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Abstract

A new type of syntactic monoid and semigroup of tree languages is introduced. For
each n > 1, we define for any tree language T its n-ary syntactic monoid M™(T)
and its n-ary syntactic semigroup S™(7") as quotients of the monoid or semigroup,
respectively, formed by certain new generalized contexts. For n = 1 these contexts
are just the ordinary contexts (or ’special trees’) and M*(T') is the syntactic monoid
introduced by W. Thomas (1982,1984). Several properties of these monoids and
semigroups are proved. For example, it is shown that M™(7T") and S™(T") are isomor-
phic to certain monoids and semigroups associated with the minimal tree recognizer
of T'. Using these syntactic monoids or semigroups, we can associate with any variety
of finite monoids or semigroups, respectively, a variety of tree languages. Although
there are varieties of tree languages that cannot be obtained this way, we prove that
the definite tree languages can be characterized by the syntactic semigroups S*(7T'),

which is not possible using the classical syntactic monoids or semigroups.
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1 Introduction

The classification theory of regular (string) languages based on syntactic monoids
and syntactic semigroups has been a great success ever since M.P. Schiitzenberger
[21] characterized the star-free languages using syntactic monoids, and S. Eilenberg’s
[5] variety theory has served well as a general framework for such studies (cf. [5,
16, 2] for expositions of these matters). Hence, it is quite natural to try something
similar for tree languages. In [28] W. Thomas introduced syntactic monoids of
tree languages and characterized the aperiodic tree languages in terms of them.
Many fundamental properties of these monoids were presented by K. Salomaa in
his Master’s Thesis [20], and later an essentially equivalent notion for languages
of binary trees was studied by M. Nivat and A. Podelski [13, 17]. By a natural

modification, one can also define the syntactic semigroups of tree languages.

Let M be a variety of finite monoids (or semigroups), i.e., a class of finite monoids
closed under submonoids, homomorphic images and finite direct products. As noted
in [25], it follows from results of [20] that the tree languages whose syntactic monoid
belongs to M, form a variety of tree languages, that is to say, it is closed under
certain operations, and if the ranked alphabet is not fixed, they form a generalized
variety of tree languages (cf. [25]). On the other hand, T. Wilke [29] proved that the
variety of frontier-testable (i.e., reverse definite) tree languages cannot be defined
this way by syntactic monoids or semigroups, and V. Piirainen [15] shows that this is
the case also for the piecewise testable tree languages (cf. [25] for a further example).
Finally, S. Salehi [18, 19] characterized the varieties of tree languages that can be
defined by syntactic monoids (or semigroups). His result confirms the impression
that the defining power of syntactic monoids or semigroups of tree languages is
limited compared with that of syntactic algebras (cf. [1, 23, 24, 25, 26]. In particular,
it shows that definite tree languages cannot be defined by them (contrary to what

has been claimed in the literature).

In this paper we propose a family of new syntactic monoids and semigroups
of tree languages: for any tree language T, we define for each n > 1, its n-ary
syntactic monoid M™(T) and its n-ary syntactic semigroup S™(T). If T C Tx(X)
is a X X-tree language, where X is a ranked alphabet and X is a leaf alphabet,
then M"™(T) is the quotient monoid of the monoid of (what we call) X Xn-contezts
with respect to the n-ary syntactic monoid congruence of T. A ¥ Xn-context is an
n-tuple (uq,...,u,) of terms uq,...,u, € Tu(X U{&,...,&,}) with variables such

that each one of the variables &i,...,&, appears exactly once in some component



u;. For n = 1, we get the usual contexts, but for values n > 1 the new contexts
may represent more informative horizontal cross-sections of trees. Similarly, the
n-ary syntactic semigroup S™(7) is a quotient of the semigroup of the proper ¥ Xn-
contexts in which no component is just a variable. We shall also introduce and
study n-ary translation monoids of algebras and n-ary transformation monoids of
tree recognizers, and show that for any regular tree language 7', the n-ary syntactic
monoid M™(T') is isomorphic to the n-ary transformation monoid of the minimal
recognizer of T" as well as to the n-ary translation monoid of the underlying algebra.
Similar facts hold for the semigroups S™(7"). For any n > 1, each variety M of
finite monoids (or semigroups) the tree languages 7' such that M™(T) € M (or
S™(T) € M, resp.) form a variety of tree languages in the sense of [24, 26], for
example.

This paper is mainly a study of the general properties of our new syntactic
monoids and semigroups, as well as of the related translation and transformation
monoids and semigroups, but we shall demonstrate the potential of the new notions
by showing that the variety of definite tree languages can be characterized by 2-ary
syntactic semigroups. On the other hand, we show that not all varieties of tree

languages are definable by our monoids or semigroups.

The paper is organized as follows. In Section 2 we recall and introduce some
general notions. In Section 3 we consider terms with variables and n-tuples of
such terms and some operations on them. In Section 4 we define ¥Xn-contexts
and present some basic properties of the monoids and semigroups formed by them.
The following section deals with n-ary translations of a given Y-algebra and the
monoids and semigroups formed by them. In particular, we show how the n-ary
translation monoids or semigroups of subalgebras, homomorphic images and direct
products of any given algebras relate to the n-ary translation monoids or semigroups
of the original algebras. In Section 6, we consider the monoids and semigroups of
state transformations induced in a > X-tree recognizer by ¥ Xn-contexts and proper
Y. Xn-contexts, respectively. For a connected Y X-recognizer, these are shown to
be isomorphic to the n-ary translation monoids and semigroups of the underlying
Y-algebra, and that they are finite if and only if the recognized tree language is
regular.

Our n-ary syntactic monoid and semigroup congruences of tree languages are
introduced in Section 7. Moreover, we prove that the syntactic congruences of
the Boolean combinations, quotients or homomorphic pre-images of some given tree

languages, relate to the syntactic congruences of the original tree languages similarly



as in the cases of other syntactic congruences. In Section 8 we define the n-ary
syntactic monoid M™(T') and the n-ary syntactic semigroup S™(T") of a tree language
T in the natural way. It is shown that they are isomorphic, respectively, to the
n-ary transformation monoid and semigroup of the minimal ¥ X-recognizer of T.
This implies that M"™(T") and S™(T") are finite for every n > 1, if and only if the
tree language T is recognizable. The n-ary syntactic monoids and semigroups of
the Boolean combinations, quotients or homomorphic pre-images of any given tree
languages relate again to the syntactic monoids or semigroups of the original tree
languages as one would expect. We also show that the n-ary syntactic monoids and
semigroups of any tree language T' form ascending chains M*(T) C M?*(T) C ... and
SHT) = S*(T) < ..., where M C M’ means that M is isomorphic to a submonoid
of M’" and S < S’ means that S is a homomorphic image of a subsemigroup of S’.
In Section 9, we recall the notion of a variety of 3-tree languages (a 3-VTL,
for short) [24, 26] and show then that for any n > 1 and any variety M of finite
monoids, the tree languages 1" such that M™(T) € M form a 3-VTL V{;. Similarly,
any variety S of finite semigroups defines a 3-VTL Vg by the condition S™(T") € S,
but we show that not every ¥-VTL is obtained this way from a variety of finite
monoids or a variety of finite semigroups. On the other hand, in Section 10 we
prove that for any k£ > 0, there is a variety Dy of finite semigroups such that V%K
is the X-VTL of the k-definite ¥-tree languages, and then that the family of all the
definite X-tree languages can be characterized as the X-VTL V2 for a certain variety
D of finite semigroups. In Section 11 we make some concluding remarks and note a

few further questions to be considered.

2 Preliminaries

We shall often write A := B to indicate that some object A is defined to be B. For
any integer n > 0, let [n] denote the set {1,...,n}. For any relation p C A x B,
the fact that (a,b) € p for some a € A and b € B, will usually be expressed by
writing a pb. For any a € A, let ap := {b| apb}. In case of an equivalence relation,
we write [a],, or just [a], for ap. Moreover, for any A" C A, we denote by A’p the
set of all b € B such that apb for some a € A’. The converse of p is the relation
p~t:={(b,a) | apb} (C B x A). The domain and the range of p are Bp~' and Ap,
respectively. The composition of two relations p C A x B and p’ C B x C is the
relation

pop ={(a,c)|a€ A ceC, (3be B)apb and bp'c}.
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The diagonal relation {(a,a) | a € A} of a set A is denoted by A,. A mapping
¢ : A — B may also be viewed as a relation (C A x B), and ap (a € A) denotes
either the image ¢(a) of a or the set formed by it. Especially homomorphisms will
be written this way as right operators that are also composed from left to right, i.e.,
the composition of ¢ : A — B and ¢ : B — (' is written as ¢).

In what follows, ¥ is always a ranked alphabet, i.e., a finite set of symbols each
of which has a given nonnegative integer arity. For any m > 0, the set of m-ary
symbols in Y is denoted by ¥,,. We suppose that X, N3, = 0 for m # n. In
addition to ranked alphabets, we use ordinary finite alphabets X,Y,... that we
call leaf alphabets. These are assumed to be disjoint from the ranked alphabets. If
Y # (0, we may allow also the empty leaf alphabet.

The set Tx(X) of X-terms over X is the smallest set 7" such that X UX¥y C T,
and f(t1,...,ty) €T whenever m >0, f € ¥, and ty,...,t,, € T. Such terms are
regarded in the usual way as representations of labelled trees, and we call them ¥ X-
trees. Subsets of T5(X) are called ¥.X-tree languages. We may also speak simply
about trees and tree languages without specifying the alphabets.

Let & be a special symbol that appears neither in > nor in any of the leaf
alphabets. A X(X U {{})-tree in which £ appears exactly once, is called a XX -
context. The set of all ¥ X-contexts is denoted by Cs;(X). The elements of Cs (X) :=
Cs(X)\ {¢} are called proper XX -contexts. If p,q € Cx(X), then p- g = q(p) is the
Y. X-context obtained from ¢ by replacing the ¢ in it with p. Similarly, if ¢t € T%(X)
and p € Cx(X), then t-p = p(t) is the X X-tree obtained when the & in p is replaced
with ¢. The &-depth d¢(p), i.e., the distance of the ¢-labelled leaf from the root, of
a X X-context p € Cx(X) is defined as follows:

(1) de(§) = 0;

(2) de(p) = de(q) + 1 for any p = f(t1,...,tic1,4q, tiv1, ..., tym) where m > 0,
f EXp, 1 E [m], t, ooy tict, tiv1, ooy tm € TE(X) and qc Cz(X)

The ranked alphabet ¥ is also used as a set of operation symbols, and a Y-algebra
A consists of a nonempty set A of elements and a Y-indexed family of operations
(f4| f € %) on A such that if f € %, is a m-ary symbol, then f4: A™ — A is an
m-ary operation on A. In particular, any nullary symbol ¢ € ¥, fixes a constant in
A that we write as ¢* (rather than ¢*()). We write simply A = (4, %) without any
symbol for the assignment f — f4. Subalgebras, homomorphisms, direct products
of such algebras are defined as usual (cf. [3] or [4], for example). If there is an

isomorphism ¢ : A — B, then A and B are isomorphic, A = B in symbols, and
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if there is an epimorphism ¢ : A — B, then B is an (epimorphic) image of A,
A « B in symbols. A monomorphism ¢ : A — B is also called an embedding. Such
an embedding exists exactly in case A is isomorphic to a subalgebra of B, and we
express this situation by writing A C B. Furthermore, B is said to cover A if A is
an image of some subalgebra of B. This we express by writing A < B. Clearly, <
generalizes both the subalgebra relation C and the epimorphic image relation «.

A mapping p: A — A is called an elementary translation of A = (A, ) if there
exist an m > 0, an f € X,,, an ¢ € [k], and elements ay,...,a; 1,811,...,0y, € C
such that p(a) = fA(ay,...,ai_1,0,ai11,...,ay) for every a € A. Let ETr(A) de-
note the set of elementary translations of A. The set Tr(.A) of all translations of
A is defined as the smallest set of unary operations on A that contains the identity
map 1y : A — A,a — a, and all the elementary translations, and is closed under
composition. It is well known (cf. [3, 4], for example) that any congruence of an
algebra A is invariant with respect to every translation of A, and that an equiva-
lence on A is a congruence on A if it is invariant with respect to every elementary
translation of A.

The following lemma (cf. [24]) will be needed several times.

Lemma 2.1 Letp : A — B be a homomorphism between two ¥-algebras A = (A, X)
and B = (B,X). For every translation p € Tr(A) of A there is a translation
Dy € Tr(B) of B such that p(a)p = py(ap) for every a € A. If ¢ is surjective, then
there exists for every q € Tr(B) a p € Tr(A) such that g = p,,. O

If T5(X) # 0, ie., if XgUX # 0, then the ¥ X-trees form the XX -term algebra
Tx(X) = (Ts(X),Y), where ¢=X) = ¢ for any ¢ € ¥y, and f=X(t,... t,) =
ft1, ... ty) forallm >0, f € ¥, and t1,...,t, € Tx(X). The X X-term algebra
T (X) is freely generated by X over the class of all Y-algebras, that is to say, it is
generated by X and any mapping o : X — A of X into any Y-algebra A = (A, X))
has a unique extension to a homomorphism & : 75(X) — A. There is a bijective
correspondence between the translations of the term algebra 75 (X) and the ¥.X-
contexts: for any p € Tr(7x(X)), there is a unique ¢ € Cx(X) such that p(t) = q(t)
for every t € Tx(X), and conversely every > X-context defines a translation of
To(X).

Let A be a nonempty set and let n > 1. If o1 : A" — A, ..., p, : A" — A are

any n-ary operations on A, then the n-tuple (p1,...,¢,) defines an operation
p: A" — A" a— (pi(a),...,pa(a)) (ae A™).
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We write ¢ = (p1,...,¢,) and call such mappings A™ — A™ the n-operations on
A. Let TM"(A) denote the set of all n-operations on A. The composition of two
n-operations ¢ = (¢1,...,¢,) and ¥ = (¢q,...,1,) on A is the mapping

porp: A" — A", a s Y(p(a)),

ie., (poy)(a) = (Yi(p(a)),..., Yn(pn(a))) for every a € A™. Obviously, p o) €
TM"™(A). Moreover, it is clear that o (ipon) = (pot))on for all p, v, n € TM™(A),

and that 14n0p = polsn = ¢ for every ¢ € TM"(A). Moreover, 14n = (11, ..., 7p),
where m; : A" — A, a — a;, is the i n-ary projection (i € [n]). This means
that (TTM™(A),o,14x) is a monoid. Note, however, that TM™(A) is not the full
transformation monoid of A™ because its elements consist of n independent n-ary

operations on A.

3 Terms with variables

In this section we consider terms with variables and various related notions and
some technical facts about them.

We arbitrarily fix a ranked alphabet Y and a leaf alphabet X. Let = :=
{&1,&, ...} be a countably infinite set of symbols that are treated as wariables
and do not appear in ¥ or X. For any n > 0, let =, = {&,...,&.}. The ele-
ments of Tx(X U =,) we call n-ary XX -terms, and the elements of T%(X U =) =
U,s0 I5(X U Z,) are called XX -terms with variables.

For a ¥.X-term with variables ¢ € Tx (X UZ), let nv(t) be the number of occur-
rences of variables & € = in t. Furthermore, we define root(¢) (the label of the root
of t), the height hg(t) and the depth dp(t) (the minimal distance of a =-labelled leaf

from the root) as follows:
(1) root(&) = & and hg(&) = dp(&) = 0 for & € =,
(2) root(t) =t, hg(t) = 0 and dp(t) = oo for t € X U X, and
(3) ift = f(t1,...,tm), then root(t) = f, hg(t) = max{hg(t;),...,hg(t,,)}+1 and
dp(t) = 1 + min{dp(¢1),...,dp(tn)}-

Obviously, these notions are generalizations of the usual ones defined for ¥ X-trees
or X X-contexts (cf. [7, 8], for example).

Let T (X U Z)* be the set of all finite sequences of ¥ X-terms with variables,
including the empty sequence (), i.e., Ts(XUZ)* = J,5 Tx(X UZ)", where for each
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n >0, Tx(X UZ)" is the set of all n-tuples (uy, ..., u,) of XX-terms with variables.
The concatenation (ui, ..., up,v1,...,v;) of any two such sequences u = (uq, ..., up)

and v = (vy,...,v;) is denoted by u @ v.

Definition 3.1 Foranyn,m,k > 0,v € Ty(XUZ,,),p € Cs(X),u= (uy,...,upn) €
Ts(XUZE,)™and v = (vy,...,v;) € To(X UZE,)", let

(1) v-p = p(v) be the m-ary ¥ X-tree obtained when the £ in p is replaced with ¢,

(2) u-v = v(u) be the n-ary ¥ X-term obtained by replacing each variable &; in
v with the corresponding u; (i € [m]), and let
(3) u-v =v(u) == (u-vy,...,u-vg).
Furthermore, let 1,, := (£1,...,&,). O
Clearly, u-v € Tg(X UZ,)* for any u € Ty (X UZ,)™ and v € Tx(X UZ,,)* (as

above). In particular, t - v € Tx(X)* for every m-tuple t = (t1,...,t,) € Tx(X)™

of X X-trees. The following properties of these products are also quite obvious.

Lemma 3.2 For any k,l,m,n >0, and anyu € Tx(X UZ,)™, v € Tx(X UE,,)!,
weTs(XUZ)E teTx(X)", ueTs(XUZ,), veTx(XUZE,), and p € Cx(X),

(a) (u-v)-w=u-(v-w) D) t-(u-v)=(t-u) v
(c)1,-u=u (d)u-1,,=u

(e) (w-u)-p=nu-(u-p) (f) (6-v)-p=t-(v-p)
(e)

4 Generalized contexts

In this section we introduce the generalized contexts that will be used for defining

our new syntactic monoids and semigroups of tree languages.

Definition 4.1 For any n > 0, a X Xn-context is an n-tuple u = (uy,...,u,) of
n-ary X X-terms in which each of the variables &;,... &, appears exactly once (in
exactly one of the components u;). A ¥ Xn-context u is proper if none of its com-
ponents u; is a variable (in Z,,). Let us denote the sets of ¥ Xn-contexts and proper
¥ Xn-contexts by MZ(X) and SE(X), respectively.
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Obviously, SZ(X) C ME(X) C Ts(XUZ,)" for every n > 0. Note that ML(X) =
Cx(X) if we replace & with € and identify any XX 1-context (u) with the ¥ X-context
u. It is also immediately clear that

(a) if u,v € ME(X), then u-v € ME(X),

(b) if u,v € SE(X), then u-v € SE(X), and that

(c) t-ueTx(X)" for any t € Tx(X)" and u € ME(X).
Moreover, from Lemma 3.2 it follows, that for any u,v,w € MZ(X),

(d) (u-v)-w=u-(v-w) and 1,-u=u-1, =u,
and hence (M(X), -, 1,) is a monoid and (SE(X),-) is a semigroup. As usual,
they are denoted simply by MZ(X) and S%(X), respectively. Note that M2(X) =

SA(X) = {()} is the trivial semigroup (and monoid). We shall mostly ignore this

special case.
Lemma 4.2 M2(X) C M2t (X) and SE(X) = SET(X) for every n > 0.

Proof. Tt is easy to see that ¢ : M2(X) — Mot (X), u— u® (&,41), is a monomor-
phism of monoids, and hence M%(X) C Mat!(X) holds. As to the second claim, it

suffices to note that
Si={{ug, ..., Up, Upy1) € Sg“(X) | (uy, ... u,) € SEH(X)}
is a subsemigroup of S£*!(X) and that
S — SEX), (ur, .oy Up,y Upyr) > (Ugy ey Uy,
is an epimorphism. O

The following lemma is quite obvious.

Lemma 4.3 If X C Y, then M(X) C ME(Y) and SE(X) C SE(Y) for alln > 1.
0



5 n-ary translations of algebras

It is easy to see that the translations of a Y-algebra A = (A, X) are defined in a
natural way by Y A-contexts. We shall now generalize this idea by introducing for
each n > 1, the n-ary translations of an algebra defined by ¥ An-contexts.

Let us consider any -algebra A = (A, X)) and any n > 1. We associate with any
n-ary Y A-term u € Tx(AUZE,) an n-ary operation u” : A" — A on A as follows:

for any a = (ay,...,a,) € A", let

(1) &A(a) = a; for every i € [n] (i.e., &* is the i™® n-ary projection operation),
a’(a) = a for every a € A, and c¢(a) = ¢ for every ¢ € %, and let

(2) tYa) = fA(uf(a),...,ur(a)) if t = f(u,...,uy) for some m > 1, f € &,,
and uq,...,uy, € Tn(AUE,).

Hence, a”* and c¢* are constant operations (a € A,c € ;). Note that the n-ary
Y A-terms are actually the n-ary polynomial symbols of A, and the operations u*
we just defined are, in fact, the n-ary polynomial functions of A (cf. [3, 12], for
example).

Now, any n-tuple u = (uy, ..., u,) of n-ary Y A-terms, defines an n-operation

ut A" = A" a e (ufl(a),. .., ul(a)),

rn

on A. The composition of any two such n-operations u® and v#, where u =

(ug,...,up) and v = (vy,...,v,) are n-tuples of n-ary ¥ A-terms, is the n-operation

uto vA: A" = A" a— (v (ut(a)),..., v (ut(a))).

r n

It is easy to verify the following facts.

Lemma 5.1 Let A= (A, ) be a X-algebra and let n > 1. For any n-tuples u and

AoyA = (

v of n-ary X A-terms, u” ov u - v)A. Furthermore, 17 = 1 0. O

The lemma implies that the mappings u? form a submonoid of the monoid
TMm™(A) of n-operations on A. We shall be mainly interested in the following

submonoid and subsemigroup of this monoid.
Definition 5.2 For any Y-algebra A = (A,Y) and any n > 1,
TM"(A) == {u? |ue ME(A)} and TS"(A):={u*|uec SE(A)}

are called the monoid of n-translations and the semigroup of proper n-translations

of A, respectively. O



Since u-v € M(A) for any u,v € ME(A) and 1, € ME(A), it follows from
Lemma 5.1 that TM"(.A) indeed forms a monoid. Similarly, 7'S™(A) forms a semi-
group because u-v € S§(A) for all u,v € SE(A). Let us also note that the monoids
TM"™(A) are submonoids of the monoids considered by Sommerhalder in [22]. More-

over, Lemma 5.1 yields the following facts.
Corollary 5.3 For any algebra A = (A,X) and any n > 1, the mappings
MZ(A) - TM™(A), ur—u?, and Si(A) — TS"(A), u+— u?,

are epimorphisms of monoids and semigroups, respectively. Il

Let us now establish some of the basic properties of these monoids and semi-

groups.
Proposition 5.4 Let A be a X-algebra. For every n > 1,

(a) TM™(A) C TM"(A), and

(b) TS™(A) X TS"(A).
Proof. To prove (a), it suffices to verify that

p: TM"(A) — TM™(A), ut = (0@ (&)™,
is a well-defined monomorphism of monoids. To prove (b), we first note that
S = {(ur, .. Uy, Uns1) € TS™HA) | (uy,. .. u,) € SE(A)}
is a subsemigroup of T'S™"!(A). Then it suffices to verify that
Y8 = TS™A), (ug,... Uy tpr) = (ug, ..o un)A,

is an epimorphism. O

The following observation is easy to verify.

Lemma 5.5 If A= (A,Y) is a subalgebra of B = (B,X), then u = u® |, for any
n > 1 and any n-tuple of n-ary X A-terms u. O

Proposition 5.6 Let A = (A, X) and B = (B,X) be X-algebras. If A T B, then
TM™(A) X TM™(B) and SM"(A) < SM™(B) for every n > 1.
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Proof. Let us prove the statement that concerns monoids; the other one has a similar
proof. We may assume that A is a subalgebra of B, and let us consider any n > 1.
Then MZ(A) € M2(B) and clearly M := {u® | u € M2&(A)} is a submonoid of
TM"™(B). It is immediately clear that

©: M — TM"(A), u¥ — u?,

is well-defined and surjective. Moreover, for any u,v € Mg(A),

B

(0% 0 vE)p = (u-v)?

o= (u-v)*=uov* =uFpovFip.

and 1pnp = 18p = 12t = 1 ,4». Hence ¢ is an epimorphism. 0J

Proposition 5.7 Let A = (A,X) and B = (B, ) be any Y-algebras. If A « B,
then TM™(A) «- TM™(B) and SM™(A) « SM™(B) for every n > 1.

Proof. Again, we consider the monoid case. Let ¢ : B — A be an epimorphism. It is
easy to verify that it can be extended to an epimorphism @ : 7y (BUZ,,) — Tx(AUZE,)

of term algebras by the following conditions:
(1) bp = by for b € B; §p =& for i € [n]; ¢p = ¢ for ¢ € Xy;

(2) f(ty,...,tn)o = f(ti@,...,tnp) for m >0, f € ¥,, and ty,...,t, € Tx(BU

En)-

If we write by := (b1, ..., byp) for any b = (by,...,b,) € B™, then it is easy to

show by induction on ¢ that
t%(b)p = (t2)"(by), (1)
for all t € T (BUZE,) and b € B". It is also easy to verify that
Y ME(B) — ME(A), (ug, ..., uy) — (W@, ..., u,9),

is a monoid epimorphism, i.e., uyp € ME(A) for every u € ME(B), (u-v)y = up-v)
for all u,v € M(B), 1,1 = 1,, and 7 is surjective. Now we are ready to show that

0 TM™(B) — TM"(A), u® — (uy)”,
yields the required epimorphism.
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1. To show that 7 is well-defined, let u = (uy,...,u,), v = (vy,...,v,) € MZ(B)
be such that u? = v®, and consider any a = (a;,...,a,) € A" Since ¢ is

surjective, a = by for some b € B". Hence

(u¥n)(a) = (uy)*(by)
= {()*(by),-... (w.p)"(by))
= (WBb)p,...,uBDb)yp) (by equation (1))

2. For all u = (uy,...,u,),v="{(v1,...,0,) € MZ(B),
(WovB)y = (u-v)fn=((u v)¥)* = ((uy) - (vy))"
= () o (vi)! = uyo vy,

Proposition 5.8 For any X-algebras A = (A, %) and B = (B, X)) and everyn > 1,
TM"(AxB)CTM"(A) x TM"(B) and TS"(Ax B)CTS"(A)x TS"(B).

Proof. We show just the first relation; a proof for the second one can be obtained

by easy modifications. Let
ma:Ts((AXx B)UZE,) - Ts(AUE,) and 7p:7T5((AXx B)UZ,) —» Tx(BUE,)

be the epimorphisms such that (a,b)m4 = a and (a, b)Tp = b for every (a,b) € Ax B,
and &my = Emp = & for every i € [n]. For any t € Tx((A x B) UE,), the
images tm4 and tmg are obtained simply by replacing in ¢ every appearance of a
symbol (a,b) € A x B by a and b, respectively. Hence, it is clear that for any
u=(u,...,u,) € MF(A x B),

uy = (uyma, ..., upma) € M3(A) and  uie == (uymp, ..., u,mg) € My(B).

In fact, ¥y : ME(Ax B) — MZ(A) and ¢y : ME(Ax B) — MZ(B) are epimorphisms
of monoids such that for any u € MZ(A x B), uyy; and ui), are obtained from u by
replacing everywhere all symbols (a,b) € A x B by a and b, respectively. This also
means that, for any u € MZ(A x B) and ((a1,b1), ..., (a,,b,)) € (A X B)", we have

uAXB((al, bl), ce ((ln, bn)) = ((u¢1)A(a1, ce ,(ln)7 (u¢2)8(b1, . ,bn)) (2)

12



Now, we can conclude the proof by showing that
@ : TM"(Ax B) — TM"(A) x TM™(B), u**% — ((uyy)?, (uy)®),
is a monomorphism.

1. For any u,v € M}(A x B),
ut By = v A By o (w4 = (vin)A, (un)? = (vip)B & uAE = vAXB,
where we made use of equation (2). This shows that ¢ is well-defined and
injective.

2. For any u,v € M}(A x B),

(u.AXB OVAXB) ).AXB

((w-v)g)A, ((u-v)e)®)
(ugy - v )™, (uihy - viy)®)
(ugn)™ o (Vi) (ue)® o (vihy)P)
(ugn)?, (ugh)®) o ((vipr)™, (via)®)

— uABy o yAXBy,

3. Finally, 1Bp = (1,401)4, (1,12)8) = (14,15). 0

6 Transformation semigroups of tree recognizers

Let us recall that a (deterministic bottom-up) Y. X-recognizer A = (A, «, F') consists
of a Y-algebra A = (A,X), an initial assignment o : X — A, and a set F C A of
final states; A is the state set. The Y. X-tree language recognized by A is the set

T(A) = {teTx(X)|ta e F},

where @ : T3(X) — A is the homomorphic extension of @ : X — A. The ¥X-
recognizer A is finite if A is a finite algebra, i.e., the set of states A is finite. A
Y X-tree language is called recognizable, or reqular, if it is recognized by some X X-
recognizer. Let Recy(X) be the set of all recognizable ¥ X-tree languages.

Let A = (A, a, F') be any Y X-recognizer. The homomorphism & : 75(X) — A
can be extended in a natural way to the mapping

A~

ap  Te(X)" — A", (t1,...,t,) — (L1, ..., Q).

13



Moreover, each n-ary L X-term u € T (X UZ,) defines an operation u# : A" — A

as follows. For any a = (ay,...,a,) € A", let
(1) z2(a) = a(z) for v € X, cA(a) = cA for ¢ € %y, A (a) = q; for & € Z,,, and

(2) ut(a) = fAu(a),...,ur(a)) if u= f(u,...,uy,) for some m > 0, f € 5,

’ ' m

and uq, ..., uy € To(X UZE,).

Note that for any L X-term t € Tx(X), we get t*(a) = ta for every a € A". Now,

any n-tuple u = (uy, ..., u,) of n-ary ¥ X-terms defines in A an n-operation

ut A" — A" a (u(a),. .., u(a)).

»'n

The composition of any two such mappings u® and v#, where u = (uy,...,u,) and

v = (v1,...,0,), is the mapping u® o v : A" — A" such that for every a € A",

(w0 vH)(a) = (v (ut(a), ..., vy (u™(a))).

It is not hard to prove the following facts.

Lemma 6.1 IfA = (A, o, F) is a X -recognizer andn > 1, then u®ovA = (u-v)4
for all u,v € M2(X). Moreover, 14 = 1 4. O

We shall focus on the n-operations u® defined by X Xn-contexts. Thus, let
TM™(A) = {u® | u € ME(X)} and let TS"(A) := {u® | u € SZ(X)}. We call
the elements of TM™(A) the n-transformations of A. Similarly, the elements of

TS™(A) are the proper n-transformations. It follows from Lemma 6.1 that we get

(1) the monoid of n-transformations (TM™(A),-,12), and

(2) the semigroup of proper n-transformations (T'S™(A),-).

Of course, T'S™(A) is a subsemigroup of TM™(A). Moreover, we can note that
TM*'(A) is the monoid MT(A) = {p* | p € Cg(X)} considered by Salomaa [20],
and T'S'(A) is the corresponding semigroup.

Let us recall (cf. [7, 8], for example) that a state a € A of a ¥ X-recognizer
A = (A, a, F) is reachable if a = ta for some ¢t € Tx(X). If all the states of A are

reachable, then A is said to be connected.

Proposition 6.2 If A = (A, «a, F) is a connected ¥X -recognizer, then TM™(A) =
TM™(A) and TS"(A) =TS™(A) for every n > 1.

14



Proof. To prove the inclusion TM"(A) C TM"(A), we begin by defining a mapping
Y :Ty(AUE,) — Tx(X UE,) as follows. Since A is connected, we may fix for each
a € AaXX-tree t, € Tx(X) such that t,& = a. Now, 1 is defined as follows:

(1) arp =t, for a € A; {p =& for i € [n]; cp = ¢ for ¢ € Xy;

2) F(tr,.. . tp) = 1, ... td) for all m > 1, f € %, and ty,... .t €
Ty (X).

It is clear that ¢ is a homomorphism of term algebras, and we may verify by in-
duction on t that t4 = (ty)A for every t € Tx(A U Z,). Moreover, if we ex-
tend ¢ to m-tuples of n-ary Y A-terms by setting uy) = (u11, ..., u,1)) for every
u = (u,...,u,) € Tx(AUZE,)", then it is clear that uy € MZ(X) for every
u € M2(A). Hence, u® = (uy)* € TM"™(A) for every u € MZ(A).

For the converse inclusion, we define ¢ : T5x(X UZ,) — Tx(AUE,) as follows:
(1) zp = a(z) for x € X; &p = ¢ for i € [n]; cp = ¢ for every ¢ € Xy;
(2) f(t1,. s tm)p = f(trp,.. . tmp) for al m > 1, f € %, and tq,...,t, €
Ts(X).

Obviously, ¢ is a homomorphism of term algebras, and it is easy to see that t* =
(tp)? for every t € Ty (X UZ,). Moreover, it is clear that up := (uyp, ..., u,p) €
ME(A) for every u = (uy,...,u,) € M2(X). Hence, u® = (up)* € TM"(A) for
every u € M3(X).

For the semigroups, the proof is quite similar. 0

The following lemma is also useful.

Lemma 6.3 For any connected XX -recognizer A = (A, «, F), the following condi-

tions are pairwise equivalent:
(a) A is finite;
(b) TM"™(A) is finite for everyn >1; (b’) T'S™(A) is finite for every n > 1;
(c) TM™(A) is finite for somen >1; (c’) T'S™(A) is finite for some n > 1.

Proof. The implications (a) = (b) = (c), (b) = (b') = (¢/) and (c) = (¢’) are ob-
vious, so it suffices to show that (c¢’) implies (a).

Assume that 7'S™(A) is finite for some n > 1. Consider any state a € A. Since
A is connected, there exists a X X-tree t such that ta = a. If ¢ is a tree of height > 1,
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we can construct a proper X Xn-context u = (uq,...,u,) such that u; is obtained
from t by replacing the label of any single leaf by &;, and hence u(a) = b for some

a = (ay,...,a,) and b = (by,...,b,), where a; = c*

or a; = «a(z) depending on
whether the replaced symbol in ¢ was ¢ € ¥y or z € X, and b; = a. Since the set
{c* ] c e oy U{a(z) | z € X} is finite, there are only finitely many states a € A
for which there is no t € Tx(X) such that t& = a and hg(¢) > 1. This shows that if

A is infinite, then so is T'S™(A), and hence also the implication (¢’) = (a) holds. O

7 n-ary syntactic congruences of tree languages

We shall now consider the congruences to be used for defining the syntactic monoids
and semigroups introduced and studied in the next section.

Again, ¥ is a ranked alphabet, X a leaf alphabet, and n > 1. Moreover, un-
less stated otherwise, u, v and w are the vectors (of X X-terms with variables)

(Ut ..o Uy, (V1,...,0,) and (wy, ..., w,), respectively.

Definition 7.1 For any n > 1, the n-ary syntactic monoid congruence of a X X-tree

language T is the relation p% on ME(X) defined as follows: for any u,v € M&(X),
upurv < (Vien))(Vt e Ix(X)")(Vpe Cs(X))(t -u;-peT < t-v,-peT).

Similarly, the n-ary syntactic semigroup congruence of T is the relation /. on SE&(X)
defined by stating that

uoiv & (Vien)vVteTu(X)" ) (Vpe Ce(X))(t-u-peT <t -v,-peT),

for any u,v € S&(X). O

In Proposition 7.3 we will show that u/. and o7 really are congruences, and in
Lemma 7.2 an alternative description of them is given.

For any n > 1, let us call an n-ary ¥X-term an n-ary XX -context if it contains
at least one variable and none of the variables &1, ...,&, appears in it more than

once. Let CE(X) denote the set these generalized contexts.

Lemma 7.2 Let T be a XX -tree language and let n > 1. For any u,v € M}(X),
uppv & Vtels(X))(VreCe(X)(t-u-reTet-v-ref).
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Similarly,
uopv & Mels(X)" ) (VreCi(X)(t-u-reT s t-v-refl),

for allu,v € SE(X). O

Let us say that a congruence € on the monoid Mg(X) saturates a X X-tree
language T if, for all u,v € MZ(X),

ufdv = Vien))(vt e In(X)")Vpe Cx(X))(t-u;-peT & t-v;-peT).

The notion is defined for congruences on S&(X) exactly the same way. The following

proposition expresses an important property of our syntactic congruences.

Proposition 7.3 For any XX -tree language T' and any n > 1, pf. is the greatest
congruence on the monoid ME(X) that saturates T. Similarly, ol is the greatest

congruence on SE(X) that saturates T'.

Proof. We consider just u7.; for o7 the proof is almost the same. It is clear that pf. is
an equivalence on MZ(X). Let us assume that up’v and consider any w € M (X).
For any t € Tx(X)", p € Cx(X), and ¢ € [n],

t-(w-w)pel < t-u(w-pel S t-v-(w-pel St (v-w) peT,

where we used Lemma 3.2, the fact that w; - p € C&(X) and Lemma 7.2, and hence

u-w v - w. Similarly, we get w - u p, w - v because
t-(w-w) pelT & (t-w) u-peT & (t-w)-v-peTl & t-(w-v) peT,

for all i € [n], t € Tx(X)" and p € Cx(X). Hence, p is a congruence.

It is immediately clear by the definitions that uf. saturates MZ(X). Assume that
6 is a congruence on M (X) that saturates 7', and let u,v € M(X) be such that
ufv. Then, if t-u; -p € T for some t € Tx(X)", p € C%(X) and i € [n], then also
t-v;-p €T, and conversely. This means that u p/} v, and hence 6 C p7. OJ

In statement (d) of Proposition 7.5 we use the following extensions of a given
homomorphism ¢ : 75 (X) — 7x(Y) of term algebras. For any n > 1, we first extend
¢ to a homomorphism ¢, : T5(X UZ,) — Tx(Y UZE,) by setting &, = &; for every

i € [n]. Next, we extend ¢, to
G In(XUZE,)" = Te(YUEL)", (ur, ..., up) — (U1Pn, - ., UnPp).

The following observations have straightforward proofs.
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Lemma 7.4 For any homomorphism ¢ : Tx(X) — Tx(Y) and any n > 1, the
following hold.

(a) (u-v)p, =up, v, foralue Tx(X UZ,)" andv € Tx(X UZE,).

(b) Restricted to M}(X), @, yields a monoid homomorphism @, : M3(X) —
ML(Y), i.e., if we set up, = up, (€ ME(Y)) for every u € ME(X), then
(wov)p, =up, ovy, forallu,v e M}X), and 1,0, = 1,,.

(c) If p is surjective, then so are ¢,, B, and @,. O

Proposition 7.5 If T'U C T%(X) and V C Tx(Y) for some leaf alphabets X and
Y, then the following hold for alln > 1 :

(&) 1 onr = 17

(b) wr Ougy € wrny  and  pp O pg S proy-
(¢) wp C py-i(qy for every p € Cs(X).
)

(d Sonoluvogpnl

equality holds if ¢ is an epimorphism.

C pyy-1 for every homomorphism ¢ : Ts(X) — Ts(Y), and

All the corresponding statements hold for the syntactic semigroup congruences o7.

Proof. Again, we present the proofs for the monoid congruences only. Statement
(a) is completely obvious. To prove (b), assume that upf N pg v, for some u,v €
ME(X). Then both upfv and upl, v. This means that for any t € Ty(X)",
p € Cx(X), and i € [n], we have

t-u,-pel < t-v,-peT and t-u;,-pelU < t-v,-pel,
and hence
t-u,-peTNU & t-v,-peTNU and t-u;-peTUU & t-v;-peTUU,

from which the inclusions p7 Ny € wiqy and w0 pg C iy follow.
To prove (c), we just have to note that for any u,v € Mg(X),

Vt)(Vq)(t - u;-q€T & t-v;-qeT)
NV (t-ui-(¢-p) €T < t-vi-(¢-p) €T)
) (Ve) (Vg)(

) (V) (Va)(

uprv & (Vi

(t-u-q)-peT & (t-v;-q)-peT)

<C

QOt-u-qgep ™ T) & t-v-q€p Y(T))

Tt ¢y
<
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where i ranges over [n], t over Tx(X)", and ¢ over Cx(X).
Finally, for any u,v € M(X),

U@y o pp o, v & up, v,

& (Vi€ [n])(Vt € Ts(Y)")(Vp € Cx(Y))
(t- (uipn) pET <t (vipy) - peT)

= (Vi € [n])(Vs € Tx(X)")(Vq € Cs(X))
(58, - (wipn) - @ €T < 57, - (Vipn) - g, € T)

& (Vi € [n])(Vs € Tx(X)")(Vq € Cn(X))
(srui-q)peT < (s vi-q)peT)

& (Vien ])(Vs € Tx(X)")(Vq € Cx(X))
(s-u;-q€Tp ' os-v-qeTp™?)

S Upp,1 v,

where we used Lemmas 2.1 and 7.4. This implies the inclusion of (d). If ¢ is
an epimorphism, then every t € Ty (Y)" is of the form s@, for some s € Tx(X)"
and every p € Cx(Y) is of the form g, for some ¢ € Cx(X), and hence the only
implication in the above derivation also becomes an equivalence and @, poul,0p, 1 =
fy -1 holds. 0

8 n-ary syntactic monoids and semigroups

In this section we associate with any tree language a sequence of syntactic monoids

and a sequence of syntactic semigroups.

Definition 8.1 Let 7" be any X X-tree language. For the sake of simplicity, we
denote the pf-class of a ¥ Xn-context u by [u]}. The n-ary syntactic monoid of T

is the quotient monoid M™(T') := MZ(X)/u}, and the canonical homomorphism
vr: Mg(X) — M™(T), u— [u]r,

is called the syntactic (monoid) homomorphism of T. The n-ary syntactic semigroup
of T is similarly defined as the quotient semigroup S™(T") := SE(X)/o%. When
speaking about these semigroups, we let [u]} denote the o7-class of u € S&(X), and

vt is then the syntactic (semigroup) homomorphism S§(X) — S™(T), u — [u]}. O
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The monoids M™(T) and semigroups S™(7") generalize the syntactic monoids
SM(T) and semigroups SS(7T) studied by Thomas [27, 28], Salomaa [20] and Salehi
(18, 19]. In fact, MY(T) = SM(T) and SY(T) = SS(T).

As a preparation for the proof of Proposition 8.3 below, we note the following

facts.

Lemma 8.2 Let A = (A, a, F) be any XX -recognizer.
(a) If A is connected, then for every a € A™ there exists an n-tuple of XX -trees
t € Tx(X)™ such that ta, = a.
(b) u®(ta,) = (t-u)a, for all t € Ts(X)" and u € ME(X).
Let us also recall (cf. [7, 8], for example) that the equivalence of states of a
Y. X-recognizer A = (A, «, F) can be defined by
a ~a b e (VpeOs(X)p*(a) € F < ph(b) € F) (a,b e A),

and that A is reduced if ~po = Aj. A Y X-recognizer is minimal if is both reduced
and connected. Every regular > X-tree language has a minimal ¥ X-recognizer and

this is unique up to isomorphism.

Proposition 8.3 If A is the minimal XX -recognizer of a X X -tree language T', then
M™(T)=ZTM"(A) and S™(T) = TS™(A).
Proof. Let A = (A, a, F') be the minimal ¥ X-recognizer of a given ¥ X-tree language
T. To prove M™(T) = TM™(A), it suffices to show that

©: ME(X) — TM"(A), u— u?,
is an epimorphism such that ker ¢ = p%. It is clear that ¢ is surjective, and it is
)A A

a homomorphism since, by Lemma 6.1, 14 = 14+ and (u-v)* = u® o v2 for all

u,v € M}(X). Furthermore, for any u,v € Mg(X),

Afa) = vA(a))

& (Yt € Te(X)")(u(ta,) = vA(tay))

(Vt € Ts(X)")((t -w)a, = (t-v)ay,)

(Vi € [n])(Vt € To(X)")((t - ui)a = (t-v;)a)

(Vi) (Vt)(Vp € Co(X))(p™ (¢ - w)a) € F « p™((t-v;)a) € F)
(Vi)(Vt)(Vp)((t - ui-p)a € F < (t-u;-p)a € F)

Vi) (Vt)(Vp)(t-u;-peT — t-u,-peT)

up = vp < (Vae A")(u

(N

<

n
u fip

Y
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where we used Lemma 8.2 and the fact that A is reduced. Hence, ker ¢ = pf., and
therefore TM"™(A) = ME(X)/kerp = M™(T). The second isomorphism can be

proved the same way. O

Let us recall that the syntactic algebra SA(T) of a ¥.X-tree language T is the
quotient algebra 7x(X)/0r, where 07 is the syntactic congruence of T defined by

sOrt & (VpeCg(X))(p(s) €T «— p(t)eT) (s,teTxn(X)).

It is well known that (cf. [24, 26], for example) that the underlying >-algebra of
the minimal ¥ X-recognizer of a regular X X-tree language 7' is isomorphic to the
syntactic algebra SA(T') of 7. Hence, Propositions 6.2 and 8.3 together yield the
following facts.

Corollary 8.4 For any T € Recs(X) and anyn > 1, M™(T) = TM™(SA(T)) and
S™(T) =2 TS™(SA(T)).

Proposition 8.3 and Lemma 6.3 together yield the following result.

Corollary 8.5 For any T C Tx(X), the following conditions are equivalent:
(a) T € Recx(X);
(b) M™(T) is finite for everyn > 1; (b?) S™(T) is finite for every n > 1;
(c) M™(T) is finite for some n > 1; (c’) S™(T) is finite for some n > 1.
Next we present the monoid and semigroup counterpart of Proposition 7.5.

Proposition 8.6 Let T, U C Tx(X) and V C Tx(Y) for any leaf alphabets X and
Y. Then the following hold for alln > 1:

(a) M™(Tx(X)\T) = M"™(T).
(b) MM(TNU) = MMT) x MU) and M"(TUU) < M™T) x M"(U).
(c) M"(p~(T)) «= M™(T) for every p € Cx(X).

(d) M"(Vyp™t) < M™(V) for every homomorphism ¢ : Ts(X) — Tx(Y), and if ¢
is an epimorphism, then M™(Vp=') = M™(V).

All the corresponding statements hold for n-ary syntactic semigroups.
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Proof. Statement (a) follows directly from statement (a) of Proposition 7.5. Also
(b) and (c) follow from their counterparts in Proposition 7.5 by general algebra. As

to (c), this is immediately clear because pf C 1 (7 implies
M" (p~(T)) = ME(X)/byorqy = ME(X)/pip = M™(T).

To get (b) one may use the slightly less obvious general fact that if 6;, 6, and p
are congruences of an algebra A such that 6; N6y C p, then A/p < A/0; x A/b,.
In the cases at hand, it suffices to note that M := {([u]}, [u]py) | u € ME(X)} is a
submonoid of M™(T) x M™(U) and that

Un: M — M™(TNU), ([az, [ulf) — [ulzae,
and
Yo M — M (TUU), (g, [ulf) — [ulu,

are epimorphisms which are well-defined by Proposition 7.5.
To prove (d), let us first assume that ¢ : T5(X) — Tx(Y) is an epimorphism.
Then
v MY (V™) = M™(V), [uly,- — [u@aly,

where @, : ME(X) — ME(Y) is the homomorphism of Lemma 7.4, gives the required

isomorphism as we shall show.

1. 1 is well-defined and injective: for any u,v € M¥(X),

Wy, = [V[j ¥ < g, uy ve,
& upy,-1 v (Proposition 7.5 (d))

=4 [U]$¢—1 = [V]'r‘}@—L

2. 1) is surjective because ¢ is surjective.

3. 1 is a homomorphism: for any u,v € MZ(X),

(- VY)Y = [u- vyt = [(u-v)@n]y
= U@, vouly = [udnly - [vouly
= [u]@¢_1 ’ [V]y\;go_h

and, moreover, [1,]y, ¢ = [1,]}.
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Consider now a general homomorphism ¢ : 75(X) — 75(Y). Let M := ME(X)@n,
and let 6 := pi [ M be the restriction of uf, to M. Let us define ¢ : M/0 —
M" (V1) as follows. For any class [v]s in M/, we may choose a u € MZ(X) such
that ug, = v. Then we set [v]py) = [u]f, .. Since M/ T M"(V), it now suffices
to prove that v is a well-defined epimorphism.

1. To show that 1 is well-defined, we note that for any u,u’ € MZ(X),

[uBn]o = [Wnls = Py '@, = uP,oppod, v’ = [uff - = [Wp, .

2. Clearly, 1 is surjective.

3. Assume now that up, = v and u'p, = v’ for some u,u’ € MZ(X) and

v,v' € M. Then (u-u')p, = v- v/, and hence
(Vo - Vo)t = [v - Vet = [u- a0 = [uly o - W0 = [V]ed - [V,

4. Clearly, [1,]p0 = [1,]7,-1.

For semigroups, the proofs are quite analogous. 0

Proposition 8.7 For any T € Recs(X) and every n > 1, M™(T) E M"™(T) and
S™(T) = S™TY(T).

Proof. Both assertions follow directly from Corollary 8.4 and Proposition 5.4:
M™T) = TM"(SA(T)) T TM"™ ™ (SA(T)) = M™(T),

and similarly S"(T) = T'S™(SA(T)) < TS""(SA(T)) & MS"T(T). O

9 Varieties of tree languages and n-ary syntactic

monoids and semigroups

We shall now show that each variety of finite semigroups (monoids) defines via n-
ary syntactic semigroups (monoids) a variety of tree languages, and we shall present
some properties of these varieties of tree languages. First we recall some basic
notions and facts from the theory of varieties of tree languages following [24, 26].
Let ¥ be a ranked alphabet. A family of (reqular) 3-tree languages is a mapping
V that assigns to every leaf alphabet X a set V(X) of (regular) ¥ X-tree languages.
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We write such a family as V = {V(X)}x. For any two families of ¥-tree languages U
and V, let us set Y C Viff U(X) C V(X)) for every X. The unions and intersections
of families of Y-tree languages are defined by similar componentwise conditions.

A wariety of X-tree languages (a 3X-VTL for short) is family of regular X-tree
languages V = {V(X)}x such that for all leaf alphabets X and Y,

(1) V(X) is a Boolean subalgebra of Recy(X),
(2) T € V(X) implies p~!(T) € V(X) for any p € Cx(X), and
(3) T € V(Y) implies Tp~! € V(X) for any homomorphism ¢ : 7T5(X) — T=(Y).

Recall also that a wvariety of finite X-algebras (a X-VFA for short) is a class of
finite Y-algebras closed under the formation of subalgebras, homomorphic images
and finite direct products. There is a bijective correspondence between the ¥-VTLs
and the ©-VFAs: for any 3-VFA K, the corresponding ©-VTL K' = {K'(X)}y
is defined by the condition that a ¥ X-tree language T is in K'(X) iff its syntactic
algebra SA(T) is in K. We shall show that in a similar way a 3-VTL can be
associated with any variety of finite semigroups or monoids and any n > 1 via our
n-ary syntactic semigroups or monoids, respectively. Of course, a variety of finite
semigroups (VFS) is a class of finite semigroups that contains all subsemigroups,

homomorphic images and finite direct products of its members, and a variety of
finite monoids (VFEM) is defined similarly.

Definition 9.1 For any class M of finite monoids and any n > 1, let V§; =
{V&(X)}x be the family of ¥-tree languages such that for any X,

VE(X) = {T C T(X) | M™(T) € M.

Similarly, for any class of finite semigroups S and any n > 1, let V§ = {V§(X)}x,
where V(X)) :={T CTx(X) | S™(T) € S} for each X. O

Corollary 8.5 and Proposition 8.6 immediately yield the following basic facts.

Proposition 9.2 For any VFM M and every n > 1, V{; is a X-VTL. Similarly,
V¢ is a X-VTL for every VFS S and every n > 1. O

As shown by the following example, not every >-VTL is of the form V{; for some
VEFM M and some n > 1, or of the form Vg for some VFS S and some n > 1.
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A0 1 2 ghi0 1 2
0 |1 1 2 0|0 0 2
112 2 2 0 0 2
2 12 2 2 2 12 2 2
Figure 1: f4 and g
fA210 1 2 g0 1 2
0 |1 2 2 0|0 0 2
112 2 2 1 {0 0 2
2 12 2 2 2 12 2 2

Figure 2: f42 and g

Example 9.3 Let us consider the alphabets ¥ = {f/2,g/2} and X = {x}. Further-
more, let K be the X-VFA consisting of all finite ¥-algebras in which the f-operation
is commutative, i.e., that satisfy the identity f(&1,&) ~ f(&,&1), and let V := K¢
be the corresponding »-VTL. We shall show that there is no VFM M and non > 1
such that V = Vg;. To do this, we consider the ¥ X-tree languages

Ty = {p(f(f(s1,52),83)) | p € Cs(X), 51,582,583 € Tss(X)}

and
Ty == T UA{p(f(s1, f(s2,83)) | p € Cx(X), 51,52, 83 € Te(X)}.
It is easy to see that Ay = (A, «, F) and Ay = (As, o, F) are the minimal YX-

recognizers of T} and T5, respectively, when

(1) A = (A%), A=1{0,1,2}, a(z) = 0, F = {2}, and fA and g™ are defined
by the tables in Figure 1, and

(2) Ay = (A,X), A=1{0,1,2}, a(z) = 0, F = {2}, and f42 and g** are defined
by the tables in Figure 2.

Clearly, f*2 is commutative while ! is not, that is to say, A; € K but A; ¢ K.
Since SA(T7) = Ay and SA(T3) = A, (cf. [24] or [26], for example), this means that
Ty ¢ V(X) while Ty € V(X). To prove that there is no VEM M such that V = V{;
for some n > 1, it now suffices to show that M™(T}) = M"(T3) for every n > 1,
and by Proposition 8.3 this can be done by showing that TM™(A;) = TM"(A,) for
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every n > 1. In fact, we prove that TM"(A,) = TM"(A,) for every n > 1.

Lemma For any n > 1 and any n-ary X X-term u, there exists an n-ary ¥X-term
@ such that each variable &; (i € [n]) appears exactly the same number of times in

Al — uA2

1 as it appears in u, and u . Conversely, for any v € Tx(X UZ,), there

is a v € Ty(X UE,) such that each variable &; (i € [n]) appears exactly the same

number of times in ¥ as it appears in v, and vA2? = A1,

Proof. We can verify the first claim by tree induction on wu.
1. Obviously, we can let = := z and @ = ¢; for every i € [n].

2. Suppose that u; and us have been defined as required.If u = g(uq,us), we
may choose simply 4 := g(1y, ts) because gt = g2, If u = f(uy,us), we set
@ := f(uy, g(ua, x)). It is clear that this 4 satisfies the variable conditions. To
show that u®t = 022 it suffices to verify that f41(a,b) = f#2(a, g*2(b,0)) for
all a,b € A. It is clear that both sides of this equality assume the value 2
whenever a € {1,2} or b = 2, and in the remaining two cases both sides equal
1.

The second claim is proved similarly by induction on v, but for v = f(vy,vs) we
choose v := f(0y, f(0s, 2)). O

The equality TM™(A;) = TM"(As) follows immediately from the Lemma: for
any u = (uy,...,u,) € MZ(X), we have ut = u#? € TM"(A,) when u =
(1, ..., 1,), and similarly, for any v = (vy,...,v,) € ME(X), we have v42 = vA1 €
TM™(Ay) when v := (v1,...,0,).

It is clear that if u € SE(X) or v € S&(X), then also u or v, respectively, is a
proper n-ary context, and hence we can also conclude that V = Vg for no VFS S
and no n > 1. O

In [18, 19] Salehi characterized the varieties of tree languages definable by the
syntactic monoids of Thomas [27, 28] or the corresponding semigroups. Because
MYT) = SM(T) for every tree language T, these varieties are exactly the ones
definable by our 1-ary syntactic monoids, and the same applies to syntactic semi-
groups. On the other hand, in the next section we shall see that the variety of definite
tree languages can be defined by our syntactic semigroups although it is known that

this is not possible using ordinary syntactic semigroups or monoids. Hence, we may
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conclude that the variety-defining power of our syntactic semigroups lies properly
between that of syntactic algebras and that of ordinary syntactic semigroups.

Let us also note the following facts.

Proposition 9.4 For any VEM M and any n > 1, V& D V. Similarly, Vi 2
Vatt for any VFS S and any n > 1.

Proof. If T € Vi (X) for some X, then by definition M (T") € M. On the other
hand, M"(T) C M™(T) by Proposition 8.7. Since M is a VFM, this means that
M™T) € M and hence T € V§;(X). The inclusion V§ 2 V4™ has a similar proof.
U

By the next two examples we show that for any n > 1, the inclusions Vy; 2 VI(L/IH

and V§ D V4™ may be proper.

Example 9.5 Let us consider any given n > 1, and let M be the VFM defined by
the identity £ ~ £+")° Furthermore, let ¥ = {f/1,¢/1} and X = {z}. For any
seTs(XUZE,), let fO(s) = s and fi1(s) = f(f%(s)) for i > 0. We shall show that
the X X-tree language

T, = {f"(s) |m>n,s € Tx(X)}

belongs to Vi (X) \ Vif'(X). Tt is easy to see that the minimal ¥ X-recognizer
A = (A o, F) of T,, can be defined as follows:

(1) A = (A,Y) is the Y-algebra such that A = {0,1,...,n}, fA(a) = a + 1 for
a€{0,....,n—1}, fA(n) =n, and g*(a) = 0 for every a € A;

(2) a(z) =0and F = {n}.

By Proposition 8.3, it suffices to show that TM™(A) € M while TM"1(A) ¢ M.
To prove that TM™(A) € M, we consider any u € M2(X). If u” = (vy,...,v,)
and ™™ = (wy, ... w,), then the claim is that vA = w? for every i € [n]. Let
us fix ¢ € [n] arbitrarily.
Since ¥ = ¥, we have u = (¢1(§5(1)) - - - » @n(&o(n))), for some q1, - - , g, € Cx(X)
and some permutation o of [n]. Then

Uy = Qi<90(i)(qU2(i)(- . (qgntl(i) (§0n2 (7;)> . ))))
and
w; = %(%(i)(%%)(' .- (qgnLl(i)(- X (qg(nm!)?fl(i) (§U(n+n!)2(i)) .- ) .- )))))
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Assume that the cycle (i0(i) ... 0™71(i)) of o in which i appears is of length m.
Since n? =,, (n + n!)?, we have 6"’ (i) = o™™*(i) and hence v; = p(&) and
w; = q(&) for some p,q € Cx(X) and [ € [n]. Let

y4! (fi) = Qi(fo(i))a p2(f§) = %(%(z’) (502(1')))» cee Pm(f}ln) = Qi(qo(z‘)(- - Qom—1(3) (51) .- ))

be the n-ary XX -contexts appearing in the above representations of v; and w;. There

are now three possibilities to consider.

1. For every k € [m], pr(&,) = f"(&,) for some h > 0, and h > 1 for at least one
k € [m]. Then v; = f*(p'(&§)) and w; = f*(¢'(&)) for some p', ¢’ € Cx(X), and
A A

2(a) =n = w*(a) for every a € A™.

hence v i

2. The symbol g appears in at least one p. Let k € [m] be the least index for
which this is the case. Then

p(&) = &), -1 (§y) = f 7 (Gr1)s pr(Er) = F(9(r(€1)),

for some ny,...,ng_1,np > 0and r € Cx(X). lf h:=ny+...+np_1+nx > n,
then we have again v; = f"(p/(&)) and w; = f™(¢'(&)) for some p/, ¢’ € Cx(X)
as in the first case. If h < n, then vA(a) = h = wh(a) for every a € A™.

3. Finally, if pi(&,) = &, for every k € [m], then v; = w; = §, and hence

vA(a) = a; = whA(a) for every a € A",

It remains to prove that TM"'(A) ¢ M. Let us consider the XX (n + 1)-
context u = (&,&s, ..., &np, f(&1)), and let u™ = (vy,...,vp41) and u* =
{(wy, ..., wpy1). Then it suffices to show that w* # v&. Let a := (0,0,...,0) €
A" Tt is easy to see that

vV = <fn71(£2>7 fn(§3)7 s 7fn(£n+1)7 fn<€1)>7
and hence v (a) = n — 1. On the other hand, it is clear that w; = f*(§;) for some
k>mn and [ € [n+ 1], and hence w(a) = n. O

)

Example 9.6 In this example we show that the proper inclusion Vg D vg“ may
hold for any n > 1. For this, consider any given n > 1, and let S be the VF'S defined
by the identity £" ~ £€"*™'. Furthermore, let ¥ = {f/1,¢9/1} and X = {z}. We shall
show that the X X-tree language

T:={p(f(s)) | p € Ce(X),s € Tx(X)}

belongs to VZ(X) \ Vg™ (X). It is easy to see that the minimal $X-recognizer
A = (A o, F) of T can be defined as follows:
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(1) A= (A,X) is the X-algebra such that A = {0,1}, and f#(a) = 1 and g*(a) =

a for every a € A;
(2) a(x) =0and F = {1}.

By Proposition 8.3, it suffices to show that T'S"(A) € S while TS""}(A) ¢ S.
To prove that T'S"(A) € S, take any u € MZ(X). If u" = (vy,...,v,) and

un+n!

= (wy,...,w,), then the claim is that v* = w? for every i € [n]. Let us
consider any i € [n].
Since ¥ = 3, we have u = (¢1(&)), - -, (o)), for some proper contexts

q1, g € C5(X) and some permutation o of [n]. Then

Vi = (4o i) (4o2) (- - - (on1(0) (Eom ) - --))))
and
Wi = Gi(4o ) (4o2() (- - - (Gon—100) (- - (Gorsm—1) (Egnimia)) - ) - -)))))-
Assume that the cycle (i0(i) ... 0™ 1(i)) of ¢ in which i appears is of length m.
Since n =,, n + n!, we have 0" (i) = "™ (i) and hence v; = p(&) and w; = q(§) for
some p,q € Cx(X) and [ € [n]. Let

b1 (51) = %(50(1’))7 p2(f§) = Qz‘(%(z‘) (502(1')))7 ceey pm(f:n) = %’(%(z)(- - om—1(3) (fz) . ))

be the n-ary ¥ X-contexts appearing in the above representations of v; and w;. There

are now two possibilities to consider.

1. For every k € [m], pr(&,) = ¢"(&),) for some h > 1. Then v; = g"*(§) and
w; = g™ (&) for some h, > n and h, > n+n!, and hence vA(a) = 0 = w?(a)
for every a € A™.

2. For some k € [m], pu(€]) = p(f(a(€}))) for some p,q € Cx(X). Then v; =

p(f(q(&,))) for some p,q € Cx(X) and w; = p'(f(¢'(&,))) for some p',q" €
Csx(X), and hence v*(a) = 1 = w(a) for every a € A™.

%

To prove that TS""(A) ¢ S, we consider the XX (n + 1)-context
u= <g<€2)7g<§3)7 st ag(gn—i-l)v f(§1)>

If u* = (vy,...,041) and U™ = (wy,... , w,y1), then it suffices to show that
wi # vi. Let a:= (0,0,...,0) € AL Tt is easy to see that

V= (9" (€nr1) 9" (&), -, 9(F(g" (1)), F (g™ (En))),

and hence vf*(a) = 0. On the other hand, it is clear that w; = p(f(g(&1))) for some
p,q € Cx(X), and hence w(a) = 1. 0

%
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10 Definite tree languages

Let us recall that a string language L is definite if there is a k > 0 such that whether
a word of length > k is in L depends on its suffix of length k only (cf. [11, 14]).
Similarly, a tree language T is said to be definite if the membership of a tree t in T'
can be decided by looking at the root segment of ¢ of some given height k. Definite
tree languages were first studied by Heuter [9, 10]. In [24, 25] the variety properties
of the definite tree languages were noted, and in [6] Esik considers definite tree

automadta.

Definition 10.1 For any k& > 0, the k-root rty(t) of a XX -tree ¢ is defined as follows:

(1) rto(t) = e for every t € Tx(X); here € represents the "empty root segment”
that gives no information about the tree.

(2) rty(t) = root(t) for every t € Tx(X).

(3) Let k > 2. If hg(t) < k, then rty(t) = ¢t. If hg(t) > k and t = f(t1,...,tm),
then rty(t) = f(rtg_1(t1), ..., rtp_1(tm))-

For any k& > 0, a tree language T' C Tx(X) is called k-definite if, for any s,t € Tx(X),
if rt(s) = rtg(t), then s € T iff ¢t € T'. A tree language is definite if it is k-definite
for some k£ > 0. The set of k-definite ¥ X-tree languages is denoted by Defs (X, k)
and the set of all definite ¥ X-tree languages by Defy(X). Furthermore, let Defy, =
{Defy(X)}x and Defs (k) = {Defs(X, k)}x denote the families of definite and k-

definite Y-tree languages, respectively. 0

We shall now present a couple of notions and auxiliary results to be used in the
proof of the main result of this section.

If r € C&(X) is an n-ary X X-context in which the variable & appears for some

€ [n], then the &-depth d¢,(r) of r is the distance of the &;-labelled leaf from the

root, i.e.,
(1) de (&) =0, and
(2) if r = f(r1,...,7rm), where & appears in 7;, then d¢, (r) = dg, (r;) + 1.

Lemma 10.2 Let s,t € T5(X) and k > 0. If rti(s) = rty(t), then either s =t
or then there exist an n > 1, an n-ary XX -context r € CE(X) in which all of the
variables &1, . .., &, appear, and s = (s1,...,8u),t = (t1,...,t,) € Ts(X)™ such that
s=s-r,t=t-r, and dg,(r) =k for every i € [n].
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Proof. 1f rty(s) = s or rty(t) = t, i.e., if hg(s) < k or hg(t) < k, then s = ¢t. Hence
we assume that hg(s), hg(t) > k. We can now proceed by induction on & > 0.

(1)
(2)

If k=0,wecanset n=1r=¢,s=(s) and t = (t).

If £ = 1, then root(s) = root(t) = f for some f € ¥,, where m > 1. Hence,
s=f(s1,...,8m)and t = f(t1,...,t,) forsome sy, ..., Sm,t1,...,tm € T5(X),

and we may choose r = f(&1,...,&n), S =(S1,...,Sm) and t = (t1,..., tm).

Let £ > 2 and assume that the assertion holds for all lesser values of k.
Since we assumed that hg(s), hg(t) > k, we have s = f(sy,...,s,) and t =
flt1, ... ty) for some m > 1, f € X, and s1,...,8m,t1,...,tm € Tx(X),
and moreover rtg_;(s;) = rty_1(t;) for every ¢ € [m]. For each i € [m], either
s; = rtg_1(s;) = rtr_1(t;) = t;, or hg(s;), hg(t;) > k—1. In the former case, we
set n; := 0 and r; := s;(= ;). Otherwise, there exist n; > 1, r; € C3(X) and
si,t; € Tx(X)™ such that s; =s; - 1y, t; = t; - 74, and for every j € [n,], the
variable §; appears in r; and d¢, (;) = k—1. The required representations for s
and t can be defined as follows. Firstly, let n := n;+...+n,,, and secondly, let
ro= f(ry,ry,...,r,)(€ C%(X)), where 7 is obtained from 5 by incrementing
the indices of the variables by nq, 7% is obtained from r3 by incrementing the
indices of the variables by n; + ny etc. Finally, let s := s, @& ... & s, and

ti=t,D...0t,,. O

We shall also need the following obvious fact.

Lemma 10.3 Let p € Cx(X) be any XX -context. If de(p) = n, where n > 0,
then there are n XX -contexts py,...,p, € Cx(X), each of &-depth 1, such that

P=pP1"DP2"-.." Dn-

Proof. The lemma can be proved by induction on n > 0. Note that if n = 0, then

p = & and the empty product p; - po - ... - p, is also interpreted as &. O

We shall need also the following property of the semigroups S%(X).

Lemma 10.4 Let uy,...,u, € SE(X) for some nyk > 1. Ifu-... - u =

<w1,...,

Wy), then for each i € [n], either

(1) w; € Tx(X), or

(2) w; € To(X UZE,) \ Tx(X) and hg(w;), dp(w;) > k.
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Proof. Let us fix n > 1 arbitrarily and proceed by induction on k.

For k = 1, we have (wy,...,w,) = u; € SE(X). From the definition of SE(X),
it follows that w; € Tx(X), or hg(w;),dp(w;) > 1 for every i € [n].

Consider any k£ > 1 and assume that the assertion holds for every smaller value of
k. Ifuy-...oupy =v={(v1,...,0,) and ug = (uq,...,u,), then (wy, ..., w,) = v-uy
where w; = v - u; for each i € [n]. If u; € Tx(X), then w; = u; € Tx(X). Assume
then that u; € Ty (X UZ,) \ In(X). If v; € Ty(X) for every variable &; (j € [n])
appearing in u;, then w; = v - u; is also in Tx(X). Otherwise, there is at least one
variable &; in u; such that v; € Tx(X UZ,) \ Tx(X). By the inductive assumption,
hg(v;) > k — 1. Since u; # &, this means that hg(w;) > k. Furthermore,

dp(w;) > dp(u;) + min(dp(vy),...,dp(v,)) > 1+ (k—1) =k,

since dp(u;) > 1 and, by the inductive assumption, dp(v;) > k — 1 for every i € [n].
O

Let us call a ranked alphabet X proper if 3, # () for some m > 2. Note that if
Yo = 0, we excluded the empty leaf alphabet, and hence properness of ¥ guarantees
that for any n > 0, there always is a Y X-tree with variables in which there are
exactly n leaves labeled with a variable. Following Eilenberg [5], we denote by Dy
the VFS of the finite semigroups satisfying the identity v-u;-...-ugy ~uy-... - u,
(k > 0). Note that we included the value k = 0 for which Dy, consists of the trivial

semigroups only.

Proposition 10.5 If ¥ is a proper ranked alphabet, then Defy,(k) = V]%k for every
k> 0.

Proof. Let T be a regular ¥ X-tree language T' for some leaf alphabet X. The
proposition claims that 7' is k-definite if and only if

SETYEvV-u-...-uyp~=uy-... u.

Let A = (A, a, F) be the minimal ¥ X-recognizer of T'. Since S*(T) = T'S*(A), it
suffices to show that T is k-definite if and only if (v-uy-...-up)® = (u-...-up)?
for all v,uy,...,u; € S&(X).

Let us first assume that 7' € Defx(X, k) and consider any v, uy,...,u; € Sa(X).
Let w = (wy,wy) :=uy - ... -up and z = (21, 29) := Vv -uy - ... uz. We should now
prove that wi(a) = z(a) and w3 (a) = 2z (a) for every a € A% Let i =1 or i = 2

and consider any a € A%2. With Lemma 10.4 in mind, we distinguish two cases.
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L. If w; € Te(X), then z; = v - w; = w; and w*(a) = 22 (a) trivially holds.

2. If w; ¢ Tx(X), then hg(w;), dp(w;) > k. By Lemma 8.2, there is a t € Tx(X)?
such that tas = a. Then w(a) =
dp(w;) > k, we have rtg(t - w; - p) = rt(t - v - w; - p) for every p € Cx(X).
Because T'= T'(A) is k-definite, this means that

(t - w;)a and 22(a) = (t - v - w;)a. Since

(Vp € Co(X)) (p™((t - wi)a) € F — pA((t-v-w,)d) € F),

i.e., that (t-w;)a ~a (t-v-w;)a. As A is reduced, we get wh(a) = (t-w;)a =

t- A
(t-v-w)a = z2(a).

Assume now that (v-uy-...-up)® = (uy-...-up)? for all v,uy, ..., u;, € S(X)
and consider any X X-trees s and ¢ such that rtx(s) = rtx(¢). To prove that T is
k-definite, it suffices to show that sa = ta.

If hg(s) < k or hg(t) < k, then s = rtg(s) = rtx(t) = t. Hence we may assume
that hg(s),hg(t) > k and that s # t. By Lemma 10.2, there exist an n > 1, an n-
ary Y.X-context r € C%(X) in which each variable &, ..., &, appears and d¢,(r) = k
for every i € [n], and two n-tuples of X X-trees s = (s1,...,8,),t = (t1,...,t,) €
T (X)"™ such that s =s-r, ¢t =t -r. For each i € [n], let

pi = <t1,...,ti_1,€, 8i+17'--75n> T

be the Y X-context obtained from r when the variables &, ...,& 1,&,&41,---,&n

are replaced by t1,...,t,-1,&, Six1,- ., Sn, respectively. Then

s = pi(s1), p1(t1) = pa(s2), p2(t2) = p3(s3), ..., Pa1(tn1) = Pulsn), Pu(tn) = t.

Hence, it suffices to show that p;(s;)a = p;(t;)a for every i € [n].

Let us consider any i € [n]. By Lemma 10.3, we may write p; = ¢; - ... - g for
some SX-contexts qi,...,q; (of &-depth 1). Since ¥ is proper, we may fix a tree
w € Tx(X U{&}) \ {&} in which & appears exactly once and a binary ¥X-context
z € C%(X) in which & and & both appear. For each j € [k], let q; be the unary
Y. X-context obtained from ¢; by replacing £ with &;. Then

u, = (g, w), ..., u = (g, w), v = (s,2),V = (t;,2) € S&(X),
and hence

= (V- u-...-u



by our assumption about A. But the first components of v-u;-...-u; and v/-u;-...-u;
are easily seen to be the XX-trees s;- ¢} -...-q, = pi(s;) and t;- ¢} - ... - q;, = pi(t;),
respectively, and hence p;(s;)a = p;(t;)a. O

Let us recall that the VFS Dy corresponds in Eilenberg’s variety theory to the
+-variety of k-definite (string) languages (cf. [5], pp. 214-216), and that the union
of the chain Dy € D; C Dy C ... is the VFS D that corresponds to the +-
variety of all definite languages. Since Defy(0) C Defy(1) C Defx(2) C ... and
Defs, = (U, Defs(k), Proposition 10.5 yields a the following corresponding fact.

Corollary 10.6 Defy, = V3 for any proper ranked alphabet 3. O

Finally, let us note that in Proposition 10.5 and Corollary 10.6 we could write
Defs(k) = V§_ and Defy, = V§, respectively, for any n > 2. Actually, the only
modification required in the proof of Proposition 10.5 concerns the definition of the
Y X 2-contexts uy,...,u,, v and v’ that should be made ¥ Xn-contexts. If n > 3, it
suffices that 3, # 0 for some m > 1.

11 Concluding remarks

We have established several basic properties of the new syntactic monoids M™(T")
and semigroups S™(T') of tree languages introduced in this paper. In particular,
we have shown that M"(T) and S™(T') are isomorphic, respectively, to the n-ary
transformation monoid and semigroup of the minimal recognizer of T', as well as
to the m-ary translation monoid and semigroup of the syntactic algebra of T. We
have also shown how any variety of finite monoids or semigroups yields a variety
of tree languages via these syntactic monoids or semigroups, respectively. Hereby,
it turned out that the variety-defining power of our monoids or semigroups lies
properly between that of ordinary syntactic monoids or semigroups and that of
syntactic algebras. However, a great number of natural questions remain open. Let
us note some of them.

In spite of Examples 9.5 and 9.6, we don’t have examples of proper infinite
hierarchies Vy; D Vi D Vir D ... or V§ D V3 D V3 D .... An even more interesting
question concerns the hierarchies of the classes of varieties of tree languages definable
by our syntactic monoids or semigroups. To state this question more precisely, let
VT Ly(Mon,n) denote the class of ¥-VTLs V such that V = Vy; for some VFM
M. Now, the conjecture is that VT'Ly(Mon,n) C VT Ls(Mon,n + 1) for every
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n > 1 and any non-trivial ranked alphabet Y. Similarly, it seems plausible that
VLTs(Sg,n) C VT Ls(Sg,n + 1) holds for the corresponding classes V LTx(Sg,n)
of ¥-VTLs definable by our syntactic semigroups. Another major problem is to
find a characterization of the varieties of the form V{; or Vg, similar to the one
given by Salehi [18, 19] for the varieties of tree languages definable by the classical
syntactic monoids or semigroups of Thomas [27, 28]. Such a result would naturally
also give valuable guidance in the search for further characterizations of varieties of
tree languages in terms of our monoids or semigroups. It seems natural to compute
the monoids M"(T") and semigroups S™(7) as translation monoids or semigroups,
respectively, of the syntactic algebra of T', but since they are likely to be quite big
even in simple cases, we would need efficient ways to extract the crucial information
about them without too much computation. However, it seems that this can be done
only by utilizing the special properties of each variety at hand. Finally, let us note
that since monoids and semigroups are not associated with any particular ranked
alphabet, it would be natural to consider generalized varieties of tree languages (cf.
[25]) associated with a VEM or a VFS via our syntactic monoids or semigroups,

respectively.
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