Moazzam Fareed Niazi | Tiberiu Seceleanu |
Hannu Tenhunen

An Automated Control Code Genera-
tion Approach for the SegBus Platform

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 981, August 2010

1

An Automated Control Code Genera-
tion Approach for the SegBus Platform

Moazzam Fareed Niazi _
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
moazzam ni azi @it u. fi

Tiberiu Seceleanu
ABB Corporate Research, and

Malardalen University
Vasteras, Sweden
ti beriu. secel eanu@e. abb. com

Hannu Tenhunen _
University of Turku, Department of Information Technology

Joukahaisenkatu 3-5 B, FIN-20520 Turku, Finland
hannu. t enhunen@it u. fi

TUCS Technical Report
No 981, August 2010

Abstract

We present here a model-driven approach for the generatilaavdevel control
code for the arbiters, to support application implemeatatind scheduled exe-
cution on a multi-core segmented bus platform, SegBus. Ppeoach considers
Model-Driven Architecture as a key to model the applica@btwo different ab-
straction levels, namely as Packet-Synchronous Datafla@vPéatform Specific
Model, using the SegBus platform’s Domain Specific LanguaBeth models
are transformed into Extensible Markup Language schenmelstheen utilized by
an emulator program to generate the “application-depehdéddDL code, the
so-called “snippets”. The obtained code is inserted in a&ifipesection of the
platform arbiters. We present an example of a simplifiedestéP3 decoder
where the methodology is employed to generate the contdd obarbiters.

Keywords: Control Code, Application schedule, Arbitration, DomaipeSific
Language, UML, SegBus, Model Transformation

TUCS Laboratory
Distributed Systems Design

1 Introduction

The decreasing technological figures cause modern daydgsitp move towards
on-chip multiprocessing technologies. New architectaresdrought into context
in order to utilize the tremendous advances of fabricagahnology. Distributed
on-chip architectures or multiprocessor system-on-diip$oC) paradigm gains
increasing support from system designers. MPSoC is seemeasfahe foremost
means through which performance gain are still to be susdaaen after Moore’s
law may become decrepit [1]. The most common MPSoC platf@mesetwork-
on-chip(NoC) [2], andsegmented byslatforms [3][4].

As the complexity of the application requirements is insneg with time,
the designers are facing difficulty while designing applaas targeting MPSoC.
However, it has also been a challenge to fully benefit fronfeaéures of MPSoC
platforms. One of the reasons behind the difficulties in M@ $levelopment is
the deficiency of design methodologies [1]. The currentgtesnethodologies
doesn’t provide full automation in every level of the deyettent process, and
sometimes, the communication characteristics of theglat$ and the employed
devices also do not match from system requirements. In ¢oddfer an optimum
match, platform specific characteristics must be takendotwsideration for each
application.

Model-to-text(M2T) transformation [5] plays a key role iModel-driven ar-
chitecture(MDA) based development [6]. The outcomes produced by M2TF us
ally are textual artifacts from the provided graphical medd hese textual arti-
facts could be in the form of XML schema or source code of asyrdd high-level
programming language like C++, Java, etc. The XML schemuaiges means for
defining the content, structure and semantics of XML documen

The approach we deliver in this report is based on estahlishdesign method-
ology for MPSoC, in the context of tHeegBugplatform [4]. In our previous work
[7][8], we have already introduced @omain Specific Languag®SL) and an
emulatorprogram for modeling and emulating applications, targgtire SegBus
platform. The previous work was limited only to modeling asrdulation using
thePlatform Specific ModgPSM)-level models. We deliver here methods to up-
date the DSL and emulator to make them capable for the mapetiapplication
at Packet-Synchronous Data FloflPSDF)-level, and introduction of automated
methods within emulator program to generate transacgwaticontrol code in
the form of VHDL snippetsin order to successfully implement a given applica-
tion on the distributed platform at hand. We introduce pdages to transform
PSDF and PSM models into XML schemes with the help of modédioag) [9].
The generated XML of the PSDF and PSM models are then usectleyrithlator
[8] program to assess the performance aspects. If we fincettierpnance aspects
up to an optimum level, the current research work addressas$ how we gener-
ate the transaction-level control code from the emulatogm@m in an automated
way.

The generation of control code and their realization is eislg necessary as
the platform doesn’t require (or benefit) from an operatiygtesm solution. Sece-
leanu et. al. [10] provided definition of tHg&egBu's arbiters’ control structures
at two different (segment and central) levels. The definitomes in the form
of VHDL code snippets that provide the transfer schedulehdbat arbiters at
segment and central levels organize the execution follgwhe application spec-
ification. The delivered approach to define control struetus based on PSDF,
too, but it is built manually. In this report, we continue afforts towards an
automated design framework.

Related Work. In recent years, MDA has been utilized in different desiggaa
to provide automation up to some extent. Vidmantas et al| iftdoduced MDA
methods where the designer can model application as PIM Imisae) UML to-
gether with SysML plugin. They introduced techniques tosfarm PIM into
PSM model, which is later transformed into source code §ipalty for one op-
erating system (OS). The authors have considered more ti@®8 where the
modeled application can be run, unlike our case where tlseme consideration
of OS is required.

Koudri et al. [12] presented design flow for System-on-Chipystem-on-
Programmable chip design, based on the use of UML and dedipabfiles. They
supported the use of the Model-Driven Development for thellware and soft-
ware co-design with an example @bgnitive Radio Applicatiorimplemented on
FPGA. The modeling tool they used generated thousandsex bhcode for the
modeled example application but further improvements si¢ethe done, partic-
ularly in the Model of Computations support.

2 Background

2.1 Segmented BusArchitecture

A segmented bus is a “collection” of individual buses (segtskg interconnected
with the use of FIFO like structures. Each segment acts asmatdus between
modules that are connected to it and operates in parallél etlier segments.
Neighboring segments can be dynamically connected to éheh w establish a
connection between modules located in different segmédie to the segmen-
tation of the bus lines, and their relative isolation, patdransactions can take
place, thus increasing the performance. A high level blaelgdm of the seg-
mented bus system which we consider in the following sestisrnillustrated in
Figure 1.

The SegBusommunication platform is built of components that provide
necessary separation of segmer@®rder units(BU), arbitration units - th&€en-
tral Arbiter (CA) and local,Segment Arbiter6SA). The application then is real-
ized with the support of (library availabl&unctional Units(FU).

2

El
uy
(

MP core ALU “

—l—I System

Figure 1. Segmented bus structure.

The SegBugplatform has a singl€A unit and severabAs, one for each seg-
ment. TheSA of each bus segment decides which devieg), within the seg-
ment, will get access to the bus in the following transfeshur

Platform communication. Within a segment, data transfers follow a “traditional”
package based bus protocol, wiBAs arbitrating the access to local resources.
The inter-segment communication, is also a package basedit switched ap-
proach, with theCA having the central role. The interface components between
adjacent segments, tiigdJs, are basically FIFO elements with some additional
logic, controlled by theCA and the neighborin@As. A brief description of the
communication is given as follows.

Whenever on&A recognizes that a request for data transfer targets a module
outside its own segment, it forwards the request toG@Ae The later identifies
the target segment address and decides which segmentsonleedlynamically
connected in order to establish a link between the initgaéind targeted devices.
When this connection is ready, the initiating device is tgdithe bus access, and it
starts filling the buffer of the appropriate bridge with treckage data. Following
a signaling protocol, the data is taken into account by theesponding next
segmenBA, which forwards it further, towards the destination. Atstbibint, the
SA of the targeted segment routes the package to the own sedjmes)tfrom
where it is collected by the targeted device.

The arbitration aCA level implements the application data flow, with respect
to these transfers. Hence, one has to implement accuratekprocedures for
inter-segment transfers, as possible conflicting requresss be appropriately sat-
isfied, in order to reach performance requirements and teecily implement
applications.

2.2 DSL for the SegBus Platform

TheDomain Specific Languad®SL) for theSegBugplatform is the specification
language that is used to model thegBuglatform at higher-level of abstraction,
based on stereotypes stored in 8egBudJML profile [7]. The DSL provides
ability to model platform elements in the form of high-leggbphical constructs
and provide methods to map partitioned application comptsn particular seg-
ment in a fast and correct manner.

The DSL comprises of a number of structural constraintdedléo the plat-
form, written inObject Constraint Languag@®CL) [13], to implement the correct
component approach to platform design. These constramtssad to validate our
models. Upon breach of any constraint requirement durieglésign process, the
tool provides appropriate error message, so that the desagm take proper ac-
tion to make the model correct according to platform requests.

The relationship between all platform elements are defirsglCustomiza-
tion classes. The customization classes comprise of tags tivat ser-defined
DSL customization rules. The customization rules are phasel interpreted by
the DSL Customization Enging@rovided by the tool) to assist the validation pro-
cess.

Before the current work, the DSL was only capable of modedipglication at
PSM-level. Here, we add capabilities to model applicatidrZDF level, too. We
introduce three new stereotypes, thatngjaINode, ProcessNodandFinalNode
in the UML profile of DSL. The profile defines the main structusements of
the platform. The new stereotyped classes related to PS®gemeralization of
the metaclasgML Standard Profile::UML2MetaModel::Classes::Kerndliass
We also introduced their related customization classessahthgs with suitable
values. We skip here further details about tag values iiteally because of the
space limitation.

Once we model the application components as PSDF, modeldtferm and
map the application components on to the platform corrgattyapply validation
process to get the correPlatform Specific ModglPSM) of the application. If
there exists some errors in the model, we get error mes9agedsassociated
model element become highlighted.

Finally, the PSDF and PSM model can be transformed into XMiesta for
further analysis of the desired platform configuration. Weptoy the generated
XML schemas for emulating the performance aspects of thégured system,
as described in the next section.

2.3 SegBusEmulator

The SegBus Emulatanables us to evaluate the performance aspects of any given
application running on a specific platform configuratiorfjred during modeling
[8]. The emulator supports the analysis of variG&egBusnstances that may

4

answer, better or worse, to specific application requireamédnhelps to decide at
early stages of design process which platform configuratidirbe most suitable
for any given application before moving towards lower adstion levels. The
code generation engine, supplied by tlagicDraw UML [9] tool transforms
PSDF and PSM of the system into XML schemas. The generated ¥d¥lemas
are then employed by the emulator program to estimate theatiton of platform
elements with respect to data transfers and total exectitnen After the analysis
of the returned results, the designer is able to make decadithis stage whether
the emulated configuration will be best/optimal or not, foe target application,
and can change it before moving towards lower levels of tlsggtigprocess. After
getting the desired platform configuration for a given agation, the next step is
to generate the execution schedule in the form of VHDL srfe be later used
by the arbiters.

3 Design Methodology

In this section, we discuss our approach of modeling, taanshg and generating
the arbiters’ control code using DSL aBeégBugmulator. We employ thilagic-
Draw UML [9] tool for graphically modeling the application at PSDRs@ussed
in section 3.1) and PSM level, and transforming it into XMlhemas. Figure 2
illustrates the design methodology employing DSL and etoul&/e demonstrate
our approach with the help of a (simplified) stereo MP3 decfif application.

3.1 ThePacket SDF

The specification of the application itself starts witRacket SDRPSDF) model.
PSDF is a customized version of Synchronous Data Flow dwagfd5]. The
approach is intended to facilitate the mapping of the appba to the architecture
due to the similarity between the operational semantick®fRSDF and that of
the SegBusrchitecture, thus allowing us to cope in a more detailedmaawith
the communication characteristics of our platform.

A PSDF comprises mainly two elementsrocessesanddata flows data is,
however, organized in data items, which are later transtédrinto packets ac-
cording to package size during execution. Processes transhput data packets
into output ones, whereas packet flows carry data from oneepsoto another.
A transactionrepresents the sending of one data packet by one sourcespitoce
another, target process, or towards the system outppacket flowis a tuple of
four values,P,, D, T'andC. The P, value represents the target process for the

given transactions; the value represents the number of data items emitted by the

same source, towards the same destinatiori/ tha&lue is a relative ordering num-
ber among the (package) flows in one given system; and'thalue represents
the number of clock ticks a process consumed before sendmgackage. Thus,

5

SegBus Platform
-Structure
-Constraints
-Communication

DSL for SegBus
-Stereotypes
-UML_Profile Partitioned- SegBus
-Constraints Application Component
-Customizations Specification Library

Graphical
Interface for
Modeling ‘

[Not OK]

‘ [OK]
I \/ idati \ P-SDF m_ode_l of Model-to-Text (M2T) Transformation XML Schemas
& J the application of the system

[OK] Platform
Specific Model
(PSM)
(XML schemas’ parsing & schedule generation)
[NOT OK] Ve N
System i

[0K]

[VHDL snippets for arbiters]
Control code extraction

Figure 2: Design process of the SegBus platform using DSLeamalation.

a flow is understood as the number of data items (later tramsfo into pack-
ets) issued by the same process, targeting the same diestjrifaving the same
ordering number and same clock ticks require to processraligdual package.

If sis the package size (number of data items in a package) inl&t@nmn
configuration, then thé&acket SDF (PSDFbdf a certain system is a sequence
of packet flows,< (P, 2, T1,C4),...,(P,, 2, T,,C,) >, whereVi, j,z €
{1,...on} - 2o £ DiandTy < T, <... < T,

The non-strictness of the relation betweErvalues of the above definition
models the possibility of several flows to coexist at momantbe execution of
the system. In the case of tBegBuglatform, this most often will describdecal
flows, that is flows where the source and the destination &rated in the same
segment. However, considering a segment number larger3hgiobal flows,
where the source and the destination are in different setgyeme also possible to
be characterized by the same ordering number. In this daseains that th€A,
if possible, allows a simultaneous execution of transastiwom all the “same
number” global flows.

3.2 Application Modeling

The specification starts with the context diagram of the iappbn, where the
interactions between the application (depicted as a pspeesl the external envi-

6

ronment are modeled in terms of input/output data-flowsubssquent steps, the
top-level process is decomposed hierarchically into lessptex processes and
the corresponding data-flows between these processes.

-P3_36_3_250 -P5_540_4_500
| K 0
-Pi1_576_1_250 G -P2,540727250ﬂ (53 -Ps_se_5 250)é —P67576767500>@ —P77576J,500>E
P7
| i |P2 -P3_540_3_1000| bd s P6
>B -P4[36_4_500 -E 11529 @
. -5 1152.0 ——
Start Fo -P3_540_3_1000. P3 -P10,36_4_500 End
—_——=
B3 0 540 2 250 B3 8 B 12,576 6 500 £ P13 576_7_500 (Y
i P11_36.5_250
-P8_576_1_250 P8] P10 %9

P11 P12 P13 P14_576_8 500
-P11_540_4_500 T

-P3_36_3_250

Figure 3: PSDF model of the example application employingt DS

The decomposition process is based on designer’s expergrtends when
the granularity level of the identified processes maps tetert SegBudibrary
elements or devices that can be developed by the design t¥éenemployed
SegBudPSL to represent the PSDF . The PSDF model of the examplecapipin
is given in Figure 3. In brief, proced30 represents frame decodingl/P8 -
scaling on the left/right channd?2/P9- dequantizing left/right channel, etc.

«SegBusPlatform»
SBP

l -bu23 -segment2 —ca
10, -but2, -segment1 ot |, . e
«Segment» ouRght «Bo::;;m» et Segments | B2S =
i SO -segment
segment
’ -p0 -pS ‘ -arbiter -arbiter | -
it i it b Y
«Ft po Jnit; -arblter' |«F o =i ‘ ‘ = .P‘ —_
-p1 SAQ | p6
«FunctionalUnit» «FunctionalUnit»
P1 ; Pé
-p2 ! - -
«FunctionalUnit» «FunctionalUnit»
P2 P7
p3 i1
«FunctionalUnity «FunctionalUnit»
P3 P11
08 12
«FunctionalUnit» «Func:;:;almn»
P8
p9 13
«FunctionalUnit» «FunctionalUnit»
-p10) -4
«FunctionalUnity «FunctionalUnit»
P10 P14

Figure 4: PSM model of the example application in 3 segmédinisar topology
configuration.

The PSDF model serves as tRatform Independent ModéPIM) of the ap-
plication. We need a further model, that is, the PSM modedutccessfully map
the application processes on particular segments. To denade our approach,
we considethreesegments platform configuration and map the application pro
cesses using the design methods described in [7] and \@abo#t models. Figure
4 depicts the PSM model of the example application. Latem@ntransform the

7

PSDF and PSM models of the application into XML schemas uBI&g trans-
formation supplied by the tool. The XML schema contains iinfation about
platform elements, application processes in the forni0f and their relative
placement on different segments. The XML consists sthemaelement and
a number of sub-elements, in the formagimplexTyp@andelementypes.

Each complex type represents a platform elem@At GA, etc.) or application
component (PO, P1, etc.). Tmameattribute of each complex type shows the
name of the element. Furthermore, each complex type magicosiub-elements.
Following, we show an XML snippet of the PSDF model after sfanrmation,
consisting of procesB0, P1and their relative transfers to other processes.

<xs: conpl exType nane="P0">
<Xs:segquence>
<xs:el ement nanme="P1_576_1 250" type="P1"/>
<xs: el ement name="P8_576_1 250" type="P8"/>
</ xs: sequence>
</ xs: conpl exType>

<xs:conpl exType nane="P1">
<Xs:seguence>
<xs: el ement name="P2_540_2_ 250" type="P2"/>
<xs: el ement name="P3_36_3 250" type="P3"/>
</ xs: sequence>
</ xs: conpl exType>

Below is the piece of XML snippet of PSM model after transfation, repre-
senting theSegBuplatform instance}BPwith three segments as child-elements)
and “Segment’lelement with its child-elements.

<xs:conpl exType nane="SBP">
<xs:all >
<xs: el ement name="segnment 0" type="Segnment 0"/ >
<xs: el ement name="segnent 1" type="Segnent1"/>
<xs: el ement name="segnent 2" type="Segnment2"/>
<xs: el ement name="ca" type="CA"/>
<xs: el ement name="bul2" type="BU12"/>
<xs: el ement nanme="bu23" type="BU23"/>
</xs:all>
</ xs: conpl exType>

<xs:conpl exType nane="Segnent 1" >
<xs:al |l >
<xs: el ement name="buRi ght" type="BU23"/>
<xs: el ement name="bulLeft" type="BUl2"/>
<xs: el ement name="p5" type="P5"/>
<xs: el ement nanme="p6" type="P6"/>
<xs: el ement name="p7" type="P7"/>
<xs: el ement name="pll" type="P11"/>
<xs: el enment nane="pl2" type="P12"/>
<xs: el ement name="pl3" type="P13"/>
<xs: el ement name="pl4" type="P14"/>
<xs: el ement name="arbiter" type="SAl"/>
</xs:all>
</ xs: conpl exType>

The communication matrixs the specification of device-to-device transac-
tions between application components. Each entity in tiensonication matrix

8

describe how many data items need to be transfered from a@ede any other
device. The emulator program builds the matrix by extractiansactions be-
tween processes in PSDF model. Based on the matriReeToolapplication
[16] finds the optimal device allocation solution, given fhatform specifics (the
number of segments).

The emulation and control code generation processes aed badoth PSDF
and PSM. The PSDF model provides information about intemadietween ap-
plication processes with required data items and othemubupaframeters, while
the PSM model represents the placement of each applicatbmwess on different
segments of the platform. Hence, the emulator program pailsk. of both mod-
els to be later used for emulation and control code generabaring the parsing
process, the emulator extracts following information frivea PSDF model:

e Number of application processes.
e Data transfers from each process.
e Ordering of transfers.

e Clock ticks to be consumed by each process while processi@agpackage.

The emulator stores above information in temporary vaesiaind arrays in-
side the program. For instance, the name attribute from bttee@lementrom
PO, thatis, “P1576.1 250" represents a transfer from proc®&s The “_” charac-
ter serves as the separator between the entities. The fitgt"d?il” represents the
target process of this transfer; the second entity “57&iésrtumber of data items
to be transferred; the third entity “1” is the sequencingeordnd the last entity
“250” is the number of clock ticks a process needs to consupeéore sending
each package.

Furthermore, the emulator extracts following informaticom the PSM model
and stores in a number of variables and arrays inside theagonuioo:

e Number of segments in the platform.
e Number of border units based on platform geometry.
e Placement of application processes on different segments.

When the parsing process is finished, the emulator iteratédsei previously
populated arrays, instantiates the requiféés and pass them necessary informa-
tion. This necessary information contains number of datastto be transferred,
destination processes, relative ordering, clock ticksagss needs to be con-
sumed before sending a package and placement in the spegifiesat.

9

The contructormethod of the=U class analyzes the passed information to it
and instantiates the required number of objectmastersandslaves which later
run as threads during emulation. Finally, the values in @mepiorary variables
and arrays within the emulator application are later useextracting the control
code of the arbiters. As per emulator functionalities, we ganerate the con-
trol code from the supplied XML schemas without performing €mulation, but
it is always recommeded to emulate the modeled platform gorgtion before
moving towards the later stages of the design process.

Without considering details, the control flow of baBAs and of theCA is
represented in Figure 5.

L4 Start

\

No—‘;f‘:Granted "

Yes

Arbitration Access Control

- Grant «:f::fFinishEd "

Yes

Remove grant

Figure 5: Arbiter control flow.

The SAs and theCA are VHDL defined modules, with a similar structure. The
code implements the operational flow of Figure 5, runnindghwiitultiple param-
eters as required by the platform specification. We see thkcagion as a set of
correlated transactions that must be ordered in their eixachy the arbiters. The
specification of the schedule - as supplied by the PSDF reptatson, is provided
by a snippet introduced in tH8A or the CA codes, representing the projection of
the application flow at the respective level and location.

Module SetUp

Application specification (snippet) | Sequential execution

Arbitration & Supervision

Figure 6: Arbiter code structure.
The intended structure of the arbiters is depicted in Figurdhe “Module

SetUp” and the “Arbitration & Supervision” blocks are coned with application-
independent procedures, such as reading the input sigreddxting the granted

10

master, counting the number of transactions performed iraatgd activity, etc.
Our intention here is to generate the middle, “Arbitratipedfication” block us-
ing the automated methods within the emulator program, ah suway that it
will bring the application specific requirements for schi@uy grant decisions.
The resulting snippet will characterize the given appiaraas mapped on a given
instance of the platform.

The snippet is part of the actual arbiter VHDL code, and, ahswill be
executed. The addressed variables (discussed below)evikkdd or written by
the other arbitration code blocks.

The emulator program reads the package size (36 data itenpapkage in
our case), PSDF and PSM models in the form of XML schemes amsl the
emulation. Upon completion, the tool returns results oftthesactions from each
platform element, performed during execution. At this stags the job of the
designer to evaluate the emulation results and modify tegdeif needed. Later
on, we generate the transaction-level control code (in o fof synthesizable
VHDL snippets) of the arbiters to be used in the final impletagan. Following,
we show the generated control code for the example appmitafiier successful
emulation.

-- VHDL Sni ppet for "Central Arbiter"
program(0) <= (guard => 0, source => 0,
dest _seg => 2, togrant => 0, count => 1, enables => 4);

progranm(3) <= (guard => 1, source => 2,
dest _seg => 1, togrant => 2, count => 1, enables => 0);

-- VHDL Sni ppet for "Segnent 0"

program(0) <= (guard => 0, source => 0, dest => 1,
dest _seg => 0, togrant => 0, count=16, enabl es=13);

program(1l) <= (guard => 0, source => 1, dest => 8,
dest _seg => 0, togrant => 1, count=16, enabl es=2);

program(2) <= (guard => 1, source => 2, dest => 2,
dest _seg => 0, togrant => 2, count=15, enabl es=3);

progran(12) <= (guard => 1, source => 8, dest => 11,
dest _seg => 1, togrant => ToR, count=1, enabl es=0);

-- VHDL Sni ppet for "Segnent 1"

program(0) <= (guard => 0, source => RFL, dest => 5,
dest _seg => 1, togrant => RFL, count=15, enabl es=10);

progran(l) <= (guard => 0, source => RFL, dest => 11,
dest _seg => 1, togrant => RFL, count=15, enabl es=2);

program(9) <= (guard => 1, source => 18, dest => 14,
dest _seg => 1, togrant => 18, count=16, enabl es=0);

-- VHDL Sni ppet for "Segnent 2"

progran(0) <= (guard => 0, source => RFL, dest => 4,
dest _seg => 2, togrant => RFL, count=1, enables=1);

progran(1l) <= (guard => 1, source => 19, dest => 5,
dest _seg => 1, togrant => TolL, count=1, enabl es=0);

Each line in the above control code is execution lineof the respective ar-
biter. Theprogramis a multi-dimensional vector consisting of a number of exe-

11

cution lines with several further fields. Below is a brief cigstion of each field
of the execution line.
e program(x).Basically,z can be seen as ti&rogram Counterandprogram(x)
represents theline of arbitration codex also provides reference for accessibility
from / to other lines of instructions.
e guard. Whenguard = 0, the respective line isnabled that is, the arbiter may
consider it for selection. Wheguard > 0, the line is disabled, that is, it cannot be
considered in the arbitration. The arbiter marks a linexscutedvhenever the
respectivecountvalue reaches 0, by establishiggard = nrLines sincenrLines
is the total number of program lines in tipeogramvector, associated with the
given arbiter.
e source.For SA case, this field contains the address of the requesting mabkge
initiator of a transfer request. Devices on tRegBugplatform (masters, slaves)
are identified by an unique number. While foA case, this field contains address
of the initiatingsegment
e dest.The address of the targeted device - the slave.
e destseqg.The target slave’s segment address.
e toGrant This is the instruction for the arbiter to grant the requresmaster.
At this moment the specification is obsolete, but the fieldresperved for future
developments.
e count This field identifies the number of packages the master hsetd to the
specified slave (data items to be sent divided by packagg size
e enables Whenever a line is markezkecutedthe SA will enablethe execution
line specified by this field, by subtracting 1 from its currgotrd value. In or-
der to become enabled, a line with an initgalard > 1 will require that several
previous operations (execution lines) to have finishedotfa given line.gnables
= nrLines, then the arbiter does not try to enable any other line, wherctirrent
one is markeexecuted

In addition, we use the notations: ToR/ToL - the destinatsotmne BU to the
right / left of the currenBA); RFL - the request comes from left.

TheArbiterProgramis a data structure in the emulator application that repre-
sents one program line. The source code of this data steustgiven below:

public class ArbiterProgram/{
public int program
public int guard;
public int source;
public int dest;
public int dest_seg;
public int togrant;
public int count;
public int enables;
public int sequence;

}

Each entity in the data structure represents a specific aleohéhe execution
line, which we already discussed previously. When the pgrprocess is done,

12

the emulator creates:

e TheaccCAArray a single-dimensional array, where each element in the arra
represents an execution line of tGa.

e TheaccArray a 2-dimensional array where each column represents ami-exec
tion line of aSA, while each row consists of execution lines associated anth
particularSA.

Application

Initialize accArray

Print the accArray
with proper
formatting to get
VHDL snippets

A 4

More segments —VHDL snippets—p»

True

Counts number of Counts number of
transfers in the incoming transfers
segment to the segment

A 4

A4
Instantiate
matching number
of ArbiterProgram
objects

Transfer
originating from
current segment
==true

False
Set dest, Set source = RFL/RFR
dest_seg, count & togrant = ToR/ToL

Set proper value of

guard & enable on Add ArbiterProgram
the basis of past & objects to accArray

current transfer

Figure 7. Code extraction process for segments in the phatfo

Figure 7 illustrates the general flow of the code generatimtgss for seg-
ments after the parsing of the PSDF model has been done amnabilhel resides
now inside the emulator’s internal variables and arraysstlyj the emulator ana-
lyzes number of originating and incoming transfers in eagngent. On the basis
of this information, it creates equal numberAxbiterProgramobjects. Secondly,
it sets thedestfield with the target process ID angstsegdfield with the segment
ID where the target process is placed. If the transfer ismmaigd from a master
in the current segment, then it sets gweircevalue of each object with an integer
number in increasing order andgrant = source otherwise the transfer is con-
sidered to be coming from a different segment via left/rigbt In this case, the
togrant = ToR/ToLandsource = RFL/RFRare set according to the direction of
the transfer. Theountcontains number of packages for this transfer (data items
divided by the package size). Theogramfield contains the order number of the

13

execution line and theequencdield contains the relative order number of the
execution line according to PSDF model.

The guard and enablesfields are important to introduce parallelism in the
platform. An execution line is executed by the respec®? when itsguard
signal is zero. The emulator application sets the valuggiafdandenabledield
on the basis of ordering sequence of transfers. If two or rimansfers occur at the
same ordering sequence, it sets appropriate values to letds 8o that parallel
transfer can occur. For instance, the PSDF model of the eleaapplication
in Figure 3 contains two parallel transfers from procB8sat sequence order 1.
As per application requirements, both transfers needs twbwleted in parallel
before moving towards further transfers. The executiogdi@ssociated with these
two transfers are given below:

program(0) <= (guard => 0, source => 0, dest => 1,
dest _seg => 0, togrant => 0, count=16, enabl es=13);

program(1l) <= (guard => 0, source => 1, dest => 8,
dest _seg => 0, togrant => 1, count=16, enabl es=2);

A similar approach is taken with respect to the VHDL code taybaerated
for the CA operations. The difference is that, instead of consideagigource and
destinations the actual devices, tb& code only needs information regarding the
initiating segment and the target segment. Hencesthecefield identifies the
requesting segment, and ttlestfield is not necessary.

4 Conclusions

We have introduced MDA-based design methods to generateatigaction-level
control code for a distributed platform, tis=gBus We have described methods
to model application at PSDF and PSM levels by employgagBus DSland
run emulation usingmulatorprogram to get performance aspects of the mod-
eled configuration. The emulator program has further matltitegenerate the
arbiters’ low-level control code, in the form of VHD&nippets which are then

to be inserted in a specific block of (segment or centralljeubiters as an exe-
cution schedule for any given application. The approachnioas made easy the
old manual process of writing such control code for arbibratusing presented
automated methods.

References

[1] International Technology Roadmap for Semiconduct2@f7 Edition.

[2] A. Jantsch, H. TenhunenNetworks on Chip.Kluwer Academic Publishers,
2003.

14

[3] K. Lahiri, A. Raghunathan, S. Deyesign Space Exploration for Optimizing
On-Chip Comm. ArchitectureslEEE Trans. on Computer-aided Design of
Integrated Circuits and Systems, Vol. 23, No. 6, June 2004992-961.

[4] T. Seceleanu.The SegBus Platform - Architecture and Comm. Mechanisms.
Journal of Systems Architecture, Vol. 53, Issue 4, April 208p. 151-169.

[5] Eclipse Modeling - Model-to-Text (M2T) Transformation.
http://www.eclipse.org/modeling/m2t/

[6] Model-Driven Architecture. http://www.omg.org/mda/

[7] M. F. Niazi, K. Latif, T. Seceleanu, H. TenhuneA.DSL for the SegBus Plat-
form. In proceedings of 22 IEEE Intl. System-on-Chip Conference (SOCC),
2009, pp. 393-398.

[8] M. F. Niazi, T. Seceleanu, H. TenhuneAn Emulation Solution for the Seg-
Bus Platform.In proceedings of 17 IEEE Intl. Conference and Workshops
on Engineering of Computer-Based Systems (ECBS), 2010.

[9] MagicDraw UML. http://www.magicdraw.com

[10] T. Seceleanu, I. Crnkovic, C. Secelearfuansaction Level Control for Ap-
plication Execution on the SegBus Platforrin proceedings of 33 IEEE
Computer Software and Application Conference, 2009, pp-5®.

[11] M. Vidmantas, E. KazanaviCiusConception of a Multi-Platform System
Software and Firmware Development TodPeriodical of Information Sci-
ences, Issue 50, 2009, Vilnius University Publishing Hopge 194-199.

[12] A. Koudri, J. Champeau, D.ulagnier, P. SoulawbPCoM/MARTE Process
Applied to a Cognitive Radio System Design and Analy$isoceedings of
the 8" European Conference on Model Driven Architecture - Folindat
and Applications, 2009, pp. 277-288.

[13] OMG. Object Constraint Language 2.0 Revised Submission, v@r2003.

[14] C. Park, J. Jang and S. H&xtended Synchronous Dataflow for Efficient
DSP System PrototypingJournal Design Automation for Embedded Sys-
tems, Springer Netherlands, vol. 6, no. 3, 2002, pp. 295-322

[15] E. A. Lee and D. G. MesserschmiExtended Synchronous DataflolZEE
proceedings, September 1987.

[16] T. Seceleanu, V. Leppanen, O. Nevalainémproving the Performance of
Bus Platforms by Means of Segmentation and Optimized Reséillocation.
The EURASIP Journal on Embedded Systems, Volume 2009 (2009gle
ID 867362, d0i:10.1155/2009/867362.

15

TURKU

CENTRE for

COMPUTER

SCIENCE

Joukahaisenkatu 3-5B, FIN-20520 Turku, Finland | www.tucs.fi

\\ m ,/ University of Turku
& é e Department of Information Technology
- — 4
[N e Department of Mathematics
15y

O

Abo Akademi University
e Department of Computer Science
e |nstitute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 978-952-12-2452-2
ISSN 1239-1891

