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Abstract

The topics of this thesis are dimension-sensitive propeiif cellular automata
and subshifts of finite type. Cellular automata are a well kmowodel of paral-

lel computation capturing the notions of locality and homogjty in space and
time, while subshifts of finite type can be used to study thengetric aspects of
computation. Both cellular automata and subshifts of finipetare examples of
symbolic dynamical systems. One-dimensional cellulao@ata and subshifts of
finite type have been studied extensively and their progeete well understood.
However, trying to generalize these properties to higleredsional cellular au-
tomata or subshifts of finite type is often impossible.

In particular, we are interested in recursion theoretic@ymhmical system prop-
erties that are dimension sensitive. Approaching the stityyeough both points of
view, we find out that many theorems holding in one-dimenai@mno longer true
in the multidimensional cases, or are only true under muohgar conditions.
For example, the decidability status of many problems ttnora decidable in the
one-dimensional case to undecidable when we go over to thidimensional

cases. In addition, topological entropy cannot give asfsatiory a classification
for multidimensional symbolic systems as it gives for oma&hsional systems.

One of the aims of this thesis is to serve as a first readingvienyene that would
like to know about this fascinating new area of symbolic dyies. For this rea-
son, we have included dimension sensitive propertiesratgig from various
points of view, and in many cases we have tried to give antiméuéxplanation of
what causes the difference between the one-dimension#@hamautlidimensional
cases.

Keywords: Cellular automata, subshifts of finite type, multidimensisymbolic
dynamics, topological entropy, Nivat's conjecture
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1 Introduction

The topic of this master thesis are dimension sensitivegitgs of cellular au-
tomata (CAs) and subshifts of finite type (SFTs) or, in otherdsptheorems that
are valid for in the one-dimensional case but not in two disn@ms. Our object
is to give a modest presentation of the results on this toptained up to now
and a smooth introduction for those interested to know mboriithe motivat-
ing problems and the special techniques of this rapid-grgvairea of symbolic
dynamics.

CAs are a model of massive parallel computation. Equivatetitey can be
seen as dynamical systems acting on a particular zero-dioveal compact space.
CAs were introduced by von Neumann in 1966, see [VNB66]. A ssapbdel of
two-dimensional §-D ) SFTs called Wang tiles was introduced by Hao Wang in
1961, see [Wan61]. Wang was interested in the recursionrghie@spect of this
model and did not consider their geometric and dynamicgbgmees. Also, the
correspondence between Wang tiles and one-dimensiofial)(SFTs was not
immediately noticed, since the latter originated from altgtdifferent point of
view, namely as topological models of Markov chains.

Although von Neumann originally definedD CAs, that is CAs that work on
configurations of the plane, for many years only thB case was studied, where
configurations are defined over the line. Quite a lot of redeasras done on the
D dimensional case and a lot of theorems regarding theirgpti@s were proved,
see [Kur03]. The question about whether these results algbit the2-D case
was either not posed at all or considered trivial. It was mbit 1993, see [She93],
that Shereshevsky proved that, in contrast to e case,2-D CAs cannot be
positively expansive, hence establishing that the dynalmpioperties oR-D CAs
and 1-D CAs can be strikingly different. Then, in 1994, Kari provitdt it is
undecidable whether&D CA is injective, see [Kar94], so that the computational
properties oR-D and1-D CAs can also differ a lot. After that, many people have
tried to explore what is the exact nature of these differsraal at present our
knowledge about dimension sensitive properties of CAs ishntmoader.

The history of dimension sensitive properties of SFTs hasIséightly differ-
ent. Namely, as soon as it was realized that Wang tiles capdea-D SFTs,
we already had two very important dimension sensitive pitiggeat hand: the
existence of an aperiodiz:D SFT and the undecidability of the non-emptiness
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problem for2-D SFTs, see [Rob71, Ber72]. In 1994, Burton and Steif proved
something equally surprising: there existirreducible SFTs with multiple mea-
sures of maximal entropy, see [BS94]. The fact that an irristiic-D SFT has a
unique measure of maximal entropy is known since 1964, sa&{p. Following,
that there has been a constant flow of results regarding tfadaical entropy

of 2-D SFTs and its connections with the factoring relation lestm2-D SFTs.

We will state and prove some of these in this thesis. Finall2009, Hochman
presented an impressive construction saying 2abt SFTs can be "almost ev-
erything” which changed totally the kind of questions we VWdolike to pose for
multi-dimensional SFTs, see [Hoc09].

The layout of the thesis is the following:

In Chapter 1, we define Wang tiles in the classical sense ardRpbinson’s
construction of an aperiodic tile set and sketch the proatherundecidability
of the Domino problem Our exposition essentially follows geminal paper of
Robinson [Rob71].

In Chapter 2, we introduce CAs in the usual way and state thgtdhe be
seen as the shift-invariant transformations of the condityom space. Then, we
prove the undecidability of the following problems fo#D CAs: reversibility,
surjectivity, number-decreasingness and openness. Twdspof the first three
are based on the papers [Kar94, Dur93, BDFKO05], while the ciddéility of
openness is a new result. Then, we turn our attention to égpz! entropy and
give a result of Lakshtanov and Langvagen [LLO4] stating #agery 2-D CA
that has a spaceship has infinite topological entropy. Thengescribe briefly
Meyerovitch’s construction from [Mey08] of 2D Ca with non-zero, finite topo-
logical entropy. Several other properties of the topolabgntropy of2-D CA are
mentioned without a proof. In regards to dimension seresiiynamical proper-
ties, we prove Shereshevsky’s classical result of the xastemce of positively
expansive CAs found in [She93], and also give an example diatioof a 2-D
non-sensitive CA without any points of equicontinuity. A dan example was
independently given By Sablik and Theyssier in [STO08].

In Chapter 3, we define SFTs in the mathematically rigorous asgubsys-
tems of the full shift dynamical system, and prove a few ssaibout2-D SFTs
and the factors o2-D SFTs, called2-D sofic shifts. These results, due to De-
sai [Des05, Des09] state that evedp SFT of positive entropy has a family of
SFT subsystems with entropy dens€(ini(X )], and that the same is true if we
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substitute every occurrence of the term "SFT” with "sofid8hirhen, we define
a strong mixing condition fo2-D SFTs and prove tha-D SFTs satisfying this
mixing condition factor onto lower entropy full shifts arttht their automorphism
group is contains a copy of every finite group. This last tesak first proved by
Ward in [War91], although our proof employs techniques tigved by Desai.

Finally, in Chapter 4 we give a short exposition of open profden the topic
of multidimensional CAs and SFTs. We also give part of the paddhe best
result we currently have for Nivat's conjecture. Namely,a@@and Zamboni in
[QZ04] have proved that if the complexity function oReD configurationé sat-
isfiespe (n1, ng) < %nmg, for somen,, ny > 2, then¢ is periodic.






2 Wang tiles and the Tiling problem

Wang tilesare unit squares with colored edges. We will usually represelours

as letters. A finite sef of tiles is called atile set A configurationwith tiles
from the tile setS is a functionf: Z> — S. Intuitively, a configuration is a way
to fill the plane with unit squares frorfi, where abutting squares are put side-
to-side. Notice that we are not allowed to rotate the tilescoifigurationf is
valid at point(x,y) € Z? if the edges of the tilef (z, y) have the same color as
the abutting edges of its neighboring tiles, i.e. if the upmge off(x, y) has the
same color as the lower edge fifr, y + 1), the right edge of (z, y) has the same
color as the left edge of(z + 1, y) etc.

) )
412 412
1 1 1 1 0 1
5100233 5 510023305
2 2
101 101

Figure 1: A point where the tiling conditions are satified @nploint where they
are not.

A configurationf is called avalid) tiling if it is valid at all points(z, y) € Z2.
We also use the expression titaadmitsthe tiling f. A configurationf is (one-
way) periodicwith period (a,b) € Z* if f(z,y) = f(x + a,y + b), for every
(z,y) € Z*. A configuration is calledwo-way periodicif it has two linearly
independent periods. If a valid tiling has no periods, itaflexd anon-periodic
tiling. A tile set is calledaperiodicif it admits a tiling, but all the tilings that it
admits are non-periodic.

Wang tiles were introduced by logician Wang in 1961 [Wan®1d.discovered
them while investigating the decidability of the satisfldypiproblem of a certain
class of first-order formulas. His investigations led hinthe following decision
problem, which is known as thEling problem

Does a given tile set admit a valid tiling?

He proved that this problem would be decidable if there existo aperiodic
tile sets, and went on to conjecture that this is indeed the.dderger showed that
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this is not true: he explicitly constructed an aperiodie 8kt and then used it to
prove the undecidability of the Tiling problem.

Most of the material of this chapter is based on Jarkko K&csure notes for
the class "Tilings and patterns” taught during the wintenester of 2008 in the
University of Turku.

2.1 Compactness principle

In this section, we will give a fundamental result about $és. In the form that
will be of most use for us in this chapter, it states that ifl@ $iet can tile validly
arbitrarily large squares, then it can also tile validly thiole plane. This is
extremely useful, since we can apply it to show that a tiledetits a valid tiling,
without having to describe explicitly how this tiling actlyalooks like. We first
prove a more general result which states that a certainagmal space that will
be introduced in the next chapter is compact.

Let S be atile set and consider an infinite sequence,, . . . of configurations.

We say that the sequencenvergego ¢ € 5% and that: is its limit, if for every
(z,y) € Z* there exists some > 0 such that;(x,y) = c(x,y) for everyi > k.
In other words, if we choose an arbitrary position of the plamd check the
sequence of the tiles appearing in this position, then fromesmoment on we
will always see the same tile. It is obvious that if a sequre dlimit, then this
limit is unique. We will denote it byimc;.

A subsequencef a sequencel,lc?,xf .. Is another sequeneg , ¢;,, . .. where
11 < 12 < ... IS an increasing sequence of numbers. Clearly, if a sequdnce o
configurations converges toc SZ°, then all of its subsequences also converge to
the same configuration.

We are now ready to state and prove toenpactness principle
Proposition 1. Every sequence of configurations has a converging subseguen

Proof. Let ¢1, c9, ... be an arbitrary sequence of configurations and consider an
enumeration;, 75, ... of Z2. We will show that there exists a subsequence
Ciy» Ciy, - - - SUCh that for everyr > 1, if j > n thenc (7)) = ¢, (7), i.e. the
tiles in then’th position of the plane are fixed from théth moment on. Let us
define the indices,, iy, . . . inductively as follows:
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¢ i, is the smallest index such that infinitely many elements ef¢bquence
c1,Co, ... agree withe;, in position ;. Since there exist only a finite
number of tiles which can appear in positiop, at least one of them
is repeated an infinite number of times, hengds well-defined. Let
I, = {j:j>1andc;(ri) = ¢;, (r1)} be the set of all indices such that the
corresponding element of the sequence agreesayith positionry. It is
clear by the definition of;, that/; is an infinite set.

e Let us suppose that, i, ...,i;_; have already been defined and that the
corresponding set§, I, ..., I,_; are all infinite and such thdy O I, O
... 2 I_1. We choosé,, to be the smallest integer iy _; that satisfies the
following conditions:

1. 0 >0

2. There exist infinitely many indices € I;,_; which agree with;,_ in
positionry,.

Since the sef;,_; is infinite, there exists some number which satisfies both
conditions. Also, we defing, to be the sef), = {j € [;_1: ¢;(7%) = ¢, (%) }-
According to the definiton ofy, I, is an infinite set and obviously, C I, _;. So,
the induction can go on.

Now, it is easy to prove that the sequengec;,, ... is converging: Let,, be
any position in the plane and lgt> n. Then,i; € I; C I,,, which means that
ci, () = ci;(r7), Which is exactly what we wanted to prove. O

Actually, the argument used in the proof of Proposition 1 ashing but a
application of Knig's principle.

Corollary 1. LetS be atile set. If for every finité" C Z? there exists a configu-
ration that is valid at everyz, y) € F, thenS admits a valid tiling.

Proof. Let 71,73, ... be an enumeration &t? and letF,, = {r1,75,...,7}, for
eachn > 1. According to the hypothesis, for eagh> 1 there exists a configura-
tion ¢, that is valid at all positions of},. By the compactness principle, we know
that the sequenas, ¢, . . . has a converging subsequengec;,, .. .. Letc € Sz
be its limit. Thenc is a valid tiling.

Indeed, letr;, be any position of the plane. Since the sequeficg F, C ...
is increasing and every element®f belongs to some set of the sequence, there
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existsn, > 1 such that for every, > ny, F,, containsr; and all of its neighbors.
By convergence of the sequengg ¢;,, . . ., there exists some, > 1 such that for
everyn > ng, ¢ ande;, agree oy, and all of its neighbors. If we consider some
n > max{ni, ny}, we can see thatagrees witt;, onr;, and all of its neighbors,
and also that;  tiles correctly at’;. Therefore tiles correctly at;,, and since
7 was an arbitrary position of the planeis a valid tiling. O

Remark 1. From the above corollary, we can conclude that if a tile Sefan tile
validly arbitrarily large squares, then it can tile validiype whole plane.

For more properties of tilings, see [BDJ08, CD04, Dur99].

2.2 An aperiodic tile set

In this section, we are going to describe an aperiodic titetls#t we use later
to prove that the Tiling problem is undecidable. Before ddimgf, we need one
more fundamental result about Wang tile sets.

Proposition 2. If a tile setS admits a one-way periodic tiling, then it also admits
a two-way periodic tiling.

Proof. Let f € S7° be a one-way periodic tiling and, b) # (0,0) be a period of
f. Without loss of generality, we can suppose that 0. Consider a horizontal
stripe of height) extracted fromf, i.e. the tilesf(z,y) wherex € Z and1 <

y < b. The sequence of colors on the bottom edge of this stripeeisdime as the
sequence of colors on its top edge with a horizontal offset

i

Figure 2: A horizontal stripe of heightextracted fromy.

Let us define for every € Z the rectangle of widtha| extracted from this
stripe at positior(j, 1) asR; = {f(z,y) : j < a < j+ |a|;1 < y < b}. Since
the tile setS is finite, there is only a finite number of such rectangles.rétoee,
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some rectanglé is repeated infinitely many times, i.&,;, = R;, = R, for some
J1,J2 € Z. We can also assume th&t, N R;, = (). A periodic stripe of height

can now be constructed by repeating periodically the patietween positiong

andj,. We know that the sequence of colors on the bottom edge ot is
again identical on its top edge with a horizontal offset

Figure 3: A periodic stripe of heiglbt

A two-way periodic tiling can now be obtained by stackingiespf this stripe
on top of each other with the horizontal offgetThis tiling has periodsa, ) and
(j2 — 71,0), which are obviously linearly independent.

Figure 4: A two-way periodic tiling.
O

Remember that when we defined aperiodic tile sets, we did netifgp
whether they should accept no one-way or two-way periodilegti The next
corollary shows that this makes no real difference.
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Corollary 2. A tiling set admits a two-way periodic tiling if and only if it alts
a tiling with a horizontal period.

Proof. Obviously, if a tile setS admits a two-way periodic tiling, then this same
tiling also has a horizontal period. Indeed, (etb) and(c,d) be two linearly
independent periods gf. Thend(a,b) — b(c,d) = (ad — be,0) is a horizontal
period for f.

On the other hand, suppose titaadmits the one-way periodic tiling. Ac-
cording to Proposition 2$ also admits a two-way periodic tiling Now, thisg
has a horizontal period. m

We are now ready to give the fundamental constructioRabinson’s ape-
riodic tile set[Rob71]. In doing so, we will use arrows to describe the tiling
conditions instead of colors. The rule is that arrow headstrmeet arrow tails
and every arrow tail must be met by some arrow head.

Robinson’s tile set consists of tiles

A A

<
<

Y

Y

which are called crosses, and tiles

> | <— > | <— —> |
> | <— —> |
Y Y Yy
> | <— —> | > | <—
Y VY Yy Yy

called arms. All tiles can be rotated, so every tile comesur fifferent orienta-
tions. Hence, the total number of such tiles is 28. The falhgwerminology will
be used extensively:

e Every tile hascentral arrowsat the centers of all four sides, and possibly
someside arrows
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e Across is said téacethe direction of its side arrows. For example, the cross
that is drawn in the figure above is facing north-east, ortleowords, it is
a NE-cross.

e The central arrow that runs through an arm is calledattiecipal arrow of
the arm, and the direction of the principal arrow is callee dhientation
of the arm. For example, all arrows in the figure above are dramthe
north-to-south orientation.

An important thing to notice about arms is that if there ade sirrows perpen-
dicular to the principal arrow, then they are on the side eftthad of the arrow.

We would like to enforce a cross in the intersection of evaheorow and
column. In order to achieve that, we use a construction knasvauperposition
or forming "sandwich tiles”, which consists in taking thatesian product of the
tiles we have defined up to now with some other tile set. livly, this means
that we are superimposing a new layer over every configuragiad the tiles in the
second layer come from the new tile set. Then, in a validgilnth the extended
tile set, we demand that in both layers the tiling be valid. réspecifically, we
take the cartesian product with tparity tiles

!
f

!
f

<
<
<
<
<
<

A
—> -—

!
f

- |
-

Figure 5: The parity tiles.

and allow the first parity tile to be "sandwiched” only witlosises. Since the only
way to tile the plane with the parity tiles is by alternatihg tiles on even and odd
rows and columns, the first parity tile will appear in everlgeatrow and column.
Therefore, we have guaranteed the existence of a cross iy etler row and
column. By convention, we can assume that every odd-oddiposit the plane
contains a cross.
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Note that since a cross doesn’t have any incoming arrows/gest two crosses
there can only be an arm and there are two possible choicésfarientation of
this arm, as it cannot point towards any of the crosses. Tarexan valid tilings,
the second parity tile is only paired with north-to-soutlsouth-to-north arms and
the third parity tile can only be paired with east-to-wesiveist-to-east arms. The
fourth parity tile can be paired both with crosses and ewgpg bf arms. Hence,
in our final tile set, we include only these tiles for a total4312+12+28=56
different tiles. This is Robinson’s tile set.

Before proving that it is aperiodic, we need a specific kind attgrn called
a (2" — 1)-square which plays a special role in the study of Robinsont a
Robinson’s-like tile sets.

(2" — 1)-squares are defined inductively as follows:

e A 1-square is a cross in an odd-odd position.

e A (2""! —1)-square consists of a cross in an even-even position, segsien
of arms radiating out of the center, and fq@f — 1)-squares facing each
other in the four quadrants. @™ — 1)-square is said to have the orientation
of its cross.

A A A

(2™ —|1)-squafe (2" —|1)-squafe

A
A
A A

>

A
A
Y
Y

A
A

Y

A A

(2™ —|1)-squafe (2™ —|1)-squafe

Figure 6: Inductive definition of &"*! — 1)-square.

Note that for every: > 1 there exists four differen2” — 1)-squares, as the
orientation of the central square uniquely determinesekeaf the tiles.

14



YY
A A
YY
A A

A
Y
A
Y

A
A
YY
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Y
A
Y

YY
AA
YY
AA

YY

A
A
A
A
Y
Y
Y

A
YY
AA
Y
A
YY
AA
Y

A
A
Y
A
Y
Y

YY
AA

A
Y
A

YY
AA
YY
AA

Y

Figure 7: Ther-square facing south-east where side arrows are not drawn.

Inductively, one can prove the following facts ab@it — 1)-squares:

1. Thetiling is valid inside the square.

2. All edges on the border of the square have arrow heads pgiatify so all
neighbors of 2" — 1)-squares are forced to be arms.

3. The only side arrows on the edges of the border are in the mioidthe
borders in the directions where the center cross of the sgsidacing.

4. The tiles at the four corners of the square are crosses iroddgositions.

Since Robinson’s tile set can tile validly arbitrarily largguares, it can also
tile the whole plane. Let us consider an arbitrary valichgliof the plane by
Robinson’s tiles. Using induction amwe will prove that every cross in an odd-
odd position belongs to a uniqU#™ — 1)-square, for every, > 1.

e The casen = 1 is trivial, since by definitionl-squares are exactly the
crosses in odd-odd positions.

e Suppose that the claim is true far— 1, and let us consider an arbitrary
crossC' in an odd-odd position. By the inductive hypothesis, it bg®to a
unique(2"~! — 1)-square. There are four possibilities for the orientatibn o
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Sy Su

A
Y
S

Y

Figure 8: The inductive step of our argument.

this square, but all the cases are symmetric. Let us asswhehthsquare
is facing north and east.

We claim that the tileX in the Figure 1.7 must be a cross. Indeed, suppose on
the contrary that it is an arm. Since arms have incoming aiavall but one of
their sides, one of the neighbors &fin regiona or b is an arm directed towards
X. Without loss of generality, we can suppose that this neigisin thea region.
Repeating this argument, one concludes that all tiles iroregiare arms. Let us
now examine what happens in the center of the regiohhe tile in this position
must be an arm with its side arrows on the tail's part. As weehareviously
noted, this is impossible since arrows perpendicular toptigcipal arrow can
only appear towards the head of the principal arrow. Hengeassumption that
there is an arm itX is wrong, andX must be a cross.

Now, let us consider the til&. It is in an odd-odd position, so it must be a
cross. According to the induction hypothesis, it belongs tanique(2" — 1)-
squaresy. This square cannot overlap with the squarsince then the tiles in the
overlap region would belong to two differef#” — 1)-squares, which contradicts
the induction hypothesis. Also, the tiles in the regiotannot belong iy, since
they would be part of the bottom line ef . However, the tiles in the bottom line
of every(2" — 1)-square belong to odd lines, while regiors part of an even line.
Finally the tile north ofX cannot be insy, sinceX is a cross, and we know that
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all edge neighbors g2" — 1)-squares are arrows. Therefokéhas to be in the
south-east corner &fy, as in the picture above. Similarly/, andZ are forced to
be in the south-west and north-west corner of the squaresds, respectively.
The tiles between these four squares are forced to be sezpieharms radiating
from X, and the side arrows in the middle of regiongndb force the center
crosses ofy andsy to face the squaresands;;. Hence, the squaressy, sy, sz
and the tiles between them form(2' — 1)-square that contains til€.

The uniquness of thi" — 1)-square is obvious, since in the reasoning above
the orientation of thé2"~! — 1)-square containg’ uniquely determines the loca-
tion and the orientation of th@™ — 1)-square.

We are now in position to prove that:

Theorem 1. Robinson'’s tile set is aperiodic.

Proof. We have already noted that Robinson'’s tile set admits a vifihg bf the
whole plane. Let us assume that it admits a periodic tilingcakding to Corollary

2, it also admits some tiling with a horizontal period. As every tiling contains
(2" — 1)-squares for every, > 1, there exist crosses in even-even positions,
namely the centers of th@™ — 1)-squares, followed horizontally by arbitrarily
large sequences of arms. Hengecannot have a horizontal period, which is a
contradiction. O

2.3 Undecidability of the Tiling problem

In this section, we are going to prove that the Tiling probismndecidable. In
order to do this we will show how an arbitrary Turing machiraé de simulated
by tiles, thus reducing the Tiling problem to the Halting Iplem of Turing ma-
chines. However, this construction, introduced by WanghMaf61], faces some
fundamental problems. In order to fix them we will use Robirstite set. Let
us first agree on some terminology about Turing machines.

It has long been a mathematical folklore, explicitly exgexsin the Church-
Turing thesis, that Turing machines are a formal definitionthe intuitive idea
of an algorithm and that they can perform every operation rthadern, super-
powerful computers can. The Turing machines that we will lnsee work on
a two-way infinite tapeand thetape alphabehas a distinguishetlank symbol
b. The fundamental undecidable problem we are going to censdwvhether a
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Turing machine halts when it is started on the all-blank ta@pgood introduction
to Turing machines and undecidability results is containdeiMUQG6]
Formally, we define &uring machingTM) as a sixtuple

M = (S,F, So, Sh,é, b)

where S andT" are finite sets called thetate setand thetape alphabetespec-
tively, so and s, are distinguished states called the initial and the halsitage,
respectivelyp € I is the blank symbol and: S x I' — S x I x {L, R} is the
transition function

At every time step, the processor of the TM is in a specificesaatd position
of the input tape, reading the letter in that position. Dejdeg on its state and the
letter currently scanned, it takes the following actiohshianges its state, replaces
the letter in the current position of the input tape by a new,@md, finally, moves
to the left or right.

Formally, we define @onfigurationof the TM as an element &f x I'” x Z.
Configuration(q, f, i) means that the TM is in statethe content of the tape is the
bi-infinite sequencg : Z — T" and the processor is in positionWe say that the
configuration(q, f, ) is transformed in one stejp configurationp, g, j), where

(g, f(2)) = (p,y,d)

Y if k=1,

g(k) = _
f(k) otherwise.
j=1+1 ifd=R

j=i—1 ifd=L

We denote this move by, f,i) - (p, g, 7). Letli be the reflexive and transi-
tive closure of-. We say that the TMhaltsif (sq, b, 0) - (sn, f,1), whereb has
the blankb in every position of the input tape, arfdand: are arbitrary. Thélalt-
ing problem consists in deciding if an arbitrary TM halts. By Turing’s s$écal
result, we know that:

Proposition 3. The halting problem is undecidable, i.e. there is no aldontto
solve it.
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Remark 2. The careful reader might have noticed that we have not definad wh
an algorithm is, so Proposition 3 is not well-defined mathecadly. However,
one can think of algorithms as programs written in any strongugh propgram-
ming language, for exampleYTHON. Then, Proposition 3 states that there is
no program written inPYTHON which takes as an input the description of an
arbitrary TM and returns "yes” if the TM halts and "no” if it desn't.

Next, we are going to describe how Wang tiles can simulate. TMthough
this might seem a little absurd, since TMs are dynamic objact Wang tiles are
static ones, we will see that it is possible by using the galtlirection to represent
time. The colors of the tiles we are going to use are arrovase stymbols of the
TM, tape symbols of the TM and combinations of these. In reegimg tiles,
arrow heads must meet arrow tails and labels must be the same.

Let M = (S,T, sg, sp,0,b) be a TM. The corresponding Wang tile set that
simulates)/ contains:

1. Threestarting tilesto represent the blank tape.

b 50, b b

A A A

A
A
Y
Y

The tile in the middle is called theeed tile

2. For every tape letter € I' thealphabet tile

X
A

T

3. For every non-halting statec S\ h and tape symbat € I" oneaction tile

Y Yy

A A

q,% q,%
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where the tile in the left is included in the tile sebify, z) = (r,y, L) and
the tile in the right is included i#(q, x) = (r,y, R).

4. For every non-halting statec S\ h and tape symbalt € I' the twomerging
tiles

5. Theblank tile

Lemma 1. Let M = (S,T, so, sn,6,b) be a TM and letP,, be the above con-
structed tile set. Thenl/ does not halt if and only if?,; admits a valid tiling of
the plane that contains at least one occurrence of the sé=d ti

Proof. Suppose thad/ does not halt. Then, it is possible to make a valid tiling
that contains exactly one occurrence of the seed tile. bhdetus place the seed
tile at position(0,0). Those tiles that lie on the same horizontal line as the seed
tile are forced to be starting tiles. The labels of the topesdagf the tiles in this
line can be viewed as a representation of the initial condityoin of A/. The tile
above the seed tile is forced to be an action tile. Also, a mgiiije is also placed

in the right place so that the labels of the top edges of the iil the second line
represent the configuration &f after one step, as in figure 1.9.

Inductively, the labels of the top edges of the tiles on(the- 1)'th line rep-
resent the configuration of/ after n steps. Since the TM does not halt, this
procedure can be continued indefinitely to fill up the uppéf dlethe plane. In
the lower half, we can just place the blank tile. This is ad/éiling that contains
the seed tile.
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For the other direction, assume that halts. Since there does not exist a
merging tile for the halting state, the above procedure bglimpossible to con-
tinue when the halting state is reached, so there does rattaexalid tiling which
contains an occurrence of the seed tile. n

Therefore, given an arbitrary TM/ we can algorithmically construct a tile
set P); such thatM does not halt if and only if?,, admits a tiling satisfying
a certain innocent-looking condition (at least one appesaf the seed tile).
This, however, does not imply the undecidability of theAgliproblem, sinceé’,,
always admits some tilings, for example the all-blank gjlior a tiling where in
every column there is a fixed alphabet tile. One might thinkh@pe) that if we
do some minor adjustments to the tile set, we can guaranteexibtence of the
seed tile in every valid tiling of),;. Unfortunately, by a simple application of the
compactness principle, this is not possiblé’jf can tile arbitrarily large squares
without using the seed tile and, therefore, the seed tiledhbe enforced in every
n x m-square, for some > 1. This seems to contradict the fact that we want to
represent arbitrarily large computations/at

Berger’s classical construction gives a way to bypass tluslpm. The idea is
to partition the plane into disjoint rectangles with unbded size. In every such
rectangle we can represent a finite but arbitrarily large @athe computation of
M. Then, if M halts, some big enough rectangle will contain the whole adayp
tion of M, hence the tiling will not be able to be extended in this negta. If, on
the other hand)/ does not halt, we can fill arbitrarily large squares withiahit
parts of the computation df/, hence there will be a valid tiling.

The real challenge is to implement this partition of the plarto disjoint and
unboundedly large squares with tiles, hence finite conasti®erger did this with

A
A

A
A

A
Y

Figure 9: The simulation al/ by the tile setP,,.
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a tile set of some thousands of tiles. Later, Robinson gavenplsr proof us-
ing Robinson’s tile set which is significantly smaller. Dé&aian be found in the
seminal papers [Ber72, Rob71]. Another intuitively more $fzarent and easier-
to-use way to do this is to use substitution systems defilmgst-odometers and
a theorem of Mozes which states that every two-dimensiaaBl from now on)
substitution system can be implemented with a tile set [Mo28c09]. How-
ever, mathematically this is equivalent to Robinson’s aaomasion since Mozes’s
theorem is proved by a more lengthy and ellaborate appdicadf Robinson’s
arguments.

In this thesis, we will not show any of the two ways becausé lbbthem are
very lengthy, but instead we have given references thattdine interested reader
to the original articles.

Theorem 2. The Tiling problem is undecidable.

2.4 1-D case

The two main theorems stated in the previous sections wereetistence of
an aperiodic tile set and the undecidability of the Tilinglgem. Since this
thesis is about dimension-sensitive properties and diffegs between the one-
dimensional and the multidimensional case, it is just a Blogical step to assume
that for 1-D file sets” things are different. In this section, we will éftiy explain
why this is the case. No proofs will be given, but rather aornfal description
and references to other documents.

Let S be a finite set called thalphabet A configurationwith lettersfrom
the alphabefS is a functionf: Z — S. We say that a configurationc SZ is
periodig, if there exists some > 1 such thaic(i + n) = ¢(), for everyi € Z.
Instead of colors like in th-D case, we have a subsgtC S x S, that specifies
which adjacencies are forbidden in the configurations. Qimsly, we can also
define Wang tile sets with such a set of forbidden adjacenalésugh we must
deal separately with the horizontal and the vertical dioest The {-D subshif}
Sx defined byX is the set of all configurations such that no forbidden adjeies
appear in it,

Sx ={ce S%:c(i)c(i+1) ¢ X, foreveryi € Z}
A similar definition can be given for thi2D case. These objects are examples
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of so-calledsubshifts of finite typéor SFTs) and they will be the main topic of
Chapter 3. Then, the results of the previous chapters can derstood to say
that there exists a-D non-empty SFT with no periodic configurations and that
the emptiness problem f@D SFTs is undecidable. On the other hand,

Theorem 3. Every non-empty-D SFT contains a periodic point. It is decidable
whether al-D SFT is non-empty.

Proof. See [LM95]. The basic idea is that the element$-&f SFTs can be rep-
resented as infinite paths on finite directed graphs, andathiaite graph has an
infinite path if and only if it has a cycle. Furthermore, a @/cbrresponds to a
periodic point and it is certainly decidable if a finite dited graph has a cycle.
Both of the claims are now obvious. O

The book [LM95] has an excellent expositionieD SFTs.
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3 Cellular automata

3.1 Preliminaries

Cellular automata(CA from now on) are defined formally as quadruplés=
(d,S, N, f), where

e d > 1isthedimensiorof A,
e S is a finite set called thstate set

o N = (ny,n,...,1n,), Wheren; € Z% andn; # nj for i # j is theneigh-
borhood vectarand

e f:S™ — Sisthelocal function

Here, d defines the dimension of the configurations on whithwvill work.
For example, ifZ = 1 then the space on which acts isS%. The elements of the
neighborhood vector specify the (ordered) relative lacegiof the neighbors of a
cell: the neighbors of ceff are the cellsi + N = {7 +nj, 7+ na, ..., 10+ 1y}
The smallest natural numbersuch thatN C [—r,r]¢ is called theradius of
A. Intuitively, the radius of a CA is how far away a cell has tokao order to
determine its state in the next time step.

In every time step, the local rulg¢ is used to change a configuratiorto
another one’ in the following way:

(i) = f(e(fi+ N)) = f(elii +111), c(fi +133), ..., clii + 1i70)
The transformatior — ¢’ defines a global function
F: 8% - SZd,

thetransition functionof the CA. This is our main object of study. In fact, when
we talk about a CA, we will often refer only to its transitiomfttion.

For example, the-D left-shift o is a1-D CA with neighborhoodV = {1}
and local rule the identity functiof: S — S. The transition function is thus
defined agr(c)(n) = ¢(n + 1). Similarly, in2-D , we define the shift-magp; for
everyu € Z* as the CA with neighborhoo® = {«} and local rule the identity
function. The transition function satisfieg(c)(77) = ¢(7i + @). In the same way,
we can define the shifts for every dimensiop 1.
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Two widely used2-D neighborhoods are the so-callstbore neighborhood
M = {(z,y): |x| < landly] < 1} and thevon Neumanmeighborhood
N = {(z,y): |z| + |y| < 1}. Look at the following figure for a geometrical
representation:

Figure 10: The Moore neighborhood of célt,y) on the left and the von-
Neumann neighborhood on the right.

LetG: SZ° — SZ* be a CA with local functiory and suppose that there exists
some state € S such thay(q,q, ..., q) = ¢q. Stateg is called aguiscent statef
G. A configuratione € S%° is calledfinite if the setsupp(c) = {@i: ¢(fi) # ¢} is
finite. Let S denote the set of all finite configurations with stateseFrom the
definition of a quiscent state it is obvious that iE Sy, thenG(c) € Sr. Hence,
in the case wheré&' has a quiscent state, we denote by

GFI SF—>SF

the restriction of to finite configurations.

Let Sp denote the set of totally periodic configurationsZdf(a d-D configu-
ration is called totally periodic if it hag linearly independent periods). A similar
definition can be given for the restriction 6fto Sp. In fact, for totally periodic
configurations we do nott even have to assume the existere@uiscent state,
since ifc € Sp, then always7(c) € Sp. We denote by

Gpi Sp—>Sp

the restriction of7 on totally periodic configurations.
For our purposes, it is useful to imagine thenteger latticeZ to be equipped
with the infinite norm:

Too| = maxr;, for everyr = (ry,7y,...,7q) € Z°.
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It turns out that by equipping?’ with a naturally defined metric, we can turn it
into a compact topological space that is particularly slite the study of CAs.
Let c,e € S%. If ¢ # e thend(c,e) = 27% wherek =
min{|7. : e(7) # e(7)}.
There are at least two ways of describing the topology géeetay this metric.
We will use the simplest and most useful one: I2tC Z9 be a finite set and
p: D — S be afunction that assigns states only to the cell®.iThecylinder

Cyl(D,p) = {c € S¥": ¢(it) = p(7), for everyii € D}

is defined as the set of all configurations that agree wittside D. Let
B = {Cyl(D,p): D C Z%is finite, andp: D — S}.

It can be proven thaB satisfies the conditions for being a base of a topology.
Let 7 be the topology created ly. The complement of a cylinder is a union of
cylinders, namely

SZd\Cyl(D,p) = U Cyl(D,p')

where the union is taken over all functiopfs D — S, p’ # p. Therefore, cylin-
ders are clopen and since there is only a countable numbdreaf,t7 has a
countable clopen base. Even more useful is the following fac

Proposition 4. (S, T) is a compact topological space.
Proof. Thisis just a restatement of the compactness principlgp@iton 1). [

The following proposition is a fundamental topological cerization of
CAs known adHedlund’s theorem

Proposition 5. A functionG: S%* — SZ°is a CA if and only if it is continuous
and it commutes with the shifts Bf.

For a proof, see [Hed69]. By the way, the reason for callingsalte&known
as Hedlund's theorem a Proposition is that throughout tiasis only results that
concern dimension-sensitive properties are termed Thexrevhile Hedlund’s
theorem is valid in every dimension.

As known, a compact metric space with a continuous funcsaralled ady-
namical system It is very fruitful to see CAs as dynamical systems and study
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them using ideas from this subject. Léf, /) be a dynamical system ande X.
Let Bs(c) = {e € X : d(c,e) < d} denote the open ball with centeand radius
0. We say that is anequicontinuity poindf f if

Ve, 36,Ve € Bs(c),¥n > 1: d(G"(c),G"(e)) < e.
f is calledsensitivaf
Je,Ve € X,V0,3e € Bs(c),In > 1: d(G™(c), G"(e)) > ¢.
Finally, f is positively expansivi
Je:e#e= In>0:d(Gc),G"(e)) > e.

In Chapter 2.4 we will see how these notions are interprete@As.

Finally, let G be a CA with a quiscent state. A finite configuratione Sr
is called aspaceshipf there existp > 1 and@ € Z? such thaiG?(a) = o(a).
Numberp is called theperiod of the spaceship andis thedisplacement vector

3.2 Undecidability questions

In this section, we will examine dimension-sensitive undability questions con-
cerning CAs. As a matter of fact, 'most” questions concerriig CAs are un-
decidable, unless there is some trivial algorithm for th&r. example, given the
local rule of a CA, we can trivially decide if it has a quiscet#ts. On the other
hand, for1-D CAs there exist algorithms for a large class of natural itigmic
guestions. More specifically, we will see that it is undebidavhether 2-D CAs
is reversible, surjective, open or number-decreasing hénproofs, we will use
some results whose proofs will be omitted. Hints and refegerwill be given
instead.

3.2.1 Reversibility

A CA is calledreversibleif it is bijective and its inverse function is also a CA.
The following facts about reversible CAs are true in everyefision:

Lemma 2. Every bijective CA is reversible.

Proof. This can be proved using a straightforward compactnessragu See
[Hed69]. O
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Lemma 3. Every injective CA is bijective.

Proof. One can easily prove the following implications:

G injective = G p injective = G p surjective =  surjective.

Proposition 6. A CA is reversible if and only if it is injective.

Proof. By definition, if a CA is reversible, it is also injective. Thehet direction
is an immediate consequence of the previous two Lemmas. n

In order to prove that it is undecidable if an arbitr@dp CA is reversible, we
need a specific tile set with a property called the planexflproperty. Let us start
with some definitions:

Directed tilesare normal Wang tiles to which f@allower vectorf € Z%is
associated. Alirected tile seis a set of directed tiles, i.e. a pdi$, F'), whereS
is a Wang tile set and’: S — Z? is a function that assigns a follower vector to
every tile. From now on, we will refer to a directed tile seingsonly its "base”
tile setS. Letc € SZ° be a configuration, which is not necessarily a valid tiling,
and letp’ € Z? be a position of the plane. The notion of validness of position
p is the same as in the undirected case, which means that wet damoabout
follower vectors when we consider whethes valid in p or not. Thefollower of
p'in cis the positiony'+ F(¢(p)). In other words, the follower is the cell to which
the follower vector ofp is pointing to. Notice that in different configurations
the same position might have different followers. Howewves,will usually talk
about the follower of a position, assuming that the configomato which we are
referring is fixed. Also, observe that the notions of folloywesition and validness
are independent. Otherwise stated, in a configuratianS%” every position has
a follower, not only those positions whetes valid. In the tile set we are going
to use, the follower of every position is one of the four adj@gositions, that is
F(a) € {(£1,0),(0,£1)}, for everya € S.

A sequencey, ps, . . ., pr, Where eveny; € Z? is called apathif p;; is the
follower of p;, for everyi = 1,2, ...,k — 1. The notions obne-way infinite path
andtwo-way infinite pattare defined analogously in the obvious way.

A directed tile setS is set to have thelane-filling propertyif it satisfies the
following conditions:
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Figure 11: A path in a configuration.

1. S admits a valid tiling of the plane.

2. For every configuratiom € SZ°, only two different types of infinite paths
are defined:

(a) There exists a tile on the path where the configuration is ald vor

(b) the path covers arbitrarily large squares.

Therefore, if the tiling conditions are not violated on amgjpion of the path, then
for everyn > 1, there exist am x n square each tile of which is visited by the
path and, hence the path must be infinite. Notice, also, tiimtcondition does
not claim anything about the validity of the whole configioat As long as the
configuration is valid on the path, arbitrarily large sqsaaee visited. This does
not prevent tiling errors from occuring outside the path.

The above definitions would have absolutely no meaning iforathe follow-
ing Proposition, whose proof will not be given. One can finid itkar94].

Proposition 7. There exists a directed tile set with the plane-filling praper
Let D be this directed tile set. Using it, we will prove that:
Theorem 4. [Kar94] It is undecidable if an arbitrary2-D CA is reversible.

Proof. We are going to reduce the Tiling problem to the Reversibgityblem of
2-D CA. Given an arbitrary tile séf’, we algorithmically construct the following
2-DCAG:

The state setis = D x T' x {0, 1}. Therefore, the CA is working on config-
urations consisting of three different layers. In the fiagtdr, there exist tiles from
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the fixed tile setD; in the second layer there exist tiles from the arbitrary it
T, and on the third one there are the itsnd1. The von Neumann neighborhood
is used. The local rule only updates the bit components okdipo p'as follows:

o If either theT-layer or theD-layer contains a tiling error &t, then the bit
is not changed, but

o if the tiling is valid in both theD- andT'-layers inp, then the bit is changed
by performing modulo 2 addition with the bit of the followeir @

Let us now prove that this CA is not injective (we know that ikiequivalent to it
not being reversible) if and only if admits a valid tiling. This reduces the Tiling
problem to the problem of deciding if a giveaD CA is reversible and, hence,
completes the proof of the Theorem.

Suppose thaf” admits a valid tilingt. Consider two configurations, and
¢, Where theD-components contain the same validtiling, the T-components
containt and inc, all the bits are equal to 0, while i all the bits are equal to
1. Since the both th®- andT-layers are valid everywhere, modulo 2 addition is
perofrmed in every position of the plane, hence

G(Co) = G(Cl) = Cp,

andd is not injective.

Suppose, then, thét is not injective. This means that there exist two different
configurationt; andt, such thatG(t;) = G(t»). The tile components are not
changed by~ and thus they must be identicaldnandt, so there is a positiop
where they have different bits. Since after the applicatib&' these bits become
identical the configurations are valid in both layers andlilie of the follower
ps Of p1 must be different. Repeating this reasoning, we obtain aniiefpath
1, P3, D3, - - - SUCh that the tiling conditions are satisfied in both theandT-
components at all positions of the path. Singéhas the plane-filling property,
this infinite path covers arbitrarily large squares. Therefl" can also tile validly
arbitrarily large squares, which means that it admits advéling of the whole
plane. O

In fact, we have proved something slightly stronger, nanibbt the Re-
versibility problem is undecidable even f&oD CA with the von Neumann neigh-
borhood.
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3.2.2 Openness

Let G: SZ° — S be a CA. Then( is calledopen if the following is true: If
W C 5% is open, therG(1V) is also open.

By tickling a little bit the construction of the proof in thegmious section and
examining carefully what kind of tilings the directed tiletd) admits, we can
prove that it is undecidable whether a givefd CA is open. For this, we also
need the notion of left-permutiveness.

Let ' be al-D CA with state seP, neighborhood0, 1} and local rulef. We
say thatF' is left-permutivef for every b, ¢ € P, there exists a uniqgue € P such
that f(a,b) = c. This also means that, # a, and f(a1,b1) = f(as,bs), then
by # bs.

We denote by:>.6> a configuratiore € SZ such that(i) = a forall i < 0
andc(i) = bforall i > 0.

Lemma 4. There exists a left-permutivieD CA with state sef0, 1,2} which is
not open.

Proof. Let F': SZ — SZ be thel-D CA with the neighborhood0, 1} and the
following local rule:

F is left-permutive as every column of its transition matxa permutation
of the state set. However, &§0>°.1°) = F(0°.2°°) = 0>°1.0*, F'is not right-
closing. Since a-D CA is open if and only if it is both right- and left-closinggs
[Kur03]), we conlcude thak’ is not open. n

The following lemma is not necessary for the proof of Theoferaut it cer-
tainly makes its exposition more clear.

Lemma 5. [Mey08] Let D be the tile set of Proposition 7. There exists a valid
tiling d of D where all positions of the plane belong to the same path, hey t
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form a two-way infinite, non-intersecting, plane-filling patim addition, every
valid tiling ¢ € D% has at most four different infinite paths.

Let us now change a little bit the construction of the presicubsection.
Given an arbitrary tile sét’, we construct a CA{ as follows:

The state setis now = D x T x {0, 1,2}, the neighborhood is the von
Neumann neighborhood, and the local rule only changes trethiponents and
does this only when the tiling is valid in both of the tile coomgnts. However,
instead of performing modulo 2 addition, the new CA uses tloalloule of F
from Lemma 4 to determine the new bit. We claim tlhats open if and only if it
is reversible if and only if i7" does not admit a valid tiling.

Indeed, if it is reversible, it is of course also open.

Suppose, on the other hand, tiiats not reversible but it is open. Note that in
the proof of Theorem 4, we used only the left-permutivenéssaalulo 2 addition
in order to conclude thaf’ admits a valid tiling. Since is also left-permutive,
exactly the same reasoning applied in this case showq thdmits a valid tiling
t. Letd be the tiling from Lemma 5 and consider the et d x ¢t x {0, 1, 2}22.
Since ind there exists only one path and bathandt¢ are valid everywhere,
the restriction ofH on B is in some sense the same as thB CA F. In-
deed,H(d,t,c) = (d,t, F(c)), where the2-D configurationc is interpreted as
the 1-D configuration obtained by following the unique pathdn Using the
same interpetation, we have thdt'(B) = B andH(d,t, W) = (d,t, F(W)),
for every W C {0,1,2}%*. According to Theorem 1,page 116 in [Kur66], if
W C {0,1,2}% is open, therH (d,t, W) = (d,t, F(W)) is also open in the rel-
ative topology. In addition, since it is a basic topologifzadt that all projections
are openF' (V) is also open. But this means th&tis an open CA, which is a
contradiction. Therefore{ is not open.

We have proved the following equivalences:

H reversible & H open < T does not admit a valid tiling

From this we can finally conclude that:
Theorem 5. It is undecidable if an arbitrar2-D CA is open.

We have actually proved something stronger, namely thatckhss of re-
versible CA is recursively inseparable from the class of apan CAs.
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Non-open CA

Reversible CA

Open CA

Figure 12: Reversible CAs are recursively inseparable fromaypen CAs.

3.2.3 Surjectivity

In this subsection, we are going to prove that it is undedeldlan arbitrary2-D
CAis surjective. In order to do this, we first have to talk abeutther undecidable
problem concerning tiles, the Finite Tiling problem, andagidition introduce a
specific tile set with a special property. The contents of shibsection are based
on Jarkko Kari’s lecture notes for the class "Cellular Auttaigaught during the
spring semester of 2009 in the University of Turku.

In the Finite Tiling problem we are given a tile sétogether with a specified
tile b € T, theblank tile The blank tile has the same color in all of its sides. A
finite tiling is a valid tiling where only a finite number of tiles are nomutk. A
finite tiling where all tiles are blank is calleivial. The Finite Tiling problem
consists in deciding whether an arbitrary tile $etwith a blank tileb admits a
valid, finite, non-trivial tiling. It is a simple excercisap aperiodic tile sets or
ingenious simulating methods needed, to prove that:

Proposition 8. The Finite Tiling problem is undecidable.

Proof. Given an arbitrary TMM = (S, T, so, sp, 0, b) we know from the first
chapter how to construct a tile sif; with a specified tile, the seed tile, such that
M does not halt if and only if?,; admits a valid tiling with at least one appearance
of the seed tile. We will know modify a little that construmtito create a new tile
set@,, such thatM halts if and only ifQ,, admits a valid, finite, non-trivial
tiling. Notice that in the first case negative instances efttalting problem are
associated to positive instances of the Tiling problem,levim the second one
positive instances of the Halting problem are associatqubgitive instances of
the Finite Tiling problem.
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In addition to the machine tiles, thatagphabet, actiorandmerging tiles the
tile set@,, contains the blank tile and some more tiles to initiate amchirgate
the computation ofi/. Namely,

1. The followingboundary tiles

NW x NE
NW NE
A A
NW NE
NW b S0, b b NE
t Lt N t

The tile in the middle of the bottom line is called timgialization tile, while
the tile in the middle of the upper line is constructed forrgvec T.

2. For everyz € T, the followinghalting tiles

a a
A A
an [ ] 4n
a a

One can now prove th&}?,, admits a valid, finite, non-trivial tiling if and only
if M halts. We will give a sketchy proof of this.

Suppose, first, that/ halts. Then, we can enclose its computation in a finite
rectangle and put the blank tile outside from this rectanglence, in this case a
valid, finite, non-trivial tiling exists. Notice how the halg tiles are use to make
the head of\/ disappear and then the upper boundary tiles "absorb” aletters.

Suppose, on the other hand, that a valid, finite, non-triiag exists. Then,
some upper boundary tile must have been used, since boutildargre the only
tiles that can have the blank tile as a northern neighbomdJsie hypothesis of
finiteness, we can see that a rectangle is enforced, insidde computation
of M takes place. Since the tiling is valid, the machine head/omust have
disappeared at some moment, which meansith&talts. n
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In order to prove our main undecidability result, we alsochiw fixed tile set

of Figure 13:
|—'A A—¢ B B |—>A A—¢
NW NE
NW NE
A A
Y Y
NW NE
NW NE
A A A
Y Y Y Y
SW SE
SW SE
A |_> _T
Y
SW C C SE
SW c SE

Figure 13: The tile sek.

We denote this tile set by,. The tile without any arrows or lines is called
the blank tile All the other tiles have a unique incoming and outgoing \&rro
In valid tilings, incoming and outgoing arrows of adjacal@s must match. The
non-blank tiles are considered to be directed. The follafertile is the neighbor
pointed by the outgoing arrow on the tile.

The tile where the light and dark grey horizontal thick limaset is called
the cross and it will play a special role in the forthcoming proof of 8drem 6.
Finally, arectangular loops a valid tiling of a rectangle with tiles frorf, where
the follower path forms a loop that visits every tile of thetemgle and the outside
border of the rectangle is colored blank. By inspecting tleesietF, it is easy to
see that there exist rectangular loops of gize< m, for everyn > 2 andm > 3.
Every rectangular loop contains a unique cross which cateleeg in any position
in the interior of the rectangle.

Figure 14 shows a rectangular loop of sizex 5, where the labels have been
omitted:
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Y
Y
Y
Y
Y

Y
Y
Y
Y

A
A
A
A
A
A
A
A
A

Figure 14: A rectangular loop of siz@ x 5.

The tile setF has the following convenient property:

Lemma 6. Lett € EZ° be a configuration, ang;, 73, . . . a path in¢ such that is
valid at p;, for all + > 1. If the path covers only a finite number of different cells,
then the cells on the path form a rectangular loop.

Proof. We note that in a loop there must exist at least one tile payntio every
direction. Therefore, the existence of at least one letivaiis guaranteed. After
that, everything follows from the hypothesis of finiteness. ]

We will also need the following basic result, which is one loé first results
about the mathematical properties of CAs:

Proposition 9 (Garden of Eden theorem)Mo062, Myh63] LetG be a CA with a
quiscent state. Theuy is surjective if and only it7 ¢ is injective.

We are now ready to prove the main theorem of this subsection:
Theorem 6. It is undecidable if an arbitrar2-D CA is surjective.

Proof. We will reduce the Finite Tiling problemn to theD Surjectivitry prob-
lem. Letb andc be the blank and the cross of the tile #&trespectively. Given
an arbitrary tile sef” with blank tile B, we can algorithmically construct the fol-
lowing 2-D CA G-

The state set contains tripleis ¢, 2) € E x T x {0, 1} under the following
constraints:

e if e = ¢, thent # B, and
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e if e = boreis any tile containing SW,SE,NW,NE,A,B or C as a label, then
t = B.

In other words, the cross is always paired with a non-bldekithile the tiles
on the boundary of a rectangular loop are paired only withiaek tile. The
triplet (b, B, 0) is the quiscent state f.

As in the proof of the undecidability of the-D Reversibility problem, the
local rule will only update the bit of a triplet leaving thées in the first two layers
unchanged. This is done in the following way: l(ett, ) be the current state:

e if e = b, then the state is not changed,

e if ¢ # b, thenG checks the validity of the tiling in the first two layers. If
a tiling error occurs in either layer, the state is not changk the tiling
is valid in both layers, the bit is updated by performing &addi modulo 2
with the bit in the follower position.

Let us prove that thi& is not surjective if and only if” admits a valid, finite,
non-trivial tiling ¢:

Assume thafl” admits a valid, finite, non-trivial tiling. Consider two finite
configurationsy andc¢; whoseT-components contaihand theE-components
have the same rectangular loop that contains all non-bl&skdft. In ¢, every
bit is equal to 0, while irr; the bits inside the rectangular loop are equal to 1 and
all the bits outside of the loop are equal to 0. The local ryldaies only the bits
in the rectangles in such a way that

G(co) = G(c1) = ¢p.

Sincecy and¢; are finite configurations;7 is not injective. According to the
Garden of Eden theorerty, is not surjective.

Assume, then, thatr is not surjective. According to the Garden of Eden
theorem, there exist two different finite configuratieagnde; such thati(eq) =
G(e1). SinceG updates only the bit components, the and £- components of
eo ande; are identical. There exists a c@ll whereey ande; have different bits.
Since these bits become identical in the next step, thetdonditions must be
satisfied in positiop; and the bits must also be different in the follower position.
Repeating this argument, there exists an infinite sequgnes, p3, . . . such that
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the E-tiling is valid atp; for all i > 1. Moreover,e, ande; have different bits at
each positiomn;. Since the configuratioreg ande; are finite, the path visits only a
finite number of different positions. According to Lemmat@prms a rectangular
loop. In addition, the tiling in thé’-components is also valid. Because of the
constraints on the allowed triplets, the tiles in thecomponent on the boundary
of the rectangle are all the blar, while the tile in the position of the cross is
a non-blank tile. Therefore, there exists a valid tiling afeatangle with blank
boundary and a non-blank tile in the interior. This is eql@aato the existence
of a valid, finite, non-trivial tiling. m

3.2.4 Number-decreasing CA

The problems proved to be undecidable 2eD CAs in the previous subsections
concern general set-theoretic (reversibility, surjetgtjor topological (openness)
properties that can be posed for any dynamical system. Orottier hand,
number-decreasingness, which will be the subject of thissection is a com-
binatorial property that can only be defined for CA. It is dirsi@m-sensitive, too,
and, at the time when this thesis is being written, it is thg dmension-sensitive
undecidability property with a purely CA-theoretic flavor.

Let A = (d,S, N, f) be a CA with state sef = {0,1,...,n — 1}, for some
n > 1 which has) as a quiscent staté: is callednumber-decreasing

> Gy <Y i),

nezZd neZd

for every finite configuration € Sr. Both sums are well-defined, sinfes a
guiscent state andis a finite configuration.

The intuitive idea behind the formulation is that numbecréasing CAs can
be used to model systems where a measurable quantity, theenafrparticles or
mass for example, does not increase during the evolutidmeasystem.

In [BDFKO5], it is proved that it is decidable if a-D CA is number-
decreasing, and a combinatorial, physics-oriented chemaation of those local
rules that give rise to number-decreasing CAs is given. Itde proved that if
a CA is strictly number-decreasing, i.e. for at least onedionfiguration the
above inequality is strict, then it is not surjective. Thedgdrof the following
theorem is from the same paper as well:
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Theorem 7. [BDFKO5] It is undecidable if an arbitrary2-D CA is number-
decreasing.

Proof. Given an arbitrary TMM, we will algorithmically construct -D CA
Ay such thatM halts if and only if Ay, is not number-decreasing. Hence, the
Tiling problem can be reduced to the Number-decreasingmeddem, and thus
the Number-decreasingness problem is undecidable VLée an arbitrary TM.
We construct the tile s&p,, from the proof of Proposition 8. Recall that this tile
set admits a valid, finite, non-trivial tiling if and only M/ halts. Let us now define
the CAA,,:

The state setofl), is S = {0,1,,...,n — 1}, wheren > 1 is the number of
tiles in@,,. We establish a one-to-one correspondembetweensS andT}, such
that0 is mapped to the blank tile arids mapped to the initialization tile. Using
we can identifyS and@,, and talk about tiling conditions between the elements
of S. The neighborhood ofl, is the standard von-Neumann neighborhood and
the local rule updates the state of the cell as follows:

If a non-blank (i.e. non-0) tile sees a tiling error in its vileumann neigh-
borhood, it decreases its value bylf an initialization tile (i.e. a cell with value
1) does not see a tiling error, it increases its valuel byDtherwise, the state of
the cell is left unchanged. Let us prove thét halts if and only if A,; is not
number-decreasing:

Assume, first, thab/ halts. Then(),, admits a valid, finite, non-trivial tiling
f where the initialization tile is used at least once. Using, f is mapped to
a finite configuratiore: Z? — S. Sincef is valid, so isc and thus no cell sees
a tiling error. Therefore, no cell decreases its value, evthie cell in positiont
(where there is an initialization tile ifi) increases its value bl So, the number-
decreasing inequality is not satisfied faand A,, is not number-decreasing.

On the other hand, assume thdtdoes not halt. Let: Z? — S be a finite
configuration. Our aim is to associate every initializatitein ¢ to a unique tiling
error. Letp be a position at state. We define inductively thdomainD; of 7 as
follows:

e pc Dﬁ.
NW b

e If in position ¢ there is a tile or and its right neighbor is in

40



Dﬁ, theng € Dﬁ.

1 f

e Similarly, if in positiong'there is a tile or and its left neighbor
isin Dy, theng € Dj.

Y

e Ifin ¢'there is an alphabet, action, merging or halting tile or aimgotype
of boundary tile and its southern neighbor iy, theng'is in Dy, too.

e These are the only positions that belondig

It is easy to prove that i’ and: are two different positions in state then
DyN D= (. In addition, everyD;; contains a tiling error. Indeed, if sonig; did
not contain a tiling error, then its domain would represehtiling computation
of M, which contradicts the hypothesis thdtdoes not halt.

We have thus associated every cell in stati® a unique tiling error. This
means that the number of tiling errors is greater than or leiguiae number of
initialization tiles. By the definition of the local rule of,,, this means thatl,
is number-decreasing. n

3.2.5 1-Dcase

All the above decision problems are decidablé-D . The reason for this is quite
similar to that of the previous chapter: namely, we can rggmel-D CAs using
finite directed graphs, and CA decidability questions anesieted as some triv-
ially decidable graph-theoretic decidability questiofRsr example, to decide if a
given1-D CA is injective, all one has to do is to construct a certanectied graph
(the pair graph) and then examine if there is a cycle in theplgrthat contains a
vertex outside from a specified subset of the vertices.

Notice that for different undecidability problems one ntiglve to build dif-
ferent graphs. Here, we will exhibit how to construct the tioasic directed graph
that can be associated td @& CA and use it to give an algorithm for deciding if
a1-D CA is number-decreasing.

Letm > 1. We construct thele-Bruijn graphof width m. This is a directed
graph with vertex set/ = S™~! edge sety = S™ with the edges;s, ... s,
leaving from vertexs;ss ... s,,_1 and reaching vertex,ss...s,,. Figure 3.2.5
shows the de-Bruijn graph of widthfor the setS = {0, 1}:
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Figure 15: The de-Bruijn graph of ordefor the setS = {0, 1}.

There exists a natural one-to-one correspondence betwereway infinite
paths in the de-Bruijn graph and configurationsSin for every two-way infinite
pathp: Z — F there is a corresponding elemepte S% such that

p(i) = cp(i)cp(i + 1) ... cp(i +m —1).

This correspondence is well defined because of the overldipeoédges of the
de-Bruijn graphs. One can also easily prove that it is bijecti-or every configu-
rationc € Sz one can define a two-way infinite paih: Z — E such thap., = p
andc,, = c.

Now, letG be al-D CA defined by the local function. Without loss of gen-
erality we can suppose that its neighborhood is a contiggegment ofn > 1
cells. We construct the de-Bruijn graph of widthas above, but in this case we
also add labels to the edges: The label of the edge. . . s,, IS g(s152 . .. Sm)-
This directed graph is called thae-Bruijn graph of G it contains almost all
of the information concerning:. Notice, however, that it does not capture the
relative positioning of the neighborhood, i.e. the CAando o G have the
same de-Bruijn graphs. However, sineeis an isomorphism of5%, most of
the properties that are of interest are invariant under Hiéss For example,
for pr € {reversible, surjective, open, number-decreasingis pr if and only if
o o (G is. Below we give an example of the de-Bruijn graph of a CA:
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The two-way infinite paths of this directed graph give us t@guences: the
first one is the sequeneg defined earlier and the other one is the sequepoé
the labels of the edges. Because the lables are the outpties lotal functiong,
is, a possibly translated version 6f(c,), i.e

g, = 0"(G(c,)), for somek € Z.

Different versions of the above graph are needed to attdfekelnt problems.
However, in order to provide an algorithm for number-desiegness we do not
need any more technical machinery:

Theorem 8. [BDFKO05] A 1-D CA is number-decreasing if and only if for every
simple (aka not self intersecting) circle of its de-Bruijragh the value of the
name of the circle is greater than or equal to the sum of thellbf the edges of
the circle.

Proof. Let G be al-D CA. For the sake of simplicity, we will assume that the
range ofG is 3 and the state set is = {0, 1}. All of the following arguments can
be adapted to be valid in the general case.

We construct the de-Bruijn graph 6f as described above. To make clear
what the name of a circle means, &0 — 001 — 010 — 000 be a cir-
cle. Its name 9001 (we pick the first bit from every vertex) and its labels are
£(000), £(001), £(010), f(100).

Suppose, first, that the value of the name of every simpléeas@reater than
or equal to the sum of its lables. Letc SZ be a finite configuration. Then, the
two-way infinite pathp. is actually a finite circle, sincg. stays almost always in
vertex000 both in the left and in the right part of the path. Since evergie can
be decomposed into disjoint simple circles and the numbereédsing condition
is additive and is satisfied in all of the simple circlésis number-decreasing.
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If, on the other hand, there exists a simple circle for whiok above is not
true, then we can construct a finite configuration that doésaitsfy the number-
decreasing condition as follows:

Let z be this "bad” circle. Every vertex of the graph can be readhed00
with a path of length at most two. Letbe the shortest path froft0 to any ver-
tex of z. The finite configuration corresponding to the pé&ih0)>pz5p"(000)>
violates the number-decreasing condition, wherés the reverse path of. To
see this, consider that bophandp” are paths of length at most two, so their joint

contribution to the difference_G(c)(z) — >_c(z) is at least -4. In addition,
TEZL TEL
sincez is a "bad” circle, every copy of adds at least to this difference. There

are five copies ot, hence

D Gle)(x) =) clx) > 1

TE€EZ TEZL

So,G is not number-decreasing.

Since there exists only a finite number of different simplkeles in a finite
directed graph and we can find them all algorithmically, Nemdbecreasingness
is decidable in-D . ]

For proofs of the decidability of injectiveness, surjeetiess and openness of
1-D CA see [AP72, Wil91, Nas78, Sut91]

3.3 Topological entropy properties

In regards to topological entropy, the difference betwdenlitD case and the
multidimensional case is pretty straightforward: IHD every CA has finite en-
tropy which is bounded by a factor that depends only on theisaaf the CA and
its number of states, while the topological entropy of laclgesses of-D CAs is
infinite. All in all, this could be the context of this wholed®n if it were not for
some interesting theorems and some even more intereststyaotions that shed
more light on what makes multidimensional CAs have such awfft behaviour
than1-D CAs. As a matter of fact, topological entropy of multidins@amal CAs
is a more complex subject than topological entropyi-@ CAs so that most of
the theorems cannot even be stated inltiizcase.

In the theory of dynamical systems, topological entropytifwhe term "topo-
logical” to distinguish it from measure-theoretic entrpm/a measure of the com-
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G?(c)
G 1(c)
G'(c)

Figure 16:W (n, t) consists of all the elements that can be taken in the above way

plexity of a dynamical system. It has some nice categoricggrties and is a use-
ful invariant of conjugacy. For a detailed, deep introdoictwith a lot of insights
about the intuitive meaning behind the formal definitiores BNVal75].

In the context of CAs, topological entropy, like most of thalgtical proper-
ties defined for general dynamical systems, has an equivedenbinatorial de-
scription. Suppose that is al-D CA. Let [, = {1,2,...,n} be the segment of
lengthn. Let

W(n,t)={(c,,G)r.,...,G"7(c)1,): c € S¥1.

Intuitively, W (n, t) is the set of different orbits distinguished by an obserlat t
can observe the system only fotime steps and only in consecutive positions.
Then, thetopological entropyof G is defined as:

h(G) = lim lim w.

n—oot—o00 t

For a proof of the existence of this limit, see [Kur03, Wal75]

A similar definition can be given for the topological entragfy2-D CAs and,
generally,d-D CAs. The only difference in the definition is that insteadising
the segmentg, of lengthn, we use the rectanglegs, = {1,2,...,n}? or, in the
general case, thédimensional hypercube of side

As stated previously, the topological entropy of evétlp CA is finite. This
can be seen with the following argument: Kebe al-D CA and letr be its radius.
If c,e € S” andci_,41n40) = €ri1n4r, thenG(c)p ) = G(e)pn. Similarly,
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since a segment of length+ 2r(¢ — 1) uniquely determines the evolution of the
centraln cells for the firstt time steps, we can prove that

W (n,t)] < |S|"t* D for everyn,t > 1.

Therefore,

log |[W(n,t)| _

log |S|n+2r(t71)

h(G) = lim lim lim lim

n—o0t—00 n—o00t—00

< 2rlog|S].

However, the same argument cannot be applie@fbrCAs. The reason is
that the size of the boundary of the rectangletends to infinity whem goes to
infinity, while for 1-D CAs the size of the boundary &f is constant for alh > 1.
The same idea will be used when we prove that there do notaxyspositively
expansive2-D CAs. As a matter of fact, even tieD shifts have infinite topo-
logical entropy. This can be seen either by proving diretttht for the horizontal
shift o, ), for exampleW (n,t)| = |S|”*+¢=1, or can be termed a corollary of
the following much more general theorem of Lakshtanov amibliagen:

Theorem 9. [LLO4] If a 2-D CA has a spaceship, then its topological entropy is
infinite.

Proof. Let G be a2-D CA with a spaceship and quiscent stat¢The existence of
a quiscent state is not necessary for the proof of the Thedretit is a convention
to accept that a quiscent state exists when talking abooesp#s.) Let us recall
that a spaceship with perigd > 1 and displacement vectat £ 0 € Z2 is a
non-trivial finite configurationn such thatG?(a) = oz(«). We will show that
a 2-D CA with a spaceship can realize systems with arbitraritgdaopological
entropy.

Let S be the state set af. Consider thel-D right-shift o of X = {0, 1}%,
whereo(z); = z;41. It can be easily proved thdt(c) = log2. Let« be a
spaceship of7 with periodp > 1 and displacement vectai. We can find a
number/ > 1 such that the squar® = [—[,!] x [—[,!] contains all the non-
quiscent states of, G(«),...,GP ' (a) and all of its neighbors. If we choose
m = 2l + 2, then we have that

(K + mid) N (K + mi'd) = (), whenever # 7.
Indeed, if(K + miit) N (K + mi'i) # 0, then there existy, k, € K such that
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Y
Y
Y
Y

1 0 1 1 c

Figure 17: A rather informal presentation bf

oy + miil = ky + mi'a
ky — ky = m(i' —i)d
1K1 — Kaloo = |m(i — 1)]oc
151 — Faloo > m|@l]ee > m

Iy — koo > 20+ 2

S R

which is impossible sinck, andk, belong in a square with diametei.

Now, let us describe a functiofA': X — S%. Configurationc € X will
be sent toF'(¢) = > oma(a). The summation on the right hand side means
joining the suppo;fsga‘ the summed configurations. This if-defined, since
these supports are disjoint according to the definitiomnof Intuitively, a1 is
coded as a spaceship an@ & coded as the absence of the spaceship. We also
leave enough empty space between them so as they evolvesimtaply.

We claim thatF' embeds thé-D right-shift o into G™?. Indeed, it is obvious
that F' is injective, and a moment’s thought can convince us thatatso continu-
ous. We will now show that it is a map between the dynamicaksys. We claim
thatG"? o ' = F o 0. In fact,

G o F(e) = G™(F(0)) =
(Y omia(@) Y gl G (@) 2

1 ci=1 i: =1

— Z Omii(Omal(e)) = Z Omirnya(a) = Foo(c)

i ci=1 i ci=1
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where equality( 1) is true because: was chosen so as spaceships evolve indepen-
dently and equality2) is true because is a spaceship. Therefore, our claim is
true and this proves that the right-shift is a subsyster&’®f. This means that
h(G™?) > h(o) = log 2.

Now, using the extra space offered by the second dimensiercan simulate
the product of the right-shift with itself. Indeed, (if*, c?) € X x X is a pair of
configurations, then we can define:

F(C) = Z Umi17+17(a) + Z O-miﬂ+217(a)

i ci=1 i ci=1
wherey andd are linearly independent amdis chosen such thatt, j) # (7', j'),
then

(K 4+ m(it + jv)) N (K +m(i'd + j'0)) = 0.

Exactly as in the previous case, we can prove that this is &edding oo x o
into G™?, for the reason that spaceships put on differéfgvels do not interact.
Henceh(G) > h(o x o) = 2log 2. Generally, the same argument shows that

h(G™) > nlog 2, for everyn > 1.

This means thatk(G™") = oo, and sinceh(G™?) = mph(G), we can finally
conclude that(G) = oc. O

There is another large class®D CA with infinite topological entropy:
Theorem 10. [DMMO3] The topological entropy of &-D sensitive linear CA is
infinite.

Proof. We will not give the proof here. The main idea is tRaD sensitive linear

CA satisfy a certain kind of-D -permutivity. O

On the other hand, there exist trivial exampleg-@ CA with zero topological
entropy. For example, periodic or equicontinuous CA. Foresdime, it was not
known whether these two case exhaust the clagsICA, i.e. it was not know
whether there exists 2D CA with finite, positive entropy, until Meyerovitch
proved that:

Theorem 11. [Mey08] There exists &-D CA with finite, positive topological
entropy.
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Proof. We will give an informal, non-technical exposition of theasb used in the
proof. A full proof can be found in [Mey08].

The essence of the proof of Theorem 9 is that we can fit in ant@fumber
of lines in the plane. In every line, we can simulate-B CA, thus giving rise to
a CA of infinite topological entropy. If, in some way, we coularfition the plane
into a finite number of infinite lines, then we would only havirdte number of
1-D CA and so guarantee finite topological entropy.

The way to do this is to use Kari’s tile sétfrom Proposition 7. We construct
a CAG with state seb = D x {0, 1}. The neighborhood af is the von Neumann
neighborhood and the local rule is very similar to the locdd of Theorem 4:

¢ if the matching is valid in positiop, thenG updates the bit of’ by per-
forming modulo 2 addition with the bit of the follower positi.

¢ If the matching is not valid in positiofi, then the bit remains as it is.
¢ The tile components never change.

Therefore, given a configuratiane SZ°, the tile layer divides the plane into
some number of finite and infinite paths. There could be aniiafirumber of
finite paths, but we know from Lemma 5 that there exist at most {one-way
or two-way) infinite paths. Based on this, we can prove thags finite, positive
topological entropy. This is because in every finite patheitteon ofG is periodic
and, hence, has entropy while in the infinite paths it has positive entropy
Therefore, the entropy a@f is bounded from above bif. O

Recently, M. Hochman gave a complete characterization oflttes of num-
bers which are the topological entropiesdiedlimensional CA, wheré > 3. The
proof of this characterization, which is certainly outstle scope of this thesis,
can be found in [Hoc09].

Theorem 12.Letd > 3. Then, the entropies oi-D CA are exactly the non-
negative numbers that are thien inf of a recursive sequence of numbers.

Also, E. Lakshtanov and E. Langvagen have introduced foryaye> 1 an-
other notion of entropy of CA that coincides with topologieatropy whenl = 1,
and is always finite whed > 1. Whether this is a more "appropriate” notion of
entropy for multidimensional CA is still out for the jury tolte Details can be
found in [LLO5].
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3.4 Dynamical system properties

According to Hedlund’s Theorem, CAs are exactly the contirsjdranslation in-
variant transformations &§%, whereSZ" is given the topology generated by the
cylindersCyl(D,p) = {e € S%: (%) = p(Z), for everyZ € D}, with D C Z¢
finite andp: D — S. Hence, they can be viewed as dynamical systems, allow-
ing us to define and study properties such as equicontinuighaos for CAs.
The reason to do this is double: on one hand, we get more inaigh better
classification schemes for CAs, and on the other hand, CAs pftande nice ex-
amples or counterexamples of dynamical systems. This imfhadue to the fact
that almost all of the analytical definitions of general dyizal systems theory
have simple equivalent combinatorial definitions for CAst &mample, the usual
epsilon-delta definitions of equicontinuity, sensitivitgd positive expansiveness
translate to the following:

LetG: SZ° — SZ° be a CA. Configuration € SZ” is anequicontinuity point
if and only if for every finite observation window C SZ‘ there exists a finite
domainD C SZ° such that

e € Cyl(D,c) = G"(e) € Cyl(E,G"(c)), foreveryn > 1.

Recall thatG is calledequicontinuousf every configuration is an equiconti-
nuity point.

Similarly, G is sensitivaf and only if there exists a finite observation window
E C S such that for every configurationand every finite domaitD, there
existse € C'yl(D, c) such that

G"(e) ¢ Cyl(E,G"(c)), for somen > 1.

Finally, G is positively expansivi and only if there exists a finite observation
window E C 5% such that for any distinct configurations e

G"(e)(Z) # G"(c)(Z), for somen > 0 andz € E.

One can prove that in every dimension it is true that a CA is@aquinuous if
and only if it is ultimately periodic, that a surjective CA iguecontinuous if and
only if it is periodic and that a sensitive CA does not have agyi@ntinuity
points. In addition, inl-D there exists the notion dflocking wordthat provides
the following classification of-D CA:
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Theorem 13. LetG be al-D CA. Then, exactly one of the following two alterna-
tives holds:

1. The set of equicontinuity points 6f is dense. This is equivalent to the
existence of a large enough blocking word.

2. GG is sensitive. This happens if and onhGifdoes not have any equiconti-
nuity points.

A blocking word is a finite segment that does not allow infotima to pass
through it. For a strict definition and a proof of Theorem 18 §Kur03]. The
main idea is that the line is simply connected, so by remosipgint, or a finite
contiguous segment, we disconnect it and don not allow the dfoinformation
between the two components. Unfortunately, in order toattisect the plane, we
have to remove a line, which is an infinite object and, henc@atbe recognized
by CA. Indeed, the followin@-D unpublished counterexamples to Theorem 13
due to Kari exploit this idea. Other counterexamples haealggven by Theyssier
and Sablik, see [STO08].

Theorem 14. 1. There exists &-D CA with no equicontinuity points that is
not sensitive.

2. There exists &-D CA with a non-empty, non-dense set of equicontinuity
points.

Proof. 1. LetG be a CA over the state sétx {0, 1}, whereC'is the state of
the control layer, containing the following ten tiles:

[] ]
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The black tile is callecctive while the other nine control states are called
inactive A blank rectanglds a finite rectangle of blanks surrounded by a
contiguous boundary.

It is obvious that there exists blank rectangles of sizex n, for every

m,n > 2.

The control layer evolves independently from the bit layararding to the
following rule: Lety € Z2. If the Moore neighborhood gf is consistent
with it being part of a blank rectangle surrounded by blac# ahite cells
(no boundary tiles allowed), then the state of the contrgéladoes not
change. Otherwise, it changes to black.

Note that if any of the cells outside from the rectangle cmista boundary
tile, then a black tile is created after one time-step anehmally, the whole
rectangle gets converted to black. Also, by constructidmiaak rectangle
surrounded by black and white cells never gets changed.

The essential property of this local rule is that if a positfocontains a
black, then in the next time step either its northern neigldoats western
neighbor also contains a black. This is not immediately obsj so some
kind of proof is needed:

Suppose that the western neighborpofloes not become a black. This
means that it is part of a blank rectangle surrounded by bdexck white
tiles. So, it must on the right border of this rectangle arehde inp there

is one of the three following tiles:

|

—

Figure 18: A blank rectangle of siZex 3.
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Similarly, if the northern neighbor gf does not get turned into a black, then
it must lie on the lower border of a blank rectangle, hence# to be one
of the following tiles:

L |

If neither of them gets turned into a black, then a tile of tihgt fyroup will
be a neighbor with a tile from the second group, and since ¢theyot be
a part of a blank rectangle, they both change to black. Thi¢radiction
proves our claim.

We are now ready to describe how the bits are updated: If ascelactive,
then its bit does not change. If a cell is active, then:

¢ If its western neighbor is active, then it copies the bit of theighbor,
else

e if its northern neighbor is active, then it copies the bitto§tneighbor,
else

¢ the bit remains unchanged.

G is not sensitive: Indeed, given any finite observation wido, we can
construct a blank rectangle surrounded by black and white tiles such that
R D E. Consider, then, a configuratiane (C' x {0,1})% with R on

its control layer and arbitrary bits. Then, changes madsidetfrom R
never propagate ik, a fortiori neither inE. This means that for every
finite observation window® there exists a finite domai(= R) and a
configuratione such that ife € Cyl(c, D), thenG™(e) € Cyl(G"(c), E).
Therefore, G is not sensitive.

However,GG does not have any equicontinuity points, neither. Indestd,4
SZ* be an arbitrary configuration. Either the control layer &f completely
white, in which case is not an equicontinuity point since every black tile
will eventually spread everywhere in the plane (&) has black in some
positions of the control layer. In this case, &t = {7}. We will show that
no matter how large a square domainC S%° is chosen, changes made to
c outside fromD will eventually propagate inté..
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Figure 19: An equicontinuity point fof'.

For any square domaiP C S%°, consider the two configurationg andc;
that agree with: inside D and have black control layer outside In ¢, all
bits outsideD are equal td), while in ¢; they are equal td. According to
the fundamental property @f proven before, in the control layers (which
are always the same fey andc,) there will eventually appear a path of
black cells connected to the upper or left halfplane outside. Then, inc
the bit0 will get transmitted to positiont and inc, the 1 will get transmitted
to position7i. Hence, for someé > 1 either G'(cy)(7) or G'(c;1)(7) is
different thanG*(c¢)(7i). This means thatis not an equicontinuity point.

. In order to construct &-D CA F' that has a non-empty, non-dense set of
equicontinuity points, we have to change a little bit thevres construc-
tion. The only difference is that turns a white cell to black if and only if

it has a black neighborF' has equicontinuity points: any configuration of
infinitely many nested blank rectangles is an equicontynpdint. Indeed,
lete € S%* be such a configuration and Bt C SZ° be a finite observation
window. We can find a blank rectanglesuch thatR O E. Then, changes
made ine outside ofR will never propagate intd’, since the boundary of
R prevents them from penetrating.

However, if a configuration has a black cell, then it is not gnieontinuity
point. This can be proved in the same way asdor
O
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There also exists a dimension-sensitive property concgrpositive expan-
siveness. The following theorem was first proved by Shexessiyein a much
more general setting.

Theorem 15.[She93] Ford > 2, no d-D CA is positively expansive.

Proof. Suppose thatr is ad-dimensional positively expansive CA and IEtbe

a finite observation window confirming positive expansismesince, obviously,
every set containing is also a witness of positive expansiveness, we can suppose
thatF is a(2k + 1)¢ hypercube centered around the origin. We denot®pthe
hypercube of siz€2i + 1)¢ centered around the origin.

Now, let us show that there exists some> 1 such that for any configurations
c,e € SEUif GH(e)(Z) = Gi(e)(Z) for every0 < ¢t < nandZ € E = Dy, then
c(y) = e(y), for everyy € Dyyq.

Suppose the contrary: For every> 1 there exist configurations,, ¢, € 5%
such thatG'(c,)(Z) = G*(e,)(Z) for every0 < t < nand@ € Dy, butc(y) #
e(y) for somey € Dy 4. Letc, e be the limit of converging subsequences of these
sequences. Sindey.; is a finite set¢(y) # e(y) for somey € Dy.,. However,
G'(c)(Z) = G'(e)(¥) forall ¥ € D, = E and allt > 0, which contradicts positive
expansiveness. Therefore, our initial claim is true.

o 2(k+1)+1
| c
G(c)
G*(c)
G 1(c)
G'(c)
2k+1

Figure 20: The stateS*(¢)(Z) for 7 € F

—»

and0 <t < n determinec(y) for ¥ € Dj.1.

This means that the staté(c)(Z) for ¥ € E and0 < t < n uniquely
determine:(y) for y € f)kH. Inductively, we can easily prove that for any> 0,
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the states7(c)(%) for # € Dy.; and0 < t < n uniquely determine:(y) for
Y € Diyjr-

In addition, for everyj > 1 the states7(c)(Z) for ¥ € E and0 < ¢t < jn
uniquely determine(y) for i € Dy;. This can be seen in figure 21:

A contradiction now arises from the fact that fér> 2 the volume ofD;
grows faster than the size @, x {0,1,2,...,jn} asj increases. Indeed, for
sufficiently largej

| Diy |= (2K + 25+ 1) > 2k + 1%+ 1) = Dy x {0,1,2,....,jn} | .

This means that for some sufficiently largehere exist two configurationse
that are not identical i®y.. ; althoughG*(c)(Z) = G'(e)(Z) for every0 < t < jn
and® € D,. This is a contradiction, hence our initial assumption thate exists
a2-D positively expansive CA must be wrong.

. 2k +4)+1

T et

<

-+

2k+1

Figure 21: The state§(c)(%) for ¥ € E and0 < t < jn uniquely determine
c(y) for y € Dy j.

]

Finally, as a last testimony of the usefulness of Wang tilgSA problems, we
will use aperiodic tile sets to give examples2sb CAs with behavior that is not
possible in thel-D case. For example, it is known that(fis a1-D CA andGp
is injective, then7 is injective, too. The following example shows that thisa n
always true in the-D case:
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Consider the CA= constructed in the proof of Theorem 1.is not injective:
Indeed, ift is any valid tiling with Kari’s tile set, consider the configionsc,
andc, defined in the usual way. The@(c;) = G(c).

However, GG is injective on periodic configurations. Suppose that itas. n
Then, there exist two periodic configurations such thatz(c) = G(e). Config-
urationsc ande have the same tiling components. Consider a posjiiowhere
their bits are different. Using the standard argument coniicg Kari's tile set,
we conclude that their exists an infinite paih ps, p3, ... where the tiling is
valid. According to the plane-filling property, this path stiwcover arbitrarily
large squares. However,ande are periodic so every path they define is also
periodic and it is impossible for a periodic path to coveritaably large squares.
This contradiction proves our claim.

Using any aperiodic tile set, we can also construct exangglesD CAs with
fixed points but without any periodic fixed points or with aipdrc point that has a
pre-image but does not have any periodic pre-image. Botheskthre impossible
in1-D.
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4  Subshifts of Finite Type

4.1 Preliminaries

In this chapter we will make a more sytematic study of #He full shift and its
subshifts The book [LM95] is, and will probably be for quite a long tinie
come, the standard reference for h® case. The following definitions are an
easy generalization @D of the corresponding definitions for theD case.

If S is a finite alphabetof n letters then the spacéSZd,T) iS a compact
topological space, wher€ is the topology defined in Section 2.1. We can de-
fine aZ?-actiono on SZ* as follows: To everny € Z¢ we assign thehift-map
oz SZ° — S2° defined as

o3(¢)(Z) = o(Z + ¥), for everyc € S%" andz € Z°.

As noted in the previous chapter, every shift is a contindaastion, hence
the pair((S?‘,T), o) is a dynamical system. We call it theD full shift onn
letters A subshiftX is a subsystem of the full shift, aka a closed, shift-invatria
subset of5%’. The restrictiorv y of o defines a new dynamical system with base
setX. When there is no danger of misunderstanding, we drop theespband
denotery aso, too.

Luckily enough, there exists a simple characterizationtfersubshifts of%".
Recall that a pattern is a pdib, p) whereD is a finite subset oZ¢ andp: D —

S assigns values to the cells &f. We say that D, p) appearsin ¢ € SZ at
positionZ if cz,p = p. Let FF = {(D1,p1), (D2,p2), (D3, ps3), ...} be a, finite
or infinite, set offorbiddenpatterns. The subshifiz defined byF' is the set of
all configurations where no patte(;, p;) appears at no position of the plane,
namely

Sp={ce SR cz+p, # i, foreverys € Z4 and everyi = 1,2,3,...}.

It can be easily proven that for every set of pattefis5 is indeed a closed,
shift-invariant subset a$%”, therefore a subshift. What is more interesting is that
everysubshift can be defined as&- for some suitable set of' of forbidden
patterns. Notice that, as a rule, there are a lot of sets bfdden patterns that
define the same subshift.
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If a subshiftX can be defined using a finite set of forbidden patterns, then it
called asubshift of finite typ€SFT from now on). SFTs will be our main object
of study in the subsequent sections, so some observatiems arder:

¢ By enlarging the domain of the forbidden patterns, we can scsghat all
of them have the same domain and that this domain iglt{behypercube
[—m,m]4, for somem > 1. In this case, we can check if a configuration
belongs taX by moving a window of sizé—m, m|? around every position
of the plane and checking if the pattern we see in the windoferisid-
den. Equivalently, we can defin€ with its set ofallowedpatterns of size
[—m, m]?.

e As noted in the first chapter, the set of valid tilings adndity a Wang tile
setis a SFT. Also, every SFT is conjugate, in the sense thidbevdefined
shortly, to ad-D Wang tile set.

We denote byr v (X) the set ofallowablepatterns ofX with domain a hyper-
cube of siz&N + 1 centered in the origin:

Ry(X) = {(D,p) : D = [N, N]* and no forbidden pattern appeargin

Let X C SZ° be an arbitrary subshift (not necessarily of finite type) &td
f: Rn(X) — T be a function mapping blocks of sizZ€ appearing inX to

letters ofT", whereT' is an arbitrary finite alphabet. Thefidefines alock code
F: X — T™ in exactly the same way as CA are defined. Namely,

F(c)(%) = f(c(Z + [-N, N]%)), for everyc € X and € Z°.

Exactly as in the case of CA, we can prove that block maps atincaus and
commute with the corresponding shift actions., thatist' = F oox. An analog
of Proposition 6 is also true: Every shift-commuting, canotus transformation
F: X — T% is a block map.

If a block mapF': X — Y is surjective, then it is calledfactor map If F'is
bijective and its inverse is also a block map, then it cajugacy

A subshiftY is called asofic shiftif it is a factor of a SFT, that is if there exists
a SFTX and a surjective block map: X — Y. We say thatX is acoverof Y.
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Topological entropy of subshifts has the following nice comatorial descrip-
tion: If X is a subshift and3y(X) is the set of allowable patterns with domain
[0, N — 1]¢, then

. lo BNX
100 = i PBUB0D

For the full shift we have thaBy (S%")| = |S|N", since no pattern is forbid-
den, hencé:(S%") = log(|S]).

Finally, let us state that for reasons of simplicity, all leétproofs in this chap-
ter will be given for the2-D case. However, they can be easily generalized in the
higher-dimensional cases.

4.2 SFTs and their subshifts

In this section we are going to talk about SFTs and the ergsopf their sub-
systems. First of all, we prove that in every dimension theogies of the SFT
subshifts of a SFTX with positive topological entropy(X) > 0 are dense in
[0, h(X)]. We will then turn our attention to sofic shifts and ask the sajues-
tion about them: Are the entropies of the SFT subsystems ofia shift S with
positive topological entrop(S) > 0 dense in0, 4(.S)]? We will prove a partial
result, namely that the entropies of the sofic subsysterisaoé dense. Fat > 2
this is indeed the best we can hope for, since there éssofic shifts with arbi-
trarily large topological entropy whose only SFT subsysiemfixed point. Most
of the material of this section is based on Desai’s paper(bes

Let X be a2-D SFT. As noted before, we can assume tKats a one-step
SFT, in other words the set of valid tilings of a Wang tile debr everyN > 2,
we construct another equal entropy SFT;) that factors ontoX as follows:

The alphabet o¥{, is the disjoint union of two copies of the alphabet'of
The tiles from the first copy are colored white while the tiiesn the second copy
are colored gray. Let: Ay, — Ax be the projection that forgets the colors.
A configurationc € A%fm belongs toYy, if there is ari € Z? such that(?) is
colored gray ifand only it' € 7 + ((NZ x Z) U (Z x NZ)), and if by removing
the colors we obtain a point iX. The elements ofy) are thus points ofX
"sandwiched” with a grid-like pattern looking like this:
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We can examine whether a configuratior AlZme IS in Y{yy using a(N +
1) x (N + 1) observation window. In every point, in the first layer we mses¢
a pattern fromBy . 1(X) and in the second layer a pattern of one of the following
forms:

Hence,Y(y) can be defined with its set of allowall&” + 1)-blocks so it is a
SFT. Letll(y): Yy — X be the map induced by. II ) is obviously onto and
N2-to-1 since there aré/? ways to place the gridlike background on an element
of X.

The following three Lemmas are valid in every dimension.

Lemma 7. [MS01] LetX,Y C S%’ be subshifts. Ifl: X — Y is finite-to-one,
thenh(I1(X")) = h(X'), for every subsysteti’ C X.
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Lemma 8. If X isa SFT andX; 2 X; O X3 D ... Iis a decreasing sequence
of SFTs such thgf);2, X; C X, then there exist & > 1 such thatX,, C X for
everyn > k.

Proof. Letpy, ps, ..., p. be the forbidden patterns &f. Since(;2, X; C X, for

everyl < m < r there exists &,, such that,, is forbidden inX,, . Choose

k = maxk,,. Then, all of the patterng,, ps, ..., p, are forbidden inX,, hence
1<m<r

X, C X. Since the sequence of SFTs is decreasiig,C X for everyn >
k. O

Lemma 9. Let X be a SFT and{’ C X be a subshift ofX'. Then, there exists a
decreasing sequence of SEXs O X, D X3 D ... such thatX’ = (2, X;.

Proof. We know thatX’ can be defined with a, possibly infinite, set of forbidden
patterns. Lett’ = {p;,ps, ...} be this set and lek, be the SFT with forbidden
patternsFy, = {p1,ps,...,pr}. Obviously,X’ = 2, X}. Notice thatX’ does
not need to be a SFT. O

Combining the two previous Lemmas, we have the following Bstion:

Proposition 10. Let X be a SFT andX’ C X be a subsystem oX. Then,
there exists a SFT subsystemXofwith topological entropy arbitrarily close to
the topological entropy ok’.

Proof. From Lemma 9, we know that there exists a decreasing seqoeisters
X1 2 X, O X3 O ...suchthat), X; = X’. SinceX’ C X, by Lemma
8 we know that there exists some> 1 such thatX,, C X for everyn > k.
Also, since the entropy function is upper semi-continuousabshifts, we have
that limh(X;) = h(X’). Hence there exists some SFT subsystenXoWith
topollgéoical entropy arbitrarily close ta( X"). [

Proposition 10 implies that iX is a SFT withi(X) > 0 and if there ex-
ists a family of arbitrary subshifts of whose topological entropies are dense in
[0, h(X)], then there also exists a family of SFT subshifts}ofwith the same
property. In the following, we will prove that there exist$amnily of sofic shifts
whose entropies are dens€ini(X )] and, thus, we will have proved the follow-
ing Proposition:
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Proposition 11. Let X be a SFT. Then, there exists a family of SFT subshifts of
X whose entropies are dense[inh(X)].

Proof. As noted, it suffices to prove the existence of a family of ssfibshifts of
X whose entropies are dense[inhi(X)]. We seta = |Ax/|. In order to prove
the existence of such a family of sofic subsystems, let us geotodhe SFTS v,
constructed earlier.

Let us choosé > 1 such thatog! — log (I — 1) < . Sinceh(X) > 0, for
all sufficiently largeN there is at least one border of a blockiy 1 (X) whose
interior can be completed to an allowéd + 1)-block of X' in more thari ways.
Let us chooséV large enough so that the following inequalities are alsisfad:

16N

_0Y
(N 12 8=

% logl
(Nt1p2 &'~

log N <

Wl m Wlm Wl M

(N +1)2

For this N constructYyy and letIl yy: Yy — X be as in the construction
above. Let us denote by}, , (Y()) the set of(k N + 1)-blocks allowed inY{,
where border symbols of the square are colored gray. Then,

Bin1(Yiw)) = Bin41(X) and By i1 (Yiv)) = N?Bjly i (Yiv),

since there ar&/* for the position of the grid on a configuration By.

We will now construct a decreasing sequence of SFT subsgsiéy, such
that their entropies aredense inj0, h(Y{n))]. LetY, = Y{n) and defineY; in-
ductively fromY;_; by disallowing one block o3} ., (Y;_1) whose gray border
has more thar allowable interiors. According to the choice df the first step
of the induction is valid. This procedure will eventuallyrtenate, since there are
only a finite number of blocks iBBY; (Y{x)), giving us the last elemet,, of the
sequence. This means that for evétye BY (Y ), the outer boundary B of
B can be completed to@V + 1)-valid block inY}, in at most/ ways. Obviously,
Yo2Y12...2Vy.

We prove first thab(Y;_;) — h(Y;) < eforeveryi =1,2,... m:

64



Indeed, every gray bordélB of someB € B} ,,(Y;_1) is also a border of
some block inBY, ,(Y;). Thus, the number of allowable interiors @B in Y; is
at Ieastl‘Tlx the number of allowable interiors 6B in Y;_;.

Given a positive integek > 1 fix the gray symbols in an element of
Bjy.1(Y;). Considering in how many ways this can be completed into an al-
lowable block ofY; we have that:

|ways to complete into a block af| >

-1 -
> |(T)’“2ways to complete into a block af_,|.

This means thatBY, (Y;)| > (552)¥| By, (Yi1)| hence that

Bina1(Yo)l = By (Y3)]

[ —1,2

T)k | By (Yic1)|
-1
(T)kz\B(k—l)NH(Yifl)\,

V

v

and therefore

hY;) = )2 log | Bpn41(Y3)|

I
kirilo(kN +1

1 I—1 . 1
> 21og(——)k ——log | B(1— Y,
e L A R
1 11
= mlog ] + h(Yi-1)
> h(Y;‘_l)—g.

This proves our claim.

Next, we go on to prove that(Y),) < e :

Indeed, there are at most*” possible boundaries for configurations in
B .1 (Y), since the perimeter of theV + 1) x (N + 1) square istN. For ev-
ery one of these possible perimeters, (some of them mighéveost be allowed in
Y) there are at mostways to complete them into a valid patternff_, (Ya).
Hence|BY ., (Yi)| < o*MNl. As everyB € By.1(Yy) touches at most four
blocks of By, (Ya), we have that
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|By 1 (Yar)| < o'NI*N2,

Hence,
1
h(Ya) < mlog\BNH(YM)’
1 1
< —— loga'®N + —— Jogl* + ——log N?
S NF2 Y Ty TN s
< e

Therefore, the topological entropi@s$Yy), (Y1), ..., k(Y ) aree-dense in
0, A(Yix))-

Consider, now, the sofic subshiffsy, X;,..., X, of X defined asX; =
Iny(Y;) for every0 < @ < M. Il is finite-to-one, hence Lemma 7 says
thath(X;) = h(Y;) for every0 < i < M, and sinceh(X) = h(Y(n)), the topo-
logical entropies oy, X1, ..., X, aree-dense in0, ~(X)]. This ends the proof
of Proposition 11. n

Next, let us turn our attention to sofic shifts. By definitidrn]’iis a sofic shift,
there exists a SFF and a shift-commuting surjection: S — T'. S'is called a
coverof T. Naturally,h(S) > h(T). The question is: How close t(7") can
h(S) be? In a mathematically more rigorous way, we can ask if egefig shift
has an equal entropy cover. In theD case, this is true, see [CP75]. In t#d
case the best result that is known at the time of writing is:

Theorem 16.LetT be ad-D sofic shiftand > 0. Then,I" has a SFT coves$ with
factormapr: S — T suchthati(S) < h(T)+¢c. Moreoverh(S’) < h(n(S"))+e
for every subshifs’ C SZ° of S.

Proof. SinceT is sofic, there exists a SFR and a shift-commuting surjection
¢: R — T. We can suppose thdt and7 have disjoint alphabets, th&t is a
one-step SFT and thatis a 1-block code. For everyw > 1 we construct the
following SFT .S ny:

The alphabet of5y) is the union of the alphabets Gf and k. For every
allowable(N + 1)-block of R, replace the interior letters by their images through
¢ and leave the boundary letters as they are.RB%t, (S ) denote the set of all
such blocks. A configuration A%fN) belongs toS(y, if there existsii € 7>
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such that(?) is a letter fromAg ifand only if 2 € @7 + (NZ x Z) U (NZ x 7Z)
and, in addition, the pattern of evefy + 1) x (N + 1) grid square belongs to
BR1(S(v)). Therefore, in every € Sy there exists an orthogonal grid of size
(N 4+ 1) x (N + 1) with letters fromAyx and the rest of the letters belongAe.

Clearly, S(n) is a SFT. Definer: Sy — T to be thel-block map that sends
letters of A to their images undes and leaves the letters af; unchanged. We
claim that the image of is contained iril” and thatr is surjective:

For any blockB € BY,,(S(v)) there exists a blocl’ € By.1(R) with the
same boundary such that when we change the interior symbdks with their
images undep we takeB. Make such a choice for evedy € BY . ,(S(v)). Let
c € A(Z]dv) be an element of 5. Replace everyN + 1)-block of the gridlike
structure with the corresponding bloéK. SinceR is a one-step SFT, this defines
an element)(c) of R andr(c) = ¢(¢(c)). Hence, the image of is contained in
T.

Next, letz € T'. Sinceg is surjective, there exists sorpe= R with ¢(y) = z.
Given thisy, leave the symbols iWZ x Z) U (NZ x Z) unchanged and replace
the rest of them with their images through It can be immediately checked that
this defines a pointin Sy and thatr(c) = ¢(y) = z. Hencer is also onto and,
therefore, a factor map.

Finally, we show that(Sxy) < h(T') + ¢ for largeNV:

Let « = |Ag|. There are at most*" possible borders for blocks in
BR,1(Swv)) and each of them has at mosBy(T')| interiors. Therefore,
|BX.1(Svy))| < a*N|By(T)| and since there ar& possible locations for the
grid,

[Braa (Sn)| < 0| By (T)| N2

Thus, we have the following inequalities:

1
(N +1)2

AN 1 N?
< —1 —— | Bn(T log ——
= (N+1) Oga+(N+1)2| w )|+0g(N+1)2
< h(T) + ¢, for large values of N.

h(Sinvy) < log [ Bn11(S))]

The second claim of the Theorem can be proved similarly. O
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We note again that it is still not known whether every multidnsional sofic
shift has a SFT cover of equal entropy.

Theorem 17.LetT be ad-D sofic shift with2(7") > 0. Then, there exists a family
of sofic subshifts df" with dense topological entropies j0, 4(1)]. However, for
everyd > 2, there ared-D sofic shifts with arbitrarily large topological entropy
whose only SFT subshift is a fixed point.

Proof. For the proof of the first claim, l&f be ad-D subshiftand > 0. Construct
the SFT coverS of T as in Theorem 16. By Proposition 11 we know that there
exists a family(S;);cn of SFT subshifts o5 with topological entropies dense in
[0, (S)]. The images of these subshifts unaeare sofic subshifts ¢f and their
entropies are-close to the entropies of the members(6f);cn. As € can be
arbitrarily small, we conclude our claim.

For the second claim of the Theorem, see [BPS10]. In that paper is
explicitly constructed an example ofdaD sofic shift with entropyM, where M
can be arbitrarily large, whose only SFT subsystem is a fixaaltp ]

We state again that the-D case is drastically different. Namely, if is a
1-D sofic shift with positive topological entropy(T"), then there always exists a
family of SFT subsystems &f with entropies dense i), h(T')].

4.3 Factoring onto the full shift

In the theory of dynamical systems, a frequently asked qures whether a dy-
namical system factors onto another and if there is somd setessary and suf-
ficient conditions for the existence of a factor map betwdasses of dynamical
systems. In this chapter, we will deal with this questionhia tollowing context:
When does @-D SFT factor onto th&-D full shift on n letters X, ,,?

Obviously, a necessary condition is thdtX') > h(X,,) = logn. Is it also
sufficient? Forl-D SFTs, the answer is yes, see [LM95]. kbD SFTs, it is
not. This has been proven separately for the ca$&9 = logn in [BS09] and
h(X) > logn in [BPS10]. We will describe neither of these counterexample
here, since the first one is based on results of ergodic tlesayhe second one is
prohibitively long. However, as it usually happens in thedty ofd-D SFTs, we
will prove that with the additional assumption of a "stroagixing property, it is
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(El, p1)

(E2,p2)

Figure 22: Gluing allowable patterns in a corner-gluing SFT

true thatX factors onX,,, if and only if h(X) > logn. Most of the material of
this section is based on Desai’s article [Des09]

Let & be a non-negative vector. We denoteBythe rectanglg(z,y) : 0 <
x < kyand0 <y < ko}.

Let us first introduce our notion of "strong”-mixing: K is ad-D SFT, then
X is calledcorner-gluingJMO5], if there exists g > 0 such that given any
allowable patterng, andp, on domaings; = RE+I<7’ s andE, = R,;,\(ngfr
(K — k — g@)), wherek, k' € N%, &= (1,1,...,1) andk’ > k + ¢, there exists
a configurationr € X with x|z, = p; andz|g, = p,. g is called thegluing
constant Look at figure 22 for a graphical explanation:

The grey-colored area is called thkiing band The condition of the corner-
gluing property can also be expressed by saying thatp,) and (Es, p;) are
g-separated We also say that; andp, areglued togetheor thatp, is glued to
p2 When there is no ambiguity about the domaingoandp,. From now on, we
will often refer to patterns using only their domains, wheart is no danger of
confusion. Also, once the formal definition has been writtewn explicitly once,
we will never use it again. Instead, we will rather talk withdaabout pictures,
like in the following lemma:

Lemma 10. Let X C AZ be a corner-gluing SFT and,,R, be rectangular
patterns. Ifd..(R;, R2) > g, thenR; and R, can be glued together.

Proof. First of all, extend the domain ak; to a corner configuratiod’; and
extendR; to Cs so as to align it with”';. Then,C; and(C5 are alsog-separated,
so they can be glued together. HenBg,and R, can also be glued together.

O
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Ry
Ry

Figure 23: Gluing togethej-separated rectangles.

Remark 3. What Lemma 10 actually says is that every corner-gl@fig SFT

is alsoblock-gluing For the definition of block-gluingness and the description
of a whole hierarchy of mixing conditions f@rD SFTs, see [BPS10]. Without
giving further details, we just mention that 2aD , we can define at least four
non-equivalent different mixing conditions while th® analogue of all these
mixing conditions is equivalent to normal mixing, see als®l95].

Before proving the main Theorem of this section, we still need more def-
inition: Let R C Z? andv € Z,7 # 0. A patternp on R is calledi-periodicif
wheneveri andw + ¢ belong toR, we have thap(w) = p(a@ + ).

<y

Figure 24: Av-periodic pattern.

Lemma 11. Let X C AZ’ be a corner-gluing SFT with(X) > 0 and gluing
constanty. Then, for everyf, ¢ € N and allowed squaré’ € B;(X), there exists
some squard/ € B(X) with F' appearing in each one of its four corners such
that M/ is notu-periodic whenevef|, < c.
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Proof. Let @y € B.(X) be any admissible square of sidandv, v3, ..., v,
be the periodicity vectors af), with ||, < ¢. We will construct a sequence
Qo, Q1,...,Q,, of squares such that for= 1,2, ..., m:

1. Q; is an extension of),_,, and
2. (Q; is notv;-periodic.

Then, as one can easily ség,, is notv-periodic for any vector with |7],, <

kn

Qi1

A
Y

km

Figure 25: Constructing; from Q;_;.

Suppose that we have already construcged, € B;(X) for somel € N and
thatv; = (m,n), wherem,n > 0. Let « be the letter appearing in the lower left
corner of@);_;. Sinceh(X) > 0, there is a lettef # « appearing in an element
of X. Considerg as al x 1 rectangle and place it in positiqim, kn), where
k € Nis such thatm, kn > [ 4+ g. SinceX is corner-gluing, we can glué to
Q;_1. LetY; be the rectangle thus obtainel; is not v;-periodic as this would
imply thata = 3. ExtendY; to an allowed square in order to g@t. Then,Q; is
not v;-periodic, too.

We can treat the cases > 0,n < 0orm < 0O,n > 0o0orm < 0,n <0
similarly. The only thing that changes is the placement efiétters.
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Figure 26: Constructing/ from @,,,.

Having constructed),, € B,.(X) for somer € N, it is easy to extend it to
a square pattern/ with F’ appearing in every one of its corners. Just place four
copies of " around@,,, as in the following figure and glue them one-by-one to
@, according to Lemma 10.
n

Theorem 18. Let X be ad-D corner-gluing SFT withh(X) > logn. Then, X
factors onto thel-D n-full shift X,,.

Proof. By Theorem 11, we know that there exists a proper subsysteof X
with 2(Y") > logn. SinceY C X, there exists some square pattérre B(X)
which is forbidden forY". Let f be its size. Construdi/ using F' as in Lemma
11, and forc = 2(f + g). Let the side length o/ bem.

Let us consider the patterih appearing in Figure 3.6, whetec N andG €
B(Y') can be any rectangular pattern of size< [ (or [ x m), [ € N, and the grey
regions are the necessary gluing strips needed to hold ttermmtogether.

Notice that, sinc&s € B(Y), I does not appear i¥. The upper right corner
of L, (marked with a black dot in the figure above) is calleditigde cornerof
L.

Next, for everyG’ € B;(Y'), we construct thdollower patternwith central
block G’ of Figure 3.7.
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M G M

Figure 27: A L-shaped configuration and its inside corner.

As before,G € B(Y') can be any allowed block of the appropriate size and the
grey regions are gluing strips. Hence, there there doesdasiteeunique follower
pattern with central block”’, but rather a whole family of them obtained by letting
the blocksG vary among all the allowable blocks &f. However, we are going
to abuse the terminology and talk abdbé follower pattern with central block
G', since we don't care about the pattefisSinceX is corner-gluing, for every
G’ € B,(Y), there is a choice for the gluing strips such that the pattéfigure
3.8 with central blockG’ is allowed inX.

We will refer to such patterns aB;, D,,.... Don’t forget that the blocks
labeledG in the previous picture are not necessarily the same. Tleejsr some
blocks allowed inY. LetJ = [+ 2g + m. Then, every follower pattern is a
member ofBB;(X). Since for everyG' € B;(Y') there exists a follower pattern
with central patterriz’, we deduce that the number of follower patterns is at least
Bi(Y). In addition, asi(Y) > 0 we have that

log |B;(Y

T g|l2}( )|
N hm((l+29+m)2 log |By(Y)]
I—o00 [2 (Il +2g9+m)?
log | B(Y))|
(l+2g+m)?

= B/(Y)> N7, forllarge enough.

) >log N =

) >log N =

) > log N, for [ large enough=-

For such a fixed, large enoughwe partition its followers intaV’* different
setsFy, Fs, ..., Fy,2 according to their central block. ( To be honest, this is not
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G G

Figure 28: Thdollower patternwith central blockG'.

a partition since there are more thail” followers, so some of them will be left
over, although this really doesn’t matter.)

We claim that ifD; and D, occur at different places in a configuratiore X,
then their follower parts do not intersect.

Indeed, letD; andD- occur in different places im and such that their follower
parts intersect. We can assume that the lower left cornBx ¢ies on the origin of
the plane. Let be the coordinate of the lower left corneriof. Then,|v,,| > ¢ =
2(f + g), since , by construction}/ is notu-periodic for anyu with ||, < c.
Similarly, |v,,| < J — ¢, since otherwise the lower left cornéf of D, would
intersect too much with som& of D, or the follower parts oD, or D, would
not intersect. Now, sinc@/ was constructed with &' in every corner and =
2(f+g), we conclude that at least one subbldctkf D, occurs entirely into some
G orin G’ of D;. However, this is impossible, sinc¢eis forbidden iny” andG, G’
are chosen fron(Y"). Hence, the follower patterns éf; and D, cannot overlap.

M G M

G G’ G
||

M G M

Figure 29: Generic form of & pattern.

We are now ready to describe the factor mapetweenX and X, ,. Let
E\, E,, ..., Ey\2 be all the(J x J)-patterns in alphabeft0, 1,...,n — 1}. We
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define the obvious bijection: {Fy, F5, ..., Fye} — {E1, Es, ..., Ey2}. Let
x € X be an arbitrary configuration anda position of the plane. First of all, the
local rule of¢ checks ifii belongs in the follower pattern of sonie (this can be
checked with a window of siz&(J + g + m)). If it doesn'’t, theng(x(w)) = 0.
Otherwise, thanks to the previous claim, we know that therst®a uniqueD
such thatwi belongs to its follower part. Therefore, there exist unigiendz
such thatd = @ + 7, the inside corner ob lies on and0 < z; < J, fori =1, 2.
Then, if the follower part oD belongs taF},, we mapz(w) to Ex(2). This can be
seen more clearly in the following figure:

M G M

g () By e gfx(w))
G || GeR||G

It is obvious that in this way, the whole follower part bfgets mapped t&.

By the previous discussiom, is well-defined. It is also continuous and shift-
commuting, as it is defined with a local rule. We only have tovglthat it is
surjective:

In order to do that, it suffices to show that square patterraslatrarily large
size have preimages. Lét € By;(X,,) be a square of size/, wherek € N. £
can be decomposed as follows:

F0,k-1) e Fe—1lk—1)
E(0,2)

Eo,1) (Eq,n)

E(O,O) E(l,O) e E(k—l 0)
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Ml ¢ [IM] ¢ [|M
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Milce [IM e fiM]c [[M

Figure 30: Constructing a preimage bf

We can construct a preimage bfin X inductively as follows: Starting with
an L-shaped configuration of lengkly + m + g, we focus on the inside corner
thus defined. 1) = E;, for somel < i < N’*, then we place at that corner
a follower pattern from¥;. In this way, we have defined two new inside corners,
where we will place the appropriate follower patterns &y ) and £, ), and so
on. In the end, we have a pre-imagerf(together with a band of 0’s of thickness
g+ m on the left and lower edge, but this is not a problem). Hengs surjective
and X factors onto the-D n-full shift.

O

4.4 Automorphism groups ofd-D SFTs

The last subject in our brief exposition of multidimensib8&Ts is the automor-
phism group of al-D SFT. Recall that by aautomorphisnof a SFTX we mean

a homeomorphism ok’ commuting with the shifts. Since these obviously form
a group under composition, the term automorphism groupsisfigd. We denote
this group byaut(X). WhenX = A% is a full shift, thenaut(X) is just the set
of reversibled-D CA with alphabetd. Generally, Proposition 6 can be general-
ized to say thatr': X — X is an automorphism if and only if it is a bijective
block map, that is there exists some> 1 and somef: Bj_, ,« — A such that
F(e)(Z) = f(ce(@+ [-n,n]), for everyc € A% and everyz e Z<. It follows
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Figure 31: A marker in the special case whers a rectangle and is its interior.

thataut(X) is countable.

Usually, when examining the automorphism group of a SFT \sarag some
kind of mixing property, since without such an assumptiois wery difficult to
obtain reasonable results. For example, Hedlund in [HegG8jed that the auto-
morphism group of &-D full shift contains a copy of every countable direct sum
of finite groups (this means that for every such group, theigea subgroup of
aut(X') isomorphic to it). Later, it was proved thatXf is a mixing1-D SFT, then
the same is true fodut(X), andaut(X) contains the free group on a countable
number of generators. For results on the automorphism gobuD SFTs, see
[BLR88, KRI1].

Much less work has been done and less results are known fakEhease,
which is of most interest for us. We are going to present a eesdsult ford-D
SFTs, assuming the corner-gluing property. Namely, we angggto prove that:

Theorem 19. [War91] Let X be a corner-gluing SFT. Theaut(X) contains a
copy of every finite group.

Before proving Theorem 19, let us note that recently M. Hoahpraved the
same result under the much weaker assumption of positivemntHowever, the
proof is too long to be included in this thesis. Almost allloé targuments dealing
with automorphism groups of SFTs use the notion of markersHdchman’s
proof, the existence of a marker is proved with a non-copstreiargument, while
our argument is constructive.
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Gy Gs

Figure 32: The markei!. The blocksG; are some random but fixed blocks of
Y C X of the appropriate size.

Proof. First of all, let us define formally what a marker is. LBtS C Z RN
S = (), andD C A° be a set of patterns with domaiy M € A% is called a
markerfor D if it has the followingtrivial overlap property if ¢ € AZ’ satisfies
cls € D,c|lgp = M andc|syi € D, c|prq = M, thenS N (S + 1) = (. Hence, we
can isolate the occurences of patterns frbrasing M.

If M is a marker forD, we can embed a copy &fym(D) in aut(X ), where
Sym(D) denotes the symmetry group éf: For v € Sym(D), definea, €
aut(X) as follows. Ifc € X hasc|s.7 = Dy € D andc¢|g.7 = M, then
a-(c)|s+m = 7(Dy). Otherwiseq, leaves the symbols efunchanged. Therefore,
a,; acts by applying to patterns fromD that are marked witld/. SinceM is a
marker forD, «. is well-defined and it is obvious that it is an automorphisnXof
and that the correspondence- o, embedsSym(D) into aut(X).

If we can construct markers for sdfsof arbitrarily large number of elements,
then, according to the previous observation, every finitaragtry group can be
embedded intaut(X). Since every finite group can be embedded into a finite
symmetry group (Cayley’s theorem), we conclude tha{ X') contains a copy of
every finite group, see [War91].

Luckily enough, this has already been done: namely if we defihas in
Figure 32 and letD be the set of all block&’ € B;(X) that can appear as a
central block of a follower, the/ is marker forD. Indeed, if M occurs in two
different positions of the plane, then the follower partsdbintersect, therefore
a fortiori, neither the central blocks intersect. In aduhti sincei(X) > 0 the
number of blocks imB;(X) can be arbitrarily large.
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5 Open problems

5.1 Nivat's conjecture

Let S be a finite alphabet with at least two letters. 1D word is an element
c € SZ. Wordc is calledperiodicif there exists some: > 1 such that(z+m) =
c(x), for everyz € Z. For everyn > 1 we definep.(n) to be the number of
different words of lengttn appearing irc. Formally,

pe(n) = |{x € S™ : there exists € Z such that(i + [0,n]) = z}|.

We callp.(n) thecomplexity functiomf c. The following Theorem character-
izes the periodic words in terms of their complexity funatio

Theorem 20. [Morse-Hedlund Theorem} is periodic if and only if there exists
somen > 1 withp.(n) < n.

A proof can be found in [Lot02].

Similarly, let¢ € SZ° be a2-D word. ¢ is calledperiodicwith periodm € 72
if £(Z+m) = &(T), for everyZ € Z2. Forng,ny > 1, let N¢(ny,ns) be the
number of different rectangular patterns of sizex n, appearing irf. Formally,
let B(ny,n2) = {(4,7) : 0 < i < nyand0 < j < ny} be the rectangle of
sizen; x ny with lower left corner in the origin. Theny¢(ny,ny) = [{z €
Smxnz . there existgi, j) € Z* such that((i, j) + B(ny,n2)) = x}|. A natural
question is whether Theorem 20 is true also in2He setting, namely whether
it is true that a2-D word is periodic if and only if there exists;, n, such that
N¢(ny,n2) < nyng. The following example from [BV0O] shows that the best we
can hope for is the "if direction”:

There exists a periodig-D word ¢ such thatNe(ny, ny) = |S|™+"271, for
everyn;,n, > 1. Indeed, let € S% be al-D word that contains every finite word
as a subword. For the existence of such a word, see Exampie R&97]. Let
us defing € S% by £(i,j) = c(i+j). Theng&(i+1,j—1) =c(i+1+j—1) =
c(i + j) = &(i,7) hencef is (1, —1) periodic. This means that the letters of a
rectangle are uniquely determined by the letters on theotvoind right edges
of the rectangle, and that these in turn are uniquely detethby the subword
of ¢ of lengthn; + n, — 1 observed in the bottom edge of the rectangle as in
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Figure 33: A periodic word with many rectangles appearing.in
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Figure 34: A graphical statement of lemma 12.

figure 4.1. Since all words of lentghy + n, — 1 appear inc, we conclude that
N(ny,ny) = |S|mtre—1,

A similar construction can be given in any dimensibx 3. In addition, for
d > 3, even the "if implication” is false. There exists an apeio8- D word
¢ € 8% with Ny(ny,ny, ns) < ningns, for everyn,, ny,ng > 1, see [ST00]. The
"if direction” for the 2-D case is still open and is known Blévat's conjecture

Conjecture 1 (Nivat's conjecture) Let¢ € SZ°. If there existn;, ny > 1 with
Ne(ny,ne) < ning, thené is periodic.

Observe that if Nivat’s conjecture is true, as most peopleweit is, then it
will be the first dimension-sensitive property where théediice is noticed when
going from2-D to 3-D and not from1-D to 2-D . In the rest of this section, we
will give part of the proof of the best currently known restdtvards a positive
answer for Nivat's conjecture. For other results pointiogdrds a positive an-
swer, see [EKMO03, ST02]. Of course, we should always beaiid tihat Nivat's
conjecture could as well be false.

Theorem 21.[QZ04] Let¢ € SZIf there existiy, ny > 1 with Ne(ng,ng) <

+nyny, theng is periodic.
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From now on, we will always assume that S%° satisfies the hypothesis of
Theorem 21. For vector® = (v, v7),2 = (21,22) € Z* we say thalv] < 7 if
and only if{v;| < z; and|vy| < 2. Finally, we setm; = |75 ] andl; = n; — m;
fori = 1,2 andm = (m, ms). The proof is based on the following observation:

Lemma 12. For everyz = (21, z;) € Z?, there exists a vectaf = (vy, v,) with

Proof. Let us consider the; x n, rectangleg(y + B(n1,n2)) appearing irg in
positionsy with z; — m; < y; < z;. The number of these rectangleg(is; +
L)(mg + 1) > ™22 > N¢(ni,ne), therefore two of them must be equal. Let
(i + B(n1,na)) = £(y + B(na,nz)) andi = j — /.

If ¥ € 24 B(l1,12), thenZ € ¢+ B(ny,n2) N Y+ B(ni,ns). Also, since
(¥ + B(ny,ng)) = &y — ¥ + B(ny,ns)), we conclude tha§(z — o) = £(2).
Hencel (2 + B(ly,le)) = (2 — v+ B(ly, 12)).

In a similar way, we can prove thétz'+ B(l1,02)) = £(Z+ 0+ B(ly,13)). O

We have shown that for everyy € Z?, there exists some vectore Z? with
|v] < m such that thé; x [, pattern that appears in positiaris the same as the
l; x [, patterns that appear in positioast . We call 7 an actual translation
vectorfor this specific appearance &fz' + B(n,n2)).

We say thati ¢ Z? is apotential translation vectofor al; x I, patternB if
|u| < m, and in additionB(Z) = B(Z + ), whenevert andz + « belong toB.
Using the terminology of Chapter 3, we could rephrase therskcondition by
saying thati is a period ofB.

The following observations about actual and potential di@on vectors
should clarify these notions a little bit:

e The notion of an actual translation vector refers to a speagpearance of
al; x Il pattern in&, while the notion of potential translation vector does
not.

e Foreveryl; x [, patternB in £, the actual translation vector of each specific
appearance oB is one of its potential translation vectors. For different
appearances of the same pattern, we might have differamdldcanslation
vectors (hence the terms potential and actual).
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Figure 35: Copies of3 along the lineL;.

e Of course, there might be more than one actual translatictoréor a spe-
cific appearance of § x [, pattern. This is not a problem. We are only
interested in the fact that there exists at least one.

The proof now is divided in the analysis of two cases. Eitlhere exists a
l; x Iy pattern all of whose translation vectors are collinear ergl x [, pattern
has at least two non-collinear potential translation vectd/NVe are only going
to treat the first case which, admittedly, is easier. For thraplete proof, see
[Qz04].

So, let us assume th&tis al; x [, rectangle all of whose potential translation
vectors are collinear. Let = (h1, he) be a potential translation vector. Withour
loss of generality, we can suppose that the coordinatésané positive and that
2 < L Infact, if bothh; andh, are negative, then repladeby —h. If one
of the coordinates of is negative, then reflect around the appropriate axis to get
a 2-D word ¢’ that is periodic if and only if is periodic and whose potential
translation vector is positive. Finally, i’f > é—j then reflect around the main
diagonal. Therefore, we may assume thas a positive vector lying under the
main diagonal of3.

Now, let us consider a specific occurence®in £. We denote by.; the line
that goes through the origin and has slap&Jsing an a appropriate shift, we can
suppose thaB appears in the origin. Since all of the potential transfatietors
of B are collinear, the actual translation vector for this appaace ofB is th,

wheret is rational number andﬁ\ < m. Therefore,B appears also in position
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+th. Similarly, the actual translation vector for the appeaeaaf B in position
this equal tosh for some suitable, henceB appears also in positioft + s)ﬁ.
Inductively, we can see thdt is placed all ovel;, possibly irregularly spaced,
but in such a way that if3 appears in some position &f., then there is another
appearance aB on L; within horizontal distance at most;.

€2

V
s

\

—

€1

Figure 36: The band regidiv’ defined by the lines; ande,.

Next, let us consider the ling which goes through poinil%, 0) and has slope
Z—f, and the line:, which goes througlﬁ%, l3) and has the same slope. Llé&tbe
the infinite band consisting of all the points lying betweeedse two lines. Writing
down explicitly the equations af ande, in analytic form and using some basic
analytical geometry and the fact ti‘%{ < ﬁ—j we can show that; intersects the
right edge of the rectangle more th%naway from the upper right corner, and
thate, intersects the left edge of the rectangle more ﬂgaaway from the origin.
Hence, ifu = (u,us) and the points’ andz + « lie on opposite sides of the
band, therju;| > my or |us| > ms.

Let# € W be a lattice point. By definition ofl’, ¥ + h also belongs tdV'.
As we have already observed, the appearancés along L; are spaced out at
horizontal intervals of at most:;. This means that there exists a copyithat
contains? and lies at a horizontal distance of at mest to the left ofZ. Then,

# + h also belongs to this copy @8 as can be seen in Figure 4.5. Sirices a
period of B, we conclude thag(#) = £(& + k). Since € W was arbitrary, we
conclude that is periodic onlV.
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Thereforef is periodic with period_i on an infinite band with the property that
if Zandz + i lie on opposite parts of the band, then| > m; or |us| > my. We
will now show that every infinite band satisfying these pmiee can be extended
to a larger infinite band satisfying the same properties oielnis periodic with
a bounded period. Notice, also, that although our initialagption was that every
potential vector of3 is parallel toh, the existence o’ follows from the weaker
assumption that there exists an appearande sdich that for each appearance of
Bon L; all of its actual translation vectors are parallehto

&
V
w |

—

[\
w |
81
_l_ [ )
>

€1

8l 4

Figure 37:¢ is periodic on the infinite band’.

LetY be any infinite band on whichis periodic and such that ffandz+ lie
on opposite parts of the band, then| > m, or |uy| > m,. Consider the closest
line L' wich is parallel toh but is not contained i, Without loss of generality,
we can assume that lies belowY. If L’ is periodic with periocﬁ, then we can
definitely adjoin it toY” to obtain a wider band that satisfies the same conditions.
If, on the other hand, there exists somies L’ with £(2) # &(Z + h), let us
consider thd; x [, patternC' appearing irz. We claim that for each appearance
of C' on L/, every actual translation vector of is parallel tos. Indeed, let us
suppose that for some appearance’obn L', there exists an actual translation
vectory = (y1, yo) Of this appearance @f that is not parallel td. Let us suppose
thaty, > 0. Then,Z+ ¢ andZ + h + i both belong inY". Indeed,Z andz + h lie
on one side of the band and, singe < 7, our assumption abouf indicates that
Z+yandz + h+ y cannot lie on the other side. Hence, they must bg.irBut
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then, Lemma 12 and the fact thetis periodic with perio£ imply that

E(Z)=EE+9) =EE+T+h) =E(EF+R),

which is a contradiction with our initial assumption.yif < 0, then the same
argument works by replacir@+gjand5+ﬁ+gjby Z—gjand5+ﬁ—gj, respectively.

Therefore, we have proved that for every appearance of ', every actual
translation vector is parralel to. This means that’ is contained in an infinite
band on whick is periodic with periodzl_i, for some integen > 1 with nh < m.
Since there are finitely many sueh we may take their least common multiple
M. Then,¢ is periodic oniV U L' with periodMﬁ and M is independent from
Y, L andC.

Mhis a period of¢. Indeed, for everyr € Z2, we can extend? as many
times as needed in order to obtain a band that confams which¢ is periodic
with period M h. Then&(Z) = £(Z + Mh).

Figure 38: Expanding the infinite band

5.2 Other open problems
5.2.1 Periodic points ford-D CA

Question 1. Does a surjective, almost equicontinual+® CA have dense peri-
odic points?

In 1-D , the answer is positive, see [BT0O0] . However, the proosuse
characterization of almost equicontinuous CAs in terms otkihg words, so it
cannot be generalized to greater dimensions.
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5.2.2 Entropy of 1-D and 2-D CA

In section 2.3, we gave a recursion theoretic charactesizaf the class of num-
bers that can be the topological entropy of-® CA, for d > 3. Is this char-
acterization also true in theD and2-D case? What else can we say about the
topological entropy of-D and2-D CA?

Question 2. Is it true that a number is the topological entropy of & or 2-D
CAif and only if it is thdim inf of a recursive sequence of numbers?

We note that the topological entropy of CAs is uncomputabénen thel-D
case, see [HKC92].

5.2.3 Openness and number of preimages

Theorem 22. LetG: S — SZ be al-D CA. The following are equivalent:
1. G is open.
2. There existg > 1 such that G~!(z)| = p for everyz € S%.

3. There exist continuous functions, fo,..., f,: S* — S% such that

G x) = {f(2), Lo(x),..., f,(x)} and fi(z) # [;(x) for everys € S
and everyi # j.

The set of functiong f1, fo, ..., f,} is called across-section

For a proof, see [Kur03, Hed69]. Again, the proof of this tlegn makes ex-
tensive use of notions and results that are exclusive to-bease. Can Theorem
22 be generalized to higher dimensions? The answer is megegithe following
example shows.

Let F be an open, non-injectiveD CA, for example the CA induced by the
xor function. Then, according to Theorem 22, every paint S* has exactly
p preimages, wherg > 1. Let F' be the2-D CA that works by applyingf; on
every line of the plane independently. Obvioustyjs open andG~!(c)| = o
for everyc € S%°.

Hence, in greater dimensions we cannot have a result agsaoitheorem
22. However, the following questions deserve some attentio

Question 3. Does there exists an opdrD CAG': Sz — SZ% and pointscy, ¢p €
52" such thal G2 (cy)| = ki, |G~ eo)| = ky andky # ky?
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Question 4. Does there exists an opdrD CAG': Sz SZ% and pointscy, o €
S%* such thal G~ (¢;)| < oo and|G~1(cy)| = c0?
5.2.4 Decidability of positive expansiveness

Question 5. Given al-D CA G, can we algorithmically decide whethéf is
(positively) expansive?

Stricly speaking, this question does not concern dimersansitive proper-
ties of CAs. However, since the decidability status of alneestry other dynamic
property has been settled and expansive CAs seem to be agriguf 1-D, this
problem fits in this list.

For an investigation on the general properties of positie@pansive CAs, see
[BM97, Nas02, Kur97].

5.2.5 Relations betweeid:, Gy and Gp

Recall the definition of7 - andG p given in Chapter 2.
Question 6. 1. If Gp isinjective, iISGx surjective?
2. If G is surjective, i97 p also surjective?
3. If G is surjective, i95p also surjective?

If G is al-D CA, the answer to all questions is positive, see [KarO5]r Fo
higher-dimensional CAs, the answer is currently unkwown.

5.2.6 Sofic shifts and entropy of their covers

In section 3.2 we proved that for evedyD sofic shift7" and everye > 0 there
exists a SFT cove$ of T"with h(S) < h(T') +«.

Question 7. Does everyl-D sofic shift have a cover of equal entropy?

The answer for thé-D case is positive, see [CP75].

89



5.2.7 A problem on direct products of SFTs

Conjecture 2. Let X, Y C SZ° be subshifts. If{ x Y is conjugate to a full shift,
then some powers of andY are conjugate to full shifts, too.

The above conjecture arose in the study of reversible CAs.dFer1 it is
true. If it is true for higher dimensions too, then everp reversible CAs can be
described as a composition of block permutations, see f{ar9
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