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Abstract

This report examines a version of the symmetric traveling salesman problem
in which the travel costs associated with arcs are given as interval ranges.
The problem is optimized using robust deviation criterion. Two heuristic al-
gorithms based on midpoint and upper point scenarios are investigated, and
their efficiency on small size instances is evaluated. The quality of heuris-
tic solutions is evaluated by means of its comparison with optimal solution
obtained through mixed integer programming formulation. The efficiency of
the heuristic approaches on small size instances is argued.

Keywords: robust traveling salesman problem, interval uncertainty, min-
max regret and worst-case optimization, heuristics



1 Introduction

One of the most intensively investigated problems in computational combi-
natorial optimization and operations research is the traveling salesman prob-
lem. The problem itself sounds simple: given a set of cities and the costs of
travel between each pair of them, the challenge is to find the cheapest route
visiting all the cities and returning to the starting city. Though seemingly
modest, the model benefits for many practical applications in e.g. genetics,
telecommunications, and neuroscience. Many variants and generalizations of
the problems have been studied over the years. [2]

We consider the variation of the traveling salesman problem where inter-
val costs are not specified but given within some intervals associated with
network edges. More precisely, the problem is defined on an undirected sym-
metric graph G = (V, E) where V is a set of vertices (each vertex represents
a city to be visited), and E is the set of edges of the graph (each edge repre-
sents existing connection between two given cities). An interval [lij , uij], with
0 ≤ lij ≤ uij is associated with each edge (i, j) ∈ E , and it represents the
possible travel times. The special interest motivated by telecommunications
applications induces not to solve the interval traveling salesman problem it-
self, but to hedge against the worst-case realization (scenario) of problem
parameters, which can be interpreted as given with uncertainty. No proba-
bility distribution is given within the intervals. Playing against worst-case
scenario is generally known as robust optimization. As it was indicated in
[4], in many cases the robust equivalent of a polynomially solvable problem
becomes NP-hard [1]. While the classical traveling salesman problem itself
is known to be NP-hard, adding robust deviation introduces additional layer
into problem complexity [7].

The rest of this report is divided into three sections. Section 2 intends
to use the mixed integer linear programming to calculate an optimal solu-
tion of the problem. Section 3 introduces two heuristic algorithms based
on upper bound and middle point scenarios and describes the results of the
computational experiments. Concluding remarks appear in the last section.

2 Robust traveling salesman problem

The basic theoretical background for the robust traveling salesman problem
has been presented in [7]. A reformulation of the robust traveling salesman
problem as a special mixed integer program and some preprocessing tech-
niques were presented there.

In order to formally describe the robust deviation traveling salesman prob-
lem, we need the following definitions. Let T be a set of all Hamiltonian tours
in the given graph G, and R be a set of all possible realizations of edge costs.
A scenario r ∈ R is a particular realization of the edge costs which is chosen
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for each edge of the graph i.e. cost cr
ij ∈ [lij , uij]. The robust deviation of a

tour t ∈ T in scenario r ∈ R is the difference between the cost of t in scenario
r and the cost of the shortest tour in r:

devr
t := cr

t − min
t′∈T

cr
t′ .

For a given tour t ∈ T the worst-case scenario rt is a scenario for which the
deviation for t is maximum over all scenarios r ∈ R, i.e.

rt := arg max
r∈R

devr
t .

Then the difference
devrt

t := crt

t − min
t′∈T

crt

t′

represents the robust deviation of t. A tour t0 is said to be a robust Hamil-
tonian tour if it has the smallest robust deviation

t0 := arg min
t∈T

devrt

t .

In other words, a tour t0 ∈ T is said to be a robust tour if it has the smallest
(among all possible tours) maximum (among all possible scenarios) robust
deviation.

Our goal in this report is to compare the results obtained by two heuristic
algorithms with the optimal solution for robust version of traveling salesman
problem. In order to find the optimal solution to the robust traveling sales-
man problem, a mixed integer linear programming has been used. The fol-
lowing theorem gives us the idea of how to implement the MILP formulation.

Theorem 1 [7]. Given a tour t ∈ T , the scenario rt ∈ R that maximizes

the robust deviation for t is the one where all the edges of tour t have the

highest possible cost, and the costs of the remaining edges are at their lowest

possible values, i.e. crt

ij = uij if (i, j) ∈ t, and crt

ij = lij otherwise.

The implication of the above theorem is that, given a tour, we can com-
pute its robustness cost by solving a classic traveling salesman problem. For
each edge (i, j) ∈ E, we introduce a binary decision variable xij identifying
the edges of the robust tour, i.e. xij = 1 if edge (i, j) is on the robust tour,
and xij = 0 otherwise. Non-negative variable reg contains the regret term.

(RTSP ) min z(t) :=
∑

(i,j)∈E

uijxij − reg (1)

subject to

reg ≤
∑

(i,j)∈E

yijlij +
∑

(i,j)∈E

yij(uij − lij)xij ∀y ∈ T (2)
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∑

(j,i)∈E

xji +
∑

(i,k)∈E

xik = 2 ∀i ∈ V (3)

∑

(j,i)∈ES

xji +
∑

(i,k)∈ES

xik ≤| S | −1 ∀S ⊂ V, |S| ≥ 2 (4)

xij ∈ {0, 1} ∀ (i, j) ∈ E (5)

reg ∈ R≥ (6)

Equations (1) – (6) define the robust traveling salesman problem. The
crucial inequality of the MIP formulation are those in (2) which set arc
costs according to the worst-case scenario ctr

ij (as specified in Theorem 1)
induced by the current tour t ∈ T (encoded by variables yij). Constraints
(3) – (4), which are standard subtour elimination constraints borrowed from
the classical traveling salesman problem formulation, define the structure
encoded by variables xij being a Hamiltonian tour. Constraints (3) states
that exactly two edges, among those incident to a given node, must be active
in a feasible solution. Inequalities (4), where ES is the set of edges with both
endpoints in S, limit the number of active edges in each possible subgraph S,
in order to avoid cycles, and consequently disconnected solutions. Variable
reg ∈ R≥ contains information about the value of the shortest Hamiltonian
tour in scenario rt ∈ R. Thus, objective function (1) contains the difference
between the cost of the tour t ∈ T in the associated worst case scenario rt

and the cost of the shortest tour in the same scenario, i.e. it represents the
robust deviation devrt

t . We denote the robust path which corresponds to the
optimal solution of (1) – (6) as t0, and the corresponding optimal objective
value (robust deviation) as z(t0).

3 Computational experiments

In particular, we consider two scenarios: upper point scenario u ∈ R (all
the costs at their highest possible values) and middle point scenario m ∈ R,
defined as the middles of the corresponding intervals:

cm
ij =

uij + lij

2
∀(i, j) ∈ E.

According to [3], the optimal solution of the classical traveling salesman
problem on scenario m, if available, would guarantee a 2-approximation for
the optimal solution of the robust traveling salesman problem itself. In the
remainder of this report we will refer to the heuristic algorithm based on
scenario u ∈ R as HU , and to that based on scenario m as HM . Denote tHU

the Hamiltonian tour produced by HU , tHM the Hamiltonian tour produced
by HM , with corresponding robust deviations dev

r
tHU

tHU and dev
r
tHM

tHM .
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Type of Problem Average Running T ime (sec.)
R − 4 − 100 0.1487
R − 4 − 1000 0.1319
R − 5 − 100 0.3496
R − 5 − 1000 0.4008
R − 6 − 100 1.7376
R − 6 − 1000 2.3125
R − 7 − 100 89.9329
R − 7 − 1000 109.8753

Table 1: The average running time for HU and HM .

The algorithms were encoded in MATLAB R2008b. All the tests have
been carried out on an Intelrcore 2 Duo 2.53 GHz / 4 GB machine. The algo-
rithm based on solving MILP formulation has two huge loops, one producing
all possible tours (constraints (2)) and the other producing the subsets of V

(constraints (4)). Due to computational power restrictions of the approach
based on MILP formulation, we restricted our analysis to small instances
only. So, networks with 4, 5, 6 and 7 vertices were analyzed. To deal with
larger instances, one should use constraint propagation or branch and bound
techniques to overcome the computational difficulties related to a highly con-
strained nature of the approach based on MILP formulation. Moreover, the
analysis of HU and HM on large size instances has been previously done
in [5], [6], however the information about small size instances was not pre-
sented there due to obvious targeting on large networks to test heuristics
performance. Therefore, in our report we tried to shed more light on some
of the white spots related to efficiency of HU and HM on small instances.
For testing purposes we use a family of randomly generated instances (for
detailed description see [6]). All networks represent complete graphs. The
instances were generated according to the following schema: a problem of
type R − |V | − |UB| has |V | nodes and upper bound cost uij was chosen at
random from the set {1, 2, ..., UB} while lower bound cost lij was selected
again at random from the set {1, 2, ..., uij}. For each type of problems, 100
instances were produced. The average running time of HU and HM is given
in Table 1.

For each problem and for each algorithm, the average relative deviation
is calculated based on the following indicator (see Table 2):

HM Relative deviation :=
dev

s
tHM

tHM − z(t0)

z(t0)
;

HU Relative deviation :=
dev

s
tHU

tHU − z(t0)

z(t0)
.
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In the first and third columns of Table 2 the absolute deviations of the
optimal solution and heuristic solution are given which work as a controlling
tool to check the true randomness of the instances. As it can be seen there
is no obvious relation between the absolute deviations. Thus we can come to
this conclusion that the instances have been produced truly randomly.

In [6] it is stated that HU performs better than HM , however our ex-
periment gives an opposite statement on small size instances. As Table 2
suggests that for the small size instances HM works much better although
if we notice further it can be observed that two algorithms seem to converge
to one point which is the optimal solution. While the number of vertices
increases the HU algorithm gets closer to the optimality, the fact which can
easily be recognized from Figure 1, where relative deviation is measured in
percentages. There is one more interesting point here to note. Although in
all problem types considered in the report HM has smaller relative deviation
than HU , i.e. HM works more efficiently, the standard deviation indicator
shows an opposite attitude when the problem gets bigger as can easily be
observed from Figure 2.

Comparing the results obtained in this report with the results mentioned
in [6], one can make a strong guess that it is very likely if we choose eight or
nine vertices for our benchmarks, HU turns to be more efficient than HM .

There is a possible explanation for the way these two algorithms behave.
Since we have chosen the number of vertices between 4 and 7, therefore the
number of edges are also relatively small. If a wrong edge is chosen in HU ,
it can make a dramatic change in the results because we don’t have sufficient
number of the other edges to compensate this inappropriate choice, whereas
using HM we have reduced the difference between optimal choice and the
choice we have made in the algorithm.

4 Conclusions

The problem studied in this report was traveling salesman problem with
interval data and robust objective to be optimized. We implemented two
heuristic algorithms based on upper bound and middle point scenarios and
discussed their efficiency. The computational results indicate that although
these algorithms are very fast, for small size instances they are far from effi-
ciency. However, the increase in the number of cities, improves the outcome.
Based on the observations made in the previous section, we could formulate
several concluding remarks:

• Since HU (as well as HM) fails to deliver a good quality solution
on small instances, it may be the evidence of their weakness. The
HU and HM heuristics themselves are too simple to be recognized
as a reliable remedy to solve the robust traveling salesman problem.
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Indeed, these approaches explore only interval structure of the problem
without taking into account its topology. Thus, their usage could only
be recommended for the purpose of fast generating some initial solution
of reasonable quality, e.g. to generate starting solution for local search
based methods. However, it should be also done with precautions,
because HM and HU on large instances may produce local optima
that could trap the local search mechanism preventing it from finding
a global optimum.

• To make HU and HM more reliable, it would be interesting to consider
some sort of hybridization between these two heuristics with some ele-
ments of randomization. Such hybridization, if implemented properly,
could allow one heuristic to eliminate drawbacks of the other heuristic
and vice versa, whereas randomization will make the heuristic behavior
less deterministic, and therefore more flexible on ”hard” instances.
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Type HU HU HU HM HM HM

Number of Absolute Relative Standard Absolute Relative Standard

Problem deviation deviation deviation deviation deviation deviation

1 R − 4 − 100 56.1400 44.9886 10.4305 20.6500 23.1835 13.6409
2 R − 4 − 1000 619.3200 49.8451 11.6740 208.6700 25.4295 13.8298
3 R − 5 − 100 69.2300 40.5136 9.1765 28.5590 21.6569 12.5613
4 R − 5 − 1000 587.4200 33.8842 9.1211 226.9350 16.8540 10.1522
5 R − 6 − 100 40.4400 26.0877 10.2442 17.6000 13.5176 8.6724
6 R − 6 − 1000 234.2300 16.9084 8.9620 113.4150 8.8952 5.9534
7 R − 7 − 100 8.5600 6.4861 4.4290 6.1200 4.6617 2.7410
8 R − 7 − 1000 81.5000 6.7080 4.3197 54.2600 4.6118 3.1302

Table 2: Absolute, relative and standard deviations of heuristic solutions from optimality (averaged over 100 instances).
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Figure 1: Relative deviation for HU and HM

Figure 2: Standard deviation for HU and HM
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