Moazzam Fareed Niazi | Tiberiu Seceleanu |
Hannu Tenhunen

A Performance Estimation Technique
for the SegBus Distributed Architecture

TurkU CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 980, July 2010

1

A Performance Estimation Technique
for the SegBus Distributed Architecture

Moazzam Fareed Niazi _
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
moazzam ni azi @it u. fi

Tiberiu Seceleanu
ABB Corporate Research, and

Malardalen University
Vasteas, Sweden
ti beriu. secel eanu@e. abb. com

Hannu Tenhunen _
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
hannu. t enhunen@t u. f i

TUCS Technical Report
No 980, July 2010

Abstract

We propose a performance estimation technique for a moité-segmented bus
platform, SegBus. The technique enables us to assess tloerparice aspects of
any specific application on a particular platform configioat modeled in Uni-
fied Modeling Language (UML). We present methods to tramsfBacket Syn-
chronous Data Flow (PSDF) and Platform Specific Model (PSiilats of the
application into Extensible Markup Language (XML) schemssg modeling
tool and how the generated XML schemes can be utilized byrthéagor program
to get the execution results. The technique facilitate®westimate performance
aspects of application mapped on a number of differentguiatfconfigurations
during the early stages of the design process.

Keywords: Emulator, Estimation, Performance, Domain Specific Laggua/ML,
SegBus, Model Transformation

TUCS Laboratory
Distributed Systems Design

1 Introduction

In recent years, the complexity of the digital systems heaeimsed tremendously,
along with the decreased technological figures. The timeatket is also shrink-
ing, imposing challenges for the designers to adopt newgdesiethods. The
designers must do a better job of supporting platform-basstgn, which is be-
coming the most popular approach to developing complexsyst The platform-
based approach may refer to either single chip or multi-shlption. We address
here issues related to the former case.

The use of a hardware emulator for platform-based desigrninmease the
efficiency of the development team and improve both desigificegtion and
embedded-software development at early stages of therdpsigess. Design
decisions taken place at early stages of the developmeoegspimpact heavily
on the quality of the eventual system implementation. Tioeee the application
running on such platforms can take full benefits from all th&tfires exposed by
the platform, if it is configured optimally. The specific gam we consider in
this study is theSegBugplatform [15].

The Unified Modeling LanguagéUML) [1] has been utilized in novel de-
sign methods proposing a solution for the challenge. Weioathere the work
towards establishing a full functional unitary framewodk platform modeling,
application mapping and system (platform+applicationykation, such that per-
formance aspects are targeted, estimated and adjustetit@blevels in a correct
and fast manner. While the main aspects of the platform muoglelnd application
mapping has already been introduced in the form Bbanain Specific Language
(DSL) in [11], we address here issues related to system dionildodel-to-text
(M2T) transformation [2] plays a key role in Model-Driven ¢hitecture (MDA)
based development [6]. The outcome produced by M2T usuadiytextual ar-
tifacts from the provided models. These textual artifactsld@ be XML schema
or source code of any high-level programming language like,Q#ava, etc. The
XML Schema provides means for defining the content, strecnd semantics of
XML documents.

The technique we deliver in this report is based on the diets/for building
an emulator program targeting tis®gBugplatform. An emulator is a program
that imitates the behavior of a device/hardware @egBugplatform in our case)
or a program, while a simulator is a software that duplica@m®e real process
and environment in almost all possible ways e.g. flight satarl- simulates the
functionalities of an aircraft, etc. Th®egBusmulator enables us to evaluate
the performance aspects of any given application running specific platform
configuration, defined during modeling.

In addition, the emulator will support the analysis of vas&egBusnstances
that may answer, better or worse, to specific applicatiomirements. It helps
to decide at early stages of design process which platfomfigroration will be
most suitable for any particular application before mouimgards lower abstrac-

1

tion levels. The code generation engine, supplied byMlagicDraw UML [5]
tool transforms PSDF and PSM models of the system into XMleses. The
generated XML schemes are then employed by the emulatoicapph to esti-
mate the utilization of platform elements with respect ttadsansfers and total
execution time. After the analysis of the returned restitts,designer is able to
make decision at this stage whether emulated configuratitbi@vbest/optimal
or not for the target application, and can change the plattmnfiguration before
moving towards lower levels of the design process.

Related work. The primary objective while designing emulator applicasiés to
get as much as possible accuracy in estimating the exeaetsuitts that we can
expect from the real platform. Several research studies baen presented in
recent years where the target was to achieve an emulatigngonofor different
hardware platforms, specially for the Network-on-Chip (N§&}) but there exists
a number of emulation tools for other areas as well.

Schelle et al. [13] introduced an emulation todNeCem for NoC explo-
ration. The tool provides capability to emulate memory dechures, asymmetric
processor configuration, special purpose offload, etc. dbkis able to deliver
path latencies used for any particular transfer betweeoegssor cores and pro-
vides a true picture of the communication bottlenecks withie NoC platform.
The tool is written in VHDL with extensive use of genericsatghout the code,
but the tool deals with designs at lower levels of abstraciiod hence less flexible
to use, unlike our approach which is easy to use and dealsdegigns at much
higher levels of abstraction.

Liu et al. [10] presentetNoCOP- an emulation and verification framework
for exploring the on-chip interconnection architecturen iAstruction-set simu-
lator and universal serial bus communicator has also beaesdinced to set the
parameters for the emulation environment. Through theraxgatal results us-
ing both software and hardware, the authors proved that tbpoped emula-
tion/verification framework can speed up the simulatioresprve the cycle ac-
curacy and decrease the usage of the resources of the FagjchRimable Gate
Array (FPGA). The design under emulation needs to be progredronto a FPGA
device and a separate host computer is responsible falinitig and managing
emulation of the programmed design in the FPGA which makéssd flexible
compared to our approach which is more flexible and doesqgttire any FPGA
device and consideration about deeper lavels of abstractio

Genko et al. [7] presented a NoC emulation platform implete@on FPGA.
The NoC hardware platform has been implemented on a Vitt€RGA, which
consists of network injection, reception and controllemponents. The proces-
sor core PowerPC has been integrated into the hardwarenphagnd functions
as a controller. Instead of merely being the platform whbeedircuit is proto-
typed, the method can speed up functional validation andfledbility to the
NoC configuration exploration. The major drawback in th@pr@ach is the use
of processor core in the hardware to control and monitor #tevork at the cost

2

of FPGA resources, already limited.

2 Background

2.1 Segmented Bus Architecture

A segmented bus is a “collection” of individual buses (segtsk interconnected
with the use of FIFO like structures. Each segment acts asmatdus between
modules that are connected to it and operates in parallél ether segments.
Neighboring segments can be dynamically connected to ¢hehn establish a
connection between modules located in different segmédie to the segmen-
tation of the bus lines, and their relative isolation, plefatansactions can take
place, thus increasing the performance. A high level blaelg@m of the seg-
mented bus system which we consider in the following sestierillustrated in
Figure 1.

g |

M
El

ot

O
BH
B

DsP core | _S;A_H
. System

Figure 1: Segmented bus structure.

The SegBusommunication platform is built of components that provide
necessary separation of segmerB®rder units(BU), arbitration units - th&€en-
tral Arbiter (CA) and local,Segment ArbiteréSA). The application then is real-
ized with the support of (library availabl&unctional Units(FU).

The SegBugplatform has a singl€A unit and severabAs, one for each seg-
ment. TheSA of each bus segment decides which deviedl), within the seg-
ment, will get access to the bus in the following transfeshur
Platform communication. Within a segment, data transfers follow a “traditional”
package based bus protocol, wiBAs arbitrating the access to local resources.

3

The inter-segment communication, is also a package basedit switched ap-
proach, with theCA having the central role. The interface components between
adjacent segments, tii&Js, are basically FIFO elements with some additional
logic, controlled by theCA and the neighborin@As. A brief description of the
communication is given as follows.

WMM--LMM R

Time

Segment k, initiator, Idle time. The buffer Data is transferred from Segment n, target,
fills the holds data until the one buffer to the other receives data
corresponding buffer next segment is buffer surrounding an
ready to receive intermediate segment.

Figure 2: Inter-segment package transfer.

Whenever on&A recognizes that a request for data transfer targets a module
outside its own segment, it forwards the request toGAe The later identifies
the target segment address and decides which segmentsoneediynamically
connected in order to establish a link between the initgaéind targeted devices.
When this connection is ready, the initiating device is gedithe bus access, and it
starts filling the buffer of the appropriate bridge with tteckage data. Following
a signaling protocol, the data is taken into account by theesponding next
segmenBA, which forwards it further, towards the destination. Astpint, the
SA of the targeted segment routes the package to the own sedjmes)tfrom
where it is collected by the targeted device.

A transfer from the initiating segmehtto the target segmentis represented
in Figure 2. The segments frokrto n are released for possible other inter-segment
operations in a cascaded manner, from the sokitoethe destinatior;.

The arbitration aCA level implements the application data flow, with respect
to these transfers. Hence, one has to implement accuratekprocedures for
inter-segment transfers, as possible conflicting requresss be appropriately sat-
isfied, in order to reach performance requirements and teectly implement
applications.

2.2 DSL for the SegBus Platform

TheDomain Specific Languad®SL) for theSegBugplatform is the specification
language that is used to model thegBuglatform at higher-level of abstraction,
based on stereotypes stored in 8egBudJML profile [11]. The DSL provides
ability to model application and platform elements in therief high-level graph-
ical constructs and provide methods to map partitionedegipbn components on
particular segment in a fast and correct manner.

The DSL comprises a number of structural constraints rela@i¢he platform,
written in Object Constraint Languag@CL) [3], to implement the correct com-
ponent approach to platform design. These constraintssee 10 validate our

4

models. Upon breach of any constraint requirement duriegdéssign process,
the tool provides appropriate error message, so that thgrescan take proper
action to make the model correct according to platform nesments.

Before the current work, the DSL was only capable of modelpgliaation at
Platform Specific ModglPSM) level. Here, we add capabilities to model appli-
cation at thePacket SDRPSDF - section 3.1) level, too. We introduce three new
stereotypes, that isnitiaINode, ProcessNodandFinalNode in the UML profile
of DSL. The profile defines the main structural elements ofpla¢form. The
new stereotyped classes related to PSDF are generalizdtioa metaclaseML
Standard Profile::UML2MetaModel::Classes::Kernel::Clas&e also introduced
their related customization classes and set tags withideitalues. We skip here
further details about tag values intentionally becaus@é®fpace limitation.

Once we model the application components as PSDF, modelatferm and
map the application components on to the platform corrgsttyapply validation
process to get the correct PSM of the application. If theist&some errors in
the model, we get error message(s) and associated modedrel®ecome high-
lighted.

Finally, the PSDF and PSM model can be transformed into XMiegstes for
further analysis of the desired platform configuration. Wepy the generated
XML schemes for emulating the performance aspects of thégumed system,
as described in the next section.

3 The SegBus Emulator

Generally, emulation is necessary while designing apipina targeting hard-
ware devices and platforms. The huge design and manufagtaasts of such
hardware platforms motivate designers to develop emdaiod verify the execu-
tion results. An emulator provides the same functionaktytee original hardware
platform or computer program. Designing an emulator rexgugr thorough under-
standing of the target device or platform. We have develope8egBugsmulator
to test platform configuration and estimate performancectspbefore moving
towards the final implementation.

3.1 The Packet SDF

The specification of the application itself starts witRacket SDRPSDF) model.
PSDF is a customized version of Synchronous Data Flow dwagfd4]. The
approach is intended to facilitate the mapping of the appba to the architecture
due to the similarity between the operational semantich@fRSDF and that of
the SegBusrchitecture, thus allowing us to cope in a more detailedmaawith
the communication characteristics of our platform.

A PSDF comprises mainly two elementsrocessesanddata flows data is,

5

however, organized in data items, which are later transtdrinto packets ac-
cording to package size during execution. Processes transhput data packets
into output ones, whereas packet flows carry data from oneepsoto another.

A transactionrepresents the sending of one data packet by one sourcespitoce
another, target process, or towards the system outpptcket flowis a tuple of
four values,P;, D, T andC. The P; value represents the target process for the
given transactions; the value represents the number of data items emitted by the
same source, towards the same destinatior] th&lue is a relative ordering num-
ber among the (package) flows in one given system; and’'thalue represents
the number of clock ticks a process consumed before sendmgackage. Thus,

a flow is understood as the number of data items (later tramsfo into pack-
ets) issued by the same process, targeting the same destjri@ving the same
ordering number and same clock ticks require to processmatiddual package.

If s is the package size (hnumber of data items in a package) inlati@nm
configuration, then thé&acket SDF (PSDFbdf a certain system is a sequence
of packet flows,< (P, , 2. Tv,Cy),..., (B, 22, T,,C,) >, whereVi, j,z €
{1,...on} - 2o £ DiandTy < T, < ... <T,,.

The non-strictness of the relation betweErvalues of the above definition
models the possibility of several flows to coexist at momémntse execution of
the system. In the case of tBegBuglatform, this most often will describdecal
flows, that is flows where the source and the destination aratsd in the same
segment. However, considering a segment number larger3hgiobal flows,
where the source and the destination are in different setgyee also possible to
be characterized by the same ordering number. In this daseans that th€A,
if possible, allows a simultaneous execution of transastiwom all the “same
number” global flows.

3.2 Design Methodology

Figure 3 illustrates a general overview of tBegBuslesign process employing
DSL and emulation. At the top level, the transformation @& phatform concepts
into the high-level graphical constructs has already bemredn [11] to form a
DSL, specific for theSegBuglatform. The DSL provides a graphical environ-
ment where a designer can model PSDF and PSM of the apphagtickly and
assign pre-existing components from thegBus Component Libraduring the
modeling. The application should be already partitionefbigemodeling it in
the PSDF form and mapping it on to the platform according t@ilakle library
components. The model can be validated for possible mistiakget the correct
PSDF and PSM. Later on, we transform both PSDF and PSM of thkcapon
into XML schemes using M2T transformation supplied by thel.toThe XML
schemes contain information about platform elements,iegdmn components
and their relative placement on different segments.

Before the execution, the emulator application reads the Xddhemes of

6

SegBus Platform
-Structure
-Constraints
-Communication

J

DSL for SegBus
-Stereotypes
-UML_Profile Partitioned- SegBus
-Constraints Application Component
-Customizations Specification Library

Graphical
Interface for
Modeling ‘

[Not OK]

[OK]
o P-SDF model of " XML Schemes
Model(s) & the application H@odel-&o-Text (M2T) Transformation of the system
[OK] Platform
ific Model

E(M L parsing & i)

[NOT OK]

System ion <

[OK]

>{ ion phase

Figure 3: Design process of the SegBus platform using DSL endation.

the PSDF and PSM models, package size and considers thaustri®egment
organization and resource allocation) from the XML scherihthe PSM. Upon
completion, the tool returns results of the transactiomsfeach platform element,
performed during execution. Figure 4 shows the operatingdfdthe emulation in
the step-by-step manner. An overview of the operating fpies of the emulator
is given in the following sections.

3.3 Basic Concepts

The following considerations apply in the approach to btild emulator as a
close match to th8&egBusrchitecture and to the application execution.

e The schedule of the application is extracted from the PSOFieplemented
within the arbiters, providing the correct sequencing agymmocessing and trans-
fers.

e As at the moment we are not interested in the actual opegdtiesults, thé-Us
are modeled as counters, performing for an establishediodnrarhe ranges of
the counters will stand as a “processing” time associatél @achFU.

e The performance measurements (execution times) areissiblvith respect to
the starting moment of the emulation process. While for inldigl processes this
might provide errors in measurement (as certain modules tmawait until data
is present in order to start operating), this does not affexioverall application

7

time performance - which is our main target in this study.

e The emulator will be equipped with an array of flags - “Proce&gus Flags”,
each element here corresponding to one process of the afpomtic When a pro-
cess finishes the activities and related transfers, theopppte flag is raised.

e During the execution of the application on the emulatedf@tat, monitoring
activities are executed to measure the execution timesk¢loks) of theFUs,
SAs and of theCA.

e The operation is considered finished when all the flags destabove are high,
and there is no activity to execute within any of the platfer@As or CA.

Read XML schema
of PSM Model

Platform
Elements
instantiation

finishParsing

true
/Add instantiated objects into'
thread pool

Read XML
schema of PSDF
Model

Parsing of XML

Execution and
monitoring of all
threads (SA, CA, FU,
etc.)

false

Process status
flags ==true

true: : :
execution time

Figure 4: Operating flow of the emulator.

3.4 Model Transformation

The first phase for performing emulation on é@ggBusonfiguration in DSL is
to transform the models into XML schemes so that the conftgurzan be used
by the emulator program for further analysis.

The emulator application is written in Java language [4] @uiés rich collec-
tion of classes for handling XML schemes and classes foremphting multi-
threaded application (discussed in section 3.6). The cedergtion engine of the
tool does provide capability to transform model(s) into Xgthema as per M2T
specification [2].

A code engineering seeeds to be introduced in the tool for each model where
we specify required type of transformation i.e. Model-t@dél, Model-to-Text
(as in our case), etc. The code engineering set consistsbfod sodel elements
whose XML content we want to generate during transformatidfe make two

8

separate code engineering sets (one for PSDF and other Ky &®sisting of
platform elements (SAs, CA, BUs, etc.) and all applicatiomponents in the
form of processes (PO, P1, etc.). A directory is also spekifieere the generated
XML schemes to be saved. After applying transformation onRSDF and PSM
models, we get the required XML schemes in the mentionedding

SegBus Platform
]

ICentralArbiterl “ Segment ‘l ------- - ISegmemI ” BorderUnitI ---- || Border Unit ||

- - ’—‘—‘ Segment Arbiter] I I :
Functional Unit | _____ Functional Unit 9 | Functional Unit | ,,,,, | Functional Unit | [Segment Arbiter

Figure 5: Hierarchical structure of the SegBus elements.

The generated XML consists osahemalement and a number of sub-elements,
in the form ofcomplexTyp@ndelementypes.

Each complex type represents a platform elem@Ai GA, etc.) or application
component (PO, P1, etc.). Tmameattribute of each complex type shows the
name of the element. Furthermore, each complex type magicosib-elements.
Figure 5 shows the hierarchical structure of the platforemants. At the top level
is the SegBusPlatfornitself composed oSegmerfs) and exactly on€A. Every
segment is composed of at least dfld, and exactly oné&SA. Each segment is
connected with other neighboring segment throBgh OneFU contains at least
oneMasteror oneSlave Following, we show an XML snippet of the PSDF model
after transformation, consisting of proce?8 P1 and their relative transfers to
other processes.

<xs:conpl exType nane="P0">
<Xs: sequence>
<xs: el enent nane="P1_576_1_250" type="P1"/>
<xs: el enent nane="P8_576_1_250" type="P8"/>
</ xs: sequence>
</ xs: conpl exType>

<xs: conpl exType nane="P1">
<xs:sequence>
<xs: el enent nane="P2_540_2_250" type="P2"/>
<xs: el enent nane="P3_36_3_250" type="P3"/>
</ xs: sequence>
</ xs: conpl exType>

Below is the piece of XML snippet of PSM model after transfotiow, repre-
senting theSegBuplatform instance$BPwith three segments as child-elements)
and “Segmentlelement with its child-elements.

<xs:conpl exType nane="SBP">
<xs:al | >
<xs: el ement name="segnent 0" type="Segnent0"/>

9

<xs: el ement nanme="segnentl1" type="Segnentl"/>
<xs: el ement nane="segnent2" type="Segnent2"/>
<xs:el ement nane="ca" type="CA"/>
<xs: el ement nane="bul2" type="BU12"/>
<xs: el ement nanme="bu23" type="BU23"/>
</xs:all>
</ xs: conpl exType>

<xs: conpl exType nane="Segnent 1" >
<xs:al | >
<xs: el ement nane="buRi ght" type="BU23"/>
<xs:el ement name="bulLeft" type="BU12"/>
<xs: el ement nane="p5" type="P5"/>
<xs:el ement nanme="p6" type="P6"/>
<xs: el enent nane="p7" type="P7"/>
<xs: el enent nane="pll" type="P11"/>
<xs: el ement nane="pl2" type="P12"/>
<xs: el ement nane="pl3" type="P13"/>
<xs:el ement nanme="pl4" type="P14"/>
<xs: el ement nane="arbiter" type="SAl"/>
</xs:all>
</ xs: conpl exType>

3.5 Setup for emulation

The next phase of the design methodology is to parse the afedexXMLs and
build required structure of platform and allocation of nesxes on it within the em-
ulator application. Thé&ocumentBuilderFactorgand DocumentBuilderclasses
from thejavax.xml.parserpackage has been utilized in order to cre&tél doc-
umentfor further parsing. Thearsemethod of thddocumentBuildeclass returns
XML Documentwhen we supply generated XML files.

The communication matrixs the specification of device-to-device transac-
tions between application components. Each entity in tlengonication matrix
describe how many data items need to be transfered from aeede any other
device. The emulator program builds the matrix by extractiansactions be-
tween processes in PSDF model. Based on the matrixg lHeeToolapplication
[16] finds the optimal device allocation solution, given fiatform specifics (the
number of segments).

The emulation process is based on both PSDF and PSM. The P&t pro-
vides information about interaction between applicatioocpsses with required
data items and other useful parameters, while the PSM mepiedsents the place-
ment of each application process on different segmentseopldtform. Hence,
the emulator program parses XML of both models to be lated émeemulation.
During the parsing process, the emulator extracts follgwmfiormation from the
PSDF model:

e Number of application processes.
e Data transfers from each process.

e Ordering of transfers.

10

¢ Clock ticks to be consumed by each process while processmgackage.

The emulator stores above information in temporary vaesiaind arrays in-
side the program. Figure 7 show the PSDF model of the exanggkcation
(discussed in section 4). For instance, the name attribote 6ne of theelement
from PO, that is, “P1576.1 250" represents a transfer from proc&¥ The “”
character serves as the separator between the entitiefirsttentity “P1” repre-
sents the target process of this transfer; the second éa#6/ is the number of
data items to be transferred; the third entity “1” is the ssgung order and the
last entity “250” is the number of clock ticks a process negedsonsumed before
sending each package.

Furthermore, the emulator extracts following informaticm the PSM model
and stores in a number of variables and arrays inside theagonuioo:

e Number of segments in the platform.
e Number of border units based on platform geometry.
e Placement of application processes on different segments.

When the parsing process is finished for the XML of PSDF modiel emu-
lator iterates in the previously populated arrays, instaes the require@Us and
pass them necessary information. This necessary infasmatintains number of
data items to be transferred, destination processesiveetadering, clock ticks
a process needs to be consumed before sending a packageesch@ht in the
specific segment. Theontructor method of theFU class analyzes the passed
information to it and instantiates the required number gécts of mastersand
slaveswhich later run as threads during emulation.

The emulator has been programmed in a way to exhibit the lbmhafan
actual platform instance. The functionality and behaviaraxh platform element
(SA, CA, BU, etc) are programmed and stored in individual Java soures fA
number of monitoring statements are introduced in diffessttion ofSA, CA
andBU codes. These monitoring statements count clock ticks weebin any
transfer, either intra-segment or inter-segment. dtmtrate method inCA and
SA source code performs arbitration and called by the emudguiplication several
times during execution. The method also counts how mankdloks have been
consumed for any particular transfer at different stagekebperation.

At the SA level, we put statements arbitrate method to count requests com-
ing from the application processes. Separate counterdsargat to count both
kinds of requests (intra and inter-segment). These statisrhelp us later to ana-
lyze the configured system and provides means to take opdieezdion according
to needs. In case of inter-segment transfers, there exiata® counters to count
how many packages transfered to left and right gide

11

At the CA level, monitoring statements arbitrate method count the number
of clock ticks CA consumed whilesettingand resettingrelated grant signal in
response to inter-segment requests. The monitoring statsratBU level counts
how many packages received from, and transfered to, leftightiside segment.
It also counts total number of clock ticks during all tramsfe

During the parsing process of XML for the PSM model, the etaulapplica-
tion first looks for theSegBugplatform instance in the XML document, analyzes
its structure by counting how many segments Bhit contains as child nodes. It
instantiates an object of platform instan€4, required number d8Us and saves
the references (discussed below). Later on, it looks forefleenents in XML
document, which represent segments. It analyzes the @teuact each segment,
instantiates on&A and required number dfUs associated with any particular
segment and pass the reference of segment to leftBig(s).

The emulator application maintains a number of lists eaclifterent com-
munication CA, SA, BU, etc.) and applicationHU) components. Whenever it
encounters specific element in the XML document, it insgdes an object of the
relevant class and adds it to corresponding list. For im&taif the emulator pro-
gram finds an element representinB@ in the XML document, it instantiates an
object of clas8U by calling the constructor and passing the necessary vahas
adds the object to a list that holds o8y objects.

3.6 Implementation approach

The microprocessor in a personal computer (PC) has the ¢bastics to run
computer program instructions in sequential order. On therchand, the hard-
ware devices have the characteristics to run in paralldi wiher devices. The
main challenge in emulator development for us is to tramsfitre parallel behav-
ior of hardware elements associated with platform into sepeeial form that can
be run on the microprocessor and exhibit the correct cheniatits of the hard-
ware devicesMulti-threadingis not a new idea and is exists since many years.
Generally, every running program in a PC is callegracess Multi-threading is
the task of creating a nettiread of execution within an existing process rather
than starting a new process to begin function. All the thsgaca process share
the same allocated memory. The parallel execution of tlsr@athin the same
process is often considered as a more efficient use of thenesoof the PC.
Multi-threading employs time-division multiplexing to esutes threads in paral-
lel. Threads are obtained from the pool of available readyut threads and run
on the available microprocessor(s).

We employ Java’'s multi-threading feature in our emulatgpliaption. All
classes related with emulator application (emulator emgird source files related
to platform) run as threads during execution. Each classeiments thdRunnable
interface fromjava.langpackage by introducing a specifian() method. The
method executes when emulation starts and performs dedi@atctionality.

12

Class descriptions. In Figure 6, we illustrate the (simplified) class diagram of
the emulator program with the most important classes andrilationships. We
simplify the diagram by omitting class attributes and met)dor the purpose of
clarity and to save the space.

0.* JSegBusEmulatorView +ca | CA
g 1 1
1 ! P
+segment 1 +bu [0.* +sbp1 7
Segment BU L _ SBP MonitorClass
1 1
. N [
0.. I — - -
+Hu |1.* +arbiter
U1 > SA

Figure 6: Class diagram of the emulator application.

Apart for the platform modeling classes, the most importargs are th&eg-
BusEmulatorVievand theMonitorClass which both control the execution of the
application.

The SegBusEmulatorViewlass performs the core functions of the emulator
program. It contains methods to read the communicationixreatd PSM model,
and to set-up the emulation process. The class also cortamsber of methods
for parsing the XML schema.

The AddToThreadPool()nethod fromSegBusEmulatorViewlass creates a
thread pool using an instanceleecutorServicelass from thgava.util.concurrent
package. The size of the thread pool depends on the numbienas in all lists
that has been populated during parsing phase. We add olgjedtse form of
items) from all lists into the thread pool before emulation.

An MonitorClassobject acts as a thread during execution. This class is re-
sponsible for analyzing the status flags forrdlls and monitors the activity within
other platform elements. When the object of this class deteztommunication
activity within the platform, it sets particular flag to infa the emulator applica-
tion about the end of emulation.

During the execution of the emulator, all the threads exeautparallel to
depict intrinsic characteristics of hardware.

Emulation and estimation. The final step of the design methodology is to emu-
late the platform configuration after setup. In generaljiapfon processes com-
municates with each other at different time instant aftefggeming specific com-
putation on the supplied data. The emulator extracts exergequence from
the PSDF and forward them to relevant application procesBesing emulator
development, we skip some timing factors that are less itapbin estimating

13

performance. For instance, we did’t include the time neagst synchronize
between two adjacent clock domains, converging aBtds. This time is param-
eterized, but a value of two clock ticks is usually considegd the translation of
any signal across two clock domains. We also did not cometéimne necessary
for the SAs to set the grant signal for a particular request and caorepg mas-
ter responds, due to a similarly low value, which is also aming in time with
the on-going activities within the segments.

After we supply the XML schemes to the emulator, the tool paitbe models,
build the communication matrix, instantiates the threaatsesponding to plat-
form elements, supply particular value from communicaneatrix to eachFU
and starts the emulation process. Upon completion, theaoruleturns results
from platform elements’ execution. Some of the resultsiated below:

e Total clock ticks consumed for the operation of & and each of th&As.
e Total inter-segment requests receivedd#y and by each of th8As.
e Total clock ticks consumed by each of tB&s.

e efc.

The clock tick’s counter is incremented 8A and CA at various moments.
EachSA has its own counter for counting clock ticks and the executiime for
each device is computed separately (discussed in nexosgckor instance, the
SAincrements the clock tick’s counter while checking the imaag requests from
FUs in the segment. It increments the counter when it receira or inter-
segment transfer request from one of g in the segment. If the request is for
inter-segment transfer, it forwards the requesCf and increment the counter.
While setting and resetting grant signal in response to amyeat, it also updates
the clock tick’s counter.

During the time limit for any transfer, tH8A always increment the clock tick’s
counter continuously till the time limit ends. TI@A increments the clock tick’s
counter every time when it checks for any incoming intemsengt transfer request
from a SA. It increments the counter while setting and resetting tgsagnal for
any inter-segment transfer request. Furthermore, wheofdhe segment finishes
its job in an inter-segment transfer, tB& resets the necessary signal associated
with particular segment and increments the clock tick’srteu

4 Example using the Emulator program

We demonstrate our approach with an example of modeling pli§ied stereo
MP3 decoder [12] on th8egBugplatform and associated emulation results. The
modeling is done using DSL [11], and the application hassalydeen partitioned
up to a right granularity level [17].

14

-P3_36_3_250 -P5_540_4_500

! , 0
-P1_576_1 250 [BY -P2 540 2 250 G B3 -Po_s65.250)& -pe_576_6_500 (Y -P77576777500>a
7
| P1 P2 o 403 1000 P4 Ps P6
‘—>E -P4|36_4_500 w}@

. -5 1152 0 4 -
Start Fo P3_540_3_1000 P3 -P10,36_4_500 End

g _F9_540 2 250 @ — E _)E -P12_576_6_500 gm 3 576_7_500 E

P8 5761250 P8 Pa p1g P11-36.5.250 g4 P12 P13 “P14_576_8_500
| -P11_540_4_500 T
-P3_36_3_250

Figure 7: PSDF model of the MP3 decoder.

Here, we model the example application as PSDF, and for PSMmap ap-
plication processes in three different platform configiorat, using one, two and
three segments, with linear topology in all configuratiofise package size is set
to 36 data items in each package. Figure 9 illustrates tbeatlbn of application
processes on each platform configuration, where segmedeitsoare marked as
‘1. Figure 7 shows the PSDF model of the example applicatiotorief, process
PO represents frame decodingl/P8- scaling on the left/right channdP2/P9-
dequantizing left/right channel, etc. The communicatiatn® is generated from
the PSDF model (see Figure 7) and is exposed in Figure 8. B@noe, the trans-
action betwee0 andP1 consists of 576 data items, packed into 16 packages.

We emulate each configuration on tBegBugmulator to analyze the perfor-
mance aspects. We intentionally skip here the emulatiamteesf one and two
segments configuration. The emulation results of 3 segnpéeform configura-
tion are given below, where: ‘CA’ represents the centraltarlof the platform;
‘Segment X’ represents the segment andenotes the ID (1,2,3,..); ‘SAn’ repre-
sents the segment arbiter associated with segmeBtUxy’ represent the border
unit between segmentand segmeny. We set clock frequency of segment 1, 2,
3 and central arbiter as 91MHz, 98MHz, 89MHz and 111MHz retpsly.

Three Segments configurationln this configuration, processes (and the respec-
tive devices) are organized as shown in Figure 9. Followimgxeecution of the
emulator application, we reach the following results (“TGTtotal clock ticks).

v
o
v
=

P2 P3

v
]
v
o
R
~
)
]
U
©
v
=
=)
v
=y
v
oooﬂooooooooooo;
o
w
v

ooN|Io|Ie|Io(o|Io|o|Io|Io|o|o(o|o|=
o

3
b
o
=}
=}
2
B
o

=3

540 36

o

3

o
d

ooooocgoooa

o

HEEEEEEEEEEEEEE

(4]

OOOOOOOO;OOOOOO

o
o

w
o

o
o

o
o

o
o

°

~
o|o|lo|o|o|o|o|o|o|o|o|o|o|o|o
oo|o|o|Io|o|o|o|o|o|Io|o|e
ooo|Io|Io|o|o|o|e|o|o|e
oocc@%“’oocco
ololefefele|ofe|e|e|e|g[e|e|e|2

wle
cocoococooahcoo
o|o|o|o|o|o|o|o|o|o|o|o|o
o

o|lo|o|o|o|o|(h|o|o|o|o|o|o|o|o
ooooooocooogooo

ole|eo|e

Figure 8: The communication matrix for the example.

15

Configuration Allocation
One Segment All FU on the same segment
Two Segments 45671011121314]]012389
Three Segments 01238910(||56711121314 || 4

Figure 9: Allocation of processes on different platform foguration.

PO, Start Tine
P8, Start Tine

10989ps, End Tinme = 75307617ps
75098826ps, End Tine = 137758104ps

P7, Start Time = 401435564ps, End Tinme = 459394284ps
P14 received | ast package at 460435092ps

CA TCT = 54367
Execution time = 489792303ps @ 111. 00MHz

BU12:
Total input packages = 32,
Total output packages = 32
Package Received from Segnment 1 = 32,

Package Transfered to Segnment 1 = 0
Package Received from Segnent 2 = 0,
Package Transfered to Segnent 2 = 32

TCT = 2336

BU23:
Total input packages = 2,
Tot al output packages = 2
Package Received from Segment 2 = 1,
Package Transfered to Segnent 2 =1
Package Received from Segnent 3 = 1,
Package Transfered to Segnent 3
TCT = 146

1
iy

Segment 1:
Packets transfered to Left = 0,
Packets transfered to Right = 32

Segnment 2:
Packets transfered to Left = 0,
Packets transfered to Right = 0

Segment 3:
Packets transfered to Left =1
Packets transfered to Right =

o-

SAL: TCT = 34764,
Total intra-segnent requests = 124,
Total inter-segnent requests = 32
Execution Tine = 382021596ps @ 91. 00MHz

SA2: TCT = 46031,
Total intra-segnment requests
Total inter-segnent requests
Execution Tinme = 469700324ps @ 98. 00MHz

SA3: TCT = 35884,
Total intra-segnent requests =
Total inter-segnent requests =
Execution Tine = 403156740ps @

16

Calculation of the execution time. The total execution time is calculated when
all FUs finish their jobs (setting the respective “Process Stdag'f; all packages
are transmitted to its relevant destination and grant $igirell arbiters areclear.
All these events are somehow identified with either acésitof the platform’s
SAs or pf theCA.

Consider the total time consumed 8&x (in this casey € {1, 2, 3}) to finish
all associated jobs a@g 4, . ts4, is calculated by multiplying total clock ticks with
the associated segment’s clock period.

Then, the total execution time of the application can beutated by taking

the maximum of time consumed by central arbiter and all seg@uditers that is
max ¢sa,, tsass - tca)-
Emulation results. Figure 10 shows the progress of e&db on time line using 3
segments, linear topology with package size of 36 data itdims figure shows the
time instant on which any specific process finished its deeitg@b. For instance,
the proces®0finishes the package transfers to prodesandP8 at 75.3Qus.

Computed as defined above, in the given configuration, theated total ex-
ecution time for the application is 489.748. After running the same partitioned-
application on the real platform instance, we get the actxakution time as
515.2us. So, the estimated results that we obtain from the emuta®©95%
accurate.

Next, we keep the same platform configuration, but we chahgeackage
size to 18 data items. The result shows an estimated exadutie of 560.16:s.
The actual figure is 600.0s, giving us a precision of around 93%.

Further, we change the platform configuration by shiftinggessP9 from
segment 1 to segment 3. We keep the rest of the configuraéiblesand the pack-
age size with 36 data items. The emulation estimated exettithe of updated
configuration is 540.4s, while the actual execution time is 570/% giving a
precision of just below 95%.

Discussion. Based on our experiments, the accuracy of the emulator seems t
be settled at around 95%. The errors are caused, mostlyebyathso accurate
modeling of the timing figures of thBU to SA control communication, the syn-
chronization between clock domains, the granting activitihe SAs, etc.

However, firstly, these figures are very low (2 to 3 clock ticksompared to
the used size of a package (36 data units). Secondly, masesé toperations do
overlap with each other, or with the data transfers. A cldantification of such
events is not possible, hence we should accept the reseltings. It becomes
though clear that, the higher the data package, the lesscingpahese figures
should be observed in the estimation results of the emuldiois is due to the
lower number of transfers, and hence, of synchronizaticemting, etc. actions
of the SAs.

Due to one of the considerations described in section 3e3tithing infor-
mation illustrated in figure 10 are not exact. This is due ®(trariable) leading
period of time during which each process awaits for data tpreeent at the in-

17

put. However, as already mentioned, this does not have aadngn the overall
application performance estimation, which, of courseludes such periods of
time.

The tool helps us observe the communication bottleneckeesgpd here as
the time one package has to wait in one of Bi¢s until it can be delivered to the
next segment. Theseful periodUP) of any giverBU is expressed as the time (in
clock ticks) required to load and then unload the data pagkaigd it amounts to
twice the size of a package. However, once a package is lphdtaie unloading,
theBU has to wait for a grant signal coming from the next segmeng wiaiting
period (WP). As discussed and formalized in [15], WP is a non-detestiin
value which may reach, at a maximum, the package size. Arageeralue for
WP (W P) over the number of transfers executed by a cerBlincan easily be
computed given the data offered by the emulator (correSpgnCTSs).

Considering the example at hand, for BU12 and BU23, we haviotiosving
values (clock ticks), respectively: UP12 = 2304, TCT12 = 238&IIW/ P12 = 1;
UP23 =144, TCT23 = 1468) P23 = 1.

Further, the Figure 11 illustrates the activity graph of §ment, linear topol-
ogy configuration with different package sizes (18 and 36 dams).

3 Segments with Linear Topology
P14 I
P13
P12
P11 I
P10 |
P9 I
P8 |
P7 |
b6 i
P5 I
P4 u
P3 |
P2 I
P1 I
PO H
Process
0 50 100 150 200 250 300 350 400 450 500
W Time (micro-seconds}

Figure 10: Progress on time of each application processeg®ent, linear topol-
ogy with package size of 36 data items configuration.

18

70000

60000

50000

40000

30000

20000

10000

CA SAl SA2 SA3 BU12 BU23

+«+# -+ Package Size=18 data items —um— Package Size=36 data items

Figure 11: Activity graph of different platform elements3rSegment and linear
topology configuration for 18 and 36 bit package sizes.

5 Conclusions

The report presented methods for specifying, modeling aqpdlementing multi-
core embedded systems using UML-based methodology. Wedinted emula-
tion technique for estimating performance aspects of ddSegBusonfigura-
tion. We described how the XML schema can be generated frenmibdels,
specified in DSL, and introduced mechanism to emulate thestadctonfigura-
tion in early stages of the development process.

The emulation-based solution enables us to analyze anfppratonfigura-
tion with respect to performance figures. Based on emulagseults, it's the job
of the designer to decide which configuration would be beségdor the final
implementation. Such decisions in the early stages of dgsigcess not only im-
prove the quality of eventual system in terms of performabaé also improves
power consumption up to some extent [9]. The granularitgll®f application
components can also be balanced in order to eliminate tffec trangestion lo-
cated at certaiBUs, that will further improve the overall performance. Thilng
methodology allows a designer to adjust the high-levelgtesi a way to take full
benefits from the features exposed by the platform.

Future work will necessarily address more application nde be tested
on the emulator platform. In addition, extended supporixjgeeted to come in
the form of arbiter code generation, for the implementatérihe application
schedules.

19

References

[1] Unified Modeling Language (UML) Superstructure Specifmativersion 2.0.
http://www.omg.org

[2] Eclipse Modeling - Model-to-Text Transformation.
http://www.eclipse.org/modeling/m2t/

[3] OMG. Object Constraint Language (OCL) 2.0 Revised Submissionjorers
1.6. Jan. 2003.

[4] Java Programming Language. http://java.sun.com
[5] MagicDraw UML. http://www.magicdraw.com
[6] Model-Driven Architecture. http://www.omg.org/mda/

[7] N. Genko, D. Atienza, G. D. Micheli, L. BeniniFeature-NOC emulation: a
tool and design flow for MPSoQEEE Circuits and Systems Magazine, vol.
7,2007, pp. 42-51.

[8] A. Jantsch, H. TenhunenNetworks on Chip.Kluwer Academic Publishers,
2003.

[9] K. Latif, M. Niazi, T. Seceleanu, H. Tenhunen, S. SeZgplication Devel-
opment Flow for On-Chip Distributed Architecturel Proceedings of the
215" IEEE International System-on-Chip Conference (SOCC), 20081®
- 168.

[10] P. Liu et. al. A NoC Emulation/Verification FrameworKkn Proceedings of
6" International Conference on Information Technology: Newn&ations,
20009, pp. 859-864.

[11] M. F. Niazi, K. Latif, T. Seceleanu, H. TenhuneA DSL for the SegBus
Platform. In Proceedings of the 22 IEEE International System-on-Chip
Conference (SOCC), 2009, pp. 393-398.

[12] C. Park, J. Jang and S. H&xtended Synchronous Dataflow for Efficient
DSP System PrototypingJournal Design Automation for Embedded Sys-
tems, Springer Netherlands, vol. 6, no. 3, 2002, pp. 295-322

[13] G. Schelle, D. Grunwald.Onchip Interconnect Exploration for Multicore
Processors utilizing FPGAL"® Workshop on Architecture Research using
FPGA Platforms, 2006.

[14] E. A. Lee and D. G. Messerschmifixtended Synchronous DataflolizEE
proceedings, September 1987.

20

[15] T. Seceleanu. The SegBus Platform - Architecture and Com-
munication Mechanisms. Journal of Systems Architecture (2006),
doi:10.1016/j.sysarc.2006.07.002

[16] T. Seceleanu, V. Lefgmen, O. Nevalainenlmproving the Performance of
Bus Platforms by Means of Segmentation and Optimized Reséillocation.
The EURASIP Journal on Embedded Systems, Volume 2009 (200%)le
ID 867362, doi:10.1155/2009/867362.

[17] D. Truscan, T. Seceleanu, J. Lilius, H. TenhunehModel-based Design
Process for the SegBus Distributed ArchitectureProceedings of the 15
IEEE International Conference and Workshop on the Engingest Com-
puter Based Systems (ECBS), 2008, pp. 307-316.

21

TURKU

CENTRE for

COMPUTER

SCIENCE

Joukahaisenkatu 3-5B, FIN-20520 Turku, Finland | www.tucs.fi

\\ m ,/ University of Turku
& ‘4 e Department of Information Technology
- -
Z N e Department of Mathematics
(g

O

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 978-952-12-2451-5
ISSN 1239-1891

