Yuliya Prokhorova | Elena Troubitsyna |
Linas Laibinis

Integrating FMEA

into Event-B Development
of Safety-Critical Control
Systems

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 986, October 2010

=7
7
I rucs

Integrating FMEA into Event-B
Development of Safety-Critical Control
Systems

Yuliya Prokhorova

Abo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, FIN-20520 Turku, Finland
Yuliya.Prokhorova@abo.fi

Elena Troubitsyna

Abo Akademi University, Department of Information Technologies
Joukahaisenkatu 3-5 A, FIN-20520 Turku, Finland
Elena.Troubitsyna@abo.fi

Linas Laibinis
Abo Akademi University, Department of Information Technologies

Joukahaisenkatu 3-5 A, FIN-20520 Turku, Finland
Linas.Laibinis@abo.fi

TUCS Technical Report
No 986, October 2010

Abstract

Application of formal methods, in particular Eveit-helps us to verify correctness of
controlling software. However, to guarantee depbilitha of software-intensive control
systems, we also need to ensure that safety and ttderance requirements are
adequately represented in a system specificatiothi$ paper we demonstrate how to
integrate the results of safety analysis, in paldic failure mode and effect analysis
(FMEA), into formal system development in Event-BMEA allows us to
systematically study the causes of componentssfathieir global and local effects, and
the means to cope with these faults. The faultraolee mechanisms are often
implemented as a part of the developed softwaegetbre the information obtained as
the result of FMEA constitutes the necessary requants that the controlling software
should fulfil. Our approach enables extraction atrdceability of the safety
requirements that thus potentially increase syst®pendability. The proposed
methodology is exemplified by a case study.

Keywords. Event-B, FMEA, formal methods, safety, safetyicalt control systems

TUCS Laboratory
Distributed Systems Laboratory

1.Introduction

A widespread use of software for controlling caticapplications necessitates
development of techniques for ensuring its coressnIn other words, these techniques
should guarantee that software behaves accordings tepecification. However, to
achieve a high degree of system dependability, eeild address not only software
correctness but also ensure that safety requiresmamet adequately represented in a
software specification.

Safety [11] is property of the system requiringttitavill not harm its environment
or users. It is a system-level property that camadigeved via a combination of various
techniques for safety analysis. The aim of safeglysis is to uncover possible ways in
which system might breach safety and then devisenibans to avoid these situations or
mitigate their consequences. There is a wide gpactf techniques that facilitate the
analysis of possible hazards associated with teesy the means for introducing fault
tolerance to prevent occurrence of dangerous faakswell as the techniques for
deriving functional requirements from the condudatety analysis.

In this paper we focus on the use of Failure Malas$ Effect Analysis (FMEA) — a
widely-used inductive technique for safety analypl$ and [11]. We propose a
methodology that allows us to incorporate the tesof FMEA into a formal system
specification. FMEA aims at a systematic study ltd tauses of components faults,
their global and local effects, and the means feecwith these faults. Since the fault
tolerance mechanisms are often implemented astaop#re developed software, this
information constitutes the necessary requiremgrasthe controlling software should
fulfil.

Since safety is a system-level property, it requingodelling techniques that are
scalable to analyse the entire system. Scalaliilithe system analysis is achieved via
abstraction, proof and decomposition. The EventBnhlism [1] provides a suitable
framework that satisfies all these requirementenEB is a state-based formalism for
development of highly-dependable systems. The mewelopment technique of Event-
B is refinement. In Event-B, we start system modglat a highly-abstract level and, by
a number of correctness-preserving transformatiatied refinement steps, arrive at a
system specification that is close to the evenituglementation. Correctness of each
refinement step is verified by proofs.

In this paper we show how to incorporate the resfit-MEA into the formal Event-
B development. Our approach enables elicitation #radeability of the safety
requirements that thus potentially enhance systepembability. The proposed
methodology is illustrated by a small case study.

The paper is structured as follows. Section 2 gare®verview of the related work.
In Section 3 we briefly present the Event-B metlaodl also describe modelling of
control systems in Event-B. In Section 4 we propamseethodology for integrating the
results of FMEA into the Event-B development. Sactthb illustrates the proposed
approach by a case study — a heater controll&Settion 6 we give concluding remarks
and discuss our future work.

2. Modelling Control Systems in Event-B

2.1. Event-B Overview

The B Method is an approach for the industrial ttgw@ent of highly dependable
control systems. The method has been successkdly in the development of several
complex real-time applications [6]. Event-B [1llagsecent variation of the B Method [2]
to model parallel, distributed and reactive systeftie automated tool, which provides
a support for modelling and verification in Eventi8the Rodin platform [3].

To construct and verify system models, Event-B tlsesAbstract Machine Notation.
An abstract machine encapsulates the state (thables) of a model and defines
operations on its state. A machine has the follgvgeneral form:

MACHINE MachineName

VARIABLESIist of variables

INVARIANTS constraining predicates of variables and invarignbperties
of the machine

EVENTS

INITIALISATION

evh

eviy
END

The machine is uniquely identified by its naMachineNameThe state variables of
the machine are declared in théARIABLES clause and initialized in the
INITIALISATIONevent. The variables are strongly typed by comstrg predicates of
invariants given in theNVARIANTS clause. The invariant is usually defined as a
conjunction of the state defining the propertieshaf system that should be preserved
during system execution. The model data types andtants are defined in a separate
component calle€ONTEXT. The behaviour of the system is defined by a nurobe
atomic events specified in tll&/ENTS clause. An event is defined as follows:

E=WHENgTHEN SEND

where the guard is a conjunction of predicates over the state béeg and the action
Sis an assignment to the state variables.

The guard defines the conditions when the action lma executed, i.e., when the
event is enabled. If several events are enabledltsineously then any of them can be
chosen for execution non-deterministically. If nasfethe events is enabled then the
system deadlocks.

In general, the action of an event is a compositibwariable assignments executed
simultaneously. Variable assignments can be edl&rministic or non-deterministic.
The deterministic assignment is denotedkas E(v), wherex is a state variable and
E(v) expression over the state variablesThe non-deterministic assignment can be
denoted ag :€ Sorx :| Q(v, X), whereSis a set of values ar@(v, X) is a predicate. As

a result of the non-deterministic assignmergets any value fror8 or it obtains such a
valuex' thatQ(v, X) is satisfied.

The semantics of Event-B events is defined usiniprbeafter predicates [8]. A
before-after predicate describes a relationshipvden the system states before and after
execution of an event. The formal semantics pravide with a foundation for
establishing correctness of Event-B specificatiod® verify correctness of a
specification, we need to prove that its initialiaa and all events preserve the
invariant.

To check consistency of an Event B machine, we Isheerify two types of
properties: event feasibility and invariant presg¢ion. Formally, for any evers

INnV(V) A ge(V) = V" . BA(V, V)

INV(V) A Qe(V) A BA(V, V) = Inv(V")
wherelnv is the model invariange is the guard of the evestandBA. is the before-
after predicate of the eveat

The main development methodology of Event Brefinement— the process of
transforming an abstract specification to graduaflyoduce implementation details
while preserving its correctness. Refinement allavgsto reduce non-determinism
present in an abstract model as well as introdegeaoncrete variables and events. The
connection between the newly introduced variabtesthe abstract variables that they
replace is formally defined in the invariant of ttegined model. For a refinement step
to be valid, every possible execution of the refimeachine must correspond to some
execution of the abstract machine.

The consistency of Event B models as well as coress of refinement steps should
be formally demonstrated by dischargipigoof obligations The Rodin platform [3], a
tool supporting Event B, automatically generates tequired proof obligations and
attempts to automatically prove them. Sometimesqguires user assistance by invoking
its interactive prover. However, in general thel tachieves high level of automation
(usually over 90%) in proving.

2.2. Modelling Control Systems

In our previous work, we have described how to rhammtrol systems in the B
method [7]. Therefore, here we just briefly summearthe part that will be necessary for
our current research.

In general, a control system is a reactive systéim two main entities: a plant and a
controller. The plant behaviour evolves accordiaghe involved physical processes
and the control signals provided by the controllére controller monitors the behaviour
of the plant and adjusts it to provide intendedcfignality and maintain safety. In this
paper we advocate a system approach to designirtgptiers for failsafe systems, i.e.,
we will specify a control system as an event-bagesiem which includes both a plant
and a controller.

The control systems are usually cyclic, i.e., atqaic intervals they get input from
sensors, process it and output the new valueset@dtuators. In our specification the
sensors and actuators are represented by statblearishared by the plant and the
controller. At each cycle the plant reads the \deis modelling actuators and assigns

the variables modelling the sensors. In contrdst, ¢ontroller reads the variables
modelling sensors and assigns the variables moddhie actuators (Fig. 1). We assume
that the reaction of the controller takes negligiamount of time so the controller can
react properly on changes of the plant state.

- Sensor

Plant

Controller (Environment)

—» Actuator |—P

Figure 1: A control system

The development of a failsafe control system inrAg starts from modelling the
abstract machinAbs M, which is shown in Fig. 2. The overall behavioutl system
is an alternation between the events modellingtptaolution and controller reaction.
As a result of the initialisation, the plant’s oggon becomes enabled. Once completed,
the plant enables the controller. The behaviouthef controller follows the general
pattern

Environment; Detection; Control (Normal Operationtrror Recovery); Prediction
modelled by the corresponding assignments to thiabla flag of the typePHASE,
whereadPHASE is an enumerated set {ENV, DET, CONT, PRED}.

event Normal Operation
where

machine Abs M sees Abs C
variables Stop_System, System_Failure, flag

invariants
@inv1 Stop System € BOOL
@inv2 System_Failure € BOOL
@inv3 flag € PHASE
@inv4 System Failure = FALSE = Stop System = FALSE
@inv5 System_Failure = TRUE A flag # CONT A flag # DET
= Stop_System = TRUE

events
event INITIALISATION then
Initialisation of variables
end

event Environment
where
@grd1 Stop_System = FALSE
(@grd2 System_Failure = FALSE
(@grd3 flag = ENV
then
@act] flag .= DET
end

event Detection

where
@grd1 Stop_System = FALSE
(@grd2 System_Failure = FALSE
(@grd3 flag = DET

then
@act] System_Failure :€ BOOL
@act2 flag := CONT

end

(@grdl Stop_System = FALSE
(@grd2 System_Failure = FALSE
(@grd3 flag= CONT
then
@act] flag == PRED
Routine control
end

event Error_Recovery
where
@grdl Stop_System = FALSE
(@grd2 System_Failure = TRUE
(@grd3 flag = CONT
then
@actl Stop_System := TRUE
end

event Prediction
where
(@grdl Stop System = FALSE
(@grd2 System_Failure = FALSE
(@grd3 flag = PRED
then
(@actl flag = ENV
end
end

Figure 2: An abstract specification of a contradtsyn

The operation (evengnvironment is used for modelling the plant. The operation
Detection models error occurrence by non-deterministic ass@nt to the variable
System_FailureThe operatiorError_Recovery aborts the system if system failure is
detected, i.e., the variabfystem_Failureequals TRUE. The operatid?rediction is
used for modelling expected values of variableghSubehaviour essentially represents
a failsafe system. The failsafe error recovery is performedfdrcing the system
permanently to a safe though non-operational d@iteiously, this strategy is only
appropriate where shutdown of system is possilileg. routine control is specified by
the operatiorNor mal_Oper ation.

In this paper we consider safety-critical contrgdtems, therefore safety properties
(formalized as safety invariants) should be vatifiermally, starting from the abstract
specification. The safety invariants added to th&tract specification are shown below

System_Failure = FALSE Stop_System = FALS#d
System_Failure = TRUE flag# CONT A flag# DET = Stop_System = TRUE.

The first one states that, while no failure occdyrihe system is not stopped. The
second requires that, when system failure is date¢he system has to be stopped by
the controller.

3. Incorporation of Fault Analysis results
in Event-B

In this section we describe a methodology whiclpseis to incorporate the information
obtained as a result of FMEA into our formal speation. The top-down development
paradigm adopted by Event-B allows us to implentieatfault analysis requirements in
a stepwise manner, starting with the abstract &paton.

3.1. A Methodology

The development of safety-critical systems staytsdentifying possible hazards and
proceeds with accumulating the detailed descriptidnthem, containing also the
necessary means to cope with the identified hazards

Our methodology based on incorporation of the FMESults in an Event-B
specification of a control system, as it is showikig. 3.

Each refinement step may introduce one or a fetéesysomponents into our formal
specification. According to our methodology, thidroduction consists of three steps.
We start by making FMEA, which results in a worksthir each component. It allows
us to identify failure modes, possible causes, |lecal system effects. Then, as an
intermediate form, we build an Event-B counterpaorksheet for each component in
order to represent each FMEA table field in EventeBns.

Finally, the obtained results are incorporated thorefined specification. Please,
note that system components can be introducedffamatt abstraction levels, which

means that an abstract component, once introdutay pe late refined, e.g., replaced
by several concrete ones.

Abstract
specificaton | ———
Failure Mode and Effects Analysis of
system components

L]

FMEA representation using Event-B
Refinement 1. elements
Introduction of <
selected
components Failure Mode and Effects Analysis of
system components
L]

FMEA representation using Event-B
elements

FMEA representation using Event-B
elements

Refinementn l«——

Figure 3: An illustration of the proposed methodyylo

3.2. FMEA Representation in Event-B

According to our methodology, we built FMEA tablés separate control system
components such as sensors (Fig. 4) and actudms5). A fault of any of these
components may cause system failure, thus they$iankar level of criticality.

The aim of the controller is to keep the behaviolthe environment according to
certain design goal. Controller affects the behawiof the environment by setting
certain values to actuators so that desired bebawan be achieved. Controller
observes the effect of changing actuators statesbgting the corresponding sensors.
Therefore, it is logical to introduce the represehthe actuator and the sensor into
system specification at the same time, i.e., withensame refinement step.

Component Sensor
Failure mode Open circuit or short circuit
Possible cause Primary hardware failure

Sensor constantly sends signal which is less than a min legitimate value or more

Laal effacts than a max legitimate value
System effect System failure
Detection Sensor value 1s out of range
Remedial action Stop system

Figure 4: FMEA worksheet for a sensor

Component Actuator

Failure mode Stuck at one of two possible modes

Possible cause Primary hardware failure

Local effects Non adequate reaction on signals

System effect System failure

) The received sensor value is not adequate to the predicted one according to the
Detection
actuator mode

Remedial action Stop system

Figure 5: FMEA worksheet for an actuator

To illustrate our methodology, let us consider &@steact sensor and an abstract
actuator. The failure of the sensor can be detelsyethe comparison of its received
value with the possible one. When the sensor sandgnal that is outside of the
legitimate range, we consider such a situation daud. The actuator fault can be
detected by assumption based on the actuator turrede and the predicted sensor
value according to this mode.

Each field of the FMEA table can be representedamn Event-B model by its
corresponding elements: variables, constants, semt event guards.

To make the development process in Event-B mom&lgiéo developers, we present
guidelines how to represent the results of FMEAsgdtem components in Event-B
terms:

* Any system component corresponds to a particuldoset of Event-B model

variables and events.

» Every component of a failsafe system has to haveast two variables, one to
model its current value and the other one to mpdssible fault occurrence.

« A failure mode is represented by the pre-definedddion on the component
variables and a set of the dedicated events enatted the condition is true.
Additional constants (system parameters) may bmelkfin the accompanying
model context.

» System effect is modelled in a formal specificaty defining the safety invariants
and introducing special variables to model systaiturie or other degraded state
of the system.

» Detection events are tied up with the correspandailure modes by adding the
failure mode condition as an additional guard.

* Remedial action translates into a special operatiodelling error recovery.

For example, to represent the sensor in our exanwde declare the following
variables (Fig. 6)Sensor_Valueand Sensor_Fault These variables are used in the
following eventsEnvironment, Detected_Sensor_Fault, Detected_No_Fault.

The identified failure mode can be formally definagsing the constants
Sensor_max_thresholthdSensor_min_threshol@dded into the model context). They
are detected in the dedicated evemetected Sensor_Fault. The condition
corresponding to the failure modeSensor_Fault = TRUE

In this paper we do not consider a situation whammonents faults can be recovered
without shutdown of the whole system. Therefore; s@nsor or actuator fault lead to
system failure. In Event-B this is representedthi@safety invariant

System_Failure = TRUE= Sensor_Fault = TRUE” Actuator_Fault = TRUE
In other words, when a sensor fault occurs, systasto be stopped. The special event
Error_Recovery models this situation.

Variables Events
Environment
Component Sensor Value € Z :
P = Detected Sensor Fault

Sensor Fault € BOOL Detected No Fault
Constants
Sensor max_threshold
Sensor mun_threshold Events

Failure mode | where Detected_Sensor_Fault
Sensor min_threshold <
Sensor max_threshold

Condition Sensor_Fault = TRUE

Possible cause | Occur non-deterministically in event Environment

Local effects Sensor Value < Sensor min threshold Vv Sensor Value > Sensor max threshold

System effect | System Failure = TRUE <> Sensor Fault = TRUE V Actuator Fault= TRUE
Event Detected Sensor Fault

Detection Guard Sensor_Value > Sensor_max_threshold V Sensor Value <
Sensor_min_threshold

Event Error Recovery

Guard Sensor_Fault = TRUE V Actuator_Fault = TRUE

Action Stop System := TRUE

Remedial

action

Figure 6: Event-B representation of the FMEA restdt a sensor

Similarly, we declare the variablégtuator_Valueand Actuator Faultto represent
an actuator in Event-B (Fig. 7).

Variables Events
I : Environment
Component Actuator_Value € SWITCH {ON, OFF} Deteted, Hotuatos Hailk
Actuatoril:aul‘[& BOOL DetectedﬁNoiFauh'
Events
Failure mode Detected Actuator Fault

Condition Actuator Fault = TRUE

Possible cause | Occur non-deterministically in event Environment

Local effects | Sensor Value > next s value max V Sensor Value < next s value min

System effect | System Failure = TRUE <> Sensor Fault = TRUE V Actuator Fault = TRUE
Event Detected_Actuator Fault Guard Sensor_Value > next s value max V
Sensor Value < next s value min
Event Error Recovery
Remedial Guard Sensor Fault = TRUE V Actuator Fault = TRUE

action Action Stop_System := TRUE
Actuator Value == OFF

Detection

Figure 7: Event-B representation of the FMEA restdt an actuator

As we described above, to detect the actuator, faglthave to compare the received
sensor value with predicted one. The correspondetgction events model the system
reaction when the guar®ensor Value > next s value_max Sensor Value <
next_s_value_mirms true. The remedial action for the actuator is $ame as for the
sensor (i.e., system shutdown).

In the following we summarize the proposed methogyi

* the development of a failsafe safety-critical cohsystem in Event-B starts from
modelling an abstract machine where system failarel error recovery
mechanisms are introduced;

« failure mode and effects analysis for each systemponent that may causes the
system failure is done by building a FMEA worksheet

* an intermediate representation table where the ANMéESults are represented in
Event-B terms is created according to the givengjines;

« the abstract specification is modified accordioghte FMEA results represented in
the intermediate table and proved to be a refinégmen

« the described process is iterative. For exampldei control system consists not
only from system components that causes the syftidume but also from other
components, which introduce some redundancy oftiegiscomponents, the
FMEA table is built for each such a component,ittermediate table is created
and then the FMEA results are incorporated intaad refined specification;

« all steps can be repeated until we receive thal fimost refined) specification,
which includes all the system components and faeedlrequirements.

In the next section we show an application of tteppsed methodology.

4. Case Study

To illustrate the proposed methodology, we descalfailsafe control system, which
has a controller, a sensor and an actuator. Incase it is a heater case study. The
sensor is a temperature sensor and the actuatoheater. The controller receives a
temperature value from the sensor and switchebdheer to one of two possible states
(ON or OFF) depending on the given temperaturegang

Following our methodology we analyse system comptmand their faults, build a
FMEA table and represent the FMEA table fields wel-B terms, then proceed by
refining an abstract specification using the oladiresults.

4.1. Temperature Sensor and Heater
Implementation

The abstract specification of our case study iy wénilar to the abstract specification
presented in Section 3.2. Therefore, we are gamguse it for our case study.

As the temperature sensor can be described in aAFdle in the same way as an
abstract sensor, we also reuse its table in thisose The variableéSensor_Faultis

Temp_ Sensor_Fauéind the variabléctuator_Faultis Heater_Faultin the renewed
case study. The variables and invariants of thaeedfspecification are shown in Fig. 8.

In the refinement we also replace the variaBlgstem_Failuremodelling error
occurrence by the variables representing faultsystem components, i.eTemp_
Sensor_Faultand Heater _Fault It is an example of data refinement. This data
refinement expresses our modelling assumptionttieasystem error occurs only when
one or several system components fail. The refimemadation defines the connection
between the newly introduced variables and thealbées that they replace. While
refining the specifications, we add this refinemesiation as an additional invariant of
the refined machine:

System_Failure = TRUE> Temp_ Sensor_Fault = TRUEHeater_Fault = TRUE.

The safety invariant then changes from
System_Failure = TRUE flag# CONT A flag# DET = Stop_System = TRUE
to
(Temp_Sensor_Fault = TRUEHeater_Fault = TRUEN flag# CONT A flag #
DET = Stop_System = TRUE.

Also, we formulate an extra safety invariant
Temp_Sensor_Fault = FALSEHeater_Fault = FALSE: flag# CONT A flag #

DET = Temp_Sensor_ValueSensor_max_threshold A Temp_Sensor_Value >
Sensor_min_threshold.
It states that, if there are no temperature searmdrheater faults, the current sensor
value is within the expected range.

machine Temp_Sensor_Heater_M refines Abs_M sees Sensor_Actuator_C

variables
Stop System, System Failure, flag, Temp Sensor Value, next s value max, next s value min
Temp_ Sensor Fault, Heater Value, Heater Fault

invariants

@invl Temp Sensor Value € 7

(@inv2 Temp_Sensor_Fault € BOOL

@inv3 Heater Value € SWITCH

(@inv4 Heater Fault € BOOL

@invS System_Failure = TRUE < Temp_Sensor_Fault = TRUE Vv Heater Fault = TRUE

@inv6 (Temp_Sensor_Fault = TRUE Vv Heater _Fault = TRUE) A flag # CONT A flag # DET =
Heater Value = OFF

@inv7 (Temp_Sensor_Fault = TRUE Vv Heater _Fault = TRUE) A flag # CONT A flag # DET =
Stop_System = TRUE

@inv8 Temp_Sensor_Fault = FALSE A Heater _Fault = FALSE A flag # CONT A flag # DET =
Temp_Sensor Value < Sensor_max_threshold A Temp Sensor Value > Sensor_min_threshold

events

end

Figure 8: The invariants of the refined specificatTemp_Sensor_Heater M

10

The operatiorEnvironment, which is shown in Fig. 9, is used for modellirgg t
plant (i.e., the environment) of the heater. Thealde Temp_Sensor_Valus updated
non-deterministically to model possible value clenfthe temperature sensor.

event Environment refines Environment
where
@grd] Stop_System = FALSE
@grd2 flag = ENV
(@grd3 Heater_Fault = FALSE
@grd4 Temp_Sensor_Fault = FALSE
then
(@actl flag == DET
(@act2 Temp_Sensor_Value :€ 7
end

Figure 9: The operation Environment of the Temp sBerHeater M specification

The operationDetected_Sensor _Fault refines the operatiorDetection at the
abstract specification (Fig. 10). We extended thards clause by adding the results of
FMEA according to the Fig. 6. The non-determiniséissignment to the variable
System_Failureis replaced by the deterministic assignment of t&riable
Temp_Sensor_Fault becomes equal to TRUE, thus indicating a detksensor fault.

event Detected_Sensor_Fault refines Detection event Detected No_Fault refines Detection
where where
@grdl Stop_System = FALSE @grdl Stop_System = FALSE
@grd2 flag=DET (@grd2 flag = DET
@grd3 Temp_Sensor_Value > @grd3 Temp_Sensor_Value <
Sensor_max_threshold Vv Sensor_max_threshold
Temp_Sensor_Value < @grd4 Temp_Sensor_Value >
Sensor_min_threshold Sensor_min_threshold
@grd4 Temp_Sensor_Fault = FALSE @grd5 Temp_Sensor_Fault = FALSE
@grd5 Heater Fault = FALSE (@grd6 Heater Fault=FALSE
then @grd7 Sensor_Value < next_s_value_max
@actl Temp Sensor Fault = TRUE @grd8 Sensor Value > next s _value min
@act2 flag = CONT then
end @actl flag = CONT
end

event Detected_Actuator_Fault refines Detection
where
@grd] Stop_System = FALSE
@grd2 flag=DET
@grd3 Temp Sensor Fault=FALSE
@grd4 Heater Fault = FALSE
@grdS Temp_Sensor_Value > next_s_value_max V
Sensor Value <next s value min
@grd6 Temp_Sensor_Value >
Sensor_min_threshold
@grd7 Temp Sensor Value <
Sensor_max_threshold
then
@act] Heater Fault := TRUE
@act2 flag == CONT
end

Figure 10: The operations Detection of the Temps8erHeater M specification

11

The operatiorDetected_Actuator _Fault also refines the operatiddetection. We
strengthened the operation guard by adding newdguaccording to the results of
FMEA, shown in Fig. 7. The non-deterministic assmgmt to the variable
System_Failureis replaced by the deterministic assignment of thariable
Heater_Fault It becomes equal to TRUBetected No Fault is another refinement of
the operationDetection. However, the non-deterministic assignment to \thaable
System_Failures not replaced by any of two variables, becabsg are already equal
to FALSE.

After the execution of one of the detection evatissussed above the system has
three ways to continue its execution. The firseaasvhen the temperature sensor or the
heater faults occur and as a result the systentchde stopped. Thus, the operation
Error_recovery, which is identical to its abstract counterpd@comes enabled. The
other two cases are when there is no fault aneésys functioning in the normal mode
(Fig. 11). These two events differ from each otbgrtheir guards and respective
actions. In one case, if the temperature sensaevalless than the maximum value but
more or equal than the middle value, the vari&ldater Valuds assigned OFF. In the
other case, if the temperature sensor value is tharethe minimum value but less than
the middle value, the variabl¢éeater Valuas assigned ON.

event Normal_Operation_1 refines Normal_Operation event Prediction! refines Prediction

where where
(@grdl Stop_System = FALSE @grd] flag = PREDI
(@grd2 flag = CONT (@grd2 Stop System = FALSE
(@grd3 Heater_Fault = FALSE @grd3 Heater_Fault = FALSE
(@grd4 Temp_Sensor_Fault = FALSE @grd4 Temp_Sensor_Fault = FALSE
(@grd5 Temp_Sensor_Value < (@grd5 Heater Value = OFF
Sensor_max_threshold then
(@grd6é Temp_Sensor_Value = @actl next_s_value_max :=
Sensor_middle_val min_dec(Sensor Value)
then @act2 next_s_value_min =
@act] Heater_Value := OFF max_dec(Sensor Value)
@act2 flag = PRED1 @act3 flag == ENV
end end

event Normal Operation 2 refines Normal Operation event Prediction2 refines Prediction

where where
@grd1 Stop_System = FALSE @grdl flag = PRED2
(@grd2 flag = CONT (@grd2 Stop_System = FALSE
(@grd3 Heater Fault = FALSE (@grd3 Heater_Fault= FALSE
@grd4 Temp_Sensor_Fault = FALSE (@grd4 Temp_Sensor_Fault = FALSE
@grd5 Temp_Sensor_Value > (@grd5 Heater Value = ON
Sensor_min_threshold then
(@grd6 Temp_Sensor_Value < (@actl next_s value_max :=
Sensor_middle_val max_ine(Sensor_Value)
then @act2 next s value min =
(@act] Heater Value := ON min_ine(Sensor Value)
(@act2 flag = PRED2 @act3 flag == ENV
end end

Figurell: The operations Normal_Operation and Etiedi of the
Temp_Sensor_Heater M specification

In the next section we will make our model morestaht by introducing the triple
module redundancy (TMR) arrangement for our sensor.

12

4.2. TMR Implementation of the Temperature
Sensor

In the specification obtained at the previous efient step all errors are considered to
be equally critical, i.e., leading to the shutdowwhile introducing redundancy at our
next refinement step, we obtain a possibility tstidguish between criticality of errors
and mask a single error of a system component. iégimn of Triple Modular
Redundancy (TMR) [11] in that case allows us tokrfaslts of a single sensor. TMR is
a well-known mechanism based on static redundaibg general principle is to
triplicate a system module and introduce the migjmoting to obtain a single result of
the module, as shown in Fig. 12.

—P»= Sensor 1

Output

Input
—P(Sensor 2

—p Sensor3

Figure 12: Sensor TMR

Fig. 13 shows the control system described in 8ecB.2 with three temperature
sensors. In our case study we model the temperatnsors and a voter as parts of a
plant. The controller only receives the result aoting and does not see particular

Sensors.

Temperature
sensor 1

Temperature
sensor 2 Plant

Controller (Environment)
Temperature

sensor 3

- Heater ——

Figurel3: The case study system with the temperaemsor TMR

Following our proposed methodology, we refine tppecsfication obtained in the
previous section in order to add the sensor TMRangement. However, before
describing the refinement step formally, we havenalyse all possible failure modes
and effects associated with new introduced sensois,consequently build the FMEA
table (Fig. 14) as well as the intermediate repriegion table (Fig. 15) for each newly
introduced component.

13

Component

Temperature sensor TMR: Temperature sensorl,
Temperature sensor2,
Temperature sensor3

Failure mode

If more than one temperature sensor is failed then temperature sensor fault
ocecurs

Possible cause

Primary hardware failure

Local effects More than two temperature sensors failed
System effect System failure
Detection Values of all tree temperature sensors are not equal to each other

Remedial action

Stop system

Figure 14: The FMEA table for the temperature seistR

The representation of FMEA results in Event-B iswh in Fig. 15. The temperature
sensor TMR is modelled by using the following vhhes: Temp_Sensorl_Value
Temp_Sensor2_ValueTemp_Sensor3 Valuand the variableTemp_Sensor_Fault
which is equal to the variableemp_Sensor_Fauih the previous refinement step, and

the eventsEnvironmentl and Environment2 1

shown in Fig. 16. The last five events are usedrfodelling the TMR voter.

Component

Variables Events

o 7 Environmentl
Temp Sensorl Value € Environment2 1
Temp_ Sensor2 Value € 7 Environment2 2

Environment2 3
Environment2 4
Environment2 5

Temp_ Sensor3 Value € 7
Temp Sensor Fault € BOOL

Failiire mode

Events
Detected Sensor Fault

Condition Temp Sensor Fault = TRUE

Possible catise

Occur non-deterministically in event Environment!

Local effects

Temp Sensorl Value # Temp Sensor2 Value
Temp Sensorl Value # Temp_ Sensor3 Value
Temp Sensor2 Value # Temp Sensor3 Value

System effect

Temp Sensorl Value # Temp Sensor2 Value A Temp Sensorl Value #

Temp Sensor3 Value A Temp Sensor2 Value # Temp Sensor3 Value =
Temp_ Sensor_Fault = TRUE

System_Failure = TRUE <> Temp Sensor Fault = TRUE V Heater Fault = TRUE

Events Environment2_5
Guards Temp_Sensorl Value £ Temp_ Sensor2_Value

i Temp Sensorl Value # Temp Sensor3 Value
Temp Sensor? Value # Temp Sensor3 Value
Event Error Recovery
Remedial B i
dclicn Guard Temp_Sensor_Fault = TRUE V Heater_Fault = TRUE
Action Stop System := TRUE
Figure 15: Event-B representation of FMEA for tamperature sensor TMR

The occurrence of three temperature sensors fardtsntroduced in the operation
Environmentl by non-deterministic assignment of the approprisdables. When

14

Environment2_ 5, which are

new sensors values are assigned, the voter can andéeision by identifying the failed
sensor and taking the majority view. The operatioEwvironment2 1,
Environment2_2 and Environment2_3 are similar. They have the guards checking
whether two temperature sensors values are eqbel.attions in these events assign
one of the equal values to the variableemp_Sensor ValueThe operation
Environment2_4 checks that all tree sensors have equal valuake ughaction assigns
one of values to the variablBemp_Sensor_Valu&he operationEnvironment2_5
compares sensors values on non-equality and agsignsariableTemp_Sensor_Value
with the constanBensor_Err_vathe value of which is less th&ensor_min_threshald

It means that, if there are more than one temperagensor faults in the system, the
system has to be stopped.

event Environment] event Environment2_4 refines Environment
where where
(@grdl Stop_System = FALSE (@grdl Stop_System = FALSE
@grd2 flagl = ENV1 (@grd2 flagl = ENV2
(@grd3 Heater Fault=FALSE (@grd3 Heater _Fault = FALSE
@grd4 Temp_Sensor_Fault =FALSE (@grd4 Temp_Sensorl_Value =
then Temp_Sensor2_Value
(@act] Temp_Sensorl Value :€ Z @grdS Temp_Sensorl_Value =
(@act2 Temp_Sensor2 Value :€ Z Temp_Sensor3_Value
@act3 Temp_Sensor3_Value :€ 7 (@grd6 Temp Sensor2 Value =
@act4 flagl = ENV2 Temp Sensor3 Value
end @grd7 Temp_Sensor Fault = FALSE
then
event Environment2_1 refines Environment @act] Temp_Sensor_Value :€ {
where Temp_Sensorl_Value,
@grd1 Stop_System = FALSE Temp_Sensor2_Value,
(@grd2 flagl = ENV2 Temp_Sensor3_Value}
(@grd3 Heater Fault=FALSE @act2 flagl == DET1
(@grd4 Temp_Sensorl_Value = end
Temp_Sensor2_Value
(@grd5 Temp_Sensorl_Value # event Environment2_5 refines Environment
Temp Sensor3 Value where
(@grd6 Temp Sensor2 Value # @grdl Stop_System = FALSE
Temp_Sensor3 Value @grd2 flagl = ENV2
@grd7 Temp_Sensor_Fault = FALSE @grd3 Heater _Fault = FALSE
then (@grd4 Temp_Sensorl_Value #
@act]l Temp_Sensor_Value :€ Temp_Sensor2_Value
{Temp_Sensorl_Value, @grd5 Temp Sensorl Value #
Temp_Sensor2_Value} Temp_Sensor3_Value
@act2 flagl = DET1 @grd6 Temp_Sensor2_Value #
end Temp_Sensor3 Value
(@grd7 Temp Sensor Fault=FALSE
then
@act] Temp_Sensor_Value :=
Sensor_Err_val
@act2 flagl == DET1
end

Figurel6: The operations Environment in the tenmpeeasensor TMR specification

In this paper, we applied the proposed methodofogyhe heater case study. The
resulting specification were proven to show tha fimal specification of the system
meets all safety requirements, in particularly,t thygstem failure always leads to the
necessary error recovery actions.

15

5. Related Work

Integration of the safety analysis techniques wdhmal system modelling has
attracted a significant research attention overldsefew years. There are a number of
approaches that aim at direct integration of tHetgaanalysis techniques into formal
system development. For instance, the work of Ggmet al. [9] focuses on using
statecharts to formally represent the system bebavit aims at combining the results
of FMEA and FTA to model the system behaviour aason about component failures
as well as overall system safety. Moreover, the@agh specifically addresses formal
modelling of the system failure modes. In our applowe define general guidelines for
integrating results of FMEA into a formal Event-Besification and the Event-B
refinement process. The available automatic toglpstt for the top-down Event-B
modelling ensures better scalability of our apphoac

In our previous work, we have proposed an appra@adhtegrating safety analysis
into formal system development within the Actionsn formalism [10, 13]. Since
Event-B incorporates the ideas of Action Systents the B Method, the current work
is a natural extension of our previous results.

The research conducted by Troubitsyna [12] aimsleahonstrating how to use
statecharts as a middle ground between safetysigagd formal system specifications
in the B Method. In our future work we will rely dhis research to define patterns for
formal representation of system components as faspeifications in Event-B.

Another strand of research aims at defining genguadelines for ensuring
dependability of software-intensive systems. Fanegle, Hatebur and Heisel [5] have
derived patterns for representing dependabilityuiregnents and ensuring their
traceability in the system development. In our apph we rely on specific safety
analysis techniques rather than on the requiremangdysis in general to derive
guidelines for modelling dependable systems.

6. Conclusions

In this paper we presented an approach to integy#tie safety analysis techniques into
the formal system development in Event-B. We derimatesdi how to derive safety
requirements from FMEA in such a way that they ddu¢ easily captured in a formal
system specification. Our methodology facilitateguirements elicitation as well as
supports traceability of safety requirements witthe formal development process. The
proposed guidelines for modelling components inrR: demonstrate how to relate
specific fields in FMEA work-sheets with the copesding elements of an Event-B
specification. As a result, the proposed approatiegrates the means for fault
avoidance and fault tolerance and hence can palgnenhance dependability of
safety-critical control systems.

In our future work we are planning to create adilgrof formal models representing
typical components (sensors and actuators), eetecting mechanisms and recovery
actions. Such a library would allow us to define tigpical refinement transformations
supporting correct incorporation of the safety gsial results into a formal system

16

specification. Moreover, it also would enable auatimation of the refinement process
to support such pre-defined model transformatidvs.aim at exploring this approach
within a certain dedicated domain of critical sysse

In this paper we focused on analysing the requirgsneriginating from the
inductive safety techniques. However, safety amalysually combines several different
techniques that allow the designers to exploresbfit aspects of system safety. While
FMEA provides us with a systematic way to analysefailure modes of components, it
is unable to address the analysis of multiple sydtelures. In our future work we aim
at investigating how to combine the FMEA approadthwuch techniques as fault tree
analysis to guarantee safety in the presence efalkesomponent failures.

References

[1] J.-R. Abrial, “Modeling in Event-B: System and Safte Engineering”,
Cambridge University Press, 2010.

[2] J.-R. Abrial, “The B-Book: Assigning Programms toedhings”, Cambridge
University Press, 1996.

[3] Event-B and the Rodin Platform. Retrieved from #pvw.event-b.org/, 2010.
[4] FMEA Info Centre. Retrieved from http://www.fmeadcentre.com/, 2009.

[5] D. Hatebur and M. Heisel, “A Foundation for Reqoents Analysis of
Dependable Software”, Proceedings of the InternatioConference on
Computer Safety, Reliability and Security (SAFECOMBpringer, 2009,
pp. 311-325.

[6] Industrial use of the B method. Retrieved from ©3ga
http://www.clearsy.com/pdf/ClearSy-Industrial_UsE& %20B.pdf, 2008.

[7] L. Laibinis, and E. Troubitsyna, “Refinement of lfatolerant control systems
in B”, TUCS Technical Report, No. 603, 2004.

[8] C. Metayer, J.-R. Abrial, and L. Voisin, “Rigorou®pen Development
Environment for Complex Systems (RODIN). Event-BRetrieved from
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, 2005

[9] F. Ortmeier, M. Guedemann and W. Reif, “Formal &l Models”,
Proceedings of the IFAC Workshop on Dependable i@baf Discrete Systems
(DCDS 07), Elsevier, 2007.

[10] K. Sere, and E. Troubitsyna, “Safety analysis immfal specification”. In
J. Wing, J. Woodcock, & J. Davies (Ed.), FM'99 - rfral Methods.
Proceedings of World Congress on Formal Methodsher Development of
Computing Systems, Lecture Notes in Computer Seiehc09, 1l, 1999,
pp. 1564-1583.

[11] N. Storey, “Safety-critical computer systems”, Asltuti-Wesley, 1996.

17

[12] E. Troubitsyna, “Elicitation and Specification ofafSty Requirements”,
Proceedings of the Third International ConferenaeSgstems (ICONS 2008),
2008, pp. 202-207.

[13] E. Troubitsyna, “Integrating Safety Analysis interfal Specification of
Dependable Systems”, Proceedings of the Interrati®arallel and Distributed
Processing Symposium (IPDPS’03), 2003, p. 215b.

18

TURKU

CENTRE for

COMPUTER
SCIENCE

Joukahaisenkatu 3-5 B, 20520 Turku, Finland | www.tucs.fi

University of Turku
o Department of Information Technology
o Department of Mathematics

Ay W

Wz
N

Abo Akademi University
o Department of Information Technologies

>

Turku School of Economics
o Institute of Information Systems Sciences

ISBN 978-952-12-2476-8
ISSN 1239-1891

