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Abstract

This paper addresses a general multiobjective optimization problem. One
of the most widely used methods of dealing with multiple conflicting objec-
tives consists of constructing and optimizing a so-called achievement scalar-
izing function (ASF) which has an ability to produce any Pareto optimal
or weakly/properly Pareto optimal solution. The ASF minimizes the dis-
tance from the reference point to the feasible region, if the reference point is
unattainable, or maximizes the distance otherwise. The distance is defined
by means of some specific kind of a metric introduced in the objective space.
The reference point is usually specified by a decision maker and contains
her/his aspirations about desirable objective values. The classical approach
to constructing an ASF is based on using the Chebyshev metric L∞. Another
possibility is to use an additive ASF based on a modified linear metric L1.
In this paper, we propose a parameterized version of an ASF. We introduce
an integer parameter in order to control the degree of metric flexibility vary-
ing from L1 to L∞. We prove that the parameterized ASF supports all the
Pareto optimal solutions. Moreover we specify conditions under which the
Pareto optimality of each solution is guaranteed. An illustrative example
for the case of three objectives and comparative analysis of parameterized
ASFs with different values of the parameter are given. We show that the
parameterized ASF provides the decision maker with flexible and advanced
tools to detect Pareto optimal points, especially those whose detection with
other ASFs is not straightforward since it may require changing essentially
the reference point or weighting coefficients as well as some other extra com-
putational efforts.

Keywords: multiobjective optimization, achievement function, parameter-
ization, Pareto optimal solutions, multiple criteria decision making



1 Introduction

Many real-life optimization problems can hardly be considered as properly
formulated without taking into account their multiple objective nature. This
fact commonly accepted by many experts explains a permanently growing
interest to the area of multiobjective optimization. Considering multiple con-
flicting objectives is advantageous in comparison with optimizing one single
objective only. It is well-known that a solution which is optimal with re-
spect to one single objective may be arbitrarily bad with respect to other
objectives and thus will be unacceptable for the decision maker (DM). While
optimizing one objective usually leads to one optimal solution, multiobjective
optimization involves dealing with a set of Pareto optimal solutions (alter-
natives) that provide different trade-offs between several conflicting objec-
tives. Usually these objectives represent various interests. For example, for
some transportation problems one goal may be oriented on passenger com-
fort while another one may represent convenience for the transport company.
Thus, finding a compromise between several goals may positively influence
interests of all participants involved. The primary goal of multiobjective
optimization is to optimize simultaneously several conflicting objectives in
order to find Pareto optimal solutions acceptable for the DM. Optimality is
usually understood in the sense of Pareto optimality, but other optimality
principles (lexicographic, Smale, Slater, Geoffrion, Borwein, Condorcet etc.
see e.g. [18]) can also be used.

In multiobjective optimization, vectors are regarded as optimal if their
components cannot be improved without deteriorating the others. This con-
cept was firstly introduced by Vilfredo Pareto in [15]. The Pareto optimality
principle generally describes an equilibrium situation such that the value of
no objective for any Pareto optimal solution can be improved without getting
the value of another objective deteriorated.

There is a large variety of methods suggested for solving multiobjective
optimization problems (see, e.g. [3, 8, 18, 20]). Many of these methods are
based on a scalarization approach. Via scalarization, the problem is trans-
formed into a single objective optimization problem involving possibly some
parameters or additional constraints. In most scalarizing functions, addi-
tional information is requested from the DM about her/his individual pref-
erences and further taken into consideration. After the scalarization phase,
the widely developed theory and methods of single objective optimization
are available.

Multiobjective optimization methods utilize different scalarizing functions
in different ways. The input requested from the DM may consist of trade-
off information, marginal rates of substitution or desirable objective function
values (see e.g. [7]). Furthermore, the scalarization may be performed once or
repeatedly as a part of an iterative process. When methods are introduced
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in the literature, the optimality of the results produced is usually proved.
On the other hand, it is not so common to justify why some specific form
of scalarization is used. The choice of the particular scalarization approach
has to be done very carefully, since different scalarizations typically produce
different Pareto optimal solutions.

One of the most widely used approaches of dealing with multiple conflict-
ing objectives involves constructing and optimizing a so-called achievement
scalarizing function (ASF) [8, 23, 25] which has an ability to produce any
(properly) Pareto optimal or weakly Pareto optimal solution. The ASF min-
imizes the distance from the reference point (specified by the DM) to the
feasible region, if the reference point is unattainable, or maximizes the dis-
tance otherwise. The distance is defined by means of some appropriate metric
introduced in the objective space. The classical approach to constructing an
ASF is based on using Chebyshev L∞ and linear L1 metrics (see e.g. [8]).

Our work is inspired by [17] where an achievement scalarizing function
based on using a modified linear metric was proposed. As it was truly noticed
[17], there might be some situations where the DM may want to minimize
not only the maximal unwanted deviation from the reference point, but the
weighted sum of unwanted deviations instead. We enhance this idea of [17] by
assuming that the DM’s wishes can be even more complicated involving more
advanced scalarization mechanisms. So, in our paper we extend some general
ideas of [17] and propose a parameterized version of an ASF. We introduce an
integer parameter in order to control the degree of metric flexibility varying
from L1 to L∞. We prove that the parameterized ASF is able to detect any
Pareto optimal solutions. Moreover we specify conditions under which the
Pareto optimality of each solution produced by the parameterized ASF is
guaranteed.

The paper is organized as follows. Section 2 is devoted to the main
definitions and concepts. In Section 3 we briefly give a description for a class
of methods based on the concept of a reference point. In Section 4 we propose
a new approach to creating an achievement scalarizing function which is
based on parameterization. Theoretical justification of the approach is given.
An illustrative example for the case of a three-dimensional objective space is
presented in Section 5. Final remarks and open questions are concluded in
Section 6.

2 Preliminaries and basic definitions

Let X be an arbitrary set of feasible solutions or a set of decision vectors.
Let a vector valued function f : X → Rm consisting of m ≥ 2 objective
functions be defined on the set of feasible solutions:

f(x) = (f1(x), f2(x), ..., fm(x)).
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Without loss of generality we assume that every objective function is subject
to be minimized on the set of feasible solutions:

fi(x) −→ min
x∈X

, i ∈ Nm = {1, 2, ..., m}.

Further, throughout the paper we will refer to Rm as an objective space and
vector f(x) as an objective vector.

We also assume that
(i) every objective function fi is a lower semicontinuous function;
(ii) X is a nonempty compact set.

We denote by

M i(X) = argmin
x∈X

fi(x), i ∈ Nm

a set of minima of the i-th objective function.

Evidently, if

∩m
i=1 M i(X) 6= ∅,

then there exists at least one solution which delivers a minimum for all ob-
jectives. Such a solution can be called an ideal solution. An optimization
problem which does not contain ideal solutions is called non-degenerate
and objectives are at least partly conflicting. Simultaneous optimization of
several objectives for non-degenerate multiobjective optimization problems
is not a straightforward task, and we need to define optimality for such prob-
lems. In what follows, we consider non-degenerate problems.

The following definition formalizes the concept of Pareto optimality.

Definition 1 A decision vector x∗ ∈ X is Pareto optimal if there does
not exist another x ∈ X such that fi(x) ≤ fi(x

∗) for all i ∈ Nm and fj(x) <

fj(x
∗) for at least one index j.

We can denote the set of Pareto optimal decision vectors as P m(X).
Furthermore, the set {f(x) ∈ Rm : x ∈ P m(X)} is called the Pareto
frontier. For two vectors a, b ∈ Rm, we write a ≤ b if ai ≤ bi for all i ∈ Nm.
Then we say that one vector a dominates another vector b if a ≤ b and
a 6= b. Thus, the set of Pareto optimal solutions is simply a subset of feasible
solutions whose images are non-dominated in the objective space.

The optimality in a multiobjective case can be introduced in different
ways. The following definition was firstly proposed by Moron Slater in [19].

Definition 2 A decision vector x ∈ X is weakly Pareto optimal if there
does not exist another x ∈ X such that fi(x) < fi(x) for all i ∈ Nm.
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We can denote the set of weakly Pareto optimal decision vectors or Slater
set as Slm(X). For two vectors a, b ∈ Rm, we write a < b if ai < bi for all
i ∈ Nm. Then we say that one vector a strictly dominates another vector
b if ai < bi for all i ∈ Nm. Thus, the set of weakly Pareto optimal solutions
is a subset of feasible solutions whose images are strictly non-dominated in
the objective space. An objective vector f(x) is (weakly) Pareto optimal if
the corresponding decision vector x is (weakly) Pareto optimal.

Under the assumptions (i)-(ii) mentioned above in the problem formu-
lation, we know that the set of Pareto optimal solutions is non-empty, i.e.
there always exists at least one Pareto optimal solution (see [18], Corollary
3.2.1). Obviously, the set of Pareto optimal solutions is a subset of weakly
Pareto optimal solutions.

Even though the concept of Pareto optimality corresponds to the intuitive
idea of a compromise and rational behavior of the DM, we deal with both
Definitions 1 and 2 because weakly Pareto optimal solutions are sometimes
computationally more convenient to produce than Pareto optimal solutions.

Lower and upper bounds on objective values of all Pareto optimal solu-
tions are given by the ideal and nadir objective vectors f I and fN , re-
spectively. The components fi of the ideal (nadir) objective vector f I =
(f I

1 , ..., f I
m) (fN = (fN

1 , ..., fN
m )) are obtained by minimizing (maximizing)

each of the objective functions individually subject to the set of Pareto op-
timal solutions:

f I
i = min

x∈P m(X)
fi(x), i ∈ Nm,

fN
i = max

x∈P m(X)
fi(x), i ∈ Nm.

For calculating the ideal objective vector, minimization over the set of
Pareto optimal solutions can be replaced by minimization over the set of all
feasible solutions. Such a replacement allows to calculate the ideal objective
vector without having explicit information about the entire Pareto optimal
set. Due to this, in fact the concept of an ideal objective vector coincides with
the concept of an ideal solution introduced above. Unfortunately, calculating
the nadir objective vector is not that simple. The upper bounds of the
Pareto optimal set, that is, the components of a nadir objective vector fN ,
are hard to compute for problems with more than two objectives. The nadir
objective vector can, however, be estimated from a payoff table, but this
estimation might be not very reliable (see e.g. [8]). Recently, some approaches
have been proposed as efficient approximation techniques to obtain a good
approximation of the nadir objective vector (see e.g. [2]).

Sometimes, a vector strictly better than f I is required. This vector is
called a utopian objective vector and denoted by fU . In practice, the com-
ponents of the utopian objective vector are calculated by subtracting some
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small positive scalar from the components of the ideal objective vector:

fU = f I − ε · 1(m),

where 1(m) is an m-dimensional vector of all ones and ε is a small positive
parameter.

There exists a large variety of methods proposed to deal with problems in-
volving multiple objectives. As mentioned in the introduction, a widely used
approach for solving multiobjective optimization problems is scalarization,
that is, converting the multiple objectives together with possible preference
information into one scalarized objective. Two major requirements are set
for a scalarization function in order to provide method completeness [18]:

• it should be able to cover the entire set of Pareto optimal solutions,
and

• every solution found by means of scalarization should be (weakly)
Pareto optimal.

The mechanism of scalarization is a key issue behind many different methods
for multiobjective optimization reported in the literature.

The simplest approach is a linear scalarization, also known as the
weighting method [8, 20]. This scalarization satisfies the two requirements
above for convex optimization problems, but not for nonconvex and discrete
unsupported cases. A major incremental complication of these cases is that
not all Pareto optimal solutions are reachable as optimal solutions by means
of linear scalarization. Such solutions are referred to as unsupported solutions
in the literature (see, e.g. [20]).

A scalarization approach which is applicable for both convex and non-
convex problems is the minimization of some sort of distance from an ideal
solution. As we already mentioned earlier, in the case of conflicting objec-
tives, the ideal objective vector is not feasible, but it can serve as a reference
point, with a goal to find solutions which are as close as possible to the ideal
values with respect to the chosen distance measure. An example of this ap-
proach is the so-called compromise programming also known as a method of
global criterion where the Lp metric (1 ≤ p ≤ ∞) can be used to measure the
distance. If weighting coefficients are used in the metric, we get a so-called
method of weighted metrics or weighted compromise programming. The two
requirements set on scalarization functions are satisfied only if L∞, that is,
the Chebyshev metric is used with the utopian objective vector as a reference
point. For more advanced details on properties of compromise programming
and Lp problems see [8] and references therein.

The usage of compromise programming has some limitations. One of the
most important restrictions is that the usage of the ideal objective vector does
not incorporate the preference information. To enable the DM’s preferences
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to be included one can use a reference point consisting of aspiration levels
instead of the ideal objective vector. If we ask the DM to specify the reference
point, we can take her/his preferences into account and hopefully generate
more satisfactory solutions. The reference point reflects the DM’s estimations
about the desirable objective values. However, if we allow the DM to set the
reference point, we must replace the Lp metrics as distance measures by
achievement scalarizing functions. In this way we can guarantee that the
method works for both achievable and inachievable reference points [8].

In what follows, we concentrate on reference point-based scalarizing func-
tions.

3 Reference point based approaches and

achievement scalarizing functions

In reference point based methods (see e.g. [23, 25, 26]), the DM specifies a
reference point fR consisting of desirable or reasonable aspiration levels fR

i

for each objective function fi, i ∈ Nm. This reference point only indicates
what kind of objective function values the DM prefers.

Achievement scalarizing functions (ASFs) have been introduced by
A.P. Wierzbicki in [23]. The scalarized problem is given by

min
x∈X

sR(f(x)). (1)

Certain properties of ASFs guarantee that problem (1) yields Pareto op-
timal solutions.

Definition 3 [25] An ASF sR : Rm → R is said to be
1. Increasing:
if for any y1, y2 ∈ Rm, y1

i ≤ y2
i for all i ∈ Nm, then sR(y1) ≤ sR(y2).

2. Strictly increasing:
if for any y1, y2 ∈ Rm, y1

i < y2
i for all i ∈ Nm, then sR(y1) < sR(y2).

3. Strongly increasing:
if for any y1, y2 ∈ Rm, y1

i ≤ y2
i for all i ∈ Nm and y1 6= y2, then

sR(y1) < sR(y2).

Obviously, any strongly increasing ASF is also strictly increasing, and
any strictly increasing ASF is also increasing. The following theorems de-
fine necessary and sufficient conditions for an optimal solution of (1) to be
(weakly) Pareto optimal.

Theorem 1 [24], [25]
1. Let sR be strongly (strictly) increasing. If x∗ ∈ X is an optimal solution
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of problem (1), then x∗ is (weakly) Pareto optimal.
2. If sR is increasing and the solution of (1) x∗ ∈ X is unique, then x∗ is
Pareto optimal.

Theorem 2 [8]
If sR is strictly increasing and x∗ ∈ X is weakly Pareto optimal, then it is a
solution of (1) with fR = f(x∗) and the optimal value of sR is zero.

The advantage of ASFs is that any (weakly) Pareto optimal solution
can be obtained by moving the reference point only. It was shown in [24]
that the solution of an ASF depends Lipschitz continuously on the reference
point. In general, ASFs are conceptually very appealing to generate Pareto
optimal solutions and they overcome most of the difficulties arising with other
methods [8] in the class of methods for generating Pareto optimal solutions.

The most well-known strictly increasing ASF is of Chebyshev type:

s∞R (f(x), λ) = max
i∈Nm

λi(fi(x) − fR
i ), (2)

where λ is m-vector of non-negative coefficients used for scaling purposes,
that is, for normalizing objective functions of different magnitudes.

Note that here we do not use absolute value because we want to ensure
that (weakly) Pareto optimal solutions are produced independently of the
attainability or unattainability of the reference point. Indeed, we are in fact
seeking for solutions which either minimize the distance from the reference
point to the feasible region, if the reference point is unattainable, or maximize
the distance otherwise.

The most well-known strongly increasing ASF is of augmented Chebyshev
type:

s∞+1
R (f(x), λ) = ρ

∑

i∈Nm

λi(fi(x) − fR
i ) + max

i∈Nm

λi(fi(x) − fR
i ), (3)

where ρ > 0 is a small parameter.

Note that (3) can be viewed as a parameterized version of s∞R with a con-
tinuous parameter ρ > 0. While the main term max

i∈Nm

λi(fi(x)− fR
i ) produces

weakly Pareto optimal solutions, the augmented term ρ
∑

i∈Nm

λi(fi(x) − fR
i )

is used at the same time to guarantee proper Pareto optimality of the ob-
tained solutions (for the definition of proper Pareto optimality see e.g. [8]).
In terms of [22], functions (2) and (3) are called order-representing and
order-approximation functions, respectively. There are many variants and
refinements of these ASFs which have been designed to guarantee Pareto op-
timality [5, 12].
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Among others, some questions concerning ASFs based on the L1 metric
are discussed in [17] and an additive ASF based on the L1 metric is proposed
as

ŝ1
R(f(x), λ) =

∑

i∈Nm

λi|fi(x) − fR
i |. (4)

It is evident that

s∞+1
R (f(x), λ) = ρŝ1

R(f(x), λ) + s∞R (f(x), λ)

in the case where the reference point dominates or is equal to the ideal
solution.

Notice that (4) requires the reference point not to be strictly dominated
by any feasible point in order to work properly. However, even in the case of
non-dominated reference point, the solution produced may be not the best
one due to excessive penalization of ”good” (negative) deviations (for more
details see Figure 2 in [17]). Penalizing ”good” deviations makes no sense
unless the reference point is attainable. To overcome the last-mentioned
drawback, a modified additive ASF based on the L1 metric is proposed in
[17] in the following form

s1
R(f(x), λ) =

∑

i∈Nm

max [λi(fi(x) − fR
i ), 0]. (5)

Note that s1
R(f(x), λ) ≥ 0. This function is still sensitive to the location of

the reference point (i.e. being nondominated by any feasible point), however
it maintains a better penalization mechanism. Indeed, it allows penalizing
”bad” (positive) deviations from the reference point but at the same time
forbids penalizing ”good” (negative) deviation.

The following properties of s1
R(f(x), λ) were proved in [17].

Theorem 3 [17] Given problem (1) with ASF defined by (5), let fR be a
reference point such that fR is not dominated by an objective vector of any
feasible solution of problem (1). Also assume λi > 0 for all i ∈ Nm. Then
any optimal solution of problem (1) is a weakly Pareto optimal solution.

It is easy to see by checking the proof in [17] (see Theorem 2) that the
result stated above is also valid in the case if the reference point is not strictly
dominated by an objective vector of any feasible solution of problem (1), i.e.
if there exist no feasible x ∈ X with fi(x) < fR

i for all i ∈ Nm.

Theorem 4 [17] Given problem (1) with ASF defined by (5) and any ref-
erence point fR, assume λi > 0 for all i ∈ Nm. Then among the optimal
solutions of problem (1) there exists at least one Pareto optimal solution. If
the optimal solution of problem (1) is unique, then it is Pareto optimal.
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Based on the above results, we may conclude that s1
R(f(x), λ) is sensitive

to the correct choice of the reference point fR, i.e. some sort of underestima-
tion of aspiration levels is required from the DM to guarantee weak Pareto
optimality. In case we want to guarantee Pareto optimality, an augmentation
term can be used as in (3). Notice that earlier we mentioned ASFs that work
for any kind of reference point, whereas s1

R(f(x), λ) is sensitive to the choice
of a reference point. The assumption that the reference point should not be
dominated by an objective vector of any feasible solution is the price the DM
has to pay if (s)he wants to minimize the aggregated deviations from the
reference point. Nevertheless, the good fact about s1

R(f(x), λ) that, under
the same set of weighting coefficients, it allows to produce solutions which
are significantly different from those produced by ”classical” ASFs. These
solutions represent a different preference structure and therefore could be a
good alternative to those solutions obtained based on s∞R (f(x), λ).

In the following section we introduce a parameterized ASF, depending
on a parameter q ∈ Nm, whose extreme cases coincide with s1

R(f(x), λ) for
q = 1, and s∞R (f(x), λ) for q = m, respectively.

4 Parameterized achievement scalarizing func-

tions

In this section we extend ideas of [17] by introducing a parameterization
based on the notion of embedded subsets. We introduce an integer parameter
q ∈ Nm in order to control the degree of metric flexibility varying from L1 to
L∞.

Let Iq be a subset of Nm of cardinality q. A parameterized ASF is
defined as follows:

s̃
q
R(f(x), λ) = max

Iq⊆Nm: |Iq|=q

{

∑

i∈Iq

max [λi(fi(x) − fR
i ), 0]

}

, (6)

where q ∈ Nm and λ = (λ1, ..., λm), λi > 0, i ∈ Nm.
Notice that

• for q ∈ Nm: s
q
R(f(x), λ) ≥ 0;

• for q = 1: s̃1
R(f(x), λ) = max

i∈Nm

max [λi(fi(x) − fR
i ), 0] ∼= s∞R (f(x), λ);

• for q = m: s̃m
R (f(x), λ) =

∑

i∈Nm

max [λi(fi(x) − fR
i ), 0] = s1

R(f(x), λ).
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Here ”∼=” means equality in the case where there exist no feasible solutions
x ∈ X which strictly dominate the reference point i.e. such that fi(x) < fR

i

for all i ∈ Nm.
The problem to be solved is

min
x∈X

s̃
q
R(f(x), λ). (7)

It is obvious that using problem (7), every feasible solution of the multi-
objective problem (including Pareto optimal) is supported. Indeed, given any
x ∈ X, the reference point fR = f(x) and a vector of weighting coefficients
λ > 0, the optimal solution to problem (7) is x with the optimal value of
s̃

q
R(f(x), λ) equals zero. Thus, the first of the two requirements, mentioned

in Section 2, holds.
For any x ∈ X, denote Ix = {i ∈ Nm : fR

i ≤ fi(x)}. The following result
is analogous to Theorem 3.

Theorem 5 Given problem (7), let fR be a reference point such that there
exists no feasible solution whose image strictly dominates fR. Also assume
λi > 0 for all i ∈ Nm. Then any optimal solution of problem (7) is a weakly
Pareto optimal solution.

Proof. The proof will be given by contradiction. Let x∗ be an optimal
solution of problem (7). We assume that x∗ is not weakly Pareto optimal.
Then there exists a feasible solution x′ ∈ X such that fi(x

′) < fi(x
∗) for all

i ∈ Nm.
Notice that Ix′ ⊆ Ix∗, and Ix′ 6= ∅ under the assumption that there exists

no feasible solution whose image strictly dominates the reference point. Then

s̃
q
R(f(x′), λ) = max

Iq⊆Nm: |Iq|=q

{

∑

i∈Iq

max [λi(fi(x
′) − fR

i ), 0]
}

= max
Iq⊆Nm: |Iq|=q

{

∑

i∈Iq∩Ix′

λi(fi(x
′) − fR

i )
}

< max
Iq⊆Nm: |Iq|=q

{

∑

i∈Iq∩Ix′

λi(fi(x
∗) − fR

i )
}

≤ max
Iq⊆Nm: |Iq|=q

{

∑

i∈Iq∩Ix∗

λi(fi(x
∗) − fR

i )
}

= max
Iq⊆Nm: |Iq|=q

{

∑

i∈Iq

max [λi(fi(x
∗) − fR

i ), 0]
}

= s̃
q
R(f(x∗), λ).

The obtained inequality s̃
q
R(f(x′), λ) < s̃

q
R(f(x∗), λ) contradicts with the

assumption of x∗ being an optimal solution of problem (7). This completes
the proof.

In the way similar to the proof of Theorem 4 (Theorem 1 in [17]) the
following fact can be proven.
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Theorem 6 Given problem (7), let fR be any reference point. Also assume
λi > 0 for all i ∈ Nm. Then among the optimal solutions of problem (7)
there exists at least one Pareto optimal solution.

Theorem 6 implies that the uniqueness of the optimal solution guarantees
its Pareto optimality. Notice that the facts stated above about solutions of
parameterized ASFs also implicitly follow from the results of Theorem 1. To
show this, it is sufficient to prove that s̃

q
R(f(x), λ) is increasing. Moreover, it

is strictly increasing if there are no feasible solutions strictly dominating fR.
Indeed, take x1 ∈ X and x2 ∈ X with fi(x1) ≤ fi(x2) for all i ∈ Nm.

Since λi > 0 for all i ∈ Nm, then

s̃
q
R(f(x1), λ) = max

Iq⊆Nm: |Iq|=q

{

∑

i∈Iq

max [λi(fi(x1) − fR
i ), 0]

}

≤ max
Iq⊆Nm: |Iq|=q

{

∑

i∈Iq

max [λi(fi(x2) − fR
i ), 0]

}

= s̃
q
R(f(x2), λ),

i.e. s̃
q
R(f(x), λ) is increasing.

Moreover, if we take x1 ∈ X and x2 ∈ X with fi(x1) < fi(x2) for all
i ∈ Nm, then, provided that there exists no solution x ∈ X with fi(x) < fR

i

for all i ∈ Nm, we get Ix1
⊆ Ix2

and Ix1
6= ∅, and thus, recalling that λi > 0

for all i ∈ Nm, we deduce the following

s̃
q
R(f(x1), λ) = max

Iq⊆Nm: |Iq|=q

{

∑

i∈Iq

max [λi(fi(x1) − fR
i ), 0]

}

= max
Iq⊆Nm: |Iq|=q

{

∑

i∈Iq∩Ix1

λi(fi(x1) − fR
i )

}

< max
Iq⊆Nm: |Iq|=q

{

∑

i∈Iq∩Ix2

λi(fi(x2) − fR
i )

}

= max
Iq⊆Nm: |Iq|=q

{

∑

i∈Iq

max [λi(fi(x2) − fR
i ), 0]

}

= s̃
q
R(f(x2), λ),

i.e. s̃
q
R(f(x), λ) is strictly increasing.

Thus, Theorems 5 and 6, describe the conditions under which the second
of of the two requirements, mentioned in Section 2, holds. So, we have now
considered both major requirements.

Various Pareto optimal solutions can be detected not only by moving
the reference point itself, but also by manipulating the weighting coefficients
while a reference point is remaining fixed. In this paper, we consider the
simplest case where weighting coefficients are fixed for scaling (i.e. normal-
izing). Alternatively, the weighting coefficients may e.g. reflect the level of
penalization for ”bad” deviations which the DM wants to introduce into the
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problem. Different ways of reflecting preference information and manipulat-
ing weighting coefficients of parameterized ASFs may be a subject for future
research similar to what has been done in [6].

Parameterized ASFs can be potentially used either for some particular
values of q or for all q ∈ Nm simultaneously. The simplest but the most
computationally demanding way is to calculate ASFs for all q ∈ Nm. Since
the solution of a problem with a smaller q-value unlikely provides any help
for the solution of the problem with a larger q-value and vice versa, it seems
realistic to use parallel computation for these purposes. The choice of a
particular q-value can be done if some extra information is available (at least
locally) about the shape of the Pareto frontier as well as the shape of the
R-level set (i.e. a set of points for which the distance from the reference point
is equal to R in terms of the corresponding ASF) of the parameterized ASF
for the given q-value. In general, getting such information may be a very
complicated task and practically can be potentially fulfilled under strong
assumptions like e.g. objective functions convexity etc.

Notice also that the choice of parameter q affects directly the shape of
R-level that may vary from being sharp in the case of s̃1

R(f(x), λ) to linearly
flat as in the case of s̃m

R (f(x), λ). This helps the ASF to penetrate into the
areas where lots of non-supported solutions are accumulated.

As in the case with the additive ASF s1
R(f(x), λ) developed in [17], the

parameterized ASF s̃
q
R(f(x), λ) inherits the similar limitation: one has to

keep always in mind that the reference point should not be strictly dominated
by some feasible point. However if this is the case, the point which strictly
dominates the reference point could be easily detected, and the problem can
be overcame as pointed out in [17].

Problem (7) is non-differentiable due to the presence of the min-max term.
It can be solved, for example, with efficient bundle methods (see e.g. [14]).
However if (7) is nonconvex, only local optima (with no guarantee of being
global optima in general) can be produced with these methods. Instead, (7)
can be turned into an integer differentiable form, which is suitable for any
mixed-integer programming (MIP) solver [21], as follows:

min α

subject to
α ≥

∑

i∈I
q
s

λi(1 − zs
i )(fi(x) − fR

i ) s = 1, ...,
(

m

q

)

fR
i − fi(x) ≤ zs

i M i ∈ Iq, s = 1, ...,
(

m

q

)

fR
i − fi(x) ≥ (zs

i − 1)M i ∈ Iq, s = 1, ...,
(

m

q

)

x ∈ X, zs
i ∈ {0, 1}, i ∈ Nm, s = 1, ...,

(

m

q

)

.

(8)

Here s is used to enumerate all q-element subsets Iq
s of an m-element set

Nm; for any i ∈ Iq
s , zs

i is a binary variable; M is a sufficiently large number

12



to ensure that zs
i = 1 iff fR

i − fi(x) > 0, and zs
i = 0 iff fR

i − fi(x) ≤ 0. It is
easy to see that the optimal solution of problem (8) is the feasible solution
that optimizes the parameterized ASF (6). However, the problem of finding
a global optimum cannot be resolved easily in a general case.

This mixed-integer programming model contains 4 ·
(

m

q

)

constraints, so

one may expect the increase of computational time while
(

m

q

)

grows up. A
large number of constraints can be efficiently treated by a MIP solver if the
constraint propagation mechanisms (see e.g. [16]) are incorporated. Instead,
solvers not assuming differentiability can be used.

Despite increasing computational efforts, the parameterized ASFs present
a new approach (based on parameterization) how to generate systematically
different ASFs which may potentially produce different solutions with dif-
ferent q-values. Further understanding of how different q-values produce
different shapes of R-level sets may shed extra light on the practical applica-
tion of the parameterized ASFs. This could be a challenging and promising
topic for further research. In the next section we slightly touch this and other
questions for the simplest case with three objective functions.

5 Case of three objectives

Because the formulation of the proposed ASF may seem rather complicated
and to illustrate some ideas mentioned above, in this section we consider a
special case of three objective functions, that is, m = 3 and write explicitly
what the ASFs look like in this situation. Then, (6) has the following form:

s̃
q
R(f(x), λ) = max

Iq⊆{1,2,3}: |Iq|=q

{

∑

i∈Iq

max [λi(fi(x) − fR
i ), 0]

}

, (9)

where q = 1, 2, 3 and λ = (λ1, λ2, λ3), λi > 0, i ∈ N3.
In other words, we have:

for q = 1:

s̃1
R(f(x), λ) = max

{

max [λ1(f1(x) − fR
1 ), 0],

max [λ2(f2(x) − fR
2 ), 0],

max [λ3(f3(x) − fR
3 ), 0]

}

= max
{

λ1 max [f1(x) − fR
1 , 0],

λ2 max [f2(x) − fR
2 , 0],

λ3 max [f3(x) − fR
3 , 0]

}

;

for q = 2:

13



s̃2
R(f(x), λ) = max

{

max [λ1(f1(x) − fR
1 ), 0] + max [λ2(f2(x) − fR

2 ), 0],

max [λ1(f1(x) − fR
1 ), 0] + max [λ3(f3(x) − fR

3 ), 0],

max [λ2(f2(x) − fR
2 ), 0] + max [λ3(f3(x) − fR

3 ), 0]
}

= max
{

λ1 max [f1(x) − fR
1 , 0] + λ2 max [f2(x) − fR

2 , 0],

λ1 max [f1(x) − fR
1 , 0] + λ3 max [f3(x) − fR

3 , 0],

λ2 max [f2(x) − fR
2 , 0] + λ3 max [f3(x) − fR

3 , 0]
}

;

for q = 3:

s̃3
R(f(x), λ) = max [λ1(f1(x) − fR

1 ), 0]
+ max [λ2(f2(x) − fR

2 ), 0] + max [λ3(f3(x) − fR
3 ), 0]

= λ1 max [f1(x) − fR
1 , 0]

+λ2 max [f2(x) − fR
2 , 0] + λ3 max [f3(x) − fR

3 , 0].

For calculating examples which appear later in this section we used MAPLE

11 software with the built-in solver which uses sequential quadratic program-
ming methods (see e.g. [4]).

Now we give a graphical interpretation of level sets in our 3-dimensional
space. To simplify illustration, we restrict the view inside the image space
within a rectangular {f = (f1, f2, f3)

T : −2 ≤ fi ≤ 1, i ∈ N3}. Let us
assume that the reference point is the origin, i.e. fR = (0, 0, 0)T . Assume
also that all objective functions are identity mappings, i.e. we can operate
in objective space only. We are interested in depicting a 1-level set, i.e.
a set of points (f1, f2, f3)

T for which the distance from the reference point
(coordinate origin) is equal to 1 with respect to the corresponding ASF. The
case when all weighting coefficients are equal to one, i.e. λ1 = λ2 = λ3 = 1,
is considered. Figures 1, 2 and 3 shows the 1-sets for s̃1

R(f, λ), s̃2
R(f, λ) and

s̃3
R(f, λ), respectively. While the 1-level set for s̃1

R(f, λ) looks very simple and
similar to what we always have in the case of the Chebyshev type ASF, the
constructions of 1-level sets for s̃2

R(f, λ) and s̃3
R(f, λ) are more sophisticated.

Let us look at the constructions in more details. Those faces which are
parallel to the faces f1f2, f1f3 or f2f3 are formed if one of the three maxima
equals to one, while the other two are less than one or equal to zero. Those
faces which are sloped and parallel to the coordinate rays are formed if a
sum of two of the three maxima equals to one, while the third one is less
than one or equal to zero. The difference between 1-level sets for s̃2

R(f, λ)
and s̃3

R(f, λ) lies in constructing of faces that correspond to the case where
all three maxima are positive and their sum has to be equal to one. For
s̃3

R(f, λ), this forms a flat triangle face (see Figure 4), whereas for s̃2
R(f, λ) a

flat triangle transforms into a triangle pyramid with a top vertex (1
2
, 1

2
, 1

2
) (see
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Figure 5). This top vertex corresponds to the case when all three maxima
participating in s̃2

R(f, λ) are equal to 1
2
, and hence adding any two of them

will give us distance one.
The natural question which may arise is the following: why do we need

different ASFs? Is it not enough to have one ASF only? We can answer this
question by establishing some parallels between multiobjective optimization
and art. For example, in art drawing, a painter may need a large variety
of brushes (different in size, form etc) to deal with the most delicate de-
tails of her/his painting, e.g. to draw one small point without touching and
disturbing neighboring points. The situation looks similar to multiobjective
optimization where, if a DM wants to detect one particular point (maybe
with some pre-specified properties) on the Pareto front, she/he has to vary
the reference point or, alternatively, may need a different shape of R-level
sets of the ASF to perform this task correctly. Certainly, the question which
shape of R-level sets of the ASF could be the best fit is generally quite com-
plicated, so the answer may require additional computational efforts or extra
knowledge about the structure of the Pareto frontier.

One more issue which has to be emphasized is that, as it can be seen
from (see Figure 4), the linear (flat triangle) part of the R-level becomes
larger when R is increasing, i.e. when the reference point is moving far from
the place of potential contact of R-level with the image of the feasible set.
Accordingly, the penetrating of the additive ASF towards the location of
non-supported solutions may be complicated, while the parameterized ASF
with q 6= m may show better performance in this case.

One more reason why using various ASFs may be potentially advanta-
geous is the following. The efficiency of some interactive methods (see e.g.
[10], [8] for more details about interactive methods in multiobjective opti-
mization) can be increased while different variants of ASFs are used produc-
ing different but still ’good’ solutions. For example, the idea of formulating
several ASFs, all using the same preference information from the DM, is effi-
ciently used in the synchronous NIMBUS approach presented in [11]. Under
this approach, the method developers do not make the choice between dif-
ferent ASFs but calculate the results of different ASFs and leave the final
decision to the DM. The idea of using the parameterized ASF could be im-
plemented as follows: once s̃1

R(f(x), λ) and s̃m
R (f(x), λ) produced solutions,

which are significantly different, the middle point with respect to q param-

eterized ASF s̃
⌊m+1

2
⌋

R (f(x), λ) is used to calculate one more solution to be
compared with the two already produced. Such dichotomy is continued un-
til the solutions produced become insignificantly different or just the same.
Thus, a larger variety of significantly different solutions can be produced
under the same preference information.

The following example shows both graphically and numerically that the
solutions obtained by means of s̃

q
R(f(x), λ) are generally different for all q ∈
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Nm. Let us minimize

f(x) = (f1(x), f2(x), f3(x))

= ((x1 + 1)2 + (x2 − 5)2, (x1 − 3)2 + (x2 + 3)2, (x1 − 4)2 + (x2 + 2)2)

subject to

x1 + 2x2 ≤ 10,

1 ≤ x1 ≤ 10, 1 ≤ x2 ≤ 4.

The ideal objective vector is f I = (5, 16, 9), which is also assumed to
be selected as a reference point fR. We define weighting coefficients in a
standard way to provide objective normalization: λ1 = 1

fI
1

, λ2 = 1
fI
2

, λ3 = 1
fI
3

,

i.e. λ = (0.20000, 0.06250, 0.11111).

Then the optimal solutions of (7) for different values of q ∈ N3 are the
following:

x′ = argmin
x∈X

s̃1
R(f(x), λ) = (1.13525, 2.01064), s̃1

R(f(x′), λ) = 1.69911,

f(x′) = (13.49556, 28.58381, 24.29202);

x′′ = argmin
x∈X

s̃2
R(f(x), λ) = (1.00000, 2.44653), s̃2

R(f(x′′), λ) = 3.30089,

f(x′′) = (10.52021, 33.66468, 28.77162);

x′′′ = argmin
x∈X

s̃1
R(f(x), λ) = (1.57993, 1.15613), s̃3

R(f(x′′′), λ) = 4.11524,

f(x′′′) = (16.34582, 24.37556, 20.90344).

These three optimal solutions together with the ideal objective vector (the
black point outside the feasible region) are depicted in Figure 6. Note that
the solution f(x′′) is significantly different from f(x′′′) and f(x′), and it can
not be obtained easily from the other two e.g. by a linear combination.

It is clear that different ASFs may have different computational costs
(see e.g. [13]). It is also obvious that using extra ASFs within interactive
methods may lead to the increase of computational efforts at each iteration
of the interactive process. However, if available, parallel computing can be
exploited, since different ASFs are independent of each others. At the same
time, using ASFs simultaneously may reduce the number of iterations needed
for the iterative solution process to converge, i.e. to find a solution which is
most preferred by the DM. Reducing the number of iterations may decrease
the total time of the interactive process, since exchanging information with
the DM is sometimes much more time consuming than the optimization itself.
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Figure 1: 1-level set for s̃1
R(f(x), λ)

Figure 2: 1-level set for s̃2
R(f(x), λ)
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Figure 3: 1-level set for s̃3
R(f(x), λ)

Figure 4: Zooming 1-level set for s̃3
R(f(x), λ)
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Figure 5: Zooming 1-Level set for s̃2
R(f(x), λ)

Figure 6: Ideal vector and three different solutions produced by
s̃1

R(f(x), λ), s̃2
R(f(x), λ), s̃3

R(f(x), λ).
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6 Conclusion

In this paper we have proposed an approach how to parameterize achievement
scalarizing functions based on the introduction of a discrete integer parameter
which varies from 1 to m, where m represents the number of objectives.
We have proven the ability of the parameterized ASF to produce weakly
Pareto optimal solutions assuming the reference point is selected to be non-
dominated by any feasible solution.

We have illustrated that the solutions obtained by parameterized ASFs
may be significantly different. This fact could be potentially exploited in
interactive processes to speed up their convergence in terms of the number
of iterations, and provide the DM with more flexible tools to detect desirable
Pareto optimal points. This gives us some confidence that the parameterized
ASFs may find their applications in synchronous approaches, i.e. those using
several different ASFs at once in a systematic way. As prospective research,
we would like to consider applicability of parameterized ASFs to the well-
known interactive methods, e.g. the NIMBUS method [11].
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