
Jari-Matti Mäkelä | Jani Paakkulainen | Ville Leppänen

SMASim manual, version 1.0

TUCS Technical Report
No 972, April 2010

SMASim manual, version 1.0
Jari-Matti Mäkelä

University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, 20520 Turku, Finland
jmjmak@utu.fi

Jani Paakkulainen
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, 20520 Turku, Finland
janpaakk@utu.fi

Ville Leppänen
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, 20520 Turku, Finland
ville.leppanen@it.utu.fi

TUCS Technical Report

No 972, April 2010

Abstract

The computer industry has faced a constant need for more efficient hardware
to perform computational tasks. Previous generations of microchips have tried to
mitigate the problem on three fronts: increasing the execution speed by increas-
ing the operating frequency, decreasing the amount of required time to issue a
single instruction by enhancing instruction level parallelism, and increasing the
“computational volume” by adding more computational units. Developing new
architectures has turned out to be expensive and requires relatively great amount
of resources even when building experimental FPGA prototypes.

SMASim is a software based simulator, motivated by an experimental mov-
ing threads architecture, that attempts to lower the costs of rapidly designing new
architectures. It is based on a general purpose, precise latency centric message
passing framework between the described hardware architecture elements. Its rel-
atively simple cost model captures the essential properties of many hardware de-
signs. The simulator’s design allows easy monitoring of the system and provides
execution performance comparable to other cycle-accurate hardware simulators.
The implementation is cycle-accurate, modular, and supports simulation on vari-
ous granularity levels.

The simulator is implemented in hybrid object-functional language Scala. The
flexibility of Scala allows using declarative domain specific notation when speci-
fying parts of the architecture, yet it provides a static verification of the model via
a strong type system. A graphical user interface is provided to simplify the task of
modifying parameters of a simulated system and to provide interactive feedback.

Keywords: processor simulator, cycle accurate, multi-core, moving threads, do-
main specific language

TUCS Laboratory
TUCS Algorithmics Laboratory

Contents
1 Introduction 3

2 Related work 5
2.1 Cycle-accurate simulators . 5
2.2 New generations . 5

3 Overview 6
3.1 Core module . 6
3.2 CPU module . 6
3.3 Memory module . 7
3.4 Network module . 7
3.5 MIPS32 module . 8
3.6 Monitoring module . 8
3.7 GUI module . 9
3.8 Module relations . 9

4 Message passing architecture 11
4.1 Introduction . 11
4.2 Executable . 13

4.2.1 Commands . 14
4.3 Executor . 15

4.3.1 Component . 16
4.4 Clocks . 17
4.5 Connectable . 19

5 Utility layers 20
5.1 Monitoring framework . 20

5.1.1 Execution monitor . 20
5.1.2 Derived monitors . 21

5.2 GUI framework . 22
5.2.1 Simulation controllers 23
5.2.2 Helper classes . 24

6 Domain specific framework layers 26
6.1 CPU layer . 26
6.2 Memory layer . 26
6.3 Network layer . 27
6.4 MIPS32 layer . 28

6.4.1 Defining instructions . 28
6.4.2 Defining instruction sets 29
6.4.3 Serializing and deserializing 30

1

7 Example architecture 31
7.1 Architecture description . 31

7.1.1 Instruction set . 31
7.1.2 Execution pipeline . 31
7.1.3 Architecture parameters 32

7.2 Implementation . 32
7.2.1 Instruction set . 32
7.2.2 Configuration parameters 33
7.2.3 Component definitions 33
7.2.4 Monitors . 37
7.2.5 GUI . 38

8 Installation and usage 40
8.1 Software dependencies . 40
8.2 Starting the simulation . 40
8.3 Using the graphical interface . 41

2

1 Introduction

As the performance requirements of modern software have steadily increased, the
computer industry has faced a constant need for more efficient hardware to per-
form these tasks. Previous generations of microchips have tried to mitigate the
problem on three fronts: (i) increasing the amount of executed instructions per
time unit by increasing the operating frequency, (ii) decreasing the amount of re-
quired time to issue a single instruction (CPI) by enhancing instruction level par-
allelism (ILP), and finally (iii) increasing the “computational volume” by adding
more computational units.

During the last few years the first two approaches have reached the point of
diminishing returns. The operating frequencies have stabilized on the 2. . . 3 Ghz
range. Complex ILP mechanisms begin to occupy on-chip space in ways that
make multi-core solutions appear more feasible. The amount of parallelism on
instruction level is also limited by data dependencies. Another physical limitation
worth mentioning is the power dissipation of the processor, which has increased
over the years to the point that hardware reliability is endangered unless powerful
cooling systems are utilized.

The third approach has started a new era of multi-core and multi-processor
parallel programming. Several vendors have provided their first revisions of multi-
core architectures. Efforts that stand out from the traditional von Neumann model
seem to yield most promising performance improvements. Developing new hard-
ware architectures has turned out to be expensive and requires relatively great
amount of resources even when building experimental FPGA prototypes.

SMASim is a pure software based simulator, which attempts to lower the costs
of rapidly designing new architectures by supporting new multi-core architectures
at various abstraction levels. Even though SMASim was built for simulating spe-
cial kinds of multi-core systems, its core is a general purpose framework, although
the standard set of components has been tuned for a specific multi-core architec-
ture.

SMASim uses a precise latency centric message passing system between state-
ful simulated components. Its relatively simple cost model captures the essen-
tial properties of most hardware designs, allows easy monitoring of the system,
and provides adequate asymptotic execution performance whilst not resorting
to dynamic translation of the architecture model. The implementation is cycle-
accurate, modular, and supports simulation on various granularity levels.

The simulator is implemented in hybrid object-functional language Scala [8].
The flexibility of Scala often allows using declarative domain specific notation
when specifying parts of the architecture, yet provides static verification of the
model via a strong type system. The name SMASim has two meanings — the
simulation is built on Scala and also adapts the Scala’s idea of a scalable language.
Systems built on SMASim have the flexibility of a modern general purpose lan-
guage, but also allow defining parts of the system in a declarative manner with a

3

custom DSL (domain specific language).
The core framework and building blocks of the simulator are tuned for high

performance and to minimize memory allocations. However due to limitations
of Java virtual machine and strict cycle-accurate execution, some performance is
sacrificed for other high level features.

Although having a generic CPU simulation framework is a worthy goal per
se, the main motivation behind SMASim was to provide an exact software im-
plementation of the moving threads architecture ([10]) that is based on a virtual
parallel random access machine (PRAM) [3, 5] model and differs from contem-
porary designs regarding the thread abstraction and handling. The architecture
is a new kind of multi-core on chip processor which differs from contemporary
designs regarding the thread abstraction and handling.

However, the currently available version of SMASim has been extended and
generalized to support other kinds of systems as well. All of the framework’s
modules now have clear roles and support interoperation on all abstraction lev-
els. A graphical user interface is also provided to simplify the task of modifying
parameters of a simulated system and to provide interactive feedback.

The current set of features in SMASim support in determining efficient pa-
rameters for various memory subsystems such as registers and caches, execution
pipeline, and inter-processor network. Some properties, such as the supported in-
struction set, are more laborious to alter due to the inherent design complexity and
are only briefly considered in this manual.

4

2 Related work
Architecture simulators are a widely studied subject. The implementations can be
roughly split into two categories, based on their focus on functionality or perfor-
mance. Most of the existing work encompasses a simulator core built on some
high-performance, low-level systems programming language and a target archi-
tecture description either written in some declarative markup language or using
the same core language. Typically, the simulators have mainly focused on exist-
ing commercially available single-core architectures.

2.1 Cycle-accurate simulators
The list of traditional cycle-accurate simulators is long. Probably the best known
simulator is the SimpleScalar [1] project, a basic simulator with a straightforward
implementation, which has already reached its fourth version. SimpleScalar al-
lows defining single-core system with a definition language. Another widely used
simulator is SESC [9], which uses C++ to model the architecture. PTLSim [11]
and Bochs [7] simulate the x86 architecture.

2.2 New generations
More recently, the focus has been on more efficient simulations that either sacri-
fice the cycle-accuracy by introducing some statistical measurement based on ran-
dom samples or implement advanced techniques for speeding up the event based
system.

For instance, FaCSim [6] uses three methods to increase its speed: chunked
pipeline events, caching of decoded instructions, and parallelization of the sim-
ulator. A lesser known simulator, tsim, takes advantage of a mechanism called
two-phase trace-driven simulation (TPTS) [2]. The TPTS technique improves
both, the execution speed and the memory consumption.

5

3 Overview

The simulation framework consists of several independent modules. The overall
structure of these modules is described in the following Sections 3.1 . . . 3.7.

3.1 Core module

The core module contains necessary components for modeling generic message
passing systems. The major components of this module are described in more
detail in Section 4. Various kinds of designs are possible and the module is not
limited to physical electronic components such as logical gates.

The module also contains various helper classes, e.gḟor logging the state of the
simulation and modeling machine addresses and data.

Clock

ConnectableControllerClock

Tickable

DefaultControllerClock

Executable

ExecutorCommandN

Defaul tConnectable Componen t

BaseComponent

SimpleComponent

Simulation D a t a Address Logger

Figure 1: Class structure of the core module.

3.2 CPU module

The CPU module, discussed in more detail in Section 6.1, provides basic compo-
nents for modeling central processing units and their internals, the basic building
blocks of computer architectures. The basic structures include e.ginstructions,
instruction sets, and means for importing program data from the filesystem.

6

Instruct ionInst ruct ionSetProgram CPURegisterRegisterFile

CPUSimulation Disassembler

Figure 2: Class structure of the CPU module.

3.3 Memory module

The memory module contains memory and cache classes. The default memory
component abstraction provides a flat address space and fixed (expectationbased)
latency cost. Another basic memory component, an n-way associative cache ab-
straction, is suitable for simulating various kinds of practical memory hierarchies.
Specialized memory abstractions can be further derived from the built-in com-
ponents. The reader is adviced to read Section 6.2 for more information on the
built-in memory components and their constructor interfaces.

Memory

MemoryComponent

SignalingMemoryComponent SimpleMemory

SimpleSignalingMemory Cache

CacheNWaySetAss

MemoryBank*

Figure 3: Class structure of the memory module.

3.4 Network module

The network layer has very simple generic interfaces for black box networks. The
components attach to the message passing framework and provide a simple com-
munication network for simulated systems. All network components are discussed
in more detail in Section 6.3.

7

Node

Buffer

Bus

StarBus

Figure 4: Class structure of the network module.

3.5 MIPS32 module

The MIPS32 module was the first instruction set implementation provided along-
side the simulation framework. It can found useful both when implementing a
MIPS32 style architecture or as an inspiration for implementing other instruc-
tion sets. Section 6.4 treats the MIPS32 layer along with examples that combine
MIPS32 classes with functionality from the CPU module (Section 3.2).

MIPS32DecoderMIPS32Disassembler

MIPS32instructions

MIPS32instruction

TypeRCommandTypeICommandTypeJCommand

Figure 5: Class structure of the MIPS32 module.

3.6 Monitoring module

The monitoring module is a generic framework for monitoring simulated systems.
It is an independent subsystem that connects to the simulation via the low-level
message passing system. The monitor architecture and few examples of monitors
are introduced in Section 5.1.

ExecutionMonitor

BaseMonitor

MaxCommandLimiter TickableConnector NetworkMonitorCacheMonitor

Figure 6: Class structure of the monitoring module.

8

3.7 GUI module
In addition to simulation related low level components, a system for visualizing
the simulation is provided. The basic setup provided by the framework contains
visual components for e.gċontrolling the simulation in a simple manner, display-
ing its textual state, and importing files from the filesystem. A more thorough
treatment of the GUI module is given in Section 5.2.

UtilFrame

ErrorMsg

FrameGroupBut tonFrameConsoleFrame

LoggerFrame

ConfigurationFrame

Inst ruct ionSetFrameDisassemblerFrame

SimuGUI

CPUSimuGUI

SimuControllerFrame

ProgrammableSimuC.. .Frame

Figure 7: Class structure of the GUI module.

3.8 Module relations
To better illustrate the dependency relations between the modules, the modules
adhere to the graph described in Figure 8. The graph can be used to determine
which parts of the framework also may need to be built and imported when using
a module.

The modules for GUI and monitors present cross-cutting concerns, and thus
can be split further. In practice, the relevant part of the these modules is automat-
ically imported when a set of built-in modules is being used in a project.

CPU

Memory

Core

MIPS32

Monitor

GUI

Ne twork

Figure 8: Module dependencies.

9

The Figure 9 shows a typical high level collaboration relation graph between
various components in an imaginary simulator configuration. The graph has been
split into three parts, the generic simulator logic provided by the simulation frame-
work, the graphical user interface (GUI), and the system to be simulated.

All connections between modules in the system to be simulated depend on the
actual hardware architecture, and thus are not discussed here in more detail.

The monitors attach to the system to be simulated via the controller clock
mechanism. The mechanism provides a trace of all messages passed in the system.

The GUI components mainly connect to the simulation instance, the hardware
architecture components, the monitors, and few internal framework components
such as the logger. The purpose of the GUI is to provide a real-time view of the
simulation and also to allow controlling it.

system to be s imulated

gui

Simulation

ControllerClock

Clock

CPU

Bus

CacheRegisterFile

SimpleMemory

LoggerFrame

Logger

NetworkMonitor

MonitorFrame

CacheMonitor

CPUSimuGUI

SimuC...Frame DisassemblerFrame Inst ruct ionSetFrame ConfigurationFrame

Decoder

Ins t ruct ionSetDisassembler

Instruct ion

Figure 9: Module usage example.

10

4 Message passing architecture

4.1 Introduction

The core of the simulator is comprised of a strongly typed, latency-aware, event-
driven message passing framework. All simulated computations are modeled as a
static set of stateful processes (called commands), process executors, and stateless
messages 1 with pre-defined latencies. In addition, all computations are triggered
by logical clocks, which form the fourth category of core components.

Processes can be seen as a generalization of the GOF Command pattern [4] or
as functions operating on multiple inputs with varying latencies and providing a
single output. The event-driven execution strategy is beneficial when the number
of simultaneous messages is much smaller than the number of components.

To better illustrate how the written specification maps to real world compo-
nents, we continue with the implementation of a simple unit time logic gate AND
presented in the Figure 10.

Figure 10: The AND gate.

The execution of the process is triggered once both inputs A and B have been
received (possibly in arbitrary order) and the associated clock ticks. When com-
pared to simulation designs which use a wire based abstraction, the control flow
does not need to be explicitly defined with logical circuits, since the simulation
is driven by the data flow. This somewhat changes the semantics compared to
equivalent concrete implementation, but the solution simplifies the simulation a
bit.

Algorithm 1 2 describes the simulator code for the gate. The example begins
by defining a clock with a fixed operating frequency (100 Hz). The clock connects
to a global controller clock that operates as a master clock by running several clock
sources with varying frequencies in synchrony. The Clocks merely act as a clock
rate divisor, and the controller clock is used to trigger the execution. Several si-
multaneous controller clocks and clock types are supported, but the default global
instance ControllerClock is used to avoid extra verbosity.

1Technically the model could be modified dynamically, but the corresponding actual hardware
implementations rarely are capable of performing self-modification.

2The code examples in this manual use the literate programming style which replaces com-
monly used programming language tokens such as => and <- with⇒ and←. Whenever a non-
ASCII character is encountered in the code, a C language style ASCII sequence should be used
instead.

11

Algorithm 1 Implementation of the AND gate.

// initialization (ControllerClock & SimpleComponent are explained in more detail later)
implicit val clock = ControllerClock @> 100 Hz

class LogicalComponent extends SimpleComponent { type B = Boolean }

class AND extends LogicalComponent {
def execute = value { (A: B, B: B)⇒A & B }
}

Building a functional system from components is most often done via compo-
sition. Once the abstraction is defined, the usage turns out to be rather straightfor-
ward. For example, computing the logical AND of four inputs using dual input
AND gates can be achieved by chaining the gates as shown in Figure 11.

Figure 11: Composition of three AND gates.

The corresponding code is shown in Algorithm 2. A tuple of three AND com-
ponents is first constructed. The connection between gates is added with the =>:
notation. The problem with this approach is that all AND gates are still distinct
objects and there exist no entity with four inputs, which makes it impossible to
treat the circuit as a single object.

Algorithm 2 Implementation of the complete circuit.

def createAND = new AND execute // creates a new 2−port AND instance
val (and1, and2, and3) = (createAND, createAND, createAND)

(and1, and2)⇒: and3

In modular systems a composition is accompanied by encapsulation. Concep-
tually we often want to hide the implementation details from the public interface
of the component, as in object oriented or functional programming. To achieve
this, the simulator supports encapsulating commands inside other commands.

The composition of three AND gates is visualized in Figure 12 and imple-
mented in Algorithm 3. Hiding the complexity this way introduces a scalable way

12

of modeling larger systems with modular building blocks. This approach also
allows mixing components modeled on different abstraction levels.

Figure 12: Encapsulated composition of three AND gates.

Algorithm 3 Implementation of the circuit with encapsulated three AND gates.

class Four Port AND extends LogicalComponent {
def execute = fun { (a: B, b: B, c: B, d: B)⇒

((a,b)⇒: createAND,
(c,d)⇒: createAND)⇒: createAND

}
}

This cursory introduction gave a vague idea of the ways of using the simula-
tion framework for building e.gl̇ogical gates and more complex logical circuits.
The key ideas are modeling the components comprising the system, and mapping
the internal logic of the components to available programming language’s (i.e.
Scala’s) constructs. The same core features of the framework are discussed in
more detail in latter parts of this section.

The rest of the section discusses the message passing system in more detail. A
similar introduction to defining high level abstractions is presented in Section 7.

4.2 Executable
The Executable is a common interface for all messages passed in the system.
As mentioned in Section 4.1, the simulation framework is an event-driven system
with a message/process model. All simulation events are first initialized by en-
queuing the descendants of the Executable interface (Algorithm 4) to an event
queue. The queues are located in ControllerClocks and can be accessed
via Clocks as described in Section 4.4. Later, the internal clock logic issues the
commands according to their timestamps.

Thus, the low level interface provided by Executable is mainly relevant
only when manipulating the existing message passing framework or when moni-
toring event execution. For practical applications it is recommended to build the
component functionality on the deriving Command classes, which provide inter-
faces for the functional representation of the processes.

13

Algorithm 4 Executable interface.

trait Executable {
def execute: Unit
def executor: Executor
def reset: Unit

def description: String
def name: String
def latency: Int

def @@(l: Int): this.type // set latency
def @@(s: String): this.type // set name
}

4.2.1 Commands

Commands are convenience classes that implement the logic for initializing pro-
cesses, defining their latencies, attaching them to some executor and logical clock,
handling the arbitrary data dependencies between commands, and for implement-
ing higher order commands (see Algorithm 3).

Algorithm 5 Simplified interface of Command, Value, and Fun.

abstract class CommandN[T1, . . ., TN, TR] {
. . .
def compute(v1: T1, . . ., vn: TN): TR
}

object Value {
def apply[T1, . . ., Tn, R](e: Executor, v: (T1, . . ., Tn)⇒R): CommandN
}

object Fun {
def apply{[T1, . . ., Tn, R](e: Executor, v: (T1, . . ., Tn)⇒Returns[R]): CommandN
}

When building new components, the Command classes can be extended di-
rectly by providing a compute-method (Algorithm 5). An alternative method
is to pass a lambda to one of the convience methods (value, fun, and cmd) in
Executor objects (Algorithm 6) or to use the global singletons Value and Fun.
These methods construct a new Command object with the provided compute
method, and attach the command to the executor object. The method value must
return ordinary values, fun other commands, and cmd either values or commands

14

wrapped in Value or Fun types, respectively. Algorithms 1 and 3 demonstrate
the use of these methods.

In addition, commands can be chained according to their functional depen-
dencies. Command classes provide :⇒ and ⇒: operators for expressing the de-
pendency relations. The :⇒ form is used, when the left hand side is another
command, and the latter form, when the left hand side is a hard coded value, a
tuple of values, or a tuple of commands. The latter form was used in defining
dependencies in Algorithms 2 and 3.

When a component does not determine a single common latency for all asso-
ciated commands, a per-command latency can be defined with the @@ method.
This latency can be dynamically re-set at any time before the initialization of each
execution. To conserve memory, the same commands can be reused by re-setting
their state between executions of the event. In fact, this is done automatically by
default.

4.3 Executor
Executor (Algorithm 6) represents the active components in the simulation.
They define the means for enqueuing Executables and determining their la-
tencies when executed by this particular executor.

Algorithm 6 Executor interface.

trait Executor {
def latencyOf(executable: Executable): Int
def enqueue(executable: Executable): Unit

def name: String

final def value[. . .](t: ∗ ⇒∗)
final def fun[. . .](t: ∗ ⇒∗)
final def cmd[. . .](t: ∗ ⇒∗)
}

Semantically Executor is a view of the logical entities in the simulation
from the message passing system’s point of view. Other aspects of the entities
such as the physical connections are split into Connectable and other inter-
faces. As previously, the main functionality of most logical entities has been com-
piled into convenience interfaces, which are Component and its descendants.
Executor also turns out to be most useful when monitoring events or rewriting the
message passing logic.

Data can be passed between the executor entities with commands, which have
similarities with first class functions in programming languages. The use of helper

15

functions value, fun, and cmd (described in Section 4.2.1) are recommended
over direct accesses to the Command classes.

4.3.1 Component

Component (see Algorithm 7) ties together the executable process logic, its la-
tency characteristics, information about the static component interconnection net-
work, the associated clock that is used to trigger aforementioned events, and limits
on the amount of simultaneous executions within the executor instance. Addition-
ally, few other component interfaces are provided for stateful and storage compo-
nents. It is recommended to derive all simulated entities from these interfaces or
their descendants, utility classes such as BaseComponent.

Algorithm 7 Component interface.

trait Component extends Executor with Connectable {
def maxCommandCount: Int
def clock: Clock
}

Since much of the basic component functionality works in a similar fashion
in all components, BaseComponent (Algorithm 8) alleviates the problem by
implementing most of the low level book-keeping tasks. For even simpler compo-
nents with fixed command latencies, there is a small wrapper, SimpleComponent
(Algorithm 8), which is derived from BaseComponent.

A person well versed in Scala’s syntax might notice that the clock instance can
be implicitly provided on the call site. As one can see from Algorithm 1, the mere
existence of a clock object in the scope suffices to construct a component object.
This feature helps separating crosscutting concerns, since often components of the
same module also share the clock instance. An explicit clock instance can always
be provided.

Algorithm 8 Additional basic component interfaces.

abstract class BaseComponent(maxCommandCount: Int = 1)(implicit clock: Clock)
extends StatefulComponent with DefaultConnectable

abstract class SimpleComponent(latency: Int = 1, maxCommandCount: Int = 1)
(implicit clock: Clock)

extends BaseComponent(maxCommandCount)(clock)

With the helper classes, only the concurrent command execution upper limit
and the clock entity need to be specified when constructing components. In prac-

16

tice, most of the higher level components (see Section 6) provided by the SMASim
framework are built on top of these classes.

4.4 Clocks
The framework contains two kinds of clocks. The ControllerClock (see Al-
gorithm 9) is a central entity for coordinating logical clocks with varying operating
frequencies. For example memory modules and processing units in a computer of-
ten do not share the same operating frequency. A distinct clock entity can be used
for each component type.

Usually a single controller clock is sufficient in a single simulation, but in
special cases several instances can be used independently. Thus a global instance
is provided for the common use case, as shown in Algorithm 2.

Algorithm 9 ControllerClock interface.

trait ControllerClock extends Connectable with Tickable {
def add(clock: Clock): ControllerClock
def enqueue(executable: Executable, latency: Int): Unit
def executeCommand(executable: Executable): Unit
def getNextCommand: Executable
def updateCommands: Unit
var canExecute: Boolean
def @>(freq: Int) = new Clock(freq, this)
}

A fixed size two dimensional ring buffer is used as an executable buffer to
minimize memory allocations during the simulation. The buffer has two important
parameters: maximum executable count per time unit and maximum executable
latency. Both need to be adjusted upfront to be large enough or the simulation will
run out of resources.

The global ControllerClock instance supports enqueuing 100 concurrent
executables on the same time unit, and a maximum latency of 512 time units. If
different parameters are needed, a new ControllerClock instance has to be
made as described in Algorithm 10. The maximum latency is required to be a
power of 2 if the default implementation of ControllerClock, located in the
class DefaultControllerClock, is used.

Algorithm 10 Constructing a new controller clock.

val cclock = new DefaultControllerClock(
simultaneousMsgs = 1000,
maxLatency = 512

)

17

Clock entities (see Algorithm 11) act as proxies to the associated, shared
ControllerClock instance. The latency characteristics are modified auto-
matically when enqueuing to compensate variations in execution frequency. Most
of the clock logic is executed when an executable is enqueued; the actual exe-
cutable latency is fixed at this point of time and the executable’s position in the
internal buffers is computed. In practice, the static dependencies defined with the
arrow methods in Commands hide much of the bookkeeping required. The clock
system also only needs a single link point to the components, which is usually
done statically and implicitly when constructing new components.

Algorithm 11 Clock interface.

class Clock extends Connectable {
def freq: Int
def controller: ControllerClock
def divideBy(div: Int): Clock
def enqueue(e: Executable, latency: Int): Unit
def add(c: Connectable): Unit
}

After enqueuing, the executable has been stored to the buffer and is waiting
for execution triggered by the tick routine. The execution is triggered once the
tick has been called as many times as is the command latency.

If the latency is set to 0, the executable will be executed some time after the
current executable during the current call of the tick routine. In general, the
system cannot guarantee any kind of ordering among messages to be executed
during the same time step, if all data dependencies are met. For instance in the
introductory example, with the four-port AND gate, the execution of the first two
gates is undeterministic. However, the current implementation guarantees that two
simulation runs always issue the commands in the same indeterministic order.

In a cycle accurate architecture, deterministic sequential order between events
can be achieved by either adding enough delay to force event execution on differ-
ent time units or by chaining executables via data dependencies.

In SMASim a flexible message passing architecture is used for modeling the
target architecture. This decision allows composing the design with modular
building blocks and simultaneously on variable abstraction levels. For instance,
some components can be modeled on the level of logic gates while some other
components are still huge black boxes with nontrivial functionality not directly
mappable to physical components.

18

4.5 Connectable
Connectable (see Algorithm 12) is a utility interface that is implemented by all
Components. It can be used for debugging and visualization purposes, since it
maps a human readable name, a description, and a static list of connections (de-
pendency or composition) to each component. By monitoring Executables and
extracting static configuration from the Connectables, both dynamic actions
and static relations and dependencies between components can be traced. Again,
a higher level interface DefaultConnectable, which simplifies defining con-
nections, is provided for convenience.

Algorithm 12 Connectable interface.

trait Connectable {
def name: String
def connections: Seq[Connection]
def description: String
}

19

5 Utility layers

5.1 Monitoring framework
A CPU simulator is not only useful for revealing the outcome of an application
written for the target architecture. For some applications a partial or full memory
snapshot after the program execution suffices, but there also exist various emu-
lators that provide a virtual terminal or graphical communication interface to the
target architecture to e.gṗrovide an access to non-native operating systems.

The built-in components of the framework do not provide these communica-
tion layers yet, but instead a set of low-level monitors for monitoring the runtime
behavior and collecting statistics are implemented. The main motivation behind
the existing monitors was to ease the evaluation of the simulated architecture and
to better tune the CPU parameters. The currently available monitors are tuned for
command line output, but with small modifications they also can be used in GUI
applications.

5.1.1 Execution monitor

A very basic monitor (ExecutionMonitor) for monitoring execution of var-
ious commands is provided in the monitoring framework. It is a very low level
mechanism and is mostly useful for constructing other monitors or debugging the
low level operation of the framework or the system used in the simulation.

The monitor works by connecting to a controller clock as a proxy. The simula-
tion should then use the monitor in place of the original controller clock. Several
monitors can be chained in this fashion as they are fully transparent. A logical
setup with one execution monitor is described in Figure 13.

ExecutionMonitor ControllerClock
proxy

Clock1

Clock2

Clock3

Componen t1

Componen t2

Componen t3

Figure 13: Simple execution monitor setup.

The default execution monitor accumulates a textual execution history based
on the captured events. It extends the GenericControllerClockMonitor,
an abstract class that fuses ControllerClockProxy and Tracer (see Al-
gorithm 13). ControllerClockProxy implements simple functionality to

20

proxy a controller clock behavior transparently. Tracer provides a new interface
for monitors that trace events such as enqueuing and execution of executables, and
controller clock ticks.

Algorithm 13 Simplified tracer interface

trait Tracer extends ControllerClock {
protected def traceExecution(e: Executable): Unit
protected def traceTick: Unit
protected def traceEnqueue(e: Executable, latency: Int): Unit
. . .
}

Usage of execution monitors is straightforward: The monitor object is con-
structed with the previous controller clock or monitor in the chain as parameter.
A simple monitor configuration with a single controller clock and an execution
monitor is described in Algorithm 14.

Algorithm 14 Usage of a simple execution monitor.

val monitor = new ExecutionMonitor(ControllerClock)

/∗ more initialization here ∗/

while (monitor.isActive) { monitor.tick }
println(monitor.toString)

5.1.2 Derived monitors

The message passing system forms the main communication infrastructure inside
the simulator. It separates functional units (components) from each other. One
can always build custom mechanisms for monitoring programs, but the generic
execution monitor (Section 5.1.1) interface often suffices. One advantage of the
built-in monitoring system is that it is pluggable and thus also separated from
other concerns in the simulator design.

As we can see from the Tracer interface in Algorithm 13, the execution mon-
itor is triggered by three kinds of events: clock ticks, executable enqueuing and
execution. In addition to passing messages, the components can have an internal
state for e.gṁonitoring purposes. If this interface is used for monitoring com-
ponents, the component model should be fine-grained enough for the monitoring
system to be able to capture relevant information during the simulation.

Usually the tick interface is used to determine, how many cycles have elapsed
since the last timestamp or since the beginning of the simulation. On the other

21

hand, the pattern matching mechanism can be used to pick messages relevant to
the monitor from the stream of new events.

As an example of using the monitor interface, two monitors (Sections 5.1.2
and 5.1.2) for the built-in components described in Section 6 are described next.
Both monitors extend the generic GenericControllerClockMonitor and
connect to a previous controller clock, either the actual controller clock or some
monitor that works as a controller clock proxy. The output accumulates during
execution and can be read using the toString method.

Cache monitor The cache monitor can be attached to a memory cache unit.
During the simulation cache monitor collects information about cache accesses,
hits, and misses. Cache hit ratio and latency characteristics are computed from
the monitored data at any point of time. Cache statistics are also collected from
the beginning of the simulation until the last status query. All caches (see Section
6.2) connected to the controller clock will be monitored and the output will group
the cache events by a cache name.

Network monitor A network monitor traces the packet traffic on the inter-
processor network or more generally any kind of data moving within a generic
network abstraction. The latencies of packet transmissions and amount of packets
and bytes transferred from node to node are being monitored. All networks im-
plementing the network abstraction (see Section 6.3) connected to the controller
clock will be monitored and the output will group the network traffic by a network
name.

5.2 GUI framework
The GUI framework contains components for visualizing and controlling the sim-
ulation. The core GUI library consists of the following components:

1. A common control panel for all kinds of simulations is provided by classes
SimuGUI and SimuControllerFrame.

2. An utility class for displaying error messages (ErrorMsg).

3. A class for showing menus comprised of buttons (ButtonFrame).

4. A generic configuration visualization and synchronization class
(ConfigurationFrame).

5. Classes for displaying text, monitor, and log output. (ConsoleFrame,
MonitorFrame and LoggerFrame).

6. Generic template class for other frames (UtilFrame).

7. Classes for grouping windows (FrameGroup).

22

5.2.1 Simulation controllers

SimuGUI The top level simulation controller frame (Figure 14) connects the
simulation to the framework’s GUI. By default controls are provided for:

• launching the simulation,

• shutting down the simulator,

• loading binaries from the file system,

• configuring the simulation parameters,

• displaying disassembler output,

• displaying system log,

• displaying supported instruction set, and

• displaying generic benchmark screen (less meaningful).

Figure 14: Main menu of the simulation GUI.

SimuControllerFrame The simulation controller frame (Figure 15) opens when
the simulation has been started and closes when returning from the simulation to
the top level menu. By default, the frame has support for:

• resetting the simulation,

• stepping forward 1, 10, . . . , 10000 time units, and

• grouping subwindows such as monitors.

23

Figure 15: Simulation controller frame.

5.2.2 Helper classes

ErrorMsg The error message dialog (Figure 16) can be used to display infor-
mational error dialogs in unexpected situations.

Figure 16: Error message dialog.

ButtonFrame A button frame presents a frame consisting purely of buttons.
It is useful for creating e.gṡimple controllers. Figures 14 and 15 show common
instantiations of button frames.

ConfigurationFrame A configuration frame (Figure 17) presents a configura-
tion screen for any aggregate type using Java’s reflection system. Very useful
when setting up simulation parameters.

Figure 17: Configuration frame.

24

ConsoleFrame The console frame (Figure 18) shortens the time to create new
frames consisting mostly of textual information. MonitorFrame and LogFrame
both internally create a ConsoleFrame.

Figure 18: Configuration frame.

UtilFrame and FrameGroup The default implementation of scala.swing is an
elegant wrapper on top of Java’s Swing GUI toolkit. However, even scala.swing
is rather complex, when the development focus is not on GUI. UtilFrame is the
base of all GUI frame classes in the simulation framework.

FrameGroup is a utility class for managing groups of windows. It allows clos-
ing multiple closely coupled windows with a single mouse click and grouping
them to maximize visibility and the ease of use.

25

6 Domain specific framework layers
Re-implementing various common building blocks in each new CPU design rather
quickly becomes counter-productive. The simulator framework comes with a min-
imal set of generic building blocks available for typical CPU designs. The com-
ponents and their usage are described here.

6.1 CPU layer
The CPU layer provides minimal functionality for implementing new CPUs. The
following features are provided:

• Abstractions for defining CPUs (CPU, CPUComponent), instruction sets
(InstructionSet), instructions (Instruction), and executable pro-
grams (Program).

• Endianess-aware instruction decoders (InstructionDecoder) and en-
coders (InstructionEncoder) - with integrated support for reading
from and writing to files. The usage of these classes is shown in Algorithm
20 in Section 6.4.3.

• Components for registers (Register) and register files (RegisterFile).

• A dummy CPU (DummyCPU) component for testing.

6.2 Memory layer
The memory layer provides minimal functionality for implementing and using
memory and other storage components. The layer mainly provides components
for defining generic memory modules, buffers, and caches. A generic constant
latency memory module (SimpleSignalingMemory, see Algorithm 15) and
a generic N-way set-associative cache component (CacheNWaySetAss, see Al-
gorithm 16) are also provided.

The word signaling in memory interfaces denotes the ability to signal the de-
pending component when the data arrives if it is not immediately available. If
fetchLatency is greater than signalingLatency, a signal is returned af-
ter signalingLatency time units. The actual requested data is returned after
fetchLatency time units. In case of caches, the fetch latency also depends on
the source component’s latencies.

The memory module can be often used for modeling a wide range of physical
memory modules. As can be seen from its constructor interface in Algorithm 15,
it can be parametrized with a capacity, address bus width, maximum block size
for transfers, concurrent read/write counts and latencies for signaling and fetching
of data.

26

Algorithm 15 SimpleSignalingMemory constructor interface

class SimpleSignalingMemory(
capacity: Int,
name: String,
addressBusWidth: Int,
maxBlockSize: Int,
concurrentReadCount: Int,
concurrentWriteCount: Int,
concurrentReadWriteCount: Int,
signalingLatency: Int,
fetchLatency: Int,
maxCommandCount: Int

) extends SignalingMemoryComponent

The cache component has somewhat similar constructor interface. Many of
the parameters are the same as above, but there are cache related parameters such
as the ones for defining cache, row, and set sizes. The cache can be set up as being
either fully associative, direct mapped, or n-way set-associative. The source can
be any signaling memory component.

Algorithm 16 N-way set associative cache constructor interface

class CacheNWaySetAss(
fetchLatency: Int,
signalingLatency: Int,
cacheSize: Int, // in bits
rowSize: Int, // in bits
setSize: Int, // in bits
maxBlockSize: Int,
concurrentReadCount: Int,
concurrentWriteCount: Int,
concurrentReadWriteCount: Int,
source: SignalingMemoryComponent

) extends SignalingMemoryComponent

6.3 Network layer
The network layer has abstract black-box definitions for various kinds of message
sending networks between generic nodes. In SMASim a network abstraction is
used for communication between computational nodes. This network consist of
a Bus object and one or more Node objects. An extension to generic nodes, a
Buffer, is provided. The Buffer has an internal queue for incoming messages.
As an example, also a star-shaped network bus is provided in the StarBus class.

27

In star bus, all message transmissions have a constant sized latency, to model ex-
pected latency of some specific network topology. The bus supports both unicast
and broadcast functionality.

6.4 MIPS32 layer

In addition to generic layers listed above, a layer mostly consisting of definitions
for the MIPS32 R© instruction set abstractions and instructions is provided. The
supported standard instructions are:

• ADDI, ADDIU, ADD, ADDU, ANDI, AND, BEQ, BGEZAL, BGEZ, BGTZ,
BLEZ, BLTZAL, BLTZ, BNE, CLO, CLZ, DIV, DIVU, JALR, JAL, JR,
J, LB, LBU, LH, LHU, LUI, LWL, LWR, LW, MADD, MADDU, MFHI, MFLO,
MOVN, MOVZ, MSUB, MSUBU, MTHI, MTLO, MUL, MULT, MULTU, NOP,
NOR, ORI, OR, SB, SH, SLL, SLLV, SLTI, SLTIU, SLT, SLTU, SRA,
SRAV, SRL, SRLV, SUB, SUBU, SW, XORI, and XOR.

The instructions are implemented precisely to be binary compatible with the origi-
nal MIPS32 R© instruction set. However, the ALU instructions do not use signaling
since no trap instructions are implemented. Also missing are atomic and floating
point instructions.

The MIPS32 layer provides a customizable subsystem for defining MIPS32-
like instruction sets. The layer provides means for decoding and encoding instruc-
tions belonging to three instruction categories R, I, and J 3. The functionality in
CPU framework layer extends this support for deserializing and serializing data
from/to files.

Supporting other RISC instruction sets such as ARM requires only minimal
adjustments. Making minor modifications to the instruction set e.gin prototyping
phase has been made simple by adding support to common set operations such as
union and intersection of two sets. The instruction set connects to the execution
pipeline via a loosely coupled and flexible interface (described in Algorithm 17).
Currently the interface has been built with only MIPS32 in mind, which might
require further abstraction when other instruction sets are added.

6.4.1 Defining instructions

All MIPS32-like instructions are supposed to extend an instruction template sim-
ilar to what is described in Algorithm 17.

3For more information about the MIPS32 R© architecture, see http://www.mips.com/
products/architectures/mips32/.

28

http://www.mips.com/products/architectures/mips32/
http://www.mips.com/products/architectures/mips32/

Algorithm 17 Instruction template

object Foo extends InstructionGenerator(new TypeICommand(id) {
override def loadMemory = (Address(1), 4, :Int⇒. . .)
override def loadRegisters = List(rs⇒rs, . . ., hi⇒hi)
override def execute {
. . .
}
override def storeRegisters = List(rt⇒rd, . . ., lo⇒lo)
override def storeMemory = (Address(2), 4, 65535)
})

The methods’ execution order in the template follows the temporal dependen-
cies of the actions in the standard RISC-style 5-stage execution pipeline. The in-
terface is rather generic, and even our PRAM-based ([3]) moving threads pipeline
([10]) uses this basic interface listed here.

As a concrete example, the definition of the AND instruction as defined in
SMASim is given after the instruction template definition in Algorithm 18.

Algorithm 18 AND instruction definition

object AND extends InstructionGenerator(new SpecialCommand((4 << 3) + 4) {
override def execute = rd := rs & rt
})

Method LoadMemory returns a memory location, size of the data block,
and the action to take when loading data from the main memory. Respectively
storeMemory returns a memory location, size of the data block and the data
to store. Method loadRegisters defines the list of registers to load from the
register file to the pipeline buffers, and storeRegisters stores the buffered
register values to register file slots, correspondingly. Method execute defines
the behavior of the instruction execution, which takes place between the register
loads and stores.

The instruction template provides macros for addressing parts of the instruc-
tion structure such as the register mnemonics (rt, rs, rd, hi, lo) as seen
in Algorithms 17 and 18. To prevent errors at compile time, some register slots
such as rd are not available for instruction types that do not contain the structure.
The macros are available in all methods described in the Algorithm 17. Assign-
ment to register slots can be done with the := syntax.

6.4.2 Defining instruction sets

Defining new instruction sets from predefined instructions is rather straightfor-
ward, as described in Algorithm 19. A new set can be constructed from indepen-

29

dent instructions or set operations - and + can be used to derive more sets of the
existing ones.

Algorithm 19 Instruction set definitions

// assume we have defined instructions ADD, SUB, MUL, DIV, and FORK

object BasicInstructions extends InstructionSet(ADD, SUB)
object MulDivSet extends InstructionSet(MUL, DIV)

val BasicArithmetics = BasicInstructions + MulDivSet
val SpecialInstructions = BasicArithmetics − DIV + FORK

6.4.3 Serializing and deserializing

As an example of instructions deserialization, the simulator ships with a minimal-
istic simple disassembler, inspired by GNU objdump4. Algorithm 20 shows the
main steps modulo error handling required to build a similar tool. Additionally
the tool also re-encodes the instruction stream and writes it to another file.

Algorithm 20 Instruction serialization and deserialization

import core.instructions.InstructionEncoder
import arch.mips32.MIPS32Decoder

val program = MIPS32Decoder load "/tmp/input.bin"
val instructionStream = MIPS32Decoder decode program

for (i←instructionStream)
println(i)

val program2 = InstructionEncoder encode instructionStream
InstructionEncoder save ("/tmp/output.bin", program2)

4Objdump is part of GNU Binutils, see http://www.gnu.org/software/
binutils/

30

http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/

7 Example architecture
So far the documentation has discussed the low level interfaces of the simulator
framework. Since the ability to adapt easily to different kinds of architectures is
one of the main features of the simulator, this whole section is dedicated to an
example of implementing a complete custom MIPS32 inspired RISC architecture
with SMASim. In addition, a monitor is provided for measuring the amount of
instructions executed by the architecture during the simulation.

7.1 Architecture description
The example architecture consists of a simple pipelined four instruction 5-stage
RISC processor. The processor contains a small register file, the execution pipeline,
and is connected to a small main memory module with flat address space. The in-
structions and data share the same read-write memory space.

A predefined program can be loaded to a fixed memory position. The program
counter is initialized with another value when the processor is reset. The last
register slot is used as the program counter, the first one always contains zero as
in MIPS32.

7.1.1 Instruction set

The architecture has the following instruction set which uses the standard MIPS32
bit encoding:

• ADD r1, r2 -> r3 - a 2’s complement addition on registers r1 and r2, stores
the result on register r3. No overflow checks are done.

• SUB r1, r2 -> r3 - a 2’s complement subtraction on registers r1 and r2,
stores the result on register r3. No overflow checks are done.

• LW r1, imm -> r2 - loads a word aligned value from memory address ref-
erenced by register r1 + the immediate value imm. The value is stored to
register r2.

• SW r1 -> r2, imm - stores the word in register r1 to a word aligned value
in memory address referenced by register r2 + the immediate value imm.

7.1.2 Execution pipeline

The execution pipeline divides the instruction execution into distinct subopera-
tions. The design was inspired by the classic 5-stage RISC execution pipeline.
The duties of each stage are:

1. Fetch - fetches the next instruction from program counter’s address, next
address is calculated in a local pseudo-register.

31

2. Decode - decodes the next instruction and fetches register values.

3. Execute - executes the addition or subtraction.

4. Memory Access - loads or stores data to/from main memory.

5. Writeback - writes back the register values to register file.

7.1.3 Architecture parameters

Some basic parameters of the architecture are described in the Table 1.

Miscellaneous
Word size 32 bit
Clock rate 100 Hz
Memory component

Memory capacity 64 kB
Memory read ports 2
Memory write ports 1

Memory access latency 1 cycle

Register file component
Register file size 32 registers

Register file read ports 2
Register file write ports 1

Register file access latency 1 cycle

Table 1: Example architecture parameters.

The parameters can be later used almost as is when defining the specifications
of components.

7.2 Implementation

7.2.1 Instruction set

The architecture can benefit from the existing MIPS32 instruction encoders and
decoders. In the example architecture we only need to specify the subset of four
instructions (ADD, SUB, SW, and LW) and construct a new decoder for the instruc-
tion set. The implementation is shown in Algorithm 21.

Algorithm 21 Definitions for instruction set, decoder, and disassembler.

val instructionSet = new InstructionSet(ADD, SUB, LW, SW)
val decoder = new MIPS32Decoder(instructionSet)
val disassembler = new MIPS32Disassembler(decoder)

32

7.2.2 Configuration parameters

The ConfigurationFrame component can be used to emulate duck typing style
programming. This allows defining very lightweight interfaces for configuration
and very simple mapping between the specification and implementation. For the
example architecure, we use the configuration code from Algorithm 22.

Algorithm 22 Configuration code.

object CPUConfig {
var wordSize = 4
var regCount = 32
var regRPorts = 2
var regWPorts = 1
var regLatency = 1
var startAddress = 1000
}

object MemoryConfig {
var capacity = 65536
var maxBlockSize = 4
var latency = 2
var RPorts = 2
var WPorts = 1
}

7.2.3 Component definitions

The physical components in the simulation are defined next. The setup consists
of a memory module, register file, and the CPU. The CPU internals are further
divided into five instruction pipeline parts.

Algorithm 23 High level schema of the simulated architecture.

class Simulation(program: Program, val decoder: MIPS32Decoder)
extends MonitoredSimulation[CPU] {

val insMonitor = attachController(InstructionMonitor(decoder.instructionSet))
implicit val clock = insMonitor @> 100 Hz
def CPUs = List(cpu)

// Code from Algorithms 24..31 goes here

cpu loadProgram (Address(loadAddress), program)
cpu.initialize
}

33

High level schema The high level schema of the simulated architecture is show
in Algorithm 23. The code defines a simulator container which encloses the phys-
ical components in the simulated system. During the initialization, an instruc-
tion monitor is connected to the controller clock. The clock instance used by the
components connects to the controller clock via the monitor. The component def-
initions are followed by another initializer for starting the CPU with a program
preloaded in its memory module.

Storage components The given architecture consists of a main memory module
with a fixed latency property (2) and a simple register file with unit time latency.
Algorithms 24 and 25 define these components respectively. Component configu-
ration is imported from the configuration structures previously presented.

Algorithm 24 Storage components, main memory.

val memory = new SimpleSignalingMemory(
capacity = capacity,
addressBusWidth = wordSize∗8,
maxBlockSize = wordSize,
concurrentReadCount = RPorts,
concurrentWriteCount = WPorts,
concurrentReadWriteCount = RPorts + WPorts,
signalingLatency = latency,
fetchLatency = latency,
maxCommandCount = 4)

A MIPS32 like zero register functionality is provided by the framework in
form of a ZeroRegister trait. The register file is extended with the trait.

Algorithm 25 Storage components, register file.

val registerFile = new RegisterFile[Int](
regCount = regCount,
readPorts = regRPorts,
writePorts = regWPorts,
latency = 1,
maxCommandCount = 3) with ZeroRegister // r0 == 0

Execution pipeline The low instruction count, fixed memory and register file
access latency, and the lack of branching instructions simplify the pipeline de-
sign considerably (informal specification in Section 7.1). For example, control
flow can be expressed with the implicit data flow. A compact presentation of the

34

pipeline is expressed in Algorithms 26, 27, 28, 29, and 30. The implementation is
split into five parts, following the practice from Section 7.1.2.

Algorithm 26 Execution pipeline, fetch stage.

val pipeline = new BaseComponent(maxCommandCount = 10) {
private def log(pc:Int, msg:⇒String) = Logger debug ("PC="+pc+": "+msg)

def start {
Logger debug "Starting execution."
cpu.startAddress⇒: fetch
}
def fetch: Command[Address, Any] = fun { pc: Address⇒

log(pc.toInt, "Fetching instruction..")
((pc, wordSize)⇒: memory.read) :⇒ value {

(: Option[Data]) map { data⇒
(pc + wordSize)⇒: fetch
((pc, data)⇒: decode) :⇒ execute :⇒ memAccess :⇒ writeBack
}:Any
}@@ 0
}@@ 0 @@ "Fetch"

Algorithm 27 Execution pipeline, decode stage.

def decode = fun { (pc: Address, data: Data)⇒
log(pc.toInt, "Fetching registers && decoding..")
val instruction = Decoder decode data
instruction.pc = pc.toInt
val loads = instruction.loadRegisters
val loadCmds = loads map { case (slot, temp)⇒

slot.value⇒: registerFile.read :⇒
value { instruction.regs(temp.value) = :Int }@@ 0
}
value { instruction }@@ 0 dependsOn loadCmds
}@@ 0 @@ "Decode"

Algorithm 28 Execution pipeline, execution stage.

def execute = value { instruction: MIPS32Instruction⇒
log(instruction.pc, "Executing " + instruction.name + "..")
instruction.execute
instruction
}@@ 1 @@ "Execute"

35

Algorithm 29 Execution pipeline, memory access stage.

def memAccess = fun { instruction: MIPS32Instruction⇒
log(instruction.pc, "Loading & storing..")

instruction.loadMemory map {
case (addr, size, handler)⇒

((addr, size)⇒: memory.read) :⇒ value {
(: Option[Data]) map { data⇒handler(data:Int) }
}@@ 0

}

instruction.storeMemory map { case (addr, size, data)⇒
(addr, new DataA(data) take size)⇒: memory.write
}

()⇒: value { instruction }@@ 1
}@@ 0 @@ "MemoryAccess"

Algorithm 30 Execution pipeline, write back stage.

def writeBack = fun { instruction: MIPS32Instruction⇒
log(instruction.pc, "Writing back..")

val stores = instruction.storeRegisters

val storeCommands = stores map { case (temp, slot)⇒
(slot.value, instruction.regs(temp.value))⇒: registerFile.write
}

value {
log(instruction.pc, "Instruction execution done.")
}@@ 0 dependsOn storeCommands
}@@ 0 @@ "WriteBack"
}

CPU component The CPU component has a simple task of controlling the
aforementioned components. The definition in Algorithm 31 defines means for
initializing the CPU state, starting execution, loading foreign programs and dis-
playing useful state information. A large part of the state information is not used
in this simple example, but it can be useful in larger simulations with non-trivial
amount of state.

36

Algorithm 31 CPU component.

object cpu extends BaseComponent with CPUComponent {
def reset = for (i←0 until registerFile.regCount)

registerFile(i) = 0

def initialize {
reset
pipeline.start
}

// use the default loader since the arch has fixed instruction length
def loadProgram(address: Address, program: Program) =

loadProgram(address, program, memory)

def id = 1
def ISA = "4 Instructions"
def wordSize = CPUConfig.wordSize
def startAddress = Address(CPUConfig.startAddress)

override def children =
List(memory, registerFile, pipeline)

override def state =
children.map(" "+ .state).mkString("\n")

override def description = super.description +
"ID: " + id + "\n" +
"Memory: " + memory + "\n" +
"Register file: " + registerFile + "\n"

}

7.2.4 Monitors

The implementation provides a simple instruction execution monitor that keeps
track of the amount of executed instructions. Executed messages are pattern
matched in the overridden traceExecution method of the monitor. The first use
for pattern matching is to filter out irrelevant messages from the ones between
pipeline components. Pattern matching also allows determining the type of the
executed instruction to give better statistics grouped by instruction type.

Each time an instruction has gone through all pipeline stages, an associated
counter in a map is increased. The monitor keeps track of the counter status, and
the status can be observed via a GUI module defined next. The Algorithm 32
presents the monitor implementation.

37

Algorithm 32 Instruction execution monitor.

case class InstructionMonitor(cclock: ControllerClock)
extends BaseMonitor(cclock) {

private val counter = new collection.mutable.LinkedHashMap ++=
Instructions.instructions map
{ .gen.name } sortWith { < } map { (, 0) }

override def traceExecution(e: Executable) =
if (e.name == "WriteBack")

e match {
case wb: Command1[MIPS32Instruction,]⇒counter(wb.p1.name) += 1
case ⇒
}

def name = "Instruction monitor"

def state = "Executed instruction count:\n" + counter.mkString("\n")
}

The GUI code for the instruction monitor is presented in Algorithm 33. The
monitor just displays a console frame, the contents of which are updated periodi-
cally.

Algorithm 33 GUI code for the instruction execution monitor.

class InstructionMonitorGUI(val insMonitor: InstructionMonitor) extends
MonitorFrame("Instruction") {

def tick = updateText(insMonitor.state)
}

7.2.5 GUI

The graphical user interface of the simulator is split into two parts, the main menu
and the simulator controller. The main menu (shown in Algorithm 34) can be
automatically generated to a great extend. The customized part in this example
is the connection between configuration objects described in Algorithm 22. The
program loading functionality is automatically enabled when the GUI is told to
execute programs.

The simulator controller (shown in Algorithm 35) also comes with a lot of
default functionality for controlling the simulation (e.gṙeset and step buttons). We
only add the code for displaying the instruction monitor and for constructing the
customized simulation object. The built-in classes provide routines for easily ex-
tending the simulator with various kinds of monitors.

38

Algorithm 34 Main class for launching the GUI.

object SimuGUI extends CPUSimuGUI {
Logger.debugmode = true

val versionString = "Example architecture simulator"
val executesPrograms = true

/∗∗ Instruction set setup (already shown) ∗/

val simuControllerFrame = new ProgrammableSimuControllerFrame(SimuGUI)

val configurationGroup = new ConfigurationFrameGroup(
simuControllerFrame)

val CPUConfFrame = new GroupConfigurationFrame(
"CPU", CPUConfig, configurationGroup)

val MemoryConfFrame = new GroupConfigurationFrame(
"Memory", MemoryConfig, configurationGroup)

lazy val configureButton = Button("Configure parameters") {
configurationGroup.show
simuControllerFrame.hide
configurationGroup goTo nextTo
}
}

Algorithm 35 GUI class for controlling the simulation.

val simuControllerFrame = new ProgrammableSimuControllerFrame(SimuGUI) {
type SimuType = Simulation

def createSimulation = new Simulation(program, decoder)

def monitors = List[MonitorHandler](
new MonitorHandler("Show instruction monitor", {

val instructionMon =
new InstructionMonitorGUI(simulation.insMonitor)

simulation attachTickable instructionMon
instructionMon
})

)
}

39

8 Installation and usage
The simulator is freely available under the GNU Affero General Public License5

and the distribution package is located at:

• http://staff.cs.utu.fi/research/MOTH/

The distribution consists of the complete source code written in Scala (direc-
tory src/), executable binaries (directory bin/), a *nix script for starting sim-
ulations (start.sh), this report (manual.pdf), and the AGPL license text
(COPYING).

8.1 Software dependencies
The simulator depends on a working installation of Java runtime environment (6
or later) and Scala 2.8 runtime libraries, though as of this writing Scala 2.8 is
still considered a beta release. The libraries can be freely downloaded from the
following sites:

• Java 6, http://java.sun.com/javase/6/

• Scala 2.8, http://www.scala-lang.org/node/212

The precompiled simulator depends on Java runtime enviroment (J2RE, tested
with the Sun, IBM, and OpenJDK Java distributions) and Scala 2.8 runtime li-
braries (scala-library.jar, scala-swing.jar). The default class path
settings may need to be reconfigured depending on your setup.

Compiling the simulator also requires the Scala 2.8 compiler, which is part of
the standard Scala distribution.

In both cases dependencies contain necessary binaries to run the tasks. The
binaries should be accessible via the PATH environment variable.

8.2 Starting the simulation
The simulator can be started by providing a simulation main class (for instance
inherited from CPUSimuGUI) instance to the aforementioned script start.sh.
The script implicitly adds current directory to the class path. The script calls the
Scala binary, which launches the Java virtual machine with appropriate parameters
for launcing the simulation.

For quick testing, the architecture from Section 7 is bundled with the simula-
tor. It can be launched with:

$./start.sh test.ExampleArchSimulator

5See http://www.gnu.org/licenses/agpl.html

40

http://staff.cs.utu.fi/research/MOTH/
http://java.sun.com/javase/6/
http://www.scala-lang.org/node/212
http://www.gnu.org/licenses/agpl.html

8.3 Using the graphical interface

A typical workflow in using the simulator is to

1. first import an executable from the file system (first button in Figure 19
opens the file selection dialog shown in Figure 20), then to

Figure 19: Main menu.

Figure 20: Importing an executable from the file system.

2. configure simulation settings (second button in the Figure 19), and

3. start a simulation (third button in the Figure 19) with

4. appropriate monitor frames opened from the controller menu (Figure 21).

41

Figure 21: Simulation controller menu.

The simulation restarts whenever the simulation settings are reconfigured, a
new executable is imported to the simulator, or the reset button is pressed on the
controller menu.

The simulator does not support any undo functionality at the moment and the
simulation can only be run forward, stepwise in groups of 1, 10, 100, 1000, or
10000 cycles. The code behind the default user interface can easily be adjusted to
support other kind of execution modes or e.g. remote controlling via a network.

In the currently available version, configuration settings cannot be yet saved to
a file and the log output also has to be manually copied from the standard output
or from the logger frame. A future version will fix these issues.

42

References
[1] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for com-

puter system modeling. Computer, pages 59–67, 2002.

[2] Sangyeun Cho, Socrates Demetriades, Shayne Evans, Lei Jin, Hyunjin Lee,
Kiyeon Lee, and Michael Moeng. Tpts: A novel framework for very fast
manycore processor architecture simulation. In ICPP ’08: Proceedings of
the 2008 37th International Conference on Parallel Processing, pages 446–
453, Washington, DC, USA, 2008. IEEE Computer Society.

[3] Steven Fortune and James Wyllie. Parallelism in random access machines.
In Proceedings of the tenth annual ACM symposium on Theory of computing,
STOC ’78, pages 114–118, New York, NY, USA, 1978. ACM.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: elements of reusable object-oriented software. Addison-Wesley
Professional, 1995.

[5] Joseph JáJá. An introduction to parallel algorithms. Addison Wesley Long-
man Publishing Co., Inc., Redwood City, CA, USA, 1992.

[6] J. Lee, J. Kim, C. Jang, S. Kim, B. Egger, K. Kim, and S.Y. Han. FaCSim: a
fast and cycle-accurate architecture simulator for embedded systems. ACM
SIGPLAN Notices, 43(7):89–100, 2008.

[7] D. Mihocka and S. Shwartsman. Virtualization Without Direct Execution or
Jitting: Designing a Portable Virtual Machine Infrastructure.

[8] Martin Odersky and al. An overview of the scala programming language.
Technical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[9] PM Ortego and P. Sack. SESC: SuperESCalar Simulator, February 2007.

[10] J. Paakkulainen, J-M Mäkelä, V. Leppänen, and M. Forsell. Outline of
risc-based core for multiprocessor on chip architecture supporting moving
threads. In CompSysTech ’09: Proceedings of the International Conference
on Computer Systems and Technologies and Workshop for PhD Students in
Computing, pages 1–6, New York, NY, USA, 2009. ACM.

[11] MT Yourst. PTLsim: A cycle accurate full system x86-64 microarchitectural
simulator. Performance Analysis of Systems and Software, 2007. ISPASS
2007. In IEEE International Symposium on, pages 23–34, 2007.

43

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology
• Department of Mathematics

Åbo Akademi University
• Department of Information Technologies

Turku School of Economics
• Institute of Information Systems Sciences

ISBN 978-952-12-2425-6
ISSN 1239-1891

	Introduction
	Related work
	Cycle-accurate simulators
	New generations

	Overview
	Core module
	CPU module
	Memory module
	Network module
	MIPS32 module
	Monitoring module
	GUI module
	Module relations

	Message passing architecture
	Introduction
	Executable
	Commands

	Executor
	Component

	Clocks
	Connectable

	Utility layers
	Monitoring framework
	Execution monitor
	Derived monitors

	GUI framework
	Simulation controllers
	Helper classes

	Domain specific framework layers
	CPU layer
	Memory layer
	Network layer
	MIPS32 layer
	Defining instructions
	Defining instruction sets
	Serializing and deserializing

	Example architecture
	Architecture description
	Instruction set
	Execution pipeline
	Architecture parameters

	Implementation
	Instruction set
	Configuration parameters
	Component definitions
	Monitors
	GUI

	Installation and usage
	Software dependencies
	Starting the simulation
	Using the graphical interface

