
Moazzam Fareed Niazi | Tiberiu Seceleanu |
Hannu Tenhunen

An Automated Control Code Genera-
tion Approach for the SegBus Platform

TUCS Technical Report
No 981, August 2010

An Automated Control Code Genera-
tion Approach for the SegBus Platform

Moazzam Fareed Niazi
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
moazzam.niazi@utu.fi

Tiberiu Seceleanu
ABB Corporate Research, and
Mälardalen University
Västerås, Sweden
tiberiu.seceleanu@se.abb.com

Hannu Tenhunen
University of Turku, Department of Information Technology
Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
hannu.tenhunen@utu.fi

TUCS Technical Report

No 981, August 2010

Abstract

We present here a model-driven approach for the generation of low-level control
code for the arbiters, to support application implementation and scheduled exe-
cution on a multi-core segmented bus platform, SegBus. The approach considers
Model-Driven Architecture as a key to model the applicationat two different ab-
straction levels, namely as Packet-Synchronous Dataflow and Platform Specific
Model, using the SegBus platform’s Domain Specific Language. Both models
are transformed into Extensible Markup Language schemes, and then utilized by
an emulator program to generate the “application-dependent” VHDL code, the
so-called “snippets”. The obtained code is inserted in a specific section of the
platform arbiters. We present an example of a simplified stereo MP3 decoder
where the methodology is employed to generate the control code of arbiters.

Keywords: Control Code, Application schedule, Arbitration, Domain Specific
Language, UML, SegBus, Model Transformation

TUCS Laboratory
Distributed Systems Design

1 Introduction

The decreasing technological figures cause modern day designers to move towards
on-chip multiprocessing technologies. New architecturesare brought into context
in order to utilize the tremendous advances of fabrication technology. Distributed
on-chip architectures or multiprocessor system-on-chip (MPSoC) paradigm gains
increasing support from system designers. MPSoC is seen as one of the foremost
means through which performance gain are still to be sustained even after Moore’s
law may become decrepit [1]. The most common MPSoC platformsarenetwork-
on-chip(NoC) [2], andsegmented busplatforms [3][4].

As the complexity of the application requirements is increasing with time,
the designers are facing difficulty while designing applications targeting MPSoC.
However, it has also been a challenge to fully benefit from thefeatures of MPSoC
platforms. One of the reasons behind the difficulties in MPSoC development is
the deficiency of design methodologies [1]. The current design methodologies
doesn’t provide full automation in every level of the development process, and
sometimes, the communication characteristics of the platforms and the employed
devices also do not match from system requirements. In orderto offer an optimum
match, platform specific characteristics must be taken intoconsideration for each
application.

Model-to-text(M2T) transformation [5] plays a key role inModel-driven ar-
chitecture(MDA) based development [6]. The outcomes produced by M2T usu-
ally are textual artifacts from the provided graphical models. These textual arti-
facts could be in the form of XML schema or source code of any desired high-level
programming language like C++, Java, etc. The XML schema provides means for
defining the content, structure and semantics of XML documents.

The approach we deliver in this report is based on establishing a design method-
ology for MPSoC, in the context of theSegBusplatform [4]. In our previous work
[7][8], we have already introduced aDomain Specific Language(DSL) and an
emulatorprogram for modeling and emulating applications, targeting theSegBus
platform. The previous work was limited only to modeling andemulation using
thePlatform Specific Model(PSM)-level models. We deliver here methods to up-
date the DSL and emulator to make them capable for the modeling of application
at Packet-Synchronous Data Flow(PSDF)-level, and introduction of automated
methods within emulator program to generate transaction-level control code in
the form of VHDL snippets, in order to successfully implement a given applica-
tion on the distributed platform at hand. We introduce procedures to transform
PSDF and PSM models into XML schemes with the help of modelingtool [9].
The generated XML of the PSDF and PSM models are then used by theemulator
[8] program to assess the performance aspects. If we find the performance aspects
up to an optimum level, the current research work addresses issues how we gener-
ate the transaction-level control code from the emulator program in an automated
way.

1

The generation of control code and their realization is especially necessary as
the platform doesn’t require (or benefit) from an operating system solution. Sece-
leanu et. al. [10] provided definition of theSegBus’s arbiters’ control structures
at two different (segment and central) levels. The definition comes in the form
of VHDL code snippets that provide the transfer schedule, such that arbiters at
segment and central levels organize the execution following the application spec-
ification. The delivered approach to define control structures is based on PSDF,
too, but it is built manually. In this report, we continue ourefforts towards an
automated design framework.
Related Work. In recent years, MDA has been utilized in different design areas
to provide automation up to some extent. Vidmantas et al. [11] introduced MDA
methods where the designer can model application as PIM model using UML to-
gether with SysML plugin. They introduced techniques to transform PIM into
PSM model, which is later transformed into source code specifically for one op-
erating system (OS). The authors have considered more than one OS where the
modeled application can be run, unlike our case where there is no consideration
of OS is required.

Koudri et al. [12] presented design flow for System-on-Chip /System-on-
Programmable chip design, based on the use of UML and dedicated profiles. They
supported the use of the Model-Driven Development for the hardware and soft-
ware co-design with an example ofCognitive Radio Application, implemented on
FPGA. The modeling tool they used generated thousands of lines of code for the
modeled example application but further improvements needs to be done, partic-
ularly in the Model of Computations support.

2 Background

2.1 Segmented Bus Architecture

A segmented bus is a “collection” of individual buses (segments), interconnected
with the use of FIFO like structures. Each segment acts as a normal bus between
modules that are connected to it and operates in parallel with other segments.
Neighboring segments can be dynamically connected to each other to establish a
connection between modules located in different segments.Due to the segmen-
tation of the bus lines, and their relative isolation, parallel transactions can take
place, thus increasing the performance. A high level block diagram of the seg-
mented bus system which we consider in the following sections is illustrated in
Figure 1.

TheSegBuscommunication platform is built of components that providethe
necessary separation of segments -Border units(BU), arbitration units - theCen-
tral Arbiter (CA) and local,Segment Arbiters(SA). The application then is real-
ized with the support of (library available)Functional Units(FU).

2

Figure 1: Segmented bus structure.

TheSegBusplatform has a singleCA unit and severalSAs, one for each seg-
ment. TheSA of each bus segment decides which device (FU), within the seg-
ment, will get access to the bus in the following transfer burst.

Platform communication. Within a segment, data transfers follow a “traditional”
package based bus protocol, withSAs arbitrating the access to local resources.
The inter-segment communication, is also a package based, circuit switched ap-
proach, with theCA having the central role. The interface components between
adjacent segments, theBUs, are basically FIFO elements with some additional
logic, controlled by theCA and the neighboringSAs. A brief description of the
communication is given as follows.

Whenever oneSA recognizes that a request for data transfer targets a module
outside its own segment, it forwards the request to theCA. The later identifies
the target segment address and decides which segments need to be dynamically
connected in order to establish a link between the initiating and targeted devices.
When this connection is ready, the initiating device is granted the bus access, and it
starts filling the buffer of the appropriate bridge with the package data. Following
a signaling protocol, the data is taken into account by the corresponding next
segmentSA, which forwards it further, towards the destination. At this point, the
SA of the targeted segment routes the package to the own segmentlines, from
where it is collected by the targeted device.

The arbitration atCA level implements the application data flow, with respect
to these transfers. Hence, one has to implement accurate control procedures for
inter-segment transfers, as possible conflicting requestsmust be appropriately sat-
isfied, in order to reach performance requirements and to correctly implement
applications.

3

2.2 DSL for the SegBus Platform

TheDomain Specific Language(DSL) for theSegBusplatform is the specification
language that is used to model theSegBusplatform at higher-level of abstraction,
based on stereotypes stored in theSegBusUML profile [7]. The DSL provides
ability to model platform elements in the form of high-levelgraphical constructs
and provide methods to map partitioned application components on particular seg-
ment in a fast and correct manner.

The DSL comprises of a number of structural constraints related to the plat-
form, written inObject Constraint Language(OCL) [13], to implement the correct
component approach to platform design. These constraints are used to validate our
models. Upon breach of any constraint requirement during the design process, the
tool provides appropriate error message, so that the designer can take proper ac-
tion to make the model correct according to platform requirements.

The relationship between all platform elements are defined usingCustomiza-
tion classes. The customization classes comprise of tags that store user-defined
DSL customization rules. The customization rules are parsed and interpreted by
theDSL Customization Engine(provided by the tool) to assist the validation pro-
cess.

Before the current work, the DSL was only capable of modelingapplication at
PSM-level. Here, we add capabilities to model application at PSDF level, too. We
introduce three new stereotypes, that is,InitialNode, ProcessNodeandFinalNode,
in the UML profile of DSL. The profile defines the main structural elements of
the platform. The new stereotyped classes related to PSDF are generalization of
the metaclassUML Standard Profile::UML2MetaModel::Classes::Kernel::Class.
We also introduced their related customization classes andset tags with suitable
values. We skip here further details about tag values intentionally because of the
space limitation.

Once we model the application components as PSDF, model the platform and
map the application components on to the platform correctly, we apply validation
process to get the correctPlatform Specific Model(PSM) of the application. If
there exists some errors in the model, we get error message(s) and associated
model element become highlighted.

Finally, the PSDF and PSM model can be transformed into XML schema for
further analysis of the desired platform configuration. We employ the generated
XML schemas for emulating the performance aspects of the configured system,
as described in the next section.

2.3 SegBus Emulator

TheSegBus Emulatorenables us to evaluate the performance aspects of any given
application running on a specific platform configuration, defined during modeling
[8]. The emulator supports the analysis of variousSegBusinstances that may

4

answer, better or worse, to specific application requirements. It helps to decide at
early stages of design process which platform configurationwill be most suitable
for any given application before moving towards lower abstraction levels. The
code generation engine, supplied by theMagicDraw UML [9] tool transforms
PSDF and PSM of the system into XML schemas. The generated XMLschemas
are then employed by the emulator program to estimate the utilization of platform
elements with respect to data transfers and total executiontime. After the analysis
of the returned results, the designer is able to make decision at this stage whether
the emulated configuration will be best/optimal or not, for the target application,
and can change it before moving towards lower levels of the design process. After
getting the desired platform configuration for a given application, the next step is
to generate the execution schedule in the form of VHDL snippets, to be later used
by the arbiters.

3 Design Methodology

In this section, we discuss our approach of modeling, transforming and generating
the arbiters’ control code using DSL andSegBusemulator. We employ theMagic-
Draw UML [9] tool for graphically modeling the application at PSDF (discussed
in section 3.1) and PSM level, and transforming it into XML schemas. Figure 2
illustrates the design methodology employing DSL and emulator. We demonstrate
our approach with the help of a (simplified) stereo MP3 decoder [14] application.

3.1 The Packet SDF

The specification of the application itself starts with aPacket SDF(PSDF) model.
PSDF is a customized version of Synchronous Data Flow diagrams [15]. The
approach is intended to facilitate the mapping of the application to the architecture
due to the similarity between the operational semantics of the PSDF and that of
theSegBusarchitecture, thus allowing us to cope in a more detailed manner with
the communication characteristics of our platform.

A PSDF comprises mainly two elements:processesanddata flows; data is,
however, organized in data items, which are later transformed into packets ac-
cording to package size during execution. Processes transform input data packets
into output ones, whereas packet flows carry data from one process to another.
A transactionrepresents the sending of one data packet by one source process to
another, target process, or towards the system output. Apacket flowis a tuple of
four values,Pt, D, T andC. ThePt value represents the target process for the
given transactions; theD value represents the number of data items emitted by the
same source, towards the same destination; theT value is a relative ordering num-
ber among the (package) flows in one given system; and theC value represents
the number of clock ticks a process consumed before sending one package. Thus,

5

Figure 2: Design process of the SegBus platform using DSL andemulation.

a flow is understood as the number of data items (later transformed into pack-
ets) issued by the same process, targeting the same destination, having the same
ordering number and same clock ticks require to process one individual package.

If s is the package size (number of data items in a package) in the platform
configuration, then thePacket SDF (PSDF)of a certain system is a sequence
of packet flows,< (Ptx ,

D1

s
, T1, C1), . . . , (Ptx ,

Dn

s
, Tn, Cn) >, where∀i, j, x ∈

{1, . . . , n} · Di

s
6= Dj

s
andT1 ≤ T2 ≤ . . . ≤ Tn.

The non-strictness of the relation betweenT values of the above definition
models the possibility of several flows to coexist at momentsin the execution of
the system. In the case of theSegBusplatform, this most often will describelocal
flows, that is flows where the source and the destination are situated in the same
segment. However, considering a segment number larger than3, global flows,
where the source and the destination are in different segments, are also possible to
be characterized by the same ordering number. In this case, it means that theCA,
if possible, allows a simultaneous execution of transactions from all the “same
number” global flows.

3.2 Application Modeling

The specification starts with the context diagram of the application, where the
interactions between the application (depicted as a process) and the external envi-

6

ronment are modeled in terms of input/output data-flows. In subsequent steps, the
top-level process is decomposed hierarchically into less complex processes and
the corresponding data-flows between these processes.

Figure 3: PSDF model of the example application employing DSL.

The decomposition process is based on designer’s experience and ends when
the granularity level of the identified processes maps to existentSegBuslibrary
elements or devices that can be developed by the design team.We employed
SegBusDSL to represent the PSDF . The PSDF model of the example application
is given in Figure 3. In brief, processP0 represents frame decoding,P1/P8 -
scaling on the left/right channel,P2/P9- dequantizing left/right channel, etc.

Figure 4: PSM model of the example application in 3 segments,linear topology
configuration.

The PSDF model serves as thePlatform Independent Model(PIM) of the ap-
plication. We need a further model, that is, the PSM model, tosuccessfully map
the application processes on particular segments. To demonstrate our approach,
we considerthreesegments platform configuration and map the application pro-
cesses using the design methods described in [7] and validate both models. Figure
4 depicts the PSM model of the example application. Later on,we transform the

7

PSDF and PSM models of the application into XML schemas usingM2T trans-
formation supplied by the tool. The XML schema contains information about
platform elements, application processes in the form ofFU and their relative
placement on different segments. The XML consists of aschemaelement and
a number of sub-elements, in the form ofcomplexTypeandelementtypes.

Each complex type represents a platform element (CA, SA, etc.) or application
component (P0, P1, etc.). Thenameattribute of each complex type shows the
name of the element. Furthermore, each complex type may contain sub-elements.
Following, we show an XML snippet of the PSDF model after transformation,
consisting of processP0, P1and their relative transfers to other processes.

<xs:complexType name="P0">
<xs:sequence>

<xs:element name="P1_576_1_250" type="P1"/>
<xs:element name="P8_576_1_250" type="P8"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="P1">
<xs:sequence>

<xs:element name="P2_540_2_250" type="P2"/>
<xs:element name="P3_36_3_250" type="P3"/>

</xs:sequence>
</xs:complexType>

Below is the piece of XML snippet of PSM model after transformation, repre-
senting theSegBusplatform instance (SBPwith three segments as child-elements)
and “Segment 1” element with its child-elements.

<xs:complexType name="SBP">
<xs:all>

<xs:element name="segment0" type="Segment0"/>
<xs:element name="segment1" type="Segment1"/>
<xs:element name="segment2" type="Segment2"/>
<xs:element name="ca" type="CA"/>
<xs:element name="bu12" type="BU12"/>
<xs:element name="bu23" type="BU23"/>

</xs:all>
</xs:complexType>

<xs:complexType name="Segment1">
<xs:all>

<xs:element name="buRight" type="BU23"/>
<xs:element name="buLeft" type="BU12"/>
<xs:element name="p5" type="P5"/>
<xs:element name="p6" type="P6"/>
<xs:element name="p7" type="P7"/>
<xs:element name="p11" type="P11"/>
<xs:element name="p12" type="P12"/>
<xs:element name="p13" type="P13"/>
<xs:element name="p14" type="P14"/>
<xs:element name="arbiter" type="SA1"/>

</xs:all>
</xs:complexType>

The communication matrixis the specification of device-to-device transac-
tions between application components. Each entity in the communication matrix

8

describe how many data items need to be transfered from one device to any other
device. The emulator program builds the matrix by extracting transactions be-
tween processes in PSDF model. Based on the matrix, thePlaceToolapplication
[16] finds the optimal device allocation solution, given theplatform specifics (the
number of segments).

The emulation and control code generation processes are based on both PSDF
and PSM. The PSDF model provides information about interaction between ap-
plication processes with required data items and other useful parameters, while
the PSM model represents the placement of each application process on different
segments of the platform. Hence, the emulator program parses XML of both mod-
els to be later used for emulation and control code generation. During the parsing
process, the emulator extracts following information fromthe PSDF model:

• Number of application processes.

• Data transfers from each process.

• Ordering of transfers.

• Clock ticks to be consumed by each process while processing one package.

The emulator stores above information in temporary variables and arrays in-
side the program. For instance, the name attribute from one of the elementfrom
P0, that is, “P1576 1 250” represents a transfer from processP0. The “ ” charac-
ter serves as the separator between the entities. The first entity “ P1” represents the
target process of this transfer; the second entity “576” is the number of data items
to be transferred; the third entity “1” is the sequencing order and the last entity
“250” is the number of clock ticks a process needs to consumedbefore sending
each package.

Furthermore, the emulator extracts following informationfrom the PSM model
and stores in a number of variables and arrays inside the emulator, too:

• Number of segments in the platform.

• Number of border units based on platform geometry.

• Placement of application processes on different segments.

• ..

When the parsing process is finished, the emulator iterates in the previously
populated arrays, instantiates the requiredFUs and pass them necessary informa-
tion. This necessary information contains number of data items to be transferred,
destination processes, relative ordering, clock ticks a process needs to be con-
sumed before sending a package and placement in the specific segment.

9

Thecontructormethod of theFU class analyzes the passed information to it
and instantiates the required number of objects ofmastersandslaves, which later
run as threads during emulation. Finally, the values in the temporary variables
and arrays within the emulator application are later used for extracting the control
code of the arbiters. As per emulator functionalities, we can generate the con-
trol code from the supplied XML schemas without performing the emulation, but
it is always recommeded to emulate the modeled platform configuration before
moving towards the later stages of the design process.

Without considering details, the control flow of bothSAs and of theCA is
represented in Figure 5.

Figure 5: Arbiter control flow.

TheSAs and theCA are VHDL defined modules, with a similar structure. The
code implements the operational flow of Figure 5, running with multiple param-
eters as required by the platform specification. We see the application as a set of
correlated transactions that must be ordered in their execution by the arbiters. The
specification of the schedule - as supplied by the PSDF representation, is provided
by a snippet introduced in theSA or theCA codes, representing the projection of
the application flow at the respective level and location.

Figure 6: Arbiter code structure.

The intended structure of the arbiters is depicted in Figure6. The “Module
SetUp” and the “Arbitration & Supervision” blocks are concerned with application-
independent procedures, such as reading the input signals,selecting the granted

10

master, counting the number of transactions performed in a granted activity, etc.
Our intention here is to generate the middle, “Arbitration specification” block us-
ing the automated methods within the emulator program, in such a way that it
will bring the application specific requirements for scheduling grant decisions.
The resulting snippet will characterize the given application as mapped on a given
instance of the platform.

The snippet is part of the actual arbiter VHDL code, and, as such, will be
executed. The addressed variables (discussed below) will be read or written by
the other arbitration code blocks.

The emulator program reads the package size (36 data items per package in
our case), PSDF and PSM models in the form of XML schemes and runs the
emulation. Upon completion, the tool returns results of thetransactions from each
platform element, performed during execution. At this stage, it’s the job of the
designer to evaluate the emulation results and modify the design, if needed. Later
on, we generate the transaction-level control code (in the form of synthesizable
VHDL snippets) of the arbiters to be used in the final implementation. Following,
we show the generated control code for the example application after successful
emulation.

-- VHDL Snippet for "Central Arbiter"
program(0) <= (guard => 0, source => 0,
dest_seg => 2, togrant => 0, count => 1, enables => 4);

...
program(3) <= (guard => 1, source => 2,

dest_seg => 1, togrant => 2, count => 1, enables => 0);

-- VHDL Snippet for "Segment 0"
program(0) <= (guard => 0, source => 0, dest => 1,

dest_seg => 0, togrant => 0, count=16, enables=13);
program(1) <= (guard => 0, source => 1, dest => 8,

dest_seg => 0, togrant => 1, count=16, enables=2);
program(2) <= (guard => 1, source => 2, dest => 2,

dest_seg => 0, togrant => 2, count=15, enables=3);
...
program(12) <= (guard => 1, source => 8, dest => 11,

dest_seg => 1, togrant => ToR, count=1, enables=0);

-- VHDL Snippet for "Segment 1"
program(0) <= (guard => 0, source => RFL, dest => 5,

dest_seg => 1, togrant => RFL, count=15, enables=10);
program(1) <= (guard => 0, source => RFL, dest => 11,

dest_seg => 1, togrant => RFL, count=15, enables=2);
...
program(9) <= (guard => 1, source => 18, dest => 14,

dest_seg => 1, togrant => 18, count=16, enables=0);

-- VHDL Snippet for "Segment 2"
program(0) <= (guard => 0, source => RFL, dest => 4,

dest_seg => 2, togrant => RFL, count=1, enables=1);
program(1) <= (guard => 1, source => 19, dest => 5,

dest_seg => 1, togrant => ToL, count=1, enables=0);

Each line in the above control code is anexecution lineof the respective ar-
biter. Theprogramis a multi-dimensional vector consisting of a number of exe-

11

cution lines with several further fields. Below is a brief description of each field
of the execution line.
• program(x).Basically,x can be seen as theProgram Counter, andprogram(x)
represents thex line of arbitration code.x also provides reference for accessibility
from / to other lines of instructions.
• guard. Whenguard= 0, the respective line isenabled, that is, the arbiter may
consider it for selection. Whenguard> 0, the line is disabled, that is, it cannot be
considered in the arbitration. The arbiter marks a line asexecutedwhenever the
respectivecountvalue reaches 0, by establishingguard = nrLines, sincenrLines
is the total number of program lines in theprogramvector, associated with the
given arbiter.
• source.ForSA case, this field contains the address of the requesting master - the
initiator of a transfer request. Devices on theSegBusplatform (masters, slaves)
are identified by an unique number. While forCA case, this field contains address
of the initiatingsegment.
• dest.The address of the targeted device - the slave.
• destseg.The target slave’s segment address.
• toGrant. This is the instruction for the arbiter to grant the requesting master.
At this moment the specification is obsolete, but the field is preserved for future
developments.
• count. This field identifies the number of packages the master has tosend to the
specified slave (data items to be sent divided by package size).
• enables. Whenever a line is markedexecuted, theSA will enablethe execution
line specified by this field, by subtracting 1 from its currentguardvalue. In or-
der to become enabled, a line with an initialguard> 1 will require that several
previous operations (execution lines) to have finished. If,for a given line,enables
= nrLines, then the arbiter does not try to enable any other line, when the current
one is markedexecuted.

In addition, we use the notations: ToR/ToL - the destinationis theBU to the
right / left of the currentSA); RFL - the request comes from left.

TheArbiterProgramis a data structure in the emulator application that repre-
sents one program line. The source code of this data structure is given below:

public class ArbiterProgram {
public int program;
public int guard;
public int source;
public int dest;
public int dest_seg;
public int togrant;
public int count;
public int enables;
public int sequence;

}

Each entity in the data structure represents a specific element of the execution
line, which we already discussed previously. When the parsing process is done,

12

the emulator creates:
• TheaccCAArray: a single-dimensional array, where each element in the array
represents an execution line of theCA.
• TheaccArray: a 2-dimensional array where each column represents an execu-
tion line of aSA, while each row consists of execution lines associated withany
particularSA.

Figure 7: Code extraction process for segments in the platform.

Figure 7 illustrates the general flow of the code generation process for seg-
ments after the parsing of the PSDF model has been done and themodel resides
now inside the emulator’s internal variables and arrays. Firstly, the emulator ana-
lyzes number of originating and incoming transfers in each segment. On the basis
of this information, it creates equal number ofArbiterProgramobjects. Secondly,
it sets thedestfield with the target process ID anddestsegfield with the segment
ID where the target process is placed. If the transfer is originated from a master
in the current segment, then it sets thesourcevalue of each object with an integer
number in increasing order andtogrant = source, otherwise the transfer is con-
sidered to be coming from a different segment via left/rightBU. In this case, the
togrant = ToR/ToLandsource = RFL/RFRare set according to the direction of
the transfer. Thecountcontains number of packages for this transfer (data items
divided by the package size). Theprogramfield contains the order number of the

13

execution line and thesequencefield contains the relative order number of the
execution line according to PSDF model.

The guard and enablesfields are important to introduce parallelism in the
platform. An execution line is executed by the respectiveSA, when itsguard
signal is zero. The emulator application sets the values ofguardandenablesfield
on the basis of ordering sequence of transfers. If two or moretransfers occur at the
same ordering sequence, it sets appropriate values to both fields so that parallel
transfer can occur. For instance, the PSDF model of the example application
in Figure 3 contains two parallel transfers from processP0 at sequence order 1.
As per application requirements, both transfers needs to becompleted in parallel
before moving towards further transfers. The execution lines associated with these
two transfers are given below:

program(0) <= (guard => 0, source => 0, dest => 1,
dest_seg => 0, togrant => 0, count=16, enables=13);

program(1) <= (guard => 0, source => 1, dest => 8,
dest_seg => 0, togrant => 1, count=16, enables=2);

A similar approach is taken with respect to the VHDL code to begenerated
for theCA operations. The difference is that, instead of consideringas source and
destinations the actual devices, theCA code only needs information regarding the
initiating segment and the target segment. Hence, thesourcefield identifies the
requesting segment, and thedestfield is not necessary.

4 Conclusions

We have introduced MDA-based design methods to generate thetransaction-level
control code for a distributed platform, theSegBus. We have described methods
to model application at PSDF and PSM levels by employingSegBus DSLand
run emulation usingemulatorprogram to get performance aspects of the mod-
eled configuration. The emulator program has further modified to generate the
arbiters’ low-level control code, in the form of VHDLsnippets, which are then
to be inserted in a specific block of (segment or central-level) arbiters as an exe-
cution schedule for any given application. The approach hasnow made easy the
old manual process of writing such control code for arbitration using presented
automated methods.

References

[1] International Technology Roadmap for Semiconductors.2007 Edition.

[2] A. Jantsch, H. Tenhunen.Networks on Chip.Kluwer Academic Publishers,
2003.

14

[3] K. Lahiri, A. Raghunathan, S. Dey.Design Space Exploration for Optimizing
On-Chip Comm. Architectures.IEEE Trans. on Computer-aided Design of
Integrated Circuits and Systems, Vol. 23, No. 6, June 2004, pp. 952-961.

[4] T. Seceleanu.The SegBus Platform - Architecture and Comm. Mechanisms.
Journal of Systems Architecture, Vol. 53, Issue 4, April 2007, pp. 151-169.

[5] Eclipse Modeling - Model-to-Text (M2T) Transformation.
http://www.eclipse.org/modeling/m2t/

[6] Model-Driven Architecture. http://www.omg.org/mda/

[7] M. F. Niazi, K. Latif, T. Seceleanu, H. Tenhunen.A DSL for the SegBus Plat-
form. In proceedings of 22nd IEEE Intl. System-on-Chip Conference (SOCC),
2009, pp. 393-398.

[8] M. F. Niazi, T. Seceleanu, H. Tenhunen.An Emulation Solution for the Seg-
Bus Platform.In proceedings of 17th IEEE Intl. Conference and Workshops
on Engineering of Computer-Based Systems (ECBS), 2010.

[9] MagicDraw UML. http://www.magicdraw.com

[10] T. Seceleanu, I. Crnkovic, C. Seceleanu.Transaction Level Control for Ap-
plication Execution on the SegBus Platform.In proceedings of 33th IEEE
Computer Software and Application Conference, 2009, pp. 537-542.

[11] M. Vidmantas, E. Kazanavičius.Conception of a Multi-Platform System
Software and Firmware Development Tool.Periodical of Information Sci-
ences, Issue 50, 2009, Vilnius University Publishing House, pp. 194-199.

[12] A. Koudri, J. Champeau, D.ulagnier, P. Soulard.MoPCoM/MARTE Process
Applied to a Cognitive Radio System Design and Analysis.Proceedings of
the 5th European Conference on Model Driven Architecture - Foundations
and Applications, 2009, pp. 277-288.

[13] OMG. Object Constraint Language 2.0 Revised Submission, ver. 1.6. 2003.

[14] C. Park, J. Jang and S. Ha.Extended Synchronous Dataflow for Efficient
DSP System Prototyping.Journal Design Automation for Embedded Sys-
tems, Springer Netherlands, vol. 6, no. 3, 2002, pp. 295-322.

[15] E. A. Lee and D. G. Messerschmitt.Extended Synchronous Dataflow.IEEE
proceedings, September 1987.

[16] T. Seceleanu, V. Leppänen, O. Nevalainen.Improving the Performance of
Bus Platforms by Means of Segmentation and Optimized Resource Allocation.
The EURASIP Journal on Embedded Systems, Volume 2009 (2009), Article
ID 867362, doi:10.1155/2009/867362.

15

Joukahaisenkatu 3-5B, FIN-20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2452-2
ISSN 1239-1891

