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Åbo Akademi University,
Joukahaisenkatu 3-5, 20520 Turku, Finland
richard.gronblom@abo.fi

Tatu Huotari
Department of Information Technologies,
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Abstract

This paper presents an approach to compositional contract-based verification
of Simulink models, together with a tool that supports the approach. First, a
format for contracts is presented together with a method to verify models with
respect to these contracts. The verification approach uses Synchronous Data
Flow (SDF) graphs as an intermediate step to obtain sequential program state-
ments that can then be analysed using traditional refinement-based verification
techniques. This gives a convenient approach to calculate the needed proof
obligations using well established methods. Secondly, a tool for automatic gen-
eration of the proof obligations needed for verification is presented. This tool
shows that the approach can be implemented and enables application of the
method on practical problems.

Keywords: Contract-based design, Refinement, Synchronous Data Flow, For-
mal verification, Automatic verification, SMT solving
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1 Introduction

Model-based design has become a widely used design method to create em-
bedded control software. In this approach, the controller is developed together
with a simulation model of the plant to be controlled. This enables simulation
of the complete system and thereby some degree of evaluation and testing of
the controller without using a prototype. One of the most popular tools for
model-based design of control systems is Simulink [28].

Simulink has a user-friendly graphical modelling notation based on data flow
diagrams, as well as good simulation tools for testing and validating controllers
together with models of the controlled plant. The complexity of control systems
is increasing rapidly as more functionality in many applications, such as anti-
locking brakes and fuel-injection systems, is implemented in software. As the
systems become more complex, the size of the Simulink models used in their
design also quickly grows. This leads to the same problems with complexity as
software development in any modelling or programming notation. Hence, there
is a need to better manage the complexity of models. Since control systems also
often have high reliability requirements, there is also a need analyse the models
for correctness. One approach that we have explored to remedy the problems
above is to use contracts to aid the decomposition of models into smaller parts
with well defined interfaces and to analyse those parts and their interaction for
correctness.

The aim of this paper is to propose a compositional verification technique for
Simulink models based on contracts. Contracts here refer to pre- and postcon-
ditions for programs or program fragments. Contract-based design has become
a popular method for object-oriented software development [29, 14, 9]. There
the main benefit of contracts is that the interfaces and the responsibilities of
the objects are clearly stated, which enables analysis of the correctness of the
system. However, formal verification of object-oriented systems is difficult [8]
due, e.g., to aliasing of object references and re-entrant methods. However, the
philosophy behind contracts seems to be a useful concept to tackle complexity,
which suggests that the same ideas could also be useful in Simulink. Further-
more, Simulink is language based on data flow diagrams, where the interaction
between components is much simpler than the interaction between objects in
object-oriented languages. This means that formal verification can potentially
be easier to do.

We have earlier developed and analysed contracts for Simulink data flow
diagrams [12, 13, 10]. However, here we give more expressive contracts and a
concise method to calculate the needed proof obligations for correctness. The
formal analysis methods for complete Simulink models with contracts are based
on interpreting the models as action systems [1, 2, 4]. Using this approach,
the well known reasoning techniques used for analysing action systems, which
are based on the refinement calculus can be reused. To obtain the sequential
program statements needed for analysis, Simulink diagrams are viewed as syn-
chronous data flow (SDF) graphs [25, 24]. The benefit of using SDF graphs is
that the mapping of the data flow graphs to the equivalent sequential programs
used in the analysis is well investigated. The focus of this paper is on theoretical
aspects and tool support. However, in [12, 10] the contracts are applied to the
design of a controller for a digital hydraulics system. The contracts were shown
to be useful both for structuring the system and for verifying properties of the
controller.

The paper starts with an overview of Simulink with an example, as well as the
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proposed contract format. Then SDF graphs are presented with the translation
procedure to the sequential programming notation used for analysis. This is fol-
lowed by a presentation of how SDF graphs can be interpreted as action systems
and how this relates to correctness. Representation of Simulink diagrams as SDF
graphs is then discussed, followed by a presentation of methods for analysis of
correctness with respect to contracts. To illustrate the approach, contract-based
verification of an example consisting of a PID-controller is demonstrated. Fi-
nally, the tool support for the verification approach is presented.

2 Related work

Other formalisations of Simulink, as well as methods to verify Simulink models
exist. In [38], a translation of discrete multi-rate Simulink models to Lustre
[15] is presented. The translated models can then be analysed using the tools
available for Lustre. A translation to Circus [41] can be found [16]. The fo-
cus is there on development of correct code with the Simulink diagrams as the
specification. The formalisation of Simulink in Timed Interval Calculus (TIC)
given in [17] is a very flexible approach that takes into account both continuous
and discrete models. However, the proofs in that approach seem to difficult to
automate, since set-theory is heavily used in the formalisation. Furthermore,
Simulink also comes with its own formal verification tool, Simulink Design Ver-
ifier [28]. This tool can be used to prove properties about models, which are
stated in special assertion blocks. The focus of the above techniques are on
property verification of existing models and they do not systematically consider
compositional verification based on contracts. However, correctness with respect
contracts could be analysed in those frameworks also. However, our approach
to verification gives a convenient approach to separately reason about both pre-
and post-conditions, as well as refinement. We can also easily handle many of
the imperative constructs of Matlab often used in Simulink. Furthermore, proof
obligation generation is straightforward and the proof obligations are in first-
order logic, which means that they possibly can be discharged by automatic
SMT or constraint solvers. Contracts have also been developed for synchronous
languages in [27]. Those contracts are very similar to ours. However, here
we take a refinement and proof based approach to compositional verification
of correctness. They only provide a correctness definition based on traces for
individual components.

3 Simulink

Simulink is a graphical language based on hierarchical data flow diagrams. A
Simulink diagram consists of functional blocks connected by signals (wires). The
blocks represent transformations of data, while the signals give the flow of data
between blocks. The blocks have in- and out-ports that act as connection points
for signals. The in-ports provide data to the blocks, while the out-ports provide
the results computed by the blocks. Blocks are often parameterised, to make
them more flexible. However, the block parameters are set before the execution
of a diagram, and remain constant during the execution. Some types of blocks
also contain memory. Hence, the values computed by these blocks do not only
depend on the current values on the in-ports and parameter values, but also on
previous in-port values.
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Figure 1: (a) A subsystem that implements a PID-controller and (b) its content

Here only discrete Simulink models with one sampling time are considered.
This means that a model is evaluated periodically with a given sampling fre-
quency. At each sampling instant, all blocks in the diagram are evaluated in
the order given by the signals between them. The models are also assumed to
be non-terminating, which is a common assumption for control systems.

In its most general form, a discrete Simulink block b contains a list of in-
ports u, a list of out-ports y, parameters c and a state vector (internal memory)
x [28]. The behaviour of the block is given by a difference equation of the form
shown in (1).

y.k = f.c.(x.k).(u.k)
x.(k + 1) = g.c.(x.k).(u.k) (1)

Here f denotes the function that gives the value of the out-ports y at sample k
and g the function that updates the state x. Consider, e.g., the Sum-block (in-
ports marked by +-signs) and the Unit Delay-blocks (marked by 1/z) in Figure
1 (b). A Sum-block sums the inputs and a Unit Delay-block delays the input
with one sampling time. Assume the Sum-block has out-port y and in-ports
u1, u2, u3. Its behaviour is then given by the equation y.k = u1.k + u2.k + u3.k.
Note that the Sum-block has no internal state. A Unit Delay-block on the other
hand contains state to remember previous value of the input. Its behaviour is
given as y.k = x.k ∧ x.(k + 1) = u.k. Information on the behaviour of other
blocks can be found in the Simulink documentation [28].

To illustrate the use of Simulink, a small example that consists of a PID-
controller is presented. The PID (proportional, integral, and derivative)-control-
ler is a standard type of controller used in many applications. The input to the
controller is a lead-value and a sensor input from the system. The lead value uc

gives the value we like a measured quantity y of the controlled system to have.
The output from the controller is a control signal u. In its discrete form the
PID-controller can be given by the following system of difference equations [40]:

u.k = p.k + i.k + d.k
p.k = K(uc.k − y.k)
i.k = i.(k − 1) + KTs/Ti(uc.k − y.k)
d.k = KTdN/(Td + NTs)(y.k − y.(k − 1))

(2)

The controller is here sampled with a fixed sampling time Ts. Note that in
the derivative term d we do not derive the lead-value uc. This is recommended
to avoid spikes in the control signal and thereby achieve better control quality.
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Figure 2: The content of subsystems (a) P, (b) I and (c) D from the diagram
in Figure 1 (b)

The constant N is a number between 3 and 30 used to make the derivation
part less active at high frequencies with the purpose to improve control quality.
The PID-controller given here is a very simple variant, more features to improve
control quality and flexibility of the controller can be added [40].

The subsystem block in Figure 1 (a) contains an implementation of the
difference equation in (2). The Simulink diagram in Figure 1 (b) shows the
content of that subsystem. The boxes with rounded corners are in- and out-
blocks used to communicate with Simulink diagrams at higher levels in the
subsystem hierarchy. The in- and out-blocks correspond to the in- and out-
ports of the subsystem they are in. There are three subsystems inside the PID
subsystem, P, I and D. All subsystems here are atomic, meaning that they are
executed as atomic units. This is in contrast to virtual subsystems that are only
used to syntactically group functional blocks together. A virtual subsystem
is not necessarily executed as one unit, but execution of blocks from several
virtual subsystems can be interleaved. These subsystems do not therefore have
any influence on the behaviour of the diagram.

In Figure 1 (b), the subsystem P calculates the proportional part p of the
control signal. The subsystem I calculates the integral part i of the control
signal based on the value of the integral at the last sampling instant. This value
is obtained from a Unit Delay block that delays i for one sampling instant. The
subsystem D then calculates the derivative part d of the control signal. This
is done using the current and previous value of the sensor value y. Finally, all
three components p, i and d are summed together to give the control signal u.
The content of the subsystem P is shown in Figure 2 (a), the content of I is
shown in Figure 2 (b) and the content of D is shown in 2 (c).

4 Contracts in Simulink

Simulink diagrams for advanced control systems can contain thousands of blocks.
For example, in the system discussed in [12, 26] from the area of digital hy-
draulics, the controller contains more than 4000 blocks and the subsystem hier-
archy is more than 10 layers deep at the maximum. At this size, the complexity
is starting to become a serious problem. To manage the complexity, there is a
need to better make explicit the division of responsibility between subsystems
and to analyse that all corner cases have been considered. It is also useful to
reason about the interaction between subsystems at a higher level of abstraction
than their detailed content, which often consists of a deep hierarchy of diagrams
containing hundreds of blocks. Our proposed solution to the problems above is
to use contracts to describe subsystems. This enables reasoning about subsys-
tem interaction on the level of contracts, as well as reasoning about correctness

4



of subsystems with respect to contracts. The contracts are intended for express-
ing properties of control logic and implementation level properties (e.g. bounds
on variables). System level properties such as e.g. stability and performance
are best expressed and verified by other means.

An atomic subsystem can essentially be considered to describe a block of the
form in (1), where the internal diagram implements f and g and the state x is
provided by the memories of the blocks inside the subsystem. A contract con-
tains conditions to describe this type of functionality. Our proposed contracts
have the following form:

parameters : c : type
inports : u : type
outports : y : type
memory : x : type
paramcond : Qparam

precondition : Qpre

postcondition : Qpost

initcondition : Qinit

postconditionm : Qpostm

refrel : Qrefrel

(3)

The contract first declares the parameters, in- and out-ports of the subsys-
tem. The internal state of the subsystem is modelled by memory variables x
(also referred to as specification variables), the predicate Qparam describes the
block parameters used in the subsystem, Qinit describes the initial values of x,
Qpre is the pre-condition, Qpost is the post-condition constricting the out-ports
and Qpostm the post-condition constricting the new values of the specification
variables. The use of specification variables in the contracts corresponds to the
use of memory in normal Simulink blocks. The condition Qrefrel is then used to
describe how the specification variables in the contract relate to the actual block
memories inside the subsystem. The contracts here are more expressive than the
ones in [12, 13, 10] as those contracts only considered input/output constraints
and not internal state. However, the contracts are similar in expressiveness as
the ones for synchronous components in [27].

4.1 Contract example

Consider again the PID-controller presented in Section 3. We like to describe
its functionality with a contract. Since we cannot directly access old values
of ports, we need specification variables to express the integral and derivative
behaviour in contracts. We use i1 to denote the previous value of the integral
and y1 to denote the previous value of the sensor input y. The subsystem also
has the block parameters Ts, K, Ti, Td and N . The parameter condition states
restrictions on the parameters of the PID-controller. The main requirement is
that all parameters except possibly K are positive. The requirement of N is
more of a recommendation [40], but it is stated here as well. The initial values
of the specification variables are not required to be zero, but here they are given
as zero for simplicity. The controller does not have a precondition, since we
assume that unbounded real numbers are used. The postconditions Qpost and
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Qpostm encode the difference equation in (2) as a contract.

parameters :
Ts : double; K : double; Ti : double; Td : double; N : double

inports :
uc : double; y : double

outports :
u : double

memory :
i1 : double; y1 : double

parametercondition :
Ts > 0 ∧ Ti > 0 ∧ Td ≥ 0 ∧N ∈ [3, 30]

precondition :
true

postcondition :

u = K(uc − y) + KTs
Ti

(uc − y) + i1 + KTdN
Td+NTs

(y − y1)

postconditionm :
i′1 = KTs

Ti
(uc − y) + i1 ∧ y′1 = y

initcondition :
i1 = 0 ∧ y1 = 0

refrel :
v.delay2 = y1 ∧ v.delay1 = i1

(4)

The refinement relation describes how the memories from the Unit delay-blocks
delay1 and delay2 relate to the specification variables. The function v is ex-
plained later in Section 7.

5 Synchronous data flow graphs

We like to analyse Simulink models using the classical tools for program anal-
ysis [5, 6], which are designed for analysis of imperative programs. The reason
is that they provide a mature framework for reasoning about program correct-
ness, as well as refinement. To obtain such sequential programs from Simulink
diagrams, we represent the diagrams as synchronous data flow (SDF) graphs,
since compilation of such graphs to sequential or parallel code has been stud-
ied extensively. We already have necessary and sufficient conditions for when
a schedule (sequential program) can be obtained from a SDF graph, as well as
algorithms for scheduling [25, 24].

A data flow program is described by a directed graph where data flows
between nodes along the edges. Synchronous data flow programs are a special
case where the communication between nodes is synchronous, i.e., the size of
the communication buffers is known in advance. The paradigm in [25, 24] is
intended for heterogenous systems where the nodes can be implemented either
by other data flow graphs or in some other programming notation. A node
can produce a new value on its outgoing edges when data is available on all
incoming edges. A node with no incoming edges can fire at any time. Nodes
have to be side-effect free. The data flow graphs presented here are used for
sampled signal processing systems, i.e., the nodes in the diagrams are executed
periodically with a given sampling frequency. Furthermore, the SDF programs
are never supposed to terminate.

We use a similar notation as in [25, 24] to describe our synchronous data
flow graphs. An example is given in Figure 3. The program computes the
(exponential) moving average of the input u over time, v.k = aw.k+(1−a)D.v.k.
Here D.v.k denotes the delay of v with one sampling time, D.v.k = v.(k − 1).
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Each node is labelled with the in- and out-port names, as well as the update
statement inside the node that describes how the out-ports are modified each
time the node is executed. The triangle shaped nodes are input or output nodes.
They are used to model input and output of data from outside of the graph.
The input blocks are assumed to always have data available [25]. The number
x on an edge adjacent to the source node denotes that the node will output x
pieces of data, while the number y near the destination node denotes that the
block will read y pieces of data when it fires. This gives a convenient way to
also handle multi-rate data flow networks. In single-rate graphs, which is our
main concern here, x and y are always 1. The D on one of the edges denotes
that the edge delays the data by one sampling time. Each delay also has an
identifier, here d.

The nodes in the SDF graph can be statically scheduled to obtain sequen-
tial or parallel programs. In [25] necessary and sufficient conditions for this
are given together with scheduling algorithms. We will only present the algo-
rithm for obtaining a minimal periodic admissible sequential schedule (PASS),
which represents the shortest repeating sequential program. To describe the
scheduling, we first construct a topology matrix for the SDF graph. This matrix
describes how the data availability on the edges changes during the execution of
the graph. As an example, consider the graph G in Figure 3. We first number
the nodes using a function nn and edges using ne according to:

nn.source = 1
nn.gain1 = 2
nn.sum = 3
nn.gain2 = 4
nn.sink = 5

and

ne.(source, gain1) = 1
ne.(gain1, sum) = 2
ne.(gain2, sum) = 3
ne.(sum, gain2) = 4
ne.(sum, sink) = 5

The element (nn.n, ne.e) of the topology matrix Γ then describes how many
data items node n produces on edge e when it fires. The matrix for G in Figure
3 is:

Γ =




1 −1 0 0 0
0 1 −1 0 0
0 0 −1 1 0
0 0 1 −1 0
0 0 1 0 −1




(5)

The node run at step k is specified with a vector that contains 1 in the position
corresponding to the number nn.n of the node n and 0 elsewhere. For example,
if the node source is run then v.k is:

v.k =
[

1 0 0 0 0
]T
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Using the vector v.k for the node executed at step k, the amount of data on the
edges at step k + 1, b.(k + 1), is now given as:

b.(k + 1) = b.k + Γv.k (6)

The change to the buffers is given as the product of the topology matrix and
the current v.k. The initial amount of data on an edge is given by the number
of delays on the edge. If there is no delay the initial amount is zero, otherwise
the number of data items equals the number of delays. For the graph G, the
initial state is given by:

b.0 =
[

0 0 0 1 0
]T (7)

The vectors q in the null-space1 of Γ then give the number of times the nodes
can be executed in order to return the buffers to the initial state.

b.0 = b.0 + Γq

The least, non-zero, integer vector in the null-space of Γ gives the number of
times each node is executed in the minimal PASS. This gives an algorithm for
scheduling the nodes.

1. Find the smallest integer q in the null-space of Γ

2. Construct a set S of all nodes in the graph

3. For each α ∈ S, schedule α if it is runnable and then update the state
b.(k + 1) in (6) according to v for α. A node is runnable if it has not yet
been run qα times and if execution of α does not make any buffer bi.(k+1)
in (6) negative.

4. If each node α is scheduled qα times, then stop

5. If no node in S can be scheduled, indicate a deadlock (the graph cannot
be scheduled) else go to step 3.

In this paper we are only considering systems where all data-rates are one and
there is at most one delay on each edge. Because of these assumptions, the
algorithm can be simplified to topological sorting of the nodes in the graph
according to a dependency relation. To do this, we first need to define exactly
the notion of dependency between nodes:

Definition 1. A node m depends on a node n if execution of m before n would
make any buffer bi.(k + 1) in (6) negative.

The dependency in Definition 1 can be stated as the property on the graph
as in Proposition 1.

Proposition 1. A node m depends on n if there is an edge e without a delay
from n to m.

Proof. There are two cases: (1) There is an edge e from n to m and (2) there
is not.

1The null-space of a matrix A is the set of all vectors q, such that Aq = 0
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1. Because of the structure of Γ, in order for buffer be.(k + 1) in (6) to be
non-negative after execution of m at step k, then be.k has to be strictly
positive. This happens if there is a delay on e and be.0 = 1 or at some
point i, i < k, the execution of n made be.i ≥ 1. Thus if e does not have
a delay from n to m, we have a dependency according to Definition 1.

2. Because of the structure of Γ the buffer at be.(k + 1) will be un-affected
by execution of m at step k. Thus we have no dependency according to
Definition 1.

The nodes in the graph can now be sorted according to the dependency in
Proposition 1.

Proposition 2. A minimal PASS can be obtained for an SDF graph where all
data rates are 1 and all edges have at most a single delay, by topologically sorting
the nodes according to the dependency graph given in Proposition 1.

Proof. When all the data rates are 1 we have that all nodes are executed once
(the minimal vector q in the null-space of Γ is in this case q = 1, see Lemma 4
and Theorem 2 in [25]). The scheduling algorithm outlined above then simplifies
to topological sorting according to the dependency graph in Proposition 1.

6 Language of nodes

The computations inside nodes are described with a simple imperative program-
ming language. This language is also the target language when translating the
SDF graph to a sequential program. The focus is here on verification and the
language is therefore optimised for this purpose.

Since the analysis methods are based on the refinement calculus [5], a short
introduction is needed. The refinement calculus is based on Higher-Order Logic
(HOL) and lattice theory. The state space of a program in the refinement
calculus is assumed to be of type Σ. Predicates are functions from the state
space to the type boolean, p : Σ → B. A predicate corresponds to the subset
of Σ where p evaluates to true. Relations can be thought of as functions from
elements to sets of elements, R : Σ → (Σ → B). A program statement is a
predicate transformer from predicates on the output state space Σ to predicates
on the input state space Γ, S : (Σ → B) → (Γ → B). A predicate transformer S
applied to a predicate q gives the weakest predicate from where S is guaranteed
to establish q. This is referred to as the weakest-precondition semantics [19, 5]
of program statements. The syntax of the statement language is given as:

S ::= x, y := E, F | Assignment
[g] | Assumption
{g} | Assertion
x, y : |P | Non− deterministic assignment
skip | Skip statement
S1; S2 | Sequential composition
S1 u S2 Non− deterministic choice

(8)

Here x is a variable, y a comma separated list of variables, E an expression, F
a comma separated list of expressions, while g and P are predicates. For an
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arbitrary post-condition q we have that:

(x, y := E, F ).q = (q[x, y/E, F ])
[g] .q = g ⇒ q
{g}.q = g ∧ q
(x, y : |P (x, y, x′, y′).q = ∀x′, y′ · P (x, y, x′, y′) ⇒ q[x, y/x′, y′]
skip.q = q
(S1;S2).q = S1.(S2.q)
(S1 u S2).q = S1.q ∧ S2.q

(9)

Each statement can thus be considered to be a predicate transformer that trans-
forms a post-condition q into the weakest precondition for the statement to
establish condition q. A statement S terminates properly, if it is executed in
a state where it can reach the weakest post-condition true. These states are
described by the condition S.true, which is referred to as the termination guard
of S, t.S =̂ S.true. In states where S.true does not hold the statement is said
to abort. A statement S is said to behave miraculously, if executed in a state
where S.false holds. The statement S can then establish any post-condition.
The condition that describes the states where S will not behave miraculously is
called the guard of S, g.S =̂ ¬S.false.

All statements in (8) are conjunctive predicate transformers [5, 7]. A pred-
icate transformer S is conjunctive, if it satisfies the following condition for a
non-empty I: ∧

i∈I

S.qi = S.(
∧

i∈I

qi) (10)

An important property for stepwise development is monotonicity [5]. A state-
ment S is monotonic, if it preserves the ordering given by implication.

S.q ⇒ S.p, if q ⇒ p (11)

Note that conjunctivity (10) implies monotonicity (11) [5].
Refinement can be defined for the predicate transformers.

S v R =̂ ∀q · S.q ⇒ R.q (12)

This condition states that if S can establish a postcondition q, then q can also
be established by R. Since all statements are monotonic, refinement of an
individual statement in a program leads to the refinement of the whole program
[5]. We can also introduce the concept of data refinement. Data refinement is
used when two programs do not necessarily work on the same state-space and
we like to prove that one refines the other. To prove the refinement, we use a
decoding statement ∆ that maps the concrete state space to the abstract state
space [3, 6]. Data refinement of S by R under decoding ∆, S v∆ R, is defined
as:

S v∆ R =̂ ∆; S v R; ∆ (13)

The decoding ∆ is normally assumed to have the form ∆ =̂ {+a − c|Q} [3],
where {+a − c|Q} denotes non-deterministic angelic assignment that removes
the concrete variables c from the state space and adds the abstract variables a to
the state space in manner such that Q relates a and c [3]. An angelic relational
assignment statement has the semantics: {+a− c|Q}.q = ∃a′ ·Q[a/a′] ∧ q[a/a′]
(see [3, 6]).

Due to the quantification over predicates, the formulation of refinement
above is not very convenient to use. We here use a condition that allows gen-
eration of proof obligations for refinement in first order logic when the abstract
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statement has a specific format. Using ∆ = {+a− c|Q} and abstract statement
S = {g}; a, z : |P , rule (14) can be used to prove S v∆ R [3].

Q ∧ g ∧ z, a = z0, a0 ⇒ R.(∃a′ ·Q[a/a′] ∧ P [a, a′, z, z′/a0, a
′, z0, z]) (14)

Here a again denotes the abstract variables, c denotes the concrete variables
and z common variables. The intuition is that if the precondition g holds
in the abstract initial state then the concrete statement R will reach a state
corresponding to an abstract state reachable by a, z : |P .

7 Translation of SDF graphs

An SDF graph can be translated to a sequential statement by utilising the
scheduling in Proposition 2. However, first we need to introduce the communi-
cation buffers needed to handle communication between the nodes. In principle
the communication between nodes is handled through FIFO-buffers [24]. How-
ever, to make the proof obligations simpler, we would like to have static buffers
(shared variables). As stated earlier, we consider only a special case where all
data rates are one and we only have edges with one delay. Utilising these prop-
erties, static buffering can be implemented as follows. All ports and delays are
first translated as variables.

Definition 2. Let the function v be a injective function from node and port or
delay to variable identifier. Then v.n.p maps a node n and port p to a unique
identifier, while v.d then maps a delay d to a unique variable identifier.

Using the unique variable identifiers, an SDF graph can be translated to a
statement in the imperative programming language in (8).

Definition 3. Let trans be a function from an SDF graph to a sequential state-
ment. The translation trans.G of SDF graph G is obtained as follows:

1. For each node n in G: Each out-port p in n is translated to a unique
variable v.n.p. Each unconnected in-port p in n is also translated to a
unique variable v.n.p.

2. Each delay d is also translated to a unique variable v.d.

3. The sequential statements from the nodes in G are scheduled according to
Proposition 2.

4. For each delay d on an edge e an update statement v.d := v.n.p, where v.d
is the variable obtained from d and port p in n is the source port of e, is
added after the statements from the source and destination nodes of e.

It is easy to see that the data is handled as if FIFO-buffers were used for
the special case in the paper. If there is no delay on an edge, then the required
buffer size is one, since only one data element can be produced by the source
node. We then have that the variable obtained from the out-port corresponds
directly to a buffer with one element. In case there is one delay on an edge the
required buffer size is two, since both the delayed value and the value produced
by the source node have to fit into the buffer. In this case the delay variable
corresponds to the head of the buffer and the variable obtained from the out-
port in the source node corresponds to the tail element. Figure 4 illustrates this
situation.
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Figure 4: (a) The buffer of an edge from n to m without a delay and (b) the
buffer of an edge with one delay d

Consider the SDF graph G in Figure 3. This graph is translated to the
sequential program trans.G given below:

trans.G =̂
v.source.y := v.G.w;
v.gain1.y := a ∗ v.source.y;
v.gain2.y := (1− a) ∗ v.d;
v.sum.y := v.gain1.y + v.gain2.y;
v.d := v.sum.y;
v.G.v := v.sum.y

The statements are obtained from the nodes and then scheduled according to
Definition 3. Here we assume that w and v in the in and out nodes are ports
of a node G that contains the graph. Note that we have directly replaced every
in-port with the out-port variable or delay variable it is connected to.

8 Action systems

To give a complete formal semantics to the SDF graphs, we view them as action
systems. Action systems [1, 2, 4, 7] can be used for describing reactive and
distributed systems. The formalism was invented by Back and Kurki-Suonio
and inspired by Dijkstra’s guarded command language [19]. The first versions
used temporal logic and they were aimed at developing distributed systems [1].
Later, action systems have been analysed in the refinement calculus framework
[4, 7].

An action system consists of global and local variables, an initialisation of the
local variables and a do-loop containing actions. Action systems use refinement
calculus statements for the definition of actions. An action system has the form:

A =̂ |[ var x; init A0; do A od ]| : 〈z〉 (15)

Here x denotes the local variables and z the global variables. The initialisation
of the action system is given as a predicate A0 that describes the initial values.
The loop body consists of the demonic choice between actions constructed from
conjunctive predicate transformers. All actions can therefore be written together
as one single action A without loss of generality [5].

8.1 Trace semantics

In order to reason about reactive behaviour, the state of the system during
execution is important. The refinement calculus cannot be used directly, since
it concerns only the input-output behaviour of a program. The execution of
an action system gives rise to a sequence of states, called behaviours [4, 7].
Behaviours can be finite or infinite. Here finite behaviour is always considered
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as something undesirable, since control systems usually are intended to run
forever. Finite behaviours can be aborted or miraculous. An aborted behaviour
can be considered a failure of the system and a miraculous behaviour can be
considered a deadlock.

To simplify the mathematical definitions, only infinite behaviours are con-
sidered. In order to only consider infinite behaviours, terminated behaviours
are extended with infinite sequences of ⊥ or > depending on if the behaviour
was aborted or miraculous [7]. These states are referred to as improper states
[4, 7]. Then σ = 〈σ0, σ1, . . .〉 is a sequence of states that describes a possible
behaviour of A, if the following conditions hold [4, 7]:

• the initial state satisfies the initialisation condition, A0.σ0

• if σi is improper then σi+1 = σi

• if σi is proper then either:

– The system aborts, ¬t.A.σi and σi+1 = ⊥, or,

– behaves miraculously, t.A.σi ∧ ¬g.A.σi and σi+1 = >, or,

– executes normally, t.A.σi ∧ g.A.σi ∧A.(λσ · σ = σi+1).σi

Behaviours contain local variables that cannot be observed. What can be ob-
served is a trace 〈z.σ0, z.σ1, . . .〉 of a behaviour 〈σ0, σ1, . . .〉 where the global
variables z have been extracted. The semantics of action system A is then a set
of observable traces of behaviours [4, 7].

8.2 Refinement

Refinement of an action system A means replacing it by another system that
is indistinguishable from A by the environment [4, 7]. On the extended state
space Σ ∪ {⊥,>} an ordering of traces over global variables is defined:

〈z.σ0, z.σ1, . . .〉 ¹ 〈z.τ0, z.τ1, . . .〉 =̂ (∀i · z.σi = z.τi ∨ σi = ⊥) (16)

Consider two action systems A and A′. Refinement is then defined as:

A v A′ =̂ (∀t′ · t′ ∈ tr.A′ ⇒ (∃t · t ∈ tr.A ∧ t ¹ t′)) (17)

Here tr.A denotes all traces that are generated by A. The refinement definition
states that for each trace in the refined system A′, there exists a corresponding
trace in the abstract system A.

This definition of refinement is not practical for use in proofs [4, 7]. Instead
refinement can be proved using the notion of data refinement discussed earlier.
Consider again two action systems A and A′. Assume that the concrete system
A′ has local variables c and the abstract system A has local variables a. To
prove that A v A′, we use an decoding statement ∆ = {+a − c|Q} that maps
the concrete state space to the abstract state space [3, 6]. Action system A is
then data refined by A′ using decoding statement ∆, if the following conditions
hold [6, 4, 7]:

A′0 ⇒ ∆.A0 (18)
∆; A v A′;∆ (19)

∆.(g.A ∧ t.A) ⇒ g.A′ (20)
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The first refinement condition (18) concerns correct refinement of the initialisa-
tion. For each possible initialisation in the concrete system, there must exist a
corresponding initialisation in the abstract system. The second condition (19)
concerns refinement of the action. For each action step in the concrete system
there must exist a corresponding step in the abstract system. The last rule (20)
states that the concrete system cannot deadlock more often than the abstract
one. Note that these conditions are sound, but not complete [4].

8.3 SDF graphs as action systems

Complete SDF graphs can be viewed as action systems. Complete here means
that the there are no unconnected in-ports. All nodes in a minimal PASS are
executed once and the time is then advanced by one sampling time. The exact
time is unimportant here, since only systems with one sampling time and no
continuos behaviour are considered. It can therefore be considered to advance
with one tick. We can view the SDF graph G as the action system act.G:

act.G =̂ |[ var v.d1, . . . , v.d2;
init Init
do trans.G od

]| : 〈v.b1.p1, . . . , v.bm.pk〉

(21)

Here d1, . . . , dn are the delays in the graph, b1, . . . , bm the nodes in the graph
and all pi are ports. The initialisation of delays is denoted by Init. The ports of
the nodes in the graph are considered to give the observable state. The action
system iteratively executes the statement trans.G obtained by translating the
SDF graph using Definition 3. This interpretation now gives a definition of a re-
finement relation between SDF graphs. This will later be used for compositional
verification.

8.4 Correctness of the translation

In order for the translation from SDF graph to sequential program to be cor-
rect, the result from the sequential program should be the same regardless of
which possible PASS that is used. For deterministic programs a proof is given
in [25]. Furthermore, the program should be non-deadlocking. When consid-
ering iterated execution of the graph in our setting, miraculous execution of
the translated statement corresponds to termination of the action system (see
Subsection 8.1).

Consider two statements T1 and T2 obtained from two different PASS for
the same SDF graph. By the same reasoning as in [25] the statements will have
the same result if t.T1 ∧ g.T1 and t.T2 ∧ g.T2 hold in the before state. In case we
have the situation that ¬g.T1 and ¬t.T2 hold (or vice versa) the two statements
behave differently. The first program will in this case behave miraculously and
the second abort. Two programs obtained from an SDF graph are thus correct
in case they do not behave miraculously, {g.Ti}; Ti = {g.Tj}; Tj . Later we will
show that we will only have non-miraculous programs, i.e., programs T where
g.T = true.

9 SDF graph representation of Simulink models

Discrete Simulink models consist of graphical data flow diagrams which are
similar to SDF graphs. However, a Simulink block is not exactly the same as a
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Figure 5: (a) SDF representation of general Simulink block, (b) a Unit delay-
block and (c) a Sum-block

node in the SDF notation. In this section we present how to map a number of
important blocks to their corresponding SDF representation.

9.1 Mapping Simulink blocks to nodes

We can differentiate between the following important Simulink blocks:

• Functional blocks: Blocks in the Simulink library that directly encapsu-
lates a difference equation

• In and out blocks: Blocks used to obtain inputs from in-ports of the con-
taining subsystem, as well as export values to the out-ports

• Virtual subsystem blocks: Subsystem blocks that are used for structuring
Simulink models, but have no impact on behaviour

• Atomic subsystem blocks: Subsystem blocks that are used for structuring
Simulink models and that are executed as atomic units

Functional blocks Consider again a Simulink block with the general form
in (1). The behaviour of the block is described by two equations, which are
not necessarily executed together. The implementation of the block as an SDF
graph is shown in Figure 5 (a). There are several special cases: consider, e.g., the
Unit delay-block and the Sum-block. The blocks with their SDF representations
are shown in Figure 5 (b) and (c), respectively.

In and out blocks In and out blocks correspond to in and out nodes in the
SDF graphs.

Hierarchical diagrams Simulink diagrams are hierarchical and this has to be
taken into account in the mapping to SDF graphs. The diagrams are structured
using virtual and atomic subsystem blocks. Virtual subsystems are only used to
syntactically group different blocks together and they do not have any affect on
the behaviour of the Simulink models. Since execution of blocks from two virtual
subsystems might have to be interleaved, we cannot translate virtual subsystem
blocks individually and then compose the result. To handle this problem, the
virtual subsystem hierarchy is flattened during the translation of the diagrams.
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The atomic subsystems on the other hand are mapped to SDF nodes themselves.
The content of an atomic subsystem is translated recursively to an SDF graph,
which then become the content of the SDF node corresponding to the subsystem.
Consider an atomic subsystem S with in-ports u and out-ports y in Figure 6.
Its SDF representation (denoted sdf.S) is obtained by recursively translating its
content.

9.2 Mapping a subsystem contract description to an SDF
graph

One goal of the method given in this paper is to use the contract descriptions
of subsystems instead of the subsystem diagrams when analysing models. From
the contract description we can directly obtain the most abstract statement that
satisfies the contract. The most abstract statement that satisfies a specification
concerning variables x with precondition Qpre and a postcondition Qpost, is
{Qpre}; x : |Qpost [5].

Assume we have subsystem S in Figure 6 (a), which is described by the
contract C in equation (3). We then get the SDF graph representation, sdf.C,
shown in Figure 7 for the contract. Note that this is very similar to the transla-
tion of the general Simulink block in Figure 5. This is because the contract give
an abstract description of the same type of behaviour. This is the most abstract
description of S that can be used when analysing models where the subsystem
is used. The sequential program statement trans.(sdf.C) can now be obtained.
This is again done according to the translation procedure in Definition 3. After
simplifications we get the statement:

trans.(sdf.C) =̂ {Qparam
v ∧Qpre

v }; v.S.y : |Qpost
v ; v.d : |Qpostm

v (22)

Here we have directly removed the intermediate ports and used the subsystem
ports u, y and delay d instead. In each condition subscripted by v the occurrence
of port p or delay d has been replaced by its corresponding variable identifier
v.S.p or v.d.
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10 Verification with respect to contracts

In order to do compositional verification of Simulink models, we need to show
that the use of a subsystem implementation instead of its contract description
preserves the behaviour (i.e. refines) the complete system. To prove preser-
vation of behaviour of the complete system, we use the action system repre-
sentation (21) and the refinement rules for action systems (18)-(20). Assume
we have an atomic subsystem M with contract C. Thus the abstract program
obtained when using the contract description trans.(sdf.C) should be data re-
fined by the program obtained when the translated diagram trans.(sdf.M) is
used instead. The abstract program obtained from a Simulink model where M
is used can be written as S1; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2. The concrete
program is then given as S1; trans.(sdf.M)[v.M.pi/v.(conn.pi)]; S2. In the com-
plete translation all connected in-ports of M are replaced by the port or block
memory they are connected to. This is here denoted with the substitution
[v.M.pi/v.(conn.pi)], where pi are in-ports of subsystem M and conn.pi denotes
the out-ports or delays those ports are connected to. We thus need to prove:

∆; S1; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2 v
S1; trans.(sdf.M)[v.M.pi/v.(conn.pi)];S2;∆

(23)

Since the data refinement only concerns M , the decoding ∆ is assumed to only
concern the internal variables of trans.(sdf.C) and trans.(sdf.M). In practice
the decoding ∆ is of the form ∆ =̂ {−v.bn.pn, v.dn + v.x|Qrefrel}, where pn

denotes the new out-ports, dn denotes new delays obtained from Simulink block
memories and x denotes specification variables in contract C. Recall that Qrefrel

(see (3)) is a predicate that relates the specification variables in contract C with
the block memories and specification variables in the diagram inside M .

Since the variables of ∆ and S1, as well as ∆ and S2 are disjoint, we have
that ∆; S1 v S1;∆ and ∆; S2 v S2; ∆. To prove (23) we then need to show
that:

∆; trans.(sdf.C) v trans.(sdf.M);∆ (24)

Proof.

∆;S1; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2

v {Assumption above}
S1;∆; trans.(sdf.C)[v.M.pi/v.(conn.pi)]; S2

= {v.M.pi, v.(conn.pi) not free in ∆}
S1; (∆; trans.(sdf.C))[v.M.pi/v.(conn.pi)];S2

v {Assumption (24) and v.(conn.pi) not free in trans.(sdf.M)}
S1; (trans.(sdf.M); ∆)[v.M.pi/v.(conn.pi)]; S2

= {v.M.pi, v.(conn.pi) not free in ∆}
S1; trans.(sdf.M); [v.M.pi/v.(conn.pi)];∆; S2

v {Assumption above}
S1; trans.(sdf.M)[v.M.pi/v.(conn.pi)]; S2;∆

Note also that if all subsystems are implemented as deterministic diagrams,
then the corresponding statements do not behave miraculously [5]. The SDF
graph obtained from the Simulink model is thus non-terminating, which is the
requirement for correct translation from SDF graph to sequential program stated
in Subsection 8.4.
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10.1 Example of subsystem refinement

To give an example of the translation of Simulink models and the verification
method, the PID-controller from Section 3 is used. The subsystem, PID, imple-
menting the PID-controller is shown in Figure 1 (a). The contract C associated
with the subsystem is given in (4). The contract specification of the subsystem
is translated to a sequential program statement as described in (22):

trans.(sdf.C) =̂
{Ts > 0 ∧ Ti > 0 ∧ Td ≥ 0 ∧N ∈ [3, 30]};
v.PID .u : |v.PID .u′ = K(v.PID .uc − v.PID .y) + KTs

Ti
(v.PID .uc − v.PID .y)

+ i1 + KTdN
(Td+NTs) (v.PID .y − y1);

y1, i1 : |i′1 = KTs

Ti
(v.PID .uc − v.PID .y) + i1 ∧ y′1 = v.PID .y

The statement above should then be refined by the translated diagram inside
the subsystem shown in Figure 1 (b). The contents of the subsystems P, I and
D in that diagram are given in Figure 2. One possible translation of the diagram
inside PID is then given as:

trans.(sdf.PID) =̂
trans.(sdf.P );
v.delay1.y := v.delay1;
trans.(sdf.I);
v.delay2.y := v.delay2;
trans.(sdf.D);
v.sum.y := v.P.p + v.I.i + v.D.d;
v.PID .u := v.sum.y;
v.delay1 := v.I.i; v.delay2 := v.PID .y

In case P, I and D are described by contracts, that description of the subsystems
can be used. Otherwise the translation process proceeds recursively through the
subsystem hierarchy. The block memories from blocks delay1 and delay2 relate
to the specification variables y1 and i1 as described by Qrefrel in (4). The
refinement rule (24) for subsystem refinement leads to the condition:

{−v.P.p, v.I.i, v.D.d, . . . , v.delay1, v.delay2 + y1, i1|Qrefrel};
trans.(sdf.C)
v
trans.(sdf.PID);
{−v.P.p, v.I.i, v.D.d, . . . , v.delay1, v.delay2 + y1, i1|Qrefrel}

The tool that is described in the following sections has been used to verify this
refinement. It generates the necessary proof obligation and it then uses the
SMT-solver Z3 [18] to perform the proof.

11 Tool introduction

Tool support for the approach outlined in the paper has been developed [11].
The tool takes a Simulink model annotated by contracts as argument. The tool
checks that each atomic subsystem (with a contract) satisfies its contract. This
is done using the translation process outlined in the paper.

To have standard location for the contracts, they are written down as text
in the Description-field of the subsystems, analogously to how JML-contracts
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Figure 8: The architecture of the verification tool

are written as comments in the Java-code [14]. This also ensures that a contract
is always associated with the correct subsystem and that the contracts do not
interfere with other tools. Correctness of subsystems with respect to contracts
are given by (24). To prove that condition, rule (14) is used. This rule provides
formula in first-order logic (if the contracts are first order). Using this rule, the
tool produces a set of proof obligations in the SMT-LIB format [34], which is
a standard format read by most SMT-solvers. These proof obligations are then
discharged by an SMT-solver (currently Z3 [18] is used). Finally the output
from solver is handled and the results displayed in a graphical user interface.

The following sections describe the architecture and functionality of the tool.
First, the the tool architecture is described. We then describe the individual
components of the tool and give an overview of their functionality.

12 Tool architecture

The tool is implemented as a set of model-transformations. The models are
described using meta-models created using the Eclipse Modelling Framework
(EMF) [35, 22], which is a mature modelling framework from the Eclipse Foun-
dation. One of the goals of EMF is to simplify development of domain specific
modelling languages. Developers can create their own domain specific mod-
elling languages based on the meta-model provided by EMF. This meta-model
is similar to MOF [32] from OMG.

The architecture of the tool is shown in Figure 8. The tool has a blackboard
architecture, where functional components manipulate instances of the meta-
models. There are meta-models to describe Simulink models, SDF graphs, as
well as sequential statements and contracts. The parser components convert the
textual representations of contracts, statements and Simulink models into meta-
model instances. The model instances are then further manipulated by different
tools. The following sections give more detailed overviews of the components.
We first start with a description of the meta-models used in the tool.
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13 The Simulink meta-model

The Simulink meta-model describes all necessary information needed to rep-
resent the functional aspects of Simulink models relevant for verification. In-
stances of the meta-model can thus not store all information of the graphical
layout of models and different code generation options. They could be included
as extra parameters, but currently this has not been deemed necessary. The
meta-model for Simulink models used by the tool is shown in Figure 9.

A Simulink model is represented as an instance of the class Model. A model
contains a Diagram object. The diagram can then contain different kinds of
blocks. Each block can have in-ports and out-ports. The association dep rep-
resents the dependencies between in- and out-ports given by the signals in the
corresponding Simulink diagram. The association fDep represents the internal
dependencies between ports in a block. Each block also has a reference to a
set of parameters. These parameters are imported directly from Simulink and
are used to fine-tune behaviour and looks of the block. Each block also has a
reference to a BlockParameterDefaults object. This object stores common pa-
rameter values for each block type. This approach is also used in Simulink. The
purpose is to save memory when common data is only stored once.

There are different kinds of blocks implemented as subclasses of the class
Block. The class FunctionalBlock represents normal functional blocks. These
blocks contain a statement describing the behaviour of the block. They can also
contain internal memory. Each memory is represented by an instance of the
Memory class. In- Out- and Enable-blocks are also represented as subclasses of
class Block, since these types of blocks need special treatment from functional
blocks. Subsystems are also special blocks that contain a diagram. This en-
ables representation of hierarchical diagrams. Atomic subsystems are special
subsystems that can contain a contract.

Many meta-models of Simulink already exist. The goal of most of them are
to represent all of Simulink, not only functional aspects. These meta-models are
then used for model-validation [20, 21] or/and model transformations [39, 31].
The goal of our meta-model is to give a more compact description of the func-
tional aspects of Simulink and thereby be more convenient basis for the veri-
fication tool. Furthermore, our meta-model is based on EMF, which makes it
easy to manipulate the models in Java. This is important for future develop-
ment, since it is anticipated that students will work on the tool. They are most
familiar with Java and can therefore start work directly without learning a new
language first. Furthermore, a lot of model validation and model transformation
tools have already been developed for EMF based models [22].

14 The SDF meta-model

This meta-model is used to describe SDF graphs. It is similar to the Simulink
meta-model, but simpler. The meta-model is shown in Figure 10. It can repre-
sent graphs that contain different types of nodes and the connections between
them. The composite nodes can contain graphs themselves. They can also con-
tain a contract that give an abstract description of the node behaviour. The
conditional node is used to represent conditionally executed subsystems. The
goal is that the meta-model should be able to represent the functional aspects
of SDF graphs that are needed by the tool.
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Figure 9: The meta-model that describes the structure of Simulink models
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15 The statement meta-model

The statement meta-model represents the abstract syntax of statements, ex-
pressions and contracts. The reason for keeping this a separate meta-model is
that it is self contained and it is needed both by the Simulink and SDF graph
meta-models. Furthermore, this meta-model also concerns constructs (state-
ments and contracts) that are not part of the original Simulink. To have a
separate meta-model seemed like the most elegant solution. The choice of EMF
to represent the abstract syntax might seem redundant as the parser genera-
tor used in the parser component can already generate an abstract syntax tree.
However, by using EMF based models everywhere, the same techniques can be
used for all model manipulations. The abstract syntax can be described as:

Exp ::= BinExp | UnExp | Atom | IfThenElse | FunCall
BinExp ::= Exp (+| − | ∗ |/| ≤ | ≥ | = | ⇒ | ∧ | ∨ |mod) Exp
UnExp ::= QuantPred | NegPred | UnNumExp
Atom ::= Identifier | PredConst | Number
IfThenElse ::= if Exp then Exp else Exp end
FunCall ::= Identifier (Exp)+
QuantPred ::= (∀|∃) Identifier : Type · Exp
NegPred ::= ¬Exp
UnNumExp ::= −Exp
PredConst ::= (1|0|true|false)
Type ::= (boolean|double|int32|int16|int8|uint32|uint16|uint8)

(25)

Note that we do not really separate predicates and expressions at the abstract
syntax level. The reason is that Matlab/Simulink also treats predicates as ex-
pressions. Therefore, we have made this design descision in order to handle all
Matlab expressions. The type checking then assigns types to the nodes in the
abstract syntax tree (AST) and thereby determines if a node is a numeric expres-
sion or a predicate. The inheritance hierarchy is given in Figure 11. This gives
a convenient architecture to handle syntax elements both for type-checking and
verification condition generation. Note that we have subclasses for predicates.
This enables easier type-checking.

The abstract syntax of statements was already described in (8) in Section 6.
The EMF representation is a direct implementation of that. The semantics of
these statements was also already presented in Section 6.

16 The Simulink parser

The Simulink parser reads a Simulink model file and produces a model repre-
sentation that conforms to the Simulink meta-model in Figure 9. In order to
achieve this goal, the files containing Simulink models have to be parsed, pro-
ducing a abstract syntax tree (AST) that can be used to generate EMF models.
Simulink model files are normal text files that can be easily parsed.

The selection of parser generator was made between ANTLR and Java
compiler compiler (JavaCC), which are two well-established frameworks [37, 36].
JavaCC was chosen due to its established user-base and close relation to Java,
which is the main development language for the overall project. Once the rela-
tively steep learning curve of JavaCC was overcome, a parser was created that
was able to analyse Simulink model-files and create an AST representing the
phrase structure of said files. The following step was analysis of the AST through
the use of a visitor pattern.

22



<
<

interface>
>

S
yntaxE

lem
ent

<
<

interface>
>

S
tatem

ent
<

<
interface>

>
E

xpression

<
<

interface>
>

S
im

pleS
tatem

ent
<

<
interface>

>
C

om
posedS

tatem
ent

<
<

interface>
>

A
ssertstatem

ent

<
<

interface>
>

A
ssum

eS
tatem

ent

<
<

interface>
>

A
ssignm

entS
tatem

ent

<
<

interface>
>

C
hoiceS

tatem
ent

<
<

interface>
>

S
equentialS

tatem
ent

<
<

interface>
>

B
inaryE

xpression
<

<
interface>

>
U

naryE
xpression

<
<

interface>
>

Identifier

<
<

interface>
>

F
unC

all
<

<
interface>

>
IfT

henE
lse

<
<

interface>
>

N
um

ber

<
<

interface>
>

A
tom<

<
interface>

>
P

redC
onst

<
<

interface>
>

N
egationP

redicate
<

<
interface>

>
Q

uantifiedP
redicate

<
<

interface>
>

B
inaryP

redicate
<

<
interface>

>
R

elationalE
xpression

<
<

interface>
>

N
um

ericB
inaryE

xpression
<

<
interface>

>
N

um
ericU

naryE
xpression

<
<

interface>
>

V
arD

eclaration

<
<

interface>
>

Z
ero

<
<

interface>
>

O
ne

<
<

interface>
>

T
ypable
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stract syntax representation

23



JavaCC comes with integrated tree-generation functionality that goes under
the name JJTree [37]. The JavaCC grammar developed earlier was augmented
with JJTree node declarations that define when nodes are to be added to the
AST. JJTree also uses the node declarations to generate a data structure for a
AST and, furthermore, creates a Java interface for the visitor. The visitor inter-
face was implemented and a visitor capable of generating EMF model elements
based on a AST was created. The visitor traverses a AST and adds elements to
the EMF-model when nodes are encountered. In practice this means that once
a branch has been traversed, the EMF model element it corresponds to is added
to the parent element.

Simulink stores certain block attributes in a section of the model-file called
BlockParameterDefaults, which is separate from the actual block declarations.
The distributed manner in which data is stored in the Simulink model is also
present in the generated ASTs. This means that some EMF model elements
have to be generated based on information stored in several different branches
of the AST. In order to solve this problem the attributes declared in the section
BlockParameterDefaults of the Simulink model-file are stored in a hash-map
that uses block-types as keys. Since the BlockParameterDefaults sections are
higher in the tree hierarchy than the actual block declarations, the hash-map
contains all relevant attributes when EMF model blocks are being generated.
This means that a block that is being generated can be associated with corre-
sponding attributes in the hash-map by using the type of the block as a key.

The steps described above result in an EMF model corresponding to the
Simulink model that is being analysed. Through the use of well-established
parsing and compilation paradigms a source file is analysed and the resulting
AST is used to generate EMF models that follow the structure defined in the
Simulink meta-model. Details of the Simulink model file format and the parsing
can be found in [23].

17 The statement parser

This section provides an overview of the parsing of contracts and program state-
ments. The most interesting topic is here the concrete syntax of the languages
used by the verification tool. We can differentiate between the grammars for
the following constructs:

• Expressions - Provides the grammar for expressions and predicates.

• Contracts - Describes the format of contracts.

• Statements - Describes the grammar for program statements

Both the contract grammar and statement grammar use the grammar for ex-
pressions.

17.1 Expressions

The grammar for predicates and expressions is given as:

PredExp::= UnPredExp [(&&| || | ==> | <==>) PredExp]

UnPredExp::= RelExp | ~UnExp | ExistPred | ForallPred

ExistPred::= \exists VarDeclaration (, VarDeclaration)* "." Exp

ForallPred::= \forall VarDeclaration (, VarDeclaration)* "." Exp

RelExp::= Exp [(<= | == | >= | <|>) Exp]
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Exp::= Term [(+|-) Exp]

Term::= ETerm [(*|/|mod) Term]

ETerm::= Atom [^ ETerm]

Atom::= "-" Atom | Atom "’" |"(" PredExp ")" | Number |

PredConst | Identifier | IfExp | FunCall

IfExp::= "if" Exp "then" Exp "else" Exp "end"

FunCall::= Identifier "(" ArgList ")"

ArgList::= Expression ["," ArgList]

VarDeclaration::= Identfier ":" Type

Type::= "double" | "boolean" | "int32" | ...

As can be seen from the definition, the grammar is heavily based on the Matlab
grammar for expressions. The goal is that an expression written using this
language should be a valid Matlab expression. However, the if − then − else
expression does not exist in Matlab. It was introduced here since it is often
convenient to use in the specifications.

17.2 Contracts

The format of contracts was already described in Section 4. The concrete syntax
of the contracts is given by the following grammar:

Contract ::=

"contract:"

(

Parameters |

Inports |

Outports |

Memory |

ParameterCondition |

PreCondition |

PostCondition |

InitCondition |

PostConditionMemory |

RefRel

)+

"end"

Parameters::= "parameters:" VarDeclaration (";" VarDeclaration )*

...

ParameterCondition::= "paramcond:" Expression

...

The ”. . .” means that the rest of the productions for the contract clauses in
(3) follow the same pattern. Note that each contract clause can occur multiple
times in a contract. Furthermore, they can be given in any order.

17.3 Statements

The statements that can be used are the ones already described in Section 6.
Their concrete syntax is given by the following grammar:

Statement::= SeqStatement ["/\" Statement]

SeqStatement::= UnaryStatement [";" SeqStatement]

UnaryStatement::= "skip" | "{" PredExp "}" | "[" PredExp "]" |

AssignmentStatement | "(" Statement ")"

AssignmentStatement::=

IdentifierList ("=" ExpressionList | ":|" PredExp)
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IdentifierList::= Identifier ["," IdentifierList]

ExpressionList::= PredExp ["," PredExp]

Note that we use the same symbol (=) for assignment as Matlab. Equality is
denoted ==.

17.4 Implementation

As for the parser of Simulink models, the parser for the constructs above has
been constructed using JavaCC and JJTree. The abstract syntax tree generated
by JJTree is not used directly in the tool. The tree is only used as an intermedi-
ate step for creating an EMF version of the syntax tree discussed in Section 15.
The reason for this is that it makes the treatment of Simulink models, contracts
and statements uniform.

18 The block mapper

The functionality of blocks in Simulink is only implicitly defined. The function-
ality can be derived from the block type and the block parameters, but it is
almost never explicitly given in the Simulink model file. To obtain the func-
tionality for each block the blockmapper component was introduced to map
functionality to block types. Function definitions are stored in a file using an
XML format. Each supported block type is defined in this file. The definitions
have been obtained by reading the Simulink documentation and by testing the
behaviour of the blocks.

Each block without memory is associated with a statement of the form y :=
f.param.u, where y is the out-ports, f a function, param some parameters and
u the in-ports. In case of blocks with memory there are two statements: one
for out-ports and one for the memory y := f.param.x.u and x := g.param.x.u.
This was already discussed in Section 3.

The statements are stored in a file as a string with placeholders for param-
eters. Block mapper then replaces the placeholder with the actual value of the
parameter. Consider as an example the Gain block. The statement in the file
is the following: y1:=@Gain*u1, where @Gain is a placeholder for a parameter
with the name Gain. When all parameter placeholders have been replaced the
block mapper calls the statement parser to create an EMF-representation of the
statement. The EMF-representation of the statement is then added to the block
in the current Simulink meta-model instance.

Some blocks have too complicated definitions to be represented in the XML
format. In these cases the function definition refers to ”handlers”, which are
implemented in code and produce the statements.

Block mapper also adds information on internal dependencies between in-
ports and out-ports inside blocks to the Simulink meta-model. By dependency
is here meant that the value of the out-port depends on the in-ports at the
current sampling time. These dependencies are stored as boolean values for
each in-port in the function definition file.

18.1 File format description

The functions are defined in a file using the XML format. The file contains an
update statements and other needed information about each supported block.
The following is an example of a complete block type definition:
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<block type="Gain">

<parameter name="Gain" />

<statement expr="y1=@Gain*u1" />

<dependency>

<inport name="u1" dependent="true" />

</dependency>

</block>

This describes the definition for the block type Gain. According to the definition
the Gain block has a parameter Gain and the function is y1=@Gain*u1, where
y1 is the out-port, u1 is the in-port and Gain is the value of the Gain parameter.
It is also stated that the value of the out-port depends on the in-port.

There are blocks which cannot be represented in the format above. Examples
of such cases are blocks with memory and blocks with a variable number of
inputs. The following is an example of a block which includes a memory:

<block type="UnitDelay">

<parameter name="X0" />

<memory name="X">

<init expr="X==@X0" />

</memory>

<statement expr="y1=X" />

<mstatement expr="X=u1" />

<dependency>

<inport name="u1" dependent="false" />

</dependency>

</block>

The above definition defines a block with a memory, X, together with the update
and initialisation statements for the memory. Another special definition is the
following one:

<block type="Logic">

<parameter name="Operator">

<replace oldValue="AND" newValue="&amp;&amp;" />

<replace oldValue="OR" newValue="||" />

<replace oldValue="NOT" newValue="~" />

</parameter>

<statement type="complex" prependIfUnary="true" >

<start expr="y1=" />

<separator expr="@Operator" />

<end expr="" />

</statement>

<dependency>

<inport dependent="true" />

</dependency>

</block>

Here the statement element is defined as complex, which means that it consists
of three different elements, the start, separator and end elements. The statement
starts with the expression in the start element, after this every in-port (u1,u2,...)
is added to the statement separated by the expression in separator. The last
part of the statement is the expression in the end element. The main purpose
of this construct is to make it possible to define statements that depends on the
number of in-ports in a general way. The prependIfUnary attribute defines that
the separator element should be added before the in-port if there is only one
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in-port in the block. These, so called, complex statements can also be nested in
arbitrary many levels.

The above definition also contains replace elements for a parameter. This
tells the application to substitute the parameter value with another value. Pa-
rameters can also contain another parameter, one example of this is the Switch-
block.

Some blocks are too complex to be represented in an XML file in a simple
way. In these cases special block handlers are implemented in code. Every
handler should have a unique name which is used for reference in the XML file.
This is done by specifying the statement in the following way:

<statement handler="NameOfHandler" />

where NameOfHandler is the name returned by the getName method of the
handler.

18.2 Supported blocks

The goal is that the tool should support all blocks in the standard Simulink
library. Currently there is a long list of supported blocks. They include many
common mathematical and logical functional blocks, switches, subsystems, and
delay blocks. However, the Simulink block library is fairly large and, hence,
there are currently also many unsupported block types. All blocks involving
creation of matrix signals and blocks for manipulation of such signals are not
supported. Blocks that are also not supported include, S-function and Matlab-
function blocks, Look-up tables, all continuous blocks, most discrete blocks and
the model verification blocks. Other conditionally executed subsystems than
the enabled subsystem are also not supported yet, which include all iterated
subsystems. References to library blocks is another type of construct that is
not supported. Furthermore, Stateflow is unsupported.

19 The type checker

The type-checker checks and infers types for Simulink models, as well as state-
ments and expressions. The type-checker is based on Milner’s algorithm for
polymorphic type-checking and type-inference [30, 33]. The algorithm consists
of building a system of type equations that is then solved. The type variables in
the type equations are associated with objects in a typing environment

Simulink is a statically typed language. The blocks are polymorphic, mean-
ing they can handle different types of data which satisfy certain typing rules.
Simulink has a type system with structures, vectors, matrices, complex numbers
and different types of numbers. To make the verification tractable in this first
version of the tool, only scalar primitive types are allowed. The types known
by the type checker are: double, boolean, int32, int16, int8, uint32, uint16 and
uint8.

For each block, we build a set of type equations based on the type of the
block. Table 1 describes which type equations are added and how the typing
environment is modified for a number of common block types. For example,
the Sum-block has two in-ports i1, i2 and one out-port o1. The type equations
together with the mapping in the type environment then state that the types
of both the in-ports are the same and that the type of the out-port is the same
as the type of the in-ports. In the InPort-block, the in-port actually denotes
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Table 1: Overview of the typing of Simulink blocks
Block type In-ports Out-

ports
Type
equations

Typing environment ε

Sum i1, i2 o1 α = β,
γ = α

ε ∪ {i1 7→ α, i2 7→ β, o1 7→ γ}

Gain i1 o1 α = β ε ∪ {i1 7→ α, o1 7→ β}
Logical i1, i2 o1 ε ∪ {i1 7→ B, i2 7→ B, o1 7→ B}
Relational i1, i2 o1 α = β ε ∪ {i1 7→ α, i2 7→ β, o1 7→ B}
Switch i1, i2, i3 o1 α = β,

γ = α
ε ∪ {i1 7→ α, i2 7→ B, i3 7→ β,

o1 7→ γ}
InPort i1 o1 α = β ε ∪ {i1 7→ α, o1 7→ β}
InPort i1 o1 α = β ε ∪ {i1 7→ α, o1 7→ β}

the corresponding in-port of the subsystem, while the out-port gives the actual
port of the block. The OutPort-block follows the same principle. The system
of type equations is then completed by taking into account the signals between
in-ports and out-ports. For a signal between in-port i and out-port o we add
an equation ε.i = ε.o. This Simulink part of the type checker is in principle a
simplified version of the one in [38].

In order to, at least, partially check Simulink models that contain parts the
tool cannot understand, the type checking is done recursively. Each subsystem
with a contract is type checked individually. In the type-checking process, sub-
systems with contracts inside the subsystem that is currently being processed
are treated as opaque units. This means that we rely on the type specification
in the contract for correctness.

Currently our type inferencer and checker is a simplification of the one in
Simulink. It can only handle scalar primitive types. As seen from the type
equations it will also not correctly check that e.g. booleans are not added
together. A better type checking component is under development. However,
type checking and inference is not our main interest with the tool and therefore
this was deemed sufficient as a first version.

The statement type checker is a traditional type checker based on the same
algorithm as the type-checker/inferencer for Simulink models. It checks and
infers types for expressions and statements. The only special property is that
0 and 1 can be both numbers and booleans. The reason for this is that Matlab
does not have a boolean type. In many cases Simulink internally uses 0 for false.
This needs to be handled by the tool also. Therefore, we have made the design
decision to allow 0 and 1 to be booleans. The actual type used in an expression
is determined by the type-checking algorithm.

20 The Simulink to SDF translator

As described earlier, the translation from Simulink models to sequential state-
ments used for verification is done in two steps. First the Simulink model to
be verified is translated to a functionally identical SDF graph. Then that SDF
graph in turn is translated to a functionally identical sequential statement. This
component translates Simulink models to SDF graphs.

The translation is straightforward and it is a direct implementation of the
principles outlined in Section 9. Functional blocks are translated to SimpleNodes,
InBlocks to InNodes, OutBlocks to OutNodes, Atomic subsystems to Compos-
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iteNodes and conditionally executed atomic subsystems to ConditionalNodes.
The translation proceeds recursively from the initial Simulink model object

through the subsystem hierarchy. Subsystem blocks that are not atomic are not
translated to composite nodes, which means that the virtual subsystem hier-
archy is flattened. Each atomic subsystem with a contract is also individually
type-checked during translation. If unknown blocks are discovered during type-
checking, the subsystem diagram will not be translated. However, a node is
created for the subsystem block and the rest of the graph can still rely on the
node behaviour described in the contract. This means we can partially handle
models that contain constructs that the tool does not understand. This is im-
portant, since Simulink contains a large and expanding library of blocks, which
can also be extended by different toolboxes.

21 The SDF to Statement translator

This component takes an SDF graph and translates it into a list of verification
structures. Each verification structure contains the information needed for veri-
fication of a CompositeNode-object (Simulink atomic subsystem). A verification
structure consists of the node contract, as well as a sequential statement that
conforms to the sequential statement meta-model. The statement is obtained by
translating the graph of the composite node as described in Section 7. However,
the tool does not yet perform the translation of general SDF graphs using the
algorithms described in [25, 24].

One problem that was only briefly mentioned in Section 7 is the implemen-
tation of the function v described in Definition 2. This function should provide
a mapping of ports and delays to unique identifiers. The naming policy is given
in (26).

v.n.p = uniqueName.n ”̂ ”̂ name.p
v.d = uniqueName.(container.d)̂ ” ”̂ name.d

(26)

Where uniqueName is defined as:

uniqueName.n = if container.n 6= nil
then uniqueName.(container.n)̂ ” ”̂ name.n
else name.n end

Here the function container.o gives the node that contains object o and name
gives the name of an object. The symbol ˆ denotes string concatenation. For
example a port with name p in a node named n, which in turn resides in node
m, would get the name m n p. Spaces and new line characters in node names
are replaced by ” ”.

22 The weakest precondition calculator

The weakest precondition calculator directly implements the rules in (9) in
Section 6. It takes a Statement object and an Expression object as argument. It
then computes a new Expression object that represents the weakest precondition
for the statement represented by the statement object to establish the post-
condition given by the expression object given as argument.
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Figure 12: A screen shot of the tool showing the verification results of the
PID-controller example from Subsection 10.1

23 The verifier

The verifier takes a list of verification structures produced by the SDF to state-
ment translator component and verifies their correctness. For each verification
structure we show that the translated node graph (subsystem diagram) con-
forms to its contract description as described in Section 10. The proof obliga-
tion for refinement (24) is first calculated using (14) by utilising the weakest
pre-condition calculator. Each resulting proof obligation is then translated to
the SMT-LIB format [34]. The SMT-solver Z3 is then used to discharge the
proof obligations. Any SMT-solver that can read the SMT-LIB format can in
principle be used, but we have used Z3 because of its excellent support for both
linear and non-linear real number arithmetic.

To visualise the result of the verification process, a graphical user interface
is included. A screen shot from the tool is shown in Figure 12. The interface
consists of a tree view that shows an overview of the structure of the Simulink
model that is being verified, as well as a text area to display more detailed
information. The result of the verification is shown by giving the subsystems
in the tree view different colors. Green means that the subsystem was found
correct, red means that the subsystem is incorrect and orange that the correct-
ness is unknown. Counter examples are also shown in the tree by labeling the
model elements with the values obtained from the counter example generated
by verification tool. The text area then displays more detailed information if
available.

24 Future work

There are many improvements and extensions that can be made both to the
method and to the tool in order to make them even more useful for verification
of Simulink models.

One of the key features of Simulink is the possibility to transparently and
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efficiently use matrices and vectors. This needs to be supported by our tool
also. This would require a type checker that can also infer sizes of signals and
expressions. Furthermore, an efficient translation of matrices to the SMT-LIB
format is also needed.

Another limitation is that multi-rate models cannot be handled by the tool
yet. However, the SDF graphs are also useful for modeling multi-rate systems
and, hence, this type of systems can already be handled by that approach. To
handle multi-rate models in the tool, inference of the clock of the blocks would
be needed as the sampling time is only implicitly defined in Simulink. This
has already been done in [38]. Furthermore, some work on defining appropriate
contracts in this setting is also needed in order to get a useful method.

25 Conclusions

Contract-based development of Simulink models has earlier been determined
to be useful [10, 12]. This paper presents one approach to do contract-based,
compositional, automatic verification of Simulink models. The verification is
based on representing Simulink diagrams as SDF graphs to obtain sequential
program statements that can be analysed using traditional refinement-based
methods. This gives a straightforward approach to calculate the proof obli-
gations to determine if a given Simulink subsystem satisfies its contract. The
method is compositional in the sense that the subsystems in a model can be
verified individually. As a by-product, we also obtain a method for contract-
based verification for any SDF-based notation. Furthermore, the approach has
been implemented in a prototype tool.

There are several approaches to formal verification of Simulink models that
are based on translating the diagrams to a formal notation [38, 16, 17], as well
as Simulink Design Verifier [28]. The goal of those tools and methods is to ver-
ify different properties about Simulink models, not to provide a comprehensive
framework for compositional verification. However, they can be used as verifi-
cation back-ends for the contract-based approach described in this paper. We
have decided to use our own tool as it allows us to generate the proof obligations
in a format suitable for efficient automatic verification tools (the SMT-solver
Z3). It also allows us to experiment with different approaches to verification.
However, it would be interesting to investigate the use of e.g. Simulink Design
Verifier as the verification back-end.

SDF graphs in conjunction with the theory of refinement seem to give a
good basis for analysis of data flow diagrams. The classical theory of program
analysis and refinement can be used and the generation of proof obligations,
suitable for automatic proofs, needed for verification is straightforward. The
developed tool support shows that the approach can be implemented, as well as
enables the use of the approach on practical problems.
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