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Abstract 

Application of formal methods, in particular Event-B, helps us to verify correctness of 
controlling software. However, to guarantee dependability of software-intensive control 
systems, we also need to ensure that safety and fault tolerance requirements are 
adequately represented in a system specification. In this paper we demonstrate how to 
integrate the results of safety analysis, in particular, failure mode and effect analysis 
(FMEA), into formal system development in Event-B. FMEA allows us to 
systematically study the causes of components faults, their global and local effects, and 
the means to cope with these faults. The fault tolerance mechanisms are often 
implemented as a part of the developed software, therefore the information obtained as 
the result of FMEA constitutes the necessary requirements that the controlling software 
should fulfil. Our approach enables extraction and traceability of the safety 
requirements that thus potentially increase system dependability. The proposed 
methodology is exemplified by a case study. 
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1. Introduction 

A widespread use of software for controlling critical applications necessitates 
development of techniques for ensuring its correctness. In other words, these techniques 
should guarantee that software behaves according to its specification. However, to 
achieve a high degree of system dependability, we should address not only software 
correctness but also ensure that safety requirements are adequately represented in a 
software specification. 

Safety [11] is property of the system requiring that it will not harm its environment 
or users. It is a system-level property that can be achieved via a combination of various 
techniques for safety analysis. The aim of safety analysis is to uncover possible ways in 
which system might breach safety and then devise the means to avoid these situations or 
mitigate their consequences. There is a wide spectrum of techniques that facilitate the 
analysis of possible hazards associated with the system, the means for introducing fault 
tolerance to prevent occurrence of dangerous faults, as well as the techniques for 
deriving functional requirements from the conducted safety analysis.  

In this paper we focus on the use of Failure Modes and Effect Analysis (FMEA) – a 
widely-used inductive technique for safety analysis [4] and [11]. We propose a 
methodology that allows us to incorporate the results of FMEA into a formal system 
specification. FMEA aims at a systematic study of the causes of components faults, 
their global and local effects, and the means to cope with these faults. Since the fault 
tolerance mechanisms are often implemented as a part of the developed software, this 
information constitutes the necessary requirements that the controlling software should 
fulfil. 

Since safety is a system-level property, it requires modelling techniques that are 
scalable to analyse the entire system. Scalability in the system analysis is achieved via 
abstraction, proof and decomposition. The Event-B formalism [1] provides a suitable 
framework that satisfies all these requirements. Event-B is a state-based formalism for 
development of highly-dependable systems. The main development technique of Event-
B is refinement. In Event-B, we start system modelling at a highly-abstract level and, by 
a number of correctness-preserving transformations called refinement steps, arrive at a 
system specification that is close to the eventual implementation.  Correctness of each 
refinement step is verified by proofs.  

In this paper we show how to incorporate the results of FMEA into the formal Event-
B development. Our approach enables elicitation and traceability of the safety 
requirements that thus potentially enhance system dependability. The proposed 
methodology is illustrated by a small case study. 

The paper is structured as follows. Section 2 gives an overview of the related work. 
In Section 3 we briefly present the Event-B method and also describe modelling of 
control systems in Event-B. In Section 4 we propose a methodology for integrating the 
results of FMEA into the Event-B development. Section 5 illustrates the proposed 
approach by a case study – a heater controller. In Section 6 we give concluding remarks 
and discuss our future work. 
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2. Modelling Control Systems in Event-B 

2.1. Event-B Overview 

The B Method is an approach for the industrial development of highly dependable 
control systems. The method has been successfully used in the development of several 
complex real-time applications [6]. Event-B [1] is a recent variation of the B Method [2] 
to model parallel, distributed and reactive systems. The automated tool, which provides 
a support for modelling and verification in Event-B, is the Rodin platform [3].  

To construct and verify system models, Event-B uses the Abstract Machine Notation. 
An abstract machine encapsulates the state (the variables) of a model and defines 
operations on its state. A machine has the following general form: 

 

MACHINE MachineName 
VARIABLES list of variables 
INVARIANTS constraining predicates of variables and invariant properties 
                       of the machine 
EVENTS 
INITIALISATION 
evt1 

… 
evtN 
END 
 

The machine is uniquely identified by its name MachineName. The state variables of 
the machine are declared in the VARIABLES clause and initialized in the 
INITIALISATION event. The variables are strongly typed by constraining predicates of 
invariants given in the INVARIANTS clause. The invariant is usually defined as a 
conjunction of the state defining the properties of the system that should be preserved 
during system execution. The model data types and constants are defined in a separate 
component called CONTEXT. The behaviour of the system is defined by a number of 
atomic events specified in the EVENTS clause. An event is defined as follows: 

 

 E = WHEN g THEN S END 
 

where the guard g is a conjunction of predicates over the state variables, and the action 
S is an assignment to the state variables. 

The guard defines the conditions when the action can be executed, i.e., when the 
event is enabled. If several events are enabled simultaneously then any of them can be 
chosen for execution non-deterministically. If none of the events is enabled then the 
system deadlocks. 

In general, the action of an event is a composition of variable assignments executed 
simultaneously. Variable assignments can be either deterministic or non-deterministic. 
The deterministic assignment is denoted as x := E(v), where x is a state variable and 
E(v) expression over the state variables v. The non-deterministic assignment can be 
denoted as x :∈ S or x :| Q(v, x′), where S is a set of values and Q(v, x′) is a predicate. As 
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a result of the non-deterministic assignment, x gets any value from S or it obtains such a 
value x′ that Q(v, x′) is satisfied. 

The semantics of Event-B events is defined using before-after predicates [8]. A 
before-after predicate describes a relationship between the system states before and after 
execution of an event. The formal semantics provides us with a foundation for 
establishing correctness of Event-B specifications. To verify correctness of a 
specification, we need to prove that its initialization and all events preserve the 
invariant. 

To check consistency of an Event B machine, we should verify two types of 
properties: event feasibility and invariant preservation. Formally, for any event e, 

Inv(v) ∧ ge(v) ⇒ ∃v´ . BAe(v, v )́ 

Inv(v) ∧ ge(v) ∧ BAe(v, v )́ ⇒ Inv(v´) 
where Inv is the model invariant, ge is the guard of the event e and BAe is the before-
after predicate of the event e. 

The main development methodology of Event B is refinement – the process of 
transforming an abstract specification to gradually introduce implementation details 
while preserving its correctness. Refinement allows us to reduce non-determinism 
present in an abstract model as well as introduce new concrete variables and events. The 
connection between the newly introduced variables and the abstract variables that they 
replace is formally defined in the invariant of the refined model. For a refinement step 
to be valid, every possible execution of the refined machine must correspond to some 
execution of the abstract machine. 

The consistency of Event B models as well as correctness of refinement steps should 
be formally demonstrated by discharging proof obligations. The Rodin platform [3], a 
tool supporting Event B, automatically generates the required proof obligations and 
attempts to automatically prove them. Sometimes it requires user assistance by invoking 
its interactive prover. However, in general the tool achieves high level of automation 
(usually over 90%) in proving. 

2.2. Modelling Control Systems 

In our previous work, we have described how to model control systems in the B 
method [7]. Therefore, here we just briefly summarize the part that will be necessary for 
our current research. 

In general, a control system is a reactive system with two main entities: a plant and a 
controller. The plant behaviour evolves according to the involved physical processes 
and the control signals provided by the controller. The controller monitors the behaviour 
of the plant and adjusts it to provide intended functionality and maintain safety. In this 
paper we advocate a system approach to designing controllers for failsafe systems, i.e., 
we will specify a control system as an event-based system which includes both a plant 
and a controller. 

The control systems are usually cyclic, i.e., at periodic intervals they get input from 
sensors, process it and output the new values to the actuators. In our specification the 
sensors and actuators are represented by state variables shared by the plant and the 
controller. At each cycle the plant reads the variables modelling actuators and assigns 
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the variables modelling the sensors. In contrast, the controller reads the variables 
modelling sensors and assigns the variables modelling the actuators (Fig. 1). We assume 
that the reaction of the controller takes negligible amount of time so the controller can 
react properly on changes of the plant state. 

 

 
 

Figure 1: A control system 
 

The development of a failsafe control system in Event-B starts from modelling the 
abstract machine Abs_M, which is shown in Fig. 2. The overall behaviour of the system 
is an alternation between the events modelling plant evolution and controller reaction. 
As a result of the initialisation, the plant’s operation becomes enabled. Once completed, 
the plant enables the controller. The behaviour of the controller follows the general 
pattern 

Environment; Detection; Control (Normal Operation or Error Recovery); Prediction 
modelled by the corresponding assignments to the variable flag of the type PHASE, 
whereas PHASE is an enumerated set {ENV, DET, CONT, PRED}. 

 

 
 

Figure 2: An abstract specification of a control system 
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The operation (event) Environment is used for modelling the plant. The operation 
Detection models error occurrence by non-deterministic assignment to the variable 
System_Failure. The operation Error_Recovery aborts the system if system failure is 
detected, i.e., the variable System_Failure equals TRUE. The operation Prediction is 
used for modelling expected values of variables. Such a behaviour essentially represents 
a failsafe system. The failsafe error recovery is performed by forcing the system 
permanently to a safe though non-operational state (obviously, this strategy is only 
appropriate where shutdown of system is possible). The routine control is specified by 
the operation Normal_Operation.  

In this paper we consider safety-critical control systems, therefore safety properties 
(formalized as safety invariants) should be verified formally, starting from the abstract 
specification. The safety invariants added to the abstract specification are shown below 

 
System_Failure = FALSE ⇒ Stop_System = FALSE and 

System_Failure = TRUE ˄ flag ≠ CONT ˄ flag ≠ DET ⇒ Stop_System = TRUE. 
 
The first one states that, while no failure occurred, the system is not stopped. The 

second requires that, when system failure is detected, the system has to be stopped by 
the controller. 

3. Incorporation of Fault Analysis results 

in Event-B 

In this section we describe a methodology which helps us to incorporate the information 
obtained as a result of FMEA into our formal specification. The top-down development 
paradigm adopted by Event-B allows us to implement the fault analysis requirements in 
a stepwise manner, starting with the abstract specification. 

3.1. A Methodology 

The development of safety-critical systems starts by identifying possible hazards and 
proceeds with accumulating the detailed description of them, containing also the 
necessary means to cope with the identified hazards. 

Our methodology based on incorporation of the FMEA results in an Event-B 
specification of a control system, as it is shown in Fig. 3. 

Each refinement step may introduce one or a few system components into our formal 
specification. According to our methodology, this introduction consists of three steps. 
We start by making FMEA, which results in a worksheet for each component. It allows 
us to identify failure modes, possible causes, local and system effects. Then, as an 
intermediate form, we build an Event-B counterpart worksheet for each component in 
order to represent each FMEA table field in Event-B terms. 

Finally, the obtained results are incorporated into the refined specification. Please, 
note that system components can be introduced on different abstraction levels, which 
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means that an abstract component, once introduced, may be late refined, e.g., replaced 
by several concrete ones. 

 

 
 

Figure 3: An illustration of the proposed methodology 

3.2. FMEA Representation in Event-B 

According to our methodology, we built FMEA tables for separate control system 
components such as sensors (Fig. 4) and actuators (Fig. 5). A fault of any of these 
components may cause system failure, thus they have similar level of criticality. 

The aim of the controller is to keep the behaviour of the environment according to 
certain design goal. Controller affects the behaviour of the environment by setting 
certain values to actuators so that desired behaviour can be achieved. Controller 
observes the effect of changing actuators state by reading the corresponding sensors. 
Therefore, it is logical to introduce the represent of the actuator and the sensor into 
system specification at the same time, i.e., within the same refinement step. 
 

 
 

Figure 4: FMEA worksheet for a sensor 
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Figure 5: FMEA worksheet for an actuator 
 
To illustrate our methodology, let us consider an abstract sensor and an abstract 

actuator. The failure of the sensor can be detected by the comparison of its received 
value with the possible one. When the sensor sends a signal that is outside of the 
legitimate range, we consider such a situation as a fault. The actuator fault can be 
detected by assumption based on the actuator current mode and the predicted sensor 
value according to this mode. 

Each field of the FMEA table can be represented in an Event-B model by its 
corresponding elements: variables, constants, events and event guards. 

To make the development process in Event-B more clearly to developers, we present 
guidelines how to represent the results of FMEA of system components in Event-B 
terms: 

• Any system component corresponds to a particular subset of Event-B model 
variables and events. 

• Every component of a failsafe system has to have at least two variables, one to 
model its current value and the other one to model possible fault occurrence. 

• A failure mode is represented by the pre-defined condition on the component 
variables and a set of the dedicated events enabled when the condition is true. 
Additional constants (system parameters) may be defined in the accompanying 
model context. 

• System effect is modelled in a formal specification by defining the safety invariants 
and introducing special variables to model system failure or other degraded state 
of the system. 

• Detection events are tied up with the corresponding failure modes by adding the 
failure mode condition as an additional guard. 

• Remedial action translates into a special operation modelling error recovery. 
 
For example, to represent the sensor in our example, we declare the following 

variables (Fig. 6): Sensor_Value and Sensor_Fault. These variables are used in the 
following events: Environment, Detected_Sensor_Fault, Detected_No_Fault. 

The identified failure mode can be formally defined using the constants 
Sensor_max_threshold and Sensor_min_threshold (added into the model context). They 
are detected in the dedicated event: Detected_Sensor_Fault. The condition 
corresponding to the failure mode is Sensor_Fault = TRUE. 
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In this paper we do not consider a situation when components faults can be recovered 
without shutdown of the whole system. Therefore, any sensor or actuator fault lead to 
system failure. In Event-B this is represented via the safety invariant 

System_Failure = TRUE ⇔ Sensor_Fault = TRUE ∨ Actuator_Fault = TRUE. 
In other words, when a sensor fault occurs, system has to be stopped. The special event 
Error_Recovery models this situation. 

 

 
 

Figure 6: Event-B representation of the FMEA results for a sensor 
 
Similarly, we declare the variables Actuator_Value and Actuator_Fault to represent 

an actuator in Event-B (Fig. 7). 
 

 
 

Figure 7: Event-B representation of the FMEA results for an actuator 
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As we described above, to detect the actuator fault, we have to compare the received 
sensor value with predicted one. The corresponding detection events model the system 
reaction when the guard Sensor_Value > next_s_value_max ∨ Sensor_Value < 
next_s_value_min is true. The remedial action for the actuator is the same as for the 
sensor (i.e., system shutdown). 

 
In the following we summarize the proposed methodology: 
• the development of a failsafe safety-critical control system in Event-B starts from 

modelling an abstract machine where system failure and error recovery 
mechanisms are introduced; 

• failure mode and effects analysis for each system component that may causes the 
system failure is done by building a FMEA worksheet; 

• an intermediate representation table where the FMEA results are represented in 
Event-B terms is created according to the given guidelines; 

• the abstract specification is modified according to the FMEA results represented in 
the intermediate table and proved to be a refinement; 

• the described process is iterative. For example, if the control system consists not 
only from system components that causes the system failure but also from other 
components, which introduce some redundancy of existing components, the 
FMEA table is built for each such a component, the intermediate table is created 
and then the FMEA results are incorporated into the next refined specification; 

• all steps can be repeated until we receive the final (most refined) specification, 
which includes all the system components and formalized requirements. 

In the next section we show an application of the proposed methodology. 

4. Case Study 

To illustrate the proposed methodology, we describe a failsafe control system, which 
has a controller, a sensor and an actuator. In our case it is a heater case study. The 
sensor is a temperature sensor and the actuator is a heater. The controller receives a 
temperature value from the sensor and switches the heater to one of two possible states 
(ON or OFF) depending on the given temperature range. 

Following our methodology we analyse system components and their faults, build a 
FMEA table and represent the FMEA table fields in Event-B terms, then proceed by 
refining an abstract specification using the obtained results.  

4.1. Temperature Sensor and Heater 

Implementation 

The abstract specification of our case study is very similar to the abstract specification 
presented in Section 3.2. Therefore, we are going to reuse it for our case study. 

As the temperature sensor can be described in a FMEA table in the same way as an 
abstract sensor, we also reuse its table in this section. The variable Sensor_Fault is 



 

10 

Temp_ Sensor_Fault and the variable Actuator_Fault is Heater_Fault in the renewed 
case study. The variables and invariants of the refined specification are shown in Fig. 8. 

In the refinement we also replace the variable System_Failure modelling error 
occurrence by the variables representing faults of system components, i.e., Temp_ 
Sensor_Fault and Heater _Fault. It is an example of data refinement. This data 
refinement expresses our modelling assumption that the system error occurs only when 
one or several system components fail. The refinement relation defines the connection 
between the newly introduced variables and the variables that they replace. While 
refining the specifications, we add this refinement relation as an additional invariant of 
the refined machine: 

 
System_Failure = TRUE ⇔ Temp_ Sensor_Fault = TRUE ˅ Heater_Fault = TRUE. 

 
The safety invariant then changes from 

System_Failure = TRUE ˄ flag ≠ CONT ˄ flag ≠ DET ⇒ Stop_System = TRUE 
to 

(Temp_Sensor_Fault = TRUE ˅ Heater_Fault = TRUE) ˄  flag ≠ CONT ˄ flag ≠ 
DET ⇒ Stop_System = TRUE. 

 
Also, we formulate an extra safety invariant 

Temp_Sensor_Fault = FALSE ˄ Heater_Fault = FALSE ˄ flag ≠ CONT ˄ flag ≠ 

DET ⇒ Temp_Sensor_Value < Sensor_max_threshold ˄ Temp_Sensor_Value > 
Sensor_min_threshold. 

It states that, if there are no temperature sensor and heater faults, the current sensor 
value is within the expected range. 
 

 
 

Figure 8: The invariants of the refined specification Temp_Sensor_Heater_M 
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The operation Environment, which is shown in Fig. 9, is used for modelling the 
plant (i.e., the environment) of the heater. The variable Temp_Sensor_Value is updated 
non-deterministically to model possible value change of the temperature sensor. 
 

 
 

Figure 9: The operation Environment of the Temp_Sensor_Heater_M specification  
 

The operation Detected_Sensor_Fault refines the operation Detection at the 
abstract specification (Fig. 10). We extended the guards clause by adding the results of 
FMEA according to the Fig. 6. The non-deterministic assignment to the variable 
System_Failure is replaced by the deterministic assignment of the variable 
Temp_Sensor_Faul. It becomes equal to TRUE, thus indicating a detected sensor fault.  

 

 
 

Figure 10: The operations Detection of the Temp_Sensor_Heater_M specification  
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The operation Detected_Actuator_Fault also refines the operation Detection. We 
strengthened the operation guard by adding new guards according to the results of 
FMEA, shown in Fig. 7. The non-deterministic assignment to the variable 
System_Failure is replaced by the deterministic assignment of the variable 
Heater_Fault. It becomes equal to TRUE. Detected_No_Fault is another refinement of 
the operation Detection. However, the non-deterministic assignment to the variable 
System_Failure is not replaced by any of two variables, because they are already equal 
to FALSE. 

After the execution of one of the detection events discussed above the system has 
three ways to continue its execution. The first case is when the temperature sensor or the 
heater faults occur and as a result the system has to be stopped. Thus, the operation 
Error_recovery, which is identical to its abstract counterpart, becomes enabled. The 
other two cases are when there is no fault and system is functioning in the normal mode 
(Fig. 11). These two events differ from each other by their guards and respective 
actions. In one case, if the temperature sensor value is less than the maximum value but 
more or equal than the middle value, the variable Heater_Value is assigned OFF. In the 
other case, if the temperature sensor value is more than the minimum value but less than 
the middle value, the variable Heater_Value is assigned ON.  

 

 
Figure11: The operations Normal_Operation and Prediction of the 

Temp_Sensor_Heater_M specification  
 
In the next section we will make our model more tolerant by introducing the triple 

module redundancy (TMR) arrangement for our sensor. 
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4.2. TMR Implementation of the Temperature 

Sensor 

In the specification obtained at the previous refinement step all errors are considered to 
be equally critical, i.e., leading to the shutdown. While introducing redundancy at our 
next refinement step, we obtain a possibility to distinguish between criticality of errors 
and mask a single error of a system component. Application of Triple Modular 
Redundancy (TMR) [11] in that case allows us to mask faults of a single sensor. TMR is 
a well-known mechanism based on static redundancy. The general principle is to 
triplicate a system module and introduce the majority voting to obtain a single result of 
the module, as shown in Fig. 12. 

 

 
 

Figure 12: Sensor TMR 
 

Fig. 13 shows the control system described in Section 3.2 with three temperature 
sensors. In our case study we model the temperature sensors and a voter as parts of a 
plant. The controller only receives the result of voting and does not see particular 
sensors. 

 

 
 

Figure13: The case study system with the temperature sensor TMR 
 
Following our proposed methodology, we refine the specification obtained in the 

previous section in order to add the sensor TMR arrangement. However, before 
describing the refinement step formally, we have to analyse all possible failure modes 
and effects associated with new introduced sensors, and consequently build the FMEA 
table (Fig. 14) as well as the intermediate representation table (Fig. 15) for each newly 
introduced component. 
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Figure 14: The FMEA table for the temperature sensor TMR 
 
The representation of FMEA results in Event-B is shown in Fig. 15. The temperature 

sensor TMR is modelled by using the following variables: Temp_Sensor1_Value, 
Temp_Sensor2_Value, Temp_Sensor3_Value and the variable Temp_Sensor_Fault, 
which is equal to the variable Temp_Sensor_Fault in the previous refinement step, and 
the events Environment1 and Environment2_1 … Environment2_5, which are 
shown in Fig. 16. The last five events are used for modelling the TMR voter. 
 

 
 

Figure 15: Event-B representation of FMEA for the temperature sensor TMR 
 
The occurrence of three temperature sensors faults are introduced in the operation 

Environment1 by non-deterministic assignment of the appropriate variables. When 
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new sensors values are assigned, the voter can make a decision by identifying the failed 
sensor and taking the majority view. The operations Environment2_1, 
Environment2_2 and Environment2_3 are similar. They have the guards checking 
whether two temperature sensors values are equal. The actions in these events assign 
one of the equal values to the variable Temp_Sensor_Value. The operation 
Environment2_4 checks that all tree sensors have equal values, while its action assigns 
one of values to the variable Temp_Sensor_Value. The operation Environment2_5 
compares sensors values on non-equality and assigns the variable Temp_Sensor_Value 
with the constant Sensor_Err_val the value of which is less than Sensor_min_threshold. 
It means that, if there are more than one temperature sensor faults in the system, the 
system has to be stopped. 
 

 
 

Figure16: The operations Environment in the temperature sensor TMR specification 
 
In this paper, we applied the proposed methodology for the heater case study. The 

resulting specification were proven to show that the final specification of the system 
meets all safety requirements, in particularly, that system failure always leads to the 
necessary error recovery actions. 
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5. Related Work 

Integration of the safety analysis techniques with formal system modelling has 
attracted a significant research attention over the last few years. There are a number of 
approaches that aim at direct integration of the safety analysis techniques into formal 
system development. For instance, the work of Ortmeier et al. [9] focuses on using 
statecharts to formally represent the system behaviour. It aims at combining the results 
of FMEA and FTA to model the system behaviour and reason about component failures 
as well as overall system safety. Moreover, the approach specifically addresses formal 
modelling of the system failure modes. In our approach we define general guidelines for 
integrating results of FMEA into a formal Event-B specification and the Event-B 
refinement process. The available automatic tool support for the top-down Event-B 
modelling ensures better scalability of our approach. 

In our previous work, we have proposed an approach to integrating safety analysis 
into formal system development within the Action System formalism [10, 13]. Since 
Event-B incorporates the ideas of Action Systems into the B Method, the current work 
is a natural extension of our previous results.   

The research conducted by Troubitsyna [12] aims at demonstrating how to use 
statecharts as a middle ground between safety analysis and formal system specifications 
in the B Method. In our future work we will rely on this research to define patterns for 
formal representation of system components as formal specifications in Event-B. 

Another strand of research aims at defining general guidelines for ensuring 
dependability of software-intensive systems. For example, Hatebur and Heisel [5] have 
derived patterns for representing dependability requirements and ensuring their 
traceability in the system development. In our approach we rely on specific safety 
analysis techniques rather than on the requirements analysis in general to derive 
guidelines for modelling dependable systems. 

6. Conclusions 

In this paper we presented an approach to integrating the safety analysis techniques into 
the formal system development in Event-B. We demonstrated how to derive safety 
requirements from FMEA in such a way that they could be easily captured in a formal 
system specification. Our methodology facilitates requirements elicitation as well as 
supports traceability of safety requirements within the formal development process. The 
proposed guidelines for modelling components in Event-B demonstrate how to relate 
specific fields in FMEA work-sheets with the corresponding elements of an Event-B 
specification. As a result, the proposed approach integrates the means for fault 
avoidance and fault tolerance and hence can potentially enhance dependability of 
safety-critical control systems.  

In our future work we are planning to create a library of formal models representing 
typical components (sensors and actuators), error detecting mechanisms and recovery 
actions. Such a library would allow us to define the typical refinement transformations 
supporting correct incorporation of the safety analysis results into a formal system 
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specification. Moreover, it also would enable automatization of the refinement process 
to support such pre-defined model transformations. We aim at exploring this approach 
within a certain dedicated domain of critical systems. 

In this paper we focused on analysing the requirements originating from the 
inductive safety techniques. However, safety analysis usually combines several different 
techniques that allow the designers to explore different aspects of system safety. While 
FMEA provides us with a systematic way to analyse the failure modes of components, it 
is unable to address the analysis of multiple system failures. In our future work we aim 
at investigating how to combine the FMEA approach with such techniques as fault tree 
analysis to guarantee safety in the presence of several component failures. 

References 

[1] J.-R. Abrial, “Modeling in Event-B: System and Software Engineering”, 
Cambridge University Press, 2010. 

[2] J.-R. Abrial, “The B-Book: Assigning Programms to Meanings”, Cambridge 
University Press, 1996. 

[3] Event-B and the Rodin Platform. Retrieved from http://www.event-b.org/, 2010. 

[4] FMEA Info Centre. Retrieved from http://www.fmeainfocentre.com/, 2009. 

[5] D. Hatebur and M. Heisel, “A Foundation for Requirements Analysis of 
Dependable Software”, Proceedings of the International Conference on 
Computer Safety, Reliability and Security (SAFECOMP), Springer, 2009, 
pp. 311-325. 

[6] Industrial use of the B method. Retrieved from ClearSy: 
http://www.clearsy.com/pdf/ClearSy-Industrial_Use_of_%20B.pdf, 2008. 

[7] L. Laibinis, and E. Troubitsyna, “Refinement of fault tolerant control systems 
in B”, TUCS Technical Report, No. 603, 2004. 

[8] C. Métayer, J.-R. Abrial, and L. Voisin, “Rigorous Open Development 
Environment for Complex Systems (RODIN). Event-B”. Retrieved from 
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, 2005. 

[9] F. Ortmeier, M. Guedemann and W. Reif, “Formal Failure Models”, 
Proceedings of the IFAC Workshop on Dependable Control of Discrete Systems 
(DCDS 07), Elsevier, 2007. 

[10] K. Sere, and E. Troubitsyna, “Safety analysis in formal specification”. In 
J. Wing, J. Woodcock, & J. Davies (Ed.), FM’99 – Formal Methods. 
Proceedings of World Congress on Formal Methods in the Development of 
Computing Systems, Lecture Notes in Computer Science 1709, II, 1999, 
pp. 1564-1583. 

[11] N. Storey, “Safety-critical computer systems”, Addison-Wesley, 1996. 



 

18 

[12] E. Troubitsyna, “Elicitation and Specification of Safety Requirements”, 
Proceedings of the Third International Conference on Systems (ICONS 2008), 
2008, pp. 202-207. 

[13] E. Troubitsyna, “Integrating Safety Analysis into Formal Specification of 
Dependable Systems”, Proceedings of the International Parallel and Distributed 
Processing Symposium (IPDPS’03), 2003, p. 215b. 

 

 

 



 

 



 

 

ISBN 978-952-12-2476-8 
ISSN 1239-1891 
 

 


