉 ∈ Mn
Σ(B)

be such that uB = vB, and consider any a = 〈a1, . . . , an〉 ∈ An. Since ϕ is

surjective, a = bϕ for some b ∈ Bn. Hence

(uBη)(a) = (uψ)A(bϕ)

= 〈(u1ϕ)A(bϕ), . . . , (unϕ)A(bϕ)〉

= 〈uB
1 (b)ϕ, . . . , uB

n(b)ϕ〉 (by equation (1))

= uB(b)ϕ

= vB(b)ϕ = . . . = (vBη)(a)

2. For all u = 〈u1, . . . , un〉,v = 〈v1, . . . , vn〉 ∈ Mn
Σ(B),

(uB ◦ vB)η = (u · v)Bη = ((u · v)ψ)A = ((uψ) · (vψ))A

= (uψ)A ◦ (vψ)A = uBη ◦ vBη.

3. 1Bnη = 1B
nη = (1nψ)A = 1A

n = 1An . ¤

Proposition 5.8 For any Σ-algebras A = (A, Σ) and B = (B, Σ)) and every n ≥ 1,

TMn(A× B) v TMn(A) × TMn(B) and TSn(A× B) v TSn(A) × TSn(B).

Proof. We show just the first relation; a proof for the second one can be obtained

by easy modifications. Let

πA : TΣ((A × B) ∪ Ξn) → TΣ(A ∪ Ξn) and πB : TΣ((A × B) ∪ Ξn) → TΣ(B ∪ Ξn)

be the epimorphisms such that (a, b)πA = a and (a, b)πB = b for every (a, b) ∈ A×B,

and ξiπA = ξiπB = ξi for every i ∈ [n]. For any t ∈ TΣ((A × B) ∪ Ξn), the

images tπA and tπB are obtained simply by replacing in t every appearance of a

symbol (a, b) ∈ A × B by a and b, respectively. Hence, it is clear that for any

u = 〈u1, . . . , un〉 ∈ Mn
Σ(A × B),

uψ1 := 〈u1πA, . . . , unπA〉 ∈ Mn
Σ(A) and uψ2 := 〈u1πB, . . . , unπB〉 ∈ Mn

Σ(B).

In fact, ψ1 : Mn
Σ(A×B) → Mn

Σ(A) and ψ2 : Mn
Σ(A×B) → Mn

Σ(B) are epimorphisms

of monoids such that for any u ∈ Mn
Σ(A×B), uψ1 and uψ2 are obtained from u by

replacing everywhere all symbols (a, b) ∈ A × B by a and b, respectively. This also

means that, for any u ∈ Mn
Σ(A×B) and 〈(a1, b1), . . . , (an, bn)〉 ∈ (A×B)n, we have

uA×B((a1, b1), . . . , (an, bn)) = ((uψ1)
A(a1, . . . , an), (uψ2)

B(b1, . . . , bn)). (2)
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Now, we can conclude the proof by showing that

ϕ : TMn(A× B) → TMn(A) × TMn(B), uA×B 7→ ((uψ1)
A, (uψ2)

B),

is a monomorphism.

1. For any u,v ∈ Mn
Σ(A × B),

uA×Bϕ = vA×Bϕ ⇔ (uψ1)
A = (vψ1)

A, (uψ2)
B = (vψ2)

B ⇔ uA×B = vA×B,

where we made use of equation (2). This shows that ϕ is well-defined and

injective.

2. For any u,v ∈ Mn
Σ(A × B),

(uA×B ◦ vA×B)ϕ = (u · v)A×Bϕ

= (((u · v)ψ1)
A, ((u · v)ψ2)

B)

= ((uψ1 · vψ1)
A, (uψ2 · vψ2)

B)

= ((uψ1)
A ◦ (vψ1)

A, (uψ2)
B ◦ (vψ2)

B)

= ((uψ1)
A, (uψ2)

B) ◦ ((vψ1)
A, (vψ2)

B)

= uA×Bϕ ◦ vA×Bϕ.

3. Finally, 1A×B
n ϕ = ((1nψ1)

A, (1nψ2)
B) = (1A

n ,1B
n). ¤

6 Transformation semigroups of tree recognizers

Let us recall that a (deterministic bottom-up) ΣX-recognizer A = (A, α, F ) consists

of a Σ-algebra A = (A, Σ), an initial assignment α : X → A, and a set F ⊆ A of

final states; A is the state set. The ΣX-tree language recognized by A is the set

T (A) := {t ∈ TΣ(X) | tα̂ ∈ F},

where α̂ : TΣ(X) → A is the homomorphic extension of α : X → A. The ΣX-

recognizer A is finite if A is a finite algebra, i.e., the set of states A is finite. A

ΣX-tree language is called recognizable, or regular, if it is recognized by some ΣX-

recognizer. Let RecΣ(X) be the set of all recognizable ΣX-tree languages.

Let A = (A, α, F ) be any ΣX-recognizer. The homomorphism α̂ : TΣ(X) → A

can be extended in a natural way to the mapping

α̃n : TΣ(X)n → An, 〈t1, . . . , tn〉 7→ 〈t1α̂, . . . , tnα̂〉.
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Moreover, each n-ary ΣX-term u ∈ TΣ(X ∪ Ξn) defines an operation uA : An → A

as follows. For any a = 〈a1, . . . , an〉 ∈ An, let

(1) xA(a) = α(x) for x ∈ X, cA(a) = cA for c ∈ Σ0, ξA

i (a) = ai for ξi ∈ Ξn, and

(2) uA(a) = fA(uA

1 (a), . . . , uA

m(a)) if u = f(u1, . . . , um) for some m > 0, f ∈ Σm

and u1, . . . , um ∈ TΣ(X ∪ Ξn).

Note that for any ΣX-term t ∈ TΣ(X), we get tA(a) = tα̂ for every a ∈ An. Now,

any n-tuple u = 〈u1, . . . , un〉 of n-ary ΣX-terms defines in A an n-operation

uA : An → An, a 7→ 〈uA

1 (a), . . . , uA

n (a)〉.

The composition of any two such mappings uA and vA, where u = 〈u1, . . . , un〉 and

v = 〈v1, . . . , vn〉, is the mapping uA ◦ vA : An → An such that for every a ∈ An,

(uA ◦ vA)(a) = 〈vA

1 (uA(a)), . . . , vA

n (uA(a))〉.

It is not hard to prove the following facts.

Lemma 6.1 If A = (A, α, F ) is a ΣX-recognizer and n ≥ 1, then uA◦vA = (u·v)A

for all u,v ∈ Mn
Σ(X). Moreover, 1A

n = 1An. ¤

We shall focus on the n-operations uA defined by ΣXn-contexts. Thus, let

TMn(A) := {uA | u ∈ Mn
Σ(X)} and let TSn(A) := {uA | u ∈ Sn

Σ(X)}. We call

the elements of TMn(A) the n-transformations of A. Similarly, the elements of

TSn(A) are the proper n-transformations. It follows from Lemma 6.1 that we get

(1) the monoid of n-transformations (TMn(A), ·,1A

n ), and

(2) the semigroup of proper n-transformations (TSn(A), ·).

Of course, TSn(A) is a subsemigroup of TMn(A). Moreover, we can note that

TM1(A) is the monoid MT(A) = {pA | p ∈ CΣ(X)} considered by Salomaa [20],

and TS1(A) is the corresponding semigroup.

Let us recall (cf. [7, 8], for example) that a state a ∈ A of a ΣX-recognizer

A = (A, α, F ) is reachable if a = tα̂ for some t ∈ TΣ(X). If all the states of A are

reachable, then A is said to be connected.

Proposition 6.2 If A = (A, α, F ) is a connected ΣX-recognizer, then TMn(A) =

TMn(A) and TSn(A) = TSn(A) for every n ≥ 1.
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Proof. To prove the inclusion TMn(A) ⊆ TMn(A), we begin by defining a mapping

ψ : TΣ(A∪Ξn) → TΣ(X ∪Ξn) as follows. Since A is connected, we may fix for each

a ∈ A a ΣX-tree ta ∈ TΣ(X) such that taα̂ = a. Now, ψ is defined as follows:

(1) aψ = ta for a ∈ A; ξiψ = ξi for i ∈ [n]; cψ = c for c ∈ Σ0;

(2) f(t1, . . . , tm)ψ = f(t1ψ, . . . , tmψ) for all m ≥ 1, f ∈ Σm and t1, . . . , tm ∈

TΣ(X).

It is clear that ψ is a homomorphism of term algebras, and we may verify by in-

duction on t that tA = (tψ)A for every t ∈ TΣ(A ∪ Ξn). Moreover, if we ex-

tend ψ to n-tuples of n-ary ΣA-terms by setting uψ = 〈u1ψ, . . . , unψ〉 for every

u = 〈u1, . . . , un〉 ∈ TΣ(A ∪ Ξn)n, then it is clear that uψ ∈ Mn
Σ(X) for every

u ∈ Mn
Σ(A). Hence, uA = (uψ)A ∈ TMn(A) for every u ∈ Mn

Σ(A).

For the converse inclusion, we define ϕ : TΣ(X ∪ Ξn) → TΣ(A ∪ Ξn) as follows:

(1) xϕ = α(x) for x ∈ X; ξiϕ = ξi for i ∈ [n]; cϕ = c for every c ∈ Σ0;

(2) f(t1, . . . , tm)ϕ = f(t1ϕ, . . . , tmϕ) for all m ≥ 1, f ∈ Σm and t1, . . . , tm ∈

TΣ(X).

Obviously, ϕ is a homomorphism of term algebras, and it is easy to see that tA =

(tϕ)A for every t ∈ TΣ(X ∪ Ξn). Moreover, it is clear that uϕ := 〈u1ϕ, . . . , unϕ〉 ∈

Mn
Σ(A) for every u = 〈u1, . . . , un〉 ∈ Mn

Σ(X). Hence, uA = (uϕ)A ∈ TMn(A) for

every u ∈ Mn
Σ(X).

For the semigroups, the proof is quite similar. ¤

The following lemma is also useful.

Lemma 6.3 For any connected ΣX-recognizer A = (A, α, F ), the following condi-

tions are pairwise equivalent:

(a) A is finite;

(b) TMn(A) is finite for every n ≥ 1; (b’) TSn(A) is finite for every n ≥ 1;

(c) TMn(A) is finite for some n ≥ 1; (c’) TSn(A) is finite for some n ≥ 1.

Proof. The implications (a) ⇒ (b) ⇒ (c), (b) ⇒ (b′) ⇒ (c′) and (c) ⇒ (c′) are ob-

vious, so it suffices to show that (c’) implies (a).

Assume that TSn(A) is finite for some n ≥ 1. Consider any state a ∈ A. Since

A is connected, there exists a ΣX-tree t such that tα̂ = a. If t is a tree of height ≥ 1,
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we can construct a proper ΣXn-context u = 〈u1, . . . , un〉 such that u1 is obtained

from t by replacing the label of any single leaf by ξ1, and hence uA(a) = b for some

a = 〈a1, . . . , an〉 and b = 〈b1, . . . , bn〉, where a1 = cA or a1 = α(x) depending on

whether the replaced symbol in t was c ∈ Σ0 or x ∈ X, and b1 = a. Since the set

{cA | c ∈ Σ0} ∪ {α(x) | x ∈ X} is finite, there are only finitely many states a ∈ A

for which there is no t ∈ TΣ(X) such that tα̂ = a and hg(t) ≥ 1. This shows that if

A is infinite, then so is TSn(A), and hence also the implication (c′) ⇒ (a) holds. ¤

7 n-ary syntactic congruences of tree languages

We shall now consider the congruences to be used for defining the syntactic monoids

and semigroups introduced and studied in the next section.

Again, Σ is a ranked alphabet, X a leaf alphabet, and n ≥ 1. Moreover, un-

less stated otherwise, u, v and w are the vectors (of ΣX-terms with variables)

〈u1, . . . , un〉, 〈v1, . . . , vn〉 and 〈w1, . . . , wn〉, respectively.

Definition 7.1 For any n ≥ 1, the n-ary syntactic monoid congruence of a ΣX-tree

language T is the relation µn
T on Mn

Σ(X) defined as follows: for any u,v ∈ Mn
Σ(X),

uµn
T v ⇔ (∀i ∈ [n])(∀t ∈ TΣ(X)n)(∀p ∈ CΣ(X))(t · ui · p ∈ T ⇔ t · vi · p ∈ T ).

Similarly, the n-ary syntactic semigroup congruence of T is the relation σn
T on Sn

Σ(X)

defined by stating that

uσn
T v ⇔ (∀i ∈ [n])(∀t ∈ TΣ(X)n)(∀p ∈ CΣ(X))(t · ui · p ∈ T ⇔ t · vi · p ∈ T ),

for any u,v ∈ Sn
Σ(X). ¤

In Proposition 7.3 we will show that µn
T and σn

T really are congruences, and in

Lemma 7.2 an alternative description of them is given.

For any n ≥ 1, let us call an n-ary ΣX-term an n-ary ΣX-context if it contains

at least one variable and none of the variables ξ1, . . . , ξn appears in it more than

once. Let Cn
Σ(X) denote the set these generalized contexts.

Lemma 7.2 Let T be a ΣX-tree language and let n ≥ 1. For any u,v ∈ Mn
Σ(X),

uµn
T v ⇔ (∀t ∈ TΣ(X)n)(∀r ∈ Cn

Σ(X))(t · u · r ∈ T ⇔ t · v · r ∈ T ).
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Similarly,

uσn
T v ⇔ (∀t ∈ TΣ(X)n)(∀r ∈ Cn

Σ(X))(t · u · r ∈ T ⇔ t · v · r ∈ T ),

for all u,v ∈ Sn
Σ(X). ¤

Let us say that a congruence θ on the monoid Mn
Σ(X) saturates a ΣX-tree

language T if, for all u,v ∈ Mn
Σ(X),

u θ v ⇒ (∀i ∈ [n])(∀t ∈ TΣ(X)n)(∀p ∈ CΣ(X))(t · ui · p ∈ T ⇔ t · vi · p ∈ T ).

The notion is defined for congruences on Sn
Σ(X) exactly the same way. The following

proposition expresses an important property of our syntactic congruences.

Proposition 7.3 For any ΣX-tree language T and any n ≥ 1, µn
T is the greatest

congruence on the monoid Mn
Σ(X) that saturates T . Similarly, σn

T is the greatest

congruence on Sn
Σ(X) that saturates T .

Proof. We consider just µn
T ; for σn

T the proof is almost the same. It is clear that µn
T is

an equivalence on Mn
Σ(X). Let us assume that uµn

T v and consider any w ∈ Mn
Σ(X).

For any t ∈ TΣ(X)n, p ∈ CΣ(X), and i ∈ [n],

t · (u · wi) · p ∈ T ⇔ t · u · (wi · p) ∈ T ⇔ t · v · (wi · p) ∈ T ⇔ t · (v · wi) · p ∈ T,

where we used Lemma 3.2, the fact that wi · p ∈ Cn
Σ(X) and Lemma 7.2, and hence

u · w µn
T v · w. Similarly, we get w · u µn

T w · v because

t · (w · ui) · p ∈ T ⇔ (t ·w) · ui · p ∈ T ⇔ (t ·w) · vi · p ∈ T ⇔ t · (w · vi) · p ∈ T,

for all i ∈ [n], t ∈ TΣ(X)n and p ∈ CΣ(X). Hence, µn
T is a congruence.

It is immediately clear by the definitions that µn
T saturates Mn

Σ(X). Assume that

θ is a congruence on Mn
Σ(X) that saturates T , and let u,v ∈ Mn

Σ(X) be such that

u θ v. Then, if t · ui · p ∈ T for some t ∈ TΣ(X)n, p ∈ Cn
Σ(X) and i ∈ [n], then also

t · vi · p ∈ T , and conversely. This means that u µn
T v, and hence θ ⊆ µn

T . ¤

In statement (d) of Proposition 7.5 we use the following extensions of a given

homomorphism ϕ : TΣ(X) → TΣ(Y ) of term algebras. For any n ≥ 1, we first extend

ϕ to a homomorphism ϕn : TΣ(X ∪Ξn) → TΣ(Y ∪Ξn) by setting ξiϕn = ξi for every

i ∈ [n]. Next, we extend ϕn to

ϕn : TΣ(X ∪ Ξn)n → TΣ(Y ∪ Ξn)n, 〈u1, . . . , un〉 7→ 〈u1ϕn, . . . , unϕn〉.

The following observations have straightforward proofs.
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Lemma 7.4 For any homomorphism ϕ : TΣ(X) → TΣ(Y ) and any n ≥ 1, the

following hold.

(a) (u · v)ϕn = uϕn · vϕn for all u ∈ TΣ(X ∪ Ξn)n and v ∈ TΣ(X ∪ Ξn).

(b) Restricted to Mn
Σ(X), ϕn yields a monoid homomorphism ϕ̂n : Mn

Σ(X) →

Mn
Σ(Y ), i.e., if we set uϕ̂n := uϕn (∈ Mn

Σ(Y )) for every u ∈ Mn
Σ(X), then

(u ◦ v)ϕ̂n = uϕ̂n ◦ vϕ̂n for all u,v ∈ Mn
Σ(X), and 1nϕ̂n = 1n.

(c) If ϕ is surjective, then so are ϕn, ϕn and ϕ̂n. ¤

Proposition 7.5 If T, U ⊆ TΣ(X) and V ⊆ TΣ(Y ) for some leaf alphabets X and

Y , then the following hold for all n ≥ 1 :

(a) µn
TΣ(X)\T = µn

T .

(b) µn
T ∩ µn

U ⊆ µn
T∩U and µn

T ∩ µn
U ⊆ µn

T∪U .

(c) µn
T ⊆ µn

p−1(T ) for every p ∈ CΣ(X).

(d) ϕ̂n ◦ µn
V ◦ ϕ̂−1

n ⊆ µn
V ϕ−1 for every homomorphism ϕ : TΣ(X) → TΣ(Y ), and

equality holds if ϕ is an epimorphism.

All the corresponding statements hold for the syntactic semigroup congruences σn
T .

Proof. Again, we present the proofs for the monoid congruences only. Statement

(a) is completely obvious. To prove (b), assume that uµn
T ∩ µn

U v, for some u,v ∈

Mn
Σ(X). Then both uµn

T v and uµn
U v. This means that for any t ∈ TΣ(X)n,

p ∈ CΣ(X), and i ∈ [n], we have

t · ui · p ∈ T ⇔ t · vi · p ∈ T and t · ui · p ∈ U ⇔ t · vi · p ∈ U,

and hence

t · ui · p ∈ T ∩ U ⇔ t · vi · p ∈ T ∩ U and t · ui · p ∈ T ∪ U ⇔ t · vi · p ∈ T ∪ U,

from which the inclusions µn
T ∩ µn

U ⊆ µn
T∩U and µn

T ∩ µn
U ⊆ µn

T∪U follow.

To prove (c), we just have to note that for any u,v ∈ Mn
Σ(X),

u µn
T v ⇔ (∀i)(∀t)(∀q)(t · ui · q ∈ T ⇔ t · vi · q ∈ T )

⇒ (∀i)(∀t)(∀q)(t · ui · (q · p) ∈ T ⇔ t · vi · (q · p) ∈ T )

⇔ (∀i)(∀t)(∀q)((t · ui · q) · p ∈ T ⇔ (t · vi · q) · p ∈ T )

⇔ (∀i)(∀t)(∀q)(t · ui · q ∈ p−1(T ) ⇔ t · vi · q ∈ p−1(T ))

⇔ u µp−1(T ) v,

18



where i ranges over [n], t over TΣ(X)n, and q over CΣ(X).

Finally, for any u,v ∈ Mn
Σ(X),

u ϕ̂n ◦ µn
T ◦ ϕ̂−1

n v ⇔ uϕ̂n µn
T vϕ̂n

⇔ (∀i ∈ [n])(∀t ∈ TΣ(Y )n)(∀p ∈ CΣ(Y ))

(t · (uiϕn) · p ∈ T ⇔ t · (viϕn) · p ∈ T )

⇒ (∀i ∈ [n])(∀s ∈ TΣ(X)n)(∀q ∈ CΣ(X))

(sϕn · (uiϕn) · qϕ ∈ T ⇔ sϕn · (viϕn) · qϕ ∈ T )

⇔ (∀i ∈ [n])(∀s ∈ TΣ(X)n)(∀q ∈ CΣ(X))

((s · ui · q)ϕ ∈ T ⇔ (s · vi · q)ϕ ∈ T )

⇔ (∀i ∈ [n])(∀s ∈ TΣ(X)n)(∀q ∈ CΣ(X))

(s · ui · q ∈ Tϕ−1 ⇔ s · vi · q ∈ Tϕ−1)

⇔ u µn
Tϕ−1 v,

where we used Lemmas 2.1 and 7.4. This implies the inclusion of (d). If ϕ is

an epimorphism, then every t ∈ TΣ(Y )n is of the form sϕn for some s ∈ TΣ(X)n

and every p ∈ CΣ(Y ) is of the form qϕ for some q ∈ CΣ(X), and hence the only

implication in the above derivation also becomes an equivalence and ϕ̂nϕ◦µn
V ◦ϕ̂−1

n =

µV ϕ−1 holds. ¤

8 n-ary syntactic monoids and semigroups

In this section we associate with any tree language a sequence of syntactic monoids

and a sequence of syntactic semigroups.

Definition 8.1 Let T be any ΣX-tree language. For the sake of simplicity, we

denote the µn
T -class of a ΣXn-context u by [u]nT . The n-ary syntactic monoid of T

is the quotient monoid Mn(T ) := Mn
Σ(X)/µn

T , and the canonical homomorphism

νn
T : Mn

Σ(X) → Mn(T ), u 7→ [u]nT ,

is called the syntactic (monoid) homomorphism of T . The n-ary syntactic semigroup

of T is similarly defined as the quotient semigroup Sn(T ) := Sn
Σ(X)/σn

T . When

speaking about these semigroups, we let [u]nT denote the σn
T -class of u ∈ Sn

Σ(X), and

νn
T is then the syntactic (semigroup) homomorphism Sn

Σ(X) → Sn(T ), u 7→ [u]nT . ¤
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The monoids Mn(T ) and semigroups Sn(T ) generalize the syntactic monoids

SM(T ) and semigroups SS(T ) studied by Thomas [27, 28], Salomaa [20] and Salehi

[18, 19]. In fact, M1(T ) ∼= SM(T ) and S1(T ) ∼= SS(T ).

As a preparation for the proof of Proposition 8.3 below, we note the following

facts.

Lemma 8.2 Let A = (A, α, F ) be any ΣX-recognizer.

(a) If A is connected, then for every a ∈ An there exists an n-tuple of ΣX-trees

t ∈ TΣ(X)n such that tα̃n = a.

(b) uA(tα̃n) = (t · u)α̃n for all t ∈ TΣ(X)n and u ∈ Mn
Σ(X).

Let us also recall (cf. [7, 8], for example) that the equivalence of states of a

ΣX-recognizer A = (A, α, F ) can be defined by

a ∼A b ⇔ (∀p ∈ CΣ(X))(pA(a) ∈ F ⇔ pA(b) ∈ F ) (a, b ∈ A),

and that A is reduced if ∼A = ∆A. A ΣX-recognizer is minimal if is both reduced

and connected. Every regular ΣX-tree language has a minimal ΣX-recognizer and

this is unique up to isomorphism.

Proposition 8.3 If A is the minimal ΣX-recognizer of a ΣX-tree language T , then

Mn(T ) ∼= TMn(A) and Sn(T ) ∼= TSn(A).

Proof. Let A = (A, α, F ) be the minimal ΣX-recognizer of a given ΣX-tree language

T . To prove Mn(T ) ∼= TMn(A), it suffices to show that

ϕ : Mn
Σ(X) → TMn(A), u 7→ uA,

is an epimorphism such that ker ϕ = µn
T . It is clear that ϕ is surjective, and it is

a homomorphism since, by Lemma 6.1, 1A

n = 1An and (u · v)A = uA ◦ vA for all

u,v ∈ Mn
Σ(X). Furthermore, for any u,v ∈ Mn

Σ(X),

uϕ = vϕ ⇔ (∀a ∈ An)(uA(a) = vA(a))

⇔ (∀t ∈ TΣ(X)n)(uA(tα̃n) = vA(tα̃n))

⇔ (∀t ∈ TΣ(X)n)((t · u)α̃n = (t · v)α̃n)

⇔ (∀i ∈ [n])(∀t ∈ TΣ(X)n)((t · ui)α̂ = (t · vi)α̂)

⇔ (∀i)(∀t)(∀p ∈ CΣ(X))(pA((t · ui)α̂) ∈ F ↔ pA((t · vi)α̂) ∈ F )

⇔ (∀i)(∀t)(∀p)((t · ui · p)α̂ ∈ F ↔ (t · ui · p)α̂ ∈ F )

⇔ (∀i)(∀t)(∀p)(t · ui · p ∈ T ↔ t · ui · p ∈ T )

⇔ uµn
T v,
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where we used Lemma 8.2 and the fact that A is reduced. Hence, ker ϕ = µn
T , and

therefore TMn(A) ∼= Mn
Σ(X)/ ker ϕ = Mn(T ). The second isomorphism can be

proved the same way. ¤

Let us recall that the syntactic algebra SA(T ) of a ΣX-tree language T is the

quotient algebra TΣ(X)/θT , where θT is the syntactic congruence of T defined by

s θT t ⇔ (∀p ∈ CΣ(X))(p(s) ∈ T ↔ p(t) ∈ T ) (s, t ∈ TΣ(X)).

It is well known that (cf. [24, 26], for example) that the underlying Σ-algebra of

the minimal ΣX-recognizer of a regular ΣX-tree language T is isomorphic to the

syntactic algebra SA(T ) of T . Hence, Propositions 6.2 and 8.3 together yield the

following facts.

Corollary 8.4 For any T ∈ RecΣ(X) and any n ≥ 1, Mn(T ) ∼= TMn(SA(T )) and

Sn(T ) ∼= TSn(SA(T )).

Proposition 8.3 and Lemma 6.3 together yield the following result.

Corollary 8.5 For any T ⊆ TΣ(X), the following conditions are equivalent:

(a) T ∈ RecΣ(X);

(b) Mn(T ) is finite for every n ≥ 1; (b’) Sn(T ) is finite for every n ≥ 1;

(c) Mn(T ) is finite for some n ≥ 1; (c’) Sn(T ) is finite for some n ≥ 1.

Next we present the monoid and semigroup counterpart of Proposition 7.5.

Proposition 8.6 Let T, U ⊆ TΣ(X) and V ⊆ TΣ(Y ) for any leaf alphabets X and

Y . Then the following hold for all n ≥ 1:

(a) Mn(TΣ(X) \ T ) = Mn(T ).

(b) Mn(T ∩ U) ¹ Mn(T ) × Mn(U) and Mn(T ∪ U) ¹ Mn(T ) × Mn(U).

(c) Mn(p−1(T )) ´ Mn(T ) for every p ∈ CΣ(X).

(d) Mn(V ϕ−1) ¹ Mn(V ) for every homomorphism ϕ : TΣ(X) → TΣ(Y ), and if ϕ

is an epimorphism, then Mn(V ϕ−1) ∼= Mn(V ).

All the corresponding statements hold for n-ary syntactic semigroups.
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Proof. Statement (a) follows directly from statement (a) of Proposition 7.5. Also

(b) and (c) follow from their counterparts in Proposition 7.5 by general algebra. As

to (c), this is immediately clear because µn
T ⊆ µn

p−1(T ) implies

Mn(p−1(T )) = Mn
Σ(X)/µn

p−1(T ) ´ Mn
Σ(X)/µn

T = Mn(T ).

To get (b) one may use the slightly less obvious general fact that if θ1, θ2 and ρ

are congruences of an algebra A such that θ1 ∩ θ2 ⊆ ρ, then A/ρ ¹ A/θ1 × A/θ2.

In the cases at hand, it suffices to note that M := {([u]nT , [u]nU) | u ∈ Mn
Σ(X)} is a

submonoid of Mn(T ) × Mn(U) and that

ψ∩ : M → Mn(T ∩ U), ([u]nT , [u]nU) 7→ [u]nT∩U ,

and

ψ∪ : M → Mn(T ∪ U), ([u]nT , [u]nU) 7→ [u]nT∪U ,

are epimorphisms which are well-defined by Proposition 7.5.

To prove (d), let us first assume that ϕ : TΣ(X) → TΣ(Y ) is an epimorphism.

Then

ψ : Mn(V ϕ−1) → Mn(V ), [u]nV ϕ−1 7→ [uϕ̂n]nV ,

where ϕ̂n : Mn
Σ(X) → Mn

Σ(Y ) is the homomorphism of Lemma 7.4, gives the required

isomorphism as we shall show.

1. ψ is well-defined and injective: for any u,v ∈ Mn
Σ(X),

[u]nV ϕ−1ψ = [v]nV ϕ−1ψ ⇔ uϕ̂n µn
V vϕ̂n

⇔ u µV ϕ−1 v (Proposition 7.5 (d))

⇔ [u]nV ϕ−1 = [v]nV ϕ−1 .

2. ψ is surjective because ϕ is surjective.

3. ψ is a homomorphism: for any u,v ∈ Mn
Σ(X),

([u]nV ϕ−1 · [v]nV ϕ−1)ψ = [u · v]V ϕ−1ψ = [(u · v)ϕ̂n]nV

= [uϕ̂n · vϕ̂n]nV = [uϕ̂n]nV · [vϕ̂n]nV

= [u]nV ϕ−1 · [v]nV ϕ−1 ,

and, moreover, [1n]nV ϕ−1ψ = [1n]nV .
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Consider now a general homomorphism ϕ : TΣ(X) → TΣ(Y ). Let M := Mn
Σ(X)ϕ̂n,

and let θ := µn
V ¹ M be the restriction of µn

V to M . Let us define ψ : M/θ →

Mn(V ϕ−1) as follows. For any class [v]θ in M/θ, we may choose a u ∈ Mn
Σ(X) such

that uϕ̂n = v. Then we set [v]θψ = [u]nV ϕ−1 . Since M/θ v Mn(V ), it now suffices

to prove that ψ is a well-defined epimorphism.

1. To show that ψ is well-defined, we note that for any u,u′ ∈ Mn
Σ(X),

[uϕ̂n]θ = [u′ϕ̂n]θ ⇒ uϕ̂nµn
V u′ϕ̂n ⇒ uϕ̂n◦µn

V ◦ϕ̂−1
n u′ ⇒ [u]nV ϕ−1 = [u′]nV ϕ−1 .

2. Clearly, ψ is surjective.

3. Assume now that uϕ̂n = v and u′ϕ̂n = v′ for some u,u′ ∈ Mn
Σ(X) and

v,v′ ∈ M . Then (u · u′)ϕ̂n = v · v′, and hence

([v]θ · [v
′]θ)ψ = [v · v′]θψ = [u · u′]nV ϕ−1 = [u]nV ϕ−1 · [u′]nV ϕ−1 = [v]θψ · [v′]θψ.

4. Clearly, [1n]θψ = [1n]nV ϕ−1 .

For semigroups, the proofs are quite analogous. ¤

Proposition 8.7 For any T ∈ RecΣ(X) and every n ≥ 1, Mn(T ) v Mn+1(T ) and

Sn(T ) ¹ Sn+1(T ).

Proof. Both assertions follow directly from Corollary 8.4 and Proposition 5.4:

Mn(T ) ∼= TMn(SA(T )) v TMn+1(SA(T )) ∼= Mn+1(T ),

and similarly Sn(T ) ∼= TSn(SA(T )) ¹ TSn+1(SA(T )) ∼= MSn+1(T ). ¤

9 Varieties of tree languages and n-ary syntactic

monoids and semigroups

We shall now show that each variety of finite semigroups (monoids) defines via n-

ary syntactic semigroups (monoids) a variety of tree languages, and we shall present

some properties of these varieties of tree languages. First we recall some basic

notions and facts from the theory of varieties of tree languages following [24, 26].

Let Σ be a ranked alphabet. A family of (regular) Σ-tree languages is a mapping

V that assigns to every leaf alphabet X a set V(X) of (regular) ΣX-tree languages.
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We write such a family as V = {V(X)}X . For any two families of Σ-tree languages U

and V , let us set U ⊆ V iff U(X) ⊆ V(X) for every X. The unions and intersections

of families of Σ-tree languages are defined by similar componentwise conditions.

A variety of Σ-tree languages (a Σ-VTL for short) is family of regular Σ-tree

languages V = {V(X)}X such that for all leaf alphabets X and Y ,

(1) V(X) is a Boolean subalgebra of RecΣ(X),

(2) T ∈ V(X) implies p−1(T ) ∈ V(X) for any p ∈ CΣ(X), and

(3) T ∈ V(Y ) implies Tϕ−1 ∈ V(X) for any homomorphism ϕ : TΣ(X) → TΣ(Y ).

Recall also that a variety of finite Σ-algebras (a Σ-VFA for short) is a class of

finite Σ-algebras closed under the formation of subalgebras, homomorphic images

and finite direct products. There is a bijective correspondence between the Σ-VTLs

and the Σ-VFAs: for any Σ-VFA K, the corresponding Σ-VTL Kt = {Kt(X)}X

is defined by the condition that a ΣX-tree language T is in Kt(X) iff its syntactic

algebra SA(T ) is in K. We shall show that in a similar way a Σ-VTL can be

associated with any variety of finite semigroups or monoids and any n ≥ 1 via our

n-ary syntactic semigroups or monoids, respectively. Of course, a variety of finite

semigroups (VFS) is a class of finite semigroups that contains all subsemigroups,

homomorphic images and finite direct products of its members, and a variety of

finite monoids (VFM) is defined similarly.

Definition 9.1 For any class M of finite monoids and any n ≥ 1, let Vn
M

=

{Vn
M

(X)}X be the family of Σ-tree languages such that for any X,

Vn
M

(X) := {T ⊆ TΣ(X) | Mn(T ) ∈ M}.

Similarly, for any class of finite semigroups S and any n ≥ 1, let Vn
S

= {Vn
S
(X)}X ,

where Vn
S
(X) := {T ⊆ TΣ(X) | Sn(T ) ∈ S} for each X. ¤

Corollary 8.5 and Proposition 8.6 immediately yield the following basic facts.

Proposition 9.2 For any VFM M and every n ≥ 1, Vn
M

is a Σ-VTL. Similarly,

Vn
S

is a Σ-VTL for every VFS S and every n ≥ 1. ¤

As shown by the following example, not every Σ-VTL is of the form Vn
M

for some

VFM M and some n ≥ 1, or of the form Vn
S

for some VFS S and some n ≥ 1.
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fA1 0 1 2

0 1 1 2

1 2 2 2

2 2 2 2

gA1 0 1 2

0 0 0 2

1 0 0 2

2 2 2 2

Figure 1: fA1 and gA1

fA2 0 1 2

0 1 2 2

1 2 2 2

2 2 2 2

gA2 0 1 2

0 0 0 2

1 0 0 2

2 2 2 2

Figure 2: fA2 and gA2

Example 9.3 Let us consider the alphabets Σ = {f/2, g/2} and X = {x}. Further-

more, let K be the Σ-VFA consisting of all finite Σ-algebras in which the f -operation

is commutative, i.e., that satisfy the identity f(ξ1, ξ2) ≈ f(ξ2, ξ1), and let V := Kt

be the corresponding Σ-VTL. We shall show that there is no VFM M and no n ≥ 1

such that V = Vn
M

. To do this, we consider the ΣX-tree languages

T1 := {p(f(f(s1, s2), s3)) | p ∈ CΣ(X), s1, s2, s3 ∈ TΣ(X)}

and

T2 := T1 ∪ {p(f(s1, f(s2, s3))) | p ∈ CΣ(X), s1, s2, s3 ∈ TΣ(X)}.

It is easy to see that A1 = (A1, α, F ) and A2 = (A2, α, F ) are the minimal ΣX-

recognizers of T1 and T2, respectively, when

(1) A1 = (A, Σ), A = {0, 1, 2}, α(x) = 0, F = {2}, and fA1 and gA1 are defined

by the tables in Figure 1, and

(2) A2 = (A, Σ), A = {0, 1, 2}, α(x) = 0, F = {2}, and fA2 and gA2 are defined

by the tables in Figure 2.

Clearly, fA2 is commutative while fA1 is not, that is to say, A2 ∈ K but A1 /∈ K.

Since SA(T1) ∼= A1 and SA(T2) ∼= A2 (cf. [24] or [26], for example), this means that

T1 /∈ V(X) while T2 ∈ V(X). To prove that there is no VFM M such that V = Vn
M

for some n ≥ 1, it now suffices to show that Mn(T1) ∼= Mn(T2) for every n ≥ 1,

and by Proposition 8.3 this can be done by showing that TMn(A1) ∼= TMn(A2) for
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every n ≥ 1. In fact, we prove that TMn(A1) = TMn(A2) for every n ≥ 1.

Lemma For any n ≥ 1 and any n-ary ΣX-term u, there exists an n-ary ΣX-term

u̇ such that each variable ξi (i ∈ [n]) appears exactly the same number of times in

u̇ as it appears in u, and uA1 = u̇A2 . Conversely, for any v ∈ TΣ(X ∪ Ξn), there

is a v̂ ∈ TΣ(X ∪ Ξn) such that each variable ξi (i ∈ [n]) appears exactly the same

number of times in v̂ as it appears in v, and vA2 = v̂A1 .

Proof. We can verify the first claim by tree induction on u.

1. Obviously, we can let ẋ := x and ξ̇i := ξi for every i ∈ [n].

2. Suppose that u̇1 and u̇2 have been defined as required.If u = g(u1, u2), we

may choose simply u̇ := g(u̇1, u̇2) because gA1 = gA2 . If u = f(u1, u2), we set

u̇ := f(u̇1, g(u̇2, x)). It is clear that this u̇ satisfies the variable conditions. To

show that uA1 = u̇A2 , it suffices to verify that fA1(a, b) = fA2(a, gA2(b, 0)) for

all a, b ∈ A. It is clear that both sides of this equality assume the value 2

whenever a ∈ {1, 2} or b = 2, and in the remaining two cases both sides equal

1.

The second claim is proved similarly by induction on v, but for v = f(v1, v2) we

choose v̂ := f(v̂1, f(v̂2, x)). ¤

The equality TMn(A1) = TMn(A2) follows immediately from the Lemma: for

any u = 〈u1, . . . , un〉 ∈ Mn
Σ(X), we have uA1 = u̇A2 ∈ TMn(A2) when u̇ :=

〈u̇1, . . . , u̇n〉, and similarly, for any v = 〈v1, . . . , vn〉 ∈ Mn
Σ(X), we have vA2 = v̂A1 ∈

TMn(A1) when v̂ := 〈v̂1, . . . , v̂n〉.

It is clear that if u ∈ Sn
Σ(X) or v ∈ Sn

Σ(X), then also u̇ or v̂, respectively, is a

proper n-ary context, and hence we can also conclude that V = Vn
S

for no VFS S

and no n ≥ 1. ¤

In [18, 19] Salehi characterized the varieties of tree languages definable by the

syntactic monoids of Thomas [27, 28] or the corresponding semigroups. Because

M1(T ) ∼= SM(T ) for every tree language T , these varieties are exactly the ones

definable by our 1-ary syntactic monoids, and the same applies to syntactic semi-

groups. On the other hand, in the next section we shall see that the variety of definite

tree languages can be defined by our syntactic semigroups although it is known that

this is not possible using ordinary syntactic semigroups or monoids. Hence, we may
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conclude that the variety-defining power of our syntactic semigroups lies properly

between that of syntactic algebras and that of ordinary syntactic semigroups.

Let us also note the following facts.

Proposition 9.4 For any VFM M and any n ≥ 1, Vn
M

⊇ Vn+1
M

. Similarly, Vn
S
⊇

Vn+1
S

for any VFS S and any n ≥ 1.

Proof. If T ∈ Vn+1
M

(X) for some X, then by definition Mn+1(T ) ∈ M. On the other

hand, Mn(T ) v Mn+1(T ) by Proposition 8.7. Since M is a VFM, this means that

Mn(T ) ∈ M and hence T ∈ Vn
M

(X). The inclusion Vn
S
⊇ Vn+1

S
has a similar proof.

¤

By the next two examples we show that for any n ≥ 1, the inclusions Vn
M

⊇ Vn+1
M

and Vn
S
⊇ Vn+1

S
may be proper.

Example 9.5 Let us consider any given n ≥ 1, and let M be the VFM defined by

the identity ξn2
≈ ξ(n+n!)2 . Furthermore, let Σ = {f/1, g/1} and X = {x}. For any

s ∈ TΣ(X ∪ Ξn), let f 0(s) = s and f i+1(s) = f(f i(s)) for i ≥ 0. We shall show that

the ΣX-tree language

Tn := {fm(s) | m ≥ n, s ∈ TΣ(X)}

belongs to Vn
M

(X) \ Vn+1
M

(X). It is easy to see that the minimal ΣX-recognizer

A = (A, α, F ) of Tn can be defined as follows:

(1) A = (A, Σ) is the Σ-algebra such that A = {0, 1, . . . , n}, fA(a) = a + 1 for

a ∈ {0, . . . , n − 1}, fA(n) = n, and gA(a) = 0 for every a ∈ A;

(2) α(x) = 0 and F = {n}.

By Proposition 8.3, it suffices to show that TMn(A) ∈ M while TMn+1(A) /∈ M.

To prove that TMn(A) ∈ M, we consider any u ∈ Mn
Σ(X). If un2

= 〈v1, . . . , vn〉

and u(n+n!)2 = 〈w1, . . . , wn〉, then the claim is that vA

i = wA

i for every i ∈ [n]. Let

us fix i ∈ [n] arbitrarily.

Since Σ = Σ1, we have u = 〈q1(ξσ(1)), . . . , qn(ξσ(n))〉, for some q1, · · · , qn ∈ CΣ(X)

and some permutation σ of [n]. Then

vi = qi(qσ(i)(qσ2(i)(. . . (qσn2
−1(i)(ξσn2

(i)) . . .))))

and

wi = qi(qσ(i)(qσ2(i)(. . . (qσn2
−1(i)(. . . (qσ(n+n!)2−1(i)(ξσ(n+n!)2(i)) . . .) . . .))))).
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Assume that the cycle (i σ(i) . . . σm−1(i)) of σ in which i appears is of length m.

Since n2 ≡m (n + n!)2, we have σn2
(i) = σ(n+n!)2(i) and hence vi = p(ξl) and

wi = q(ξl) for some p, q ∈ CΣ(X) and l ∈ [n]. Let

p1(ξ
′
1) := qi(ξσ(i)), p2(ξ

′
2) := qi(qσ(i)(ξσ2(i))), . . . , pm(ξ′m) := qi(qσ(i)(. . . qσm−1(i)(ξi) . . .))

be the n-ary ΣX-contexts appearing in the above representations of vi and wi. There

are now three possibilities to consider.

1. For every k ∈ [m], pk(ξ
′
k) = fh(ξ′k) for some h ≥ 0, and h ≥ 1 for at least one

k ∈ [m]. Then vi = fn(p′(ξl)) and wi = fn(q′(ξl)) for some p′, q′ ∈ CΣ(X), and

hence vA

i (a) = n = wA

i (a) for every a ∈ An.

2. The symbol g appears in at least one pk. Let k ∈ [m] be the least index for

which this is the case. Then

p1(ξ
′
1) = fn1(ξ′1), . . . , pk−1(ξ

′
k−1) = fnk−1(ξk−1), pk(ξ

′
k) = fnk(g(r(ξ′k))),

for some n1, . . . , nk−1, nk ≥ 0 and r ∈ CΣ(X). If h := n1 + . . .+nk−1 +nk ≥ n,

then we have again vi = fn(p′(ξl)) and wi = fn(q′(ξl)) for some p′, q′ ∈ CΣ(X)

as in the first case. If h < n, then vA

i (a) = h = wA

i (a) for every a ∈ An.

3. Finally, if pk(ξ
′
k) = ξ′k for every k ∈ [m], then vi = wi = ξl, and hence

vA

i (a) = al = wA

i (a) for every a ∈ An.

It remains to prove that TMn+1(A) /∈ M. Let us consider the ΣX(n + 1)-

context u = 〈ξ2, ξ3, . . . , ξn+1, f(ξ1)〉, and let un2
= 〈v1, . . . , vn+1〉 and u(n+n!)2 =

〈w1, . . . , wn+1〉. Then it suffices to show that wA

1 6= vA

1 . Let a := 〈0, 0, . . . , 0〉 ∈

An+1. It is easy to see that

v = 〈fn−1(ξ2), f
n(ξ3), . . . , f

n(ξn+1), f
n(ξ1)〉,

and hence vA

1 (a) = n − 1. On the other hand, it is clear that w1 = fk(ξl) for some

k ≥ n and l ∈ [n + 1], and hence wA

i (a) = n. ¤

Example 9.6 In this example we show that the proper inclusion Vn
S
⊃ Vn+1

S
may

hold for any n ≥ 1. For this, consider any given n ≥ 1, and let S be the VFS defined

by the identity ξn ≈ ξn+n!. Furthermore, let Σ = {f/1, g/1} and X = {x}. We shall

show that the ΣX-tree language

T := {p(f(s)) | p ∈ CΣ(X), s ∈ TΣ(X)}

belongs to Vn
S
(X) \ Vn+1

S
(X). It is easy to see that the minimal ΣX-recognizer

A = (A, α, F ) of T can be defined as follows:

28



(1) A = (A, Σ) is the Σ-algebra such that A = {0, 1}, and fA(a) = 1 and gA(a) =

a for every a ∈ A;

(2) α(x) = 0 and F = {1}.

By Proposition 8.3, it suffices to show that TSn(A) ∈ S while TSn+1(A) /∈ S.

To prove that TSn(A) ∈ S, take any u ∈ Mn
Σ(X). If un = 〈v1, . . . , vn〉 and

un+n! = 〈w1, . . . , wn〉, then the claim is that vA

i = wA

i for every i ∈ [n]. Let us

consider any i ∈ [n].

Since Σ = Σ1, we have u = 〈q1(ξσ(1)), . . . , qn(ξσ(n))〉, for some proper contexts

q1, · · · , qn ∈ C+
Σ (X) and some permutation σ of [n]. Then

vi = qi(qσ(i)(qσ2(i)(. . . (qσn−1(i)(ξσn(i)) . . .))))

and

wi = qi(qσ(i)(qσ2(i)(. . . (qσn−1(i)(. . . (qσn+n!−1(i)(ξσn+n!(i)) . . .) . . .))))).

Assume that the cycle (i σ(i) . . . σm−1(i)) of σ in which i appears is of length m.

Since n ≡m n + n!, we have σn(i) = σn+n!(i) and hence vi = p(ξl) and wi = q(ξl) for

some p, q ∈ CΣ(X) and l ∈ [n]. Let

p1(ξ
′
1) := qi(ξσ(i)), p2(ξ

′
2) := qi(qσ(i)(ξσ2(i))), . . . , pm(ξ′m) := qi(qσ(i)(. . . qσm−1(i)(ξi) . . .))

be the n-ary ΣX-contexts appearing in the above representations of vi and wi. There

are now two possibilities to consider.

1. For every k ∈ [m], pk(ξ
′
k) = gh(ξ′k) for some h ≥ 1. Then vi = ghv(ξl) and

wi = ghw(ξl) for some hv ≥ n and hw ≥ n + n!, and hence vA

i (a) = 0 = wA

i (a)

for every a ∈ An.

2. For some k ∈ [m], pk(ξ
′
k) = p(f(q(ξ′k))) for some p, q ∈ CΣ(X). Then vi =

p(f(q(ξ′k))) for some p, q ∈ CΣ(X) and wi = p′(f(q′(ξ′k))) for some p′, q′ ∈

CΣ(X), and hence vA

i (a) = 1 = wA

i (a) for every a ∈ An.

To prove that TSn+1(A) /∈ S, we consider the ΣX(n + 1)-context

u = 〈g(ξ2), g(ξ3), . . . , g(ξn+1), f(ξ1)〉.

If un = 〈v1, . . . , vn+1〉 and un+n! = 〈w1, . . . , wn+1〉, then it suffices to show that

wA

1 6= vA

1 . Let a := 〈0, 0, . . . , 0〉 ∈ An+1. It is easy to see that

v = 〈gn(ξn+1), g
n−1(f(ξ1)), . . . , g(f(gn−2(ξn−1))), f(gn−1(ξn))〉,

and hence vA

1 (a) = 0. On the other hand, it is clear that w1 = p(f(q(ξ1))) for some

p, q ∈ CΣ(X), and hence wA

i (a) = 1. ¤
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10 Definite tree languages

Let us recall that a string language L is definite if there is a k ≥ 0 such that whether

a word of length ≥ k is in L depends on its suffix of length k only (cf. [11, 14]).

Similarly, a tree language T is said to be definite if the membership of a tree t in T

can be decided by looking at the root segment of t of some given height k. Definite

tree languages were first studied by Heuter [9, 10]. In [24, 25] the variety properties

of the definite tree languages were noted, and in [6] Ésik considers definite tree

automata.

Definition 10.1 For any k ≥ 0, the k-root rtk(t) of a ΣX-tree t is defined as follows:

(1) rt0(t) = ε for every t ∈ TΣ(X); here ε represents the ”empty root segment”

that gives no information about the tree.

(2) rt1(t) = root(t) for every t ∈ TΣ(X).

(3) Let k ≥ 2. If hg(t) < k, then rtk(t) = t. If hg(t) ≥ k and t = f(t1, . . . , tm),

then rtk(t) = f(rtk−1(t1), . . . , rtk−1(tm)).

For any k ≥ 0, a tree language T ⊆ TΣ(X) is called k-definite if, for any s, t ∈ TΣ(X),

if rtk(s) = rtk(t), then s ∈ T iff t ∈ T . A tree language is definite if it is k-definite

for some k ≥ 0. The set of k-definite ΣX-tree languages is denoted by DefΣ(X, k)

and the set of all definite ΣX-tree languages by DefΣ(X). Furthermore, let DefΣ =

{DefΣ(X)}X and DefΣ(k) = {DefΣ(X, k)}X denote the families of definite and k-

definite Σ-tree languages, respectively. ¤

We shall now present a couple of notions and auxiliary results to be used in the

proof of the main result of this section.

If r ∈ Cn
Σ(X) is an n-ary ΣX-context in which the variable ξi appears for some

i ∈ [n], then the ξi-depth dξi
(r) of r is the distance of the ξi-labelled leaf from the

root, i.e.,

(1) dξi
(ξi) = 0, and

(2) if r = f(r1, . . . , rm), where ξi appears in rj, then dξi
(r) = dξi

(rj) + 1.

Lemma 10.2 Let s, t ∈ TΣ(X) and k ≥ 0. If rtk(s) = rtk(t), then either s = t

or then there exist an n ≥ 1, an n-ary ΣX-context r ∈ Cn
Σ(X) in which all of the

variables ξ1, . . . , ξn appear, and s = 〈s1, . . . , sn〉, t = 〈t1, . . . , tn〉 ∈ TΣ(X)n such that

s = s · r, t = t · r, and dξi
(r) = k for every i ∈ [n].
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Proof. If rtk(s) = s or rtk(t) = t, i.e., if hg(s) < k or hg(t) < k, then s = t. Hence

we assume that hg(s), hg(t) ≥ k. We can now proceed by induction on k ≥ 0.

(1) If k = 0, we can set n = 1, r = ξ1, s = 〈s〉 and t = 〈t〉.

(2) If k = 1, then root(s) = root(t) = f for some f ∈ Σm where m ≥ 1. Hence,

s = f(s1, . . . , sm) and t = f(t1, . . . , tm) for some s1, . . . , sm, t1, . . . , tm ∈ TΣ(X),

and we may choose r = f(ξ1, . . . , ξm), s = 〈s1, . . . , sm〉 and t = 〈t1, . . . , tm〉.

(3) Let k ≥ 2 and assume that the assertion holds for all lesser values of k.

Since we assumed that hg(s), hg(t) ≥ k, we have s = f(s1, . . . , sm) and t =

f(t1, . . . , tm) for some m ≥ 1, f ∈ Σm, and s1, . . . , sm, t1, . . . , tm ∈ TΣ(X),

and moreover rtk−1(si) = rtk−1(ti) for every i ∈ [m]. For each i ∈ [m], either

si = rtk−1(si) = rtk−1(ti) = ti, or hg(si), hg(ti) ≥ k− 1. In the former case, we

set ni := 0 and ri := si(= ti). Otherwise, there exist ni ≥ 1, ri ∈ Cni

Σ (X) and

si, ti ∈ TΣ(X)ni such that si = si · ri, ti = ti · ri, and for every j ∈ [ni], the

variable ξj appears in ri and dξj
(ri) = k−1. The required representations for s

and t can be defined as follows. Firstly, let n := n1+ . . .+nm, and secondly, let

r := f(r1, r
′
2, . . . , r

′
m)(∈ Cn

Σ(X)), where r′2 is obtained from r2 by incrementing

the indices of the variables by n1, r′3 is obtained from r3 by incrementing the

indices of the variables by n1 + n2 etc. Finally, let s := s1 ⊕ . . . ⊕ sm and

t := t1 ⊕ . . . ⊕ tm. ¤

We shall also need the following obvious fact.

Lemma 10.3 Let p ∈ CΣ(X) be any ΣX-context. If dξ(p) = n, where n ≥ 0,

then there are n ΣX-contexts p1, . . . , pn ∈ CΣ(X), each of ξ-depth 1, such that

p = p1 · p2 · . . . · pn.

Proof. The lemma can be proved by induction on n ≥ 0. Note that if n = 0, then

p = ξ and the empty product p1 · p2 · . . . · pn is also interpreted as ξ. ¤

We shall need also the following property of the semigroups Sn
Σ(X).

Lemma 10.4 Let u1, . . . ,uk ∈ Sn
Σ(X) for some n, k ≥ 1. If u1 · . . . · uk =

〈w1, . . . , wn〉, then for each i ∈ [n], either

(1) wi ∈ TΣ(X), or

(2) wi ∈ TΣ(X ∪ Ξn) \ TΣ(X) and hg(wi), dp(wi) ≥ k.
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Proof. Let us fix n ≥ 1 arbitrarily and proceed by induction on k.

For k = 1, we have 〈w1, . . . , wn〉 = u1 ∈ Sn
Σ(X). From the definition of Sn

Σ(X),

it follows that wi ∈ TΣ(X), or hg(wi), dp(wi) ≥ 1 for every i ∈ [n].

Consider any k > 1 and assume that the assertion holds for every smaller value of

k. If u1·. . .·uk−1 = v = 〈v1, . . . , vn〉 and uk = 〈u1, . . . , un〉, then 〈w1, . . . , wn〉 = v·uk

where wi = v · ui for each i ∈ [n]. If ui ∈ TΣ(X), then wi = ui ∈ TΣ(X). Assume

then that ui ∈ TΣ(X ∪ Ξn) \ TΣ(X). If vj ∈ TΣ(X) for every variable ξj (j ∈ [n])

appearing in ui, then wi = v · ui is also in TΣ(X). Otherwise, there is at least one

variable ξj in ui such that vj ∈ TΣ(X ∪ Ξn) \ TΣ(X). By the inductive assumption,

hg(vj) ≥ k − 1. Since ui 6= ξj, this means that hg(wi) ≥ k. Furthermore,

dp(wi) ≥ dp(ui) + min(dp(v1), . . . , dp(vn)) ≥ 1 + (k − 1) = k,

since dp(ui) ≥ 1 and, by the inductive assumption, dp(vi) ≥ k − 1 for every i ∈ [n].

¤

Let us call a ranked alphabet Σ proper if Σm 6= ∅ for some m ≥ 2. Note that if

Σ0 = ∅, we excluded the empty leaf alphabet, and hence properness of Σ guarantees

that for any n ≥ 0, there always is a ΣX-tree with variables in which there are

exactly n leaves labeled with a variable. Following Eilenberg [5], we denote by Dk

the VFS of the finite semigroups satisfying the identity v · u1 · . . . · uk ≈ u1 · . . . · uk

(k ≥ 0). Note that we included the value k = 0 for which Dk consists of the trivial

semigroups only.

Proposition 10.5 If Σ is a proper ranked alphabet, then DefΣ(k) = V2
Dk

for every

k ≥ 0.

Proof. Let T be a regular ΣX-tree language T for some leaf alphabet X. The

proposition claims that T is k-definite if and only if

S2(T ) |= v · u1 · . . . · uk ≈ u1 · . . . · uk.

Let A = (A, α, F ) be the minimal ΣX-recognizer of T . Since S2(T ) ∼= TS2(A), it

suffices to show that T is k-definite if and only if (v ·u1 · . . . ·uk)
A = (u1 · . . . ·uk)

A

for all v,u1, . . . ,uk ∈ S2
Σ(X).

Let us first assume that T ∈ DefΣ(X, k) and consider any v,u1, . . . ,uk ∈ S2
Σ(X).

Let w = 〈w1, w2〉 := u1 · . . . · uk and z = 〈z1, z2〉 := v · u1 · . . . · uk. We should now

prove that wA

1 (a) = zA

1 (a) and wA

2 (a) = zA

2 (a) for every a ∈ A2. Let i = 1 or i = 2

and consider any a ∈ A2. With Lemma 10.4 in mind, we distinguish two cases.
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1. If wi ∈ TΣ(X), then zi = v · wi = wi and wA

i (a) = zA

i (a) trivially holds.

2. If wi /∈ TΣ(X), then hg(wi), dp(wi) ≥ k. By Lemma 8.2, there is a t ∈ TΣ(X)2

such that tα̃2 = a. Then wA

i (a) = (t · wi)α̂ and zA

i (a) = (t · v · wi)α̂. Since

dp(wi) ≥ k, we have rtk(t · wi · p) = rtk(t · v · wi · p) for every p ∈ CΣ(X).

Because T = T (A) is k-definite, this means that

(∀p ∈ CΣ(X))
(
pA((t · wi)α̂) ∈ F ↔ pA((t · v · wi)α̂) ∈ F

)
,

i.e., that (t ·wi)α̂ ∼A (t ·v ·wi)α̂. As A is reduced, we get wA

i (a) = (t ·wi)α̂ =

(t · v · wi)α̂ = zA

i (a).

Assume now that (v ·u1 · . . . ·uk)
A = (u1 · . . . ·uk)

A for all v,u1, . . . ,uk ∈ S2
Σ(X)

and consider any ΣX-trees s and t such that rtk(s) = rtk(t). To prove that T is

k-definite, it suffices to show that sα̂ = tα̂.

If hg(s) < k or hg(t) < k, then s = rtk(s) = rtk(t) = t. Hence we may assume

that hg(s), hg(t) ≥ k and that s 6= t. By Lemma 10.2, there exist an n ≥ 1, an n-

ary ΣX-context r ∈ Cn
Σ(X) in which each variable ξ1, . . . , ξn appears and dξi

(r) = k

for every i ∈ [n], and two n-tuples of ΣX-trees s = 〈s1, . . . , sn〉, t = 〈t1, . . . , tn〉 ∈

TΣ(X)n such that s = s · r, t = t · r. For each i ∈ [n], let

pi := 〈t1, . . . , ti−1, ξ, si+1, . . . , sn〉 · r

be the ΣX-context obtained from r when the variables ξ1, . . . , ξi−1, ξi, ξi+1, . . . , ξn

are replaced by t1, . . . , ti−1, ξ, si+1, . . . , sn, respectively. Then

s = p1(s1), p1(t1) = p2(s2), p2(t2) = p3(s3), . . . , pn−1(tn−1) = pn(sn), pn(tn) = t.

Hence, it suffices to show that pi(si)α̂ = pi(ti)α̂ for every i ∈ [n].

Let us consider any i ∈ [n]. By Lemma 10.3, we may write pi = q1 · . . . · qk for

some SX-contexts q1, . . . , qk (of ξ-depth 1). Since Σ is proper, we may fix a tree

w ∈ TΣ(X ∪ {ξ2}) \ {ξ2} in which ξ2 appears exactly once and a binary ΣX-context

z ∈ C2
Σ(X) in which ξ1 and ξ2 both appear. For each j ∈ [k], let q′j be the unary

ΣX-context obtained from qj by replacing ξ with ξ1. Then

u1 := 〈q′1, w〉, . . . ,uk := 〈q′k, w〉,v := 〈si, z〉,v
′ := 〈ti, z〉 ∈ S2

Σ(X),

and hence

(v · u1 · . . . · uk)
A = (u1 · . . . · uk)

A = (v′ · u1 · . . . · uk)
A

33



by our assumption about A. But the first components of v·u1·. . .·uk and v′·u1·. . .·uk

are easily seen to be the ΣX-trees si · q
′
1 · . . . · q

′
k = pi(si) and ti · q

′
1 · . . . · q

′
k = pi(ti),

respectively, and hence pi(si)α̂ = pi(ti)α̂. ¤

Let us recall that the VFS Dk corresponds in Eilenberg’s variety theory to the

+-variety of k-definite (string) languages (cf. [5], pp. 214–216), and that the union

of the chain D0 ⊂ D1 ⊂ D2 ⊂ . . . is the VFS D that corresponds to the +-

variety of all definite languages. Since DefΣ(0) ⊂ DefΣ(1) ⊂ DefΣ(2) ⊂ . . . and

DefΣ =
⋃

k≥0 DefΣ(k), Proposition 10.5 yields a the following corresponding fact.

Corollary 10.6 DefΣ = V2
D

for any proper ranked alphabet Σ. ¤

Finally, let us note that in Proposition 10.5 and Corollary 10.6 we could write

DefΣ(k) = Vn
Dk

and DefΣ = Vn
D

, respectively, for any n ≥ 2. Actually, the only

modification required in the proof of Proposition 10.5 concerns the definition of the

ΣX2-contexts u1, . . . ,uk, v and v′ that should be made ΣXn-contexts. If n ≥ 3, it

suffices that Σm 6= ∅ for some m ≥ 1.

11 Concluding remarks

We have established several basic properties of the new syntactic monoids Mn(T )

and semigroups Sn(T ) of tree languages introduced in this paper. In particular,

we have shown that Mn(T ) and Sn(T ) are isomorphic, respectively, to the n-ary

transformation monoid and semigroup of the minimal recognizer of T , as well as

to the n-ary translation monoid and semigroup of the syntactic algebra of T . We

have also shown how any variety of finite monoids or semigroups yields a variety

of tree languages via these syntactic monoids or semigroups, respectively. Hereby,

it turned out that the variety-defining power of our monoids or semigroups lies

properly between that of ordinary syntactic monoids or semigroups and that of

syntactic algebras. However, a great number of natural questions remain open. Let

us note some of them.

In spite of Examples 9.5 and 9.6, we don’t have examples of proper infinite

hierarchies V1
M

⊃ V2
M

⊃ V3
M

⊃ . . . or V1
S
⊃ V2

S
⊃ V3

S
⊃ . . . . An even more interesting

question concerns the hierarchies of the classes of varieties of tree languages definable

by our syntactic monoids or semigroups. To state this question more precisely, let

V TLΣ(Mon, n) denote the class of Σ-VTLs V such that V = Vn
M

for some VFM

M. Now, the conjecture is that V TLΣ(Mon, n) ⊂ V TLΣ(Mon, n + 1) for every
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n ≥ 1 and any non-trivial ranked alphabet Σ. Similarly, it seems plausible that

V LTΣ(Sg, n) ⊂ V TLΣ(Sg, n + 1) holds for the corresponding classes V LTΣ(Sg, n)

of Σ-VTLs definable by our syntactic semigroups. Another major problem is to

find a characterization of the varieties of the form Vn
M

or Vn
S
, similar to the one

given by Salehi [18, 19] for the varieties of tree languages definable by the classical

syntactic monoids or semigroups of Thomas [27, 28]. Such a result would naturally

also give valuable guidance in the search for further characterizations of varieties of

tree languages in terms of our monoids or semigroups. It seems natural to compute

the monoids Mn(T ) and semigroups Sn(T ) as translation monoids or semigroups,

respectively, of the syntactic algebra of T , but since they are likely to be quite big

even in simple cases, we would need efficient ways to extract the crucial information

about them without too much computation. However, it seems that this can be done

only by utilizing the special properties of each variety at hand. Finally, let us note

that since monoids and semigroups are not associated with any particular ranked

alphabet, it would be natural to consider generalized varieties of tree languages (cf.

[25]) associated with a VFM or a VFS via our syntactic monoids or semigroups,

respectively.
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[12] H. Lausch and W. Nöbauer, Algebra of Polynomials, North-Holland, Amster-

dam 1973.

[13] M. Nivat and A. Podelski, Tree monoids and recognizability of sets of finite

trees. In: Resolution of Equations in Algebraic Theories, Vol. 1 (H. Aı̈t-Kaci

and M. Nivat, eds.), Academic Press, Boston 1989, 351–367.

[14] M. Perles, M.O. Rabin and E. Shamir, The theory of definite automata. IEEE

Trans. Electronic Computers EC-15 (1963), 233–243.

[15] V. Piirainen, Piecewise testable tree languages, TUCS Technical Report 634.

Turku Centre for Computer Science, Turku 2004, 29 pp.

[16] J.E. Pin, Varieties of formal languages, North Oxford Academic Publishers,

Oxford 1986.

[17] A. Podelski, A monoid approach to tree automata. In: Tree Automata and

Languages (M. Nivat and A. Podelski, eds.), Elsevier Science Publishers, Am-

sterdam 1992, 41–56.

[18] S. Salehi, Varieties of tree languages definable by syntactic monoids, Acta

Cybernetica 17 (2005), 21–41.

[19] S. Salehi, Varieties of Tree Languages, TUCS Dissertations 64, Turku Centre

for Computer Science, Turku 2005.

[20] K. Salomaa, Syntactic monoids of regular forests (in Finnish). Master’s Thesis,

Department of Mathematics, University of Turku, Turku 1983.

[21] M.P. Schützenberger, On finite monoids having only trivial subgroups, Infor-

mation and Control 8 (1965), 190–194.

[22] R. Sommerhalder, Monoids associated with algebras and automata. Unpub-

lished manuscript, Delft 1974.

[23] M. Steinby: Syntactic algebras and varieties of recognizable sets. Les Arbres
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