
Ville-Pekka Eronen | Marko M. Mäkelä | Tapio Wester-
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Abstract

In this article generalization of some MINLP algorithms to cover convex nons-
mooth problems is studied. In the extended cutting plane method, gradients are
replaced by the subgradients of the convex function and the resulting algorithm
shall be proven to converge to a global optimum. It is shown through a coun-
terexample that this type of generalization is insufficient with certain versions of
the outer approximation algorithm. However, with some modifications to the OA
method a special type of nonsmooth functions for which the subdifferential at any
point is a convex combination of a finite number of subgradients at the point can
be considered.

Keywords: Convex nonsmooth MINLP; Convex programming; Extended cutting
plane algorithm; MINLP; Nonsmooth optimization; Outer approximation algo-
rithm; Subgradient

TUCS Laboratory
TUCS Laboratory



1 Introduction
Several methods for Mixed-Integer NonLinear Programming (MINLP) problems
have been developed during the past few decades and they can be divided into
three main classes, namely Cutting Plane (CP) (see e.g. [16, 17]), Branch-and-
Bound (BB) (see e.g. [12, 5]) and Outer Approximation (OA) (see e.g. [3, 4, 18])
type of methods .

At the same time, NonSmooth Optimization (NSO) has also been widely stud-
ied. Different kind of subgradient (see e.g. [1, 2, 15]) and bundle methods (see
e.g. [6, 8, 9, 10, 11, 13, 14]) have been introduced to solve continuous, possible
nonsmooth optimization problems. However, the combination of these two op-
timization areas is amazingly rare, although, both bundle methods for NSO and
cutting plane methods for MINLP have their origin in the same classical cutting
plane method of Kelley [7]. In addition, [4] the OA method was considered with
exact penalty function and some variants that are nonsmooth.

In this paper, generalizations of some MINLP algorithms to cover convex non-
smooth MINLP problems are studied. In the Extended Cutting Plane (ECP) [17]
method, gradients are replaced by the subgradients of convex function and the
resulting algorithm shall be proven to converge to global optimum. It is shown
through a counterexample that this type of generalization is insufficient with cer-
tain versions of outer approximation algorithm. However, with some modifica-
tions to the OA method, a special type of nonsmooth functions for which subdif-
ferentials at any point is a convex combination of finite number of subgradients at
the point can be considered.

Branch-and-bound is not discussed extensively here, since the generalization
is quite evident. Branch-and-bound methods solves the nonsmooth MINLP if
continuous NSO problems can be solved to global optimum in each node.

The paper is organized as follows. Section 2 introduces the general problem
discussed. In section 3 the generalization of the ECP method is shown to con-
verge to a global optimum. In section 4 it is proved that the simple generalization
discussed above is insufficient for the OA method. The algorithm is then modi-
fied a bit to cover special types of nonsmooth functions. Section 5 illustrates the
generalizations through an example and section 6 summarizes the results.

2 The optimization problem
In this article the following MINLP problem is considered

min f(x, y)

s.t. g(x, y) ≤ 0 (P̂ )

x ∈ X, y ∈ Y,
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where functions f : R
n × Z

m → R and gj : R
n × Z

m → R, j = 1, . . . , J are
convex, possibly nonsmooth functions, X is a compact, convex polyhedral set

X = {x | Ax ≤ b} ,

where A is (p × n) matrix and b is (p × 1) matrix and Y is a finite set in Z
m.

It is assumed that the functions gj are nonlinear. If there are linear constraints
with both continuous and integer variables those would be treated in sequel quite
similarly as the constraints in the set X .

The aim of this paper is to generalize the well-known ECP [17] and OA [4]
methods for MINLP problems to cover also nonsmooth problems of form (P̂ ).

Nonsmoothness implies that gradients may not exist at every point in the set
X × Y . To deal with this problem subgradients for convex funtions are used
instead.

Definition 2.1. Let f : R
n → R be a convex function. The subgradient of the

function f at the point x0 is any vector ξ(x0) that satisfies the condition

f(x0) + ξ(x0)T (x− x0) ≤ f(x), for all x ∈ R
n. (1)

The set of all vectors ξ(x0) satisfying condition (1) is called subdifferential at the
point x0 and it is denoted by ∂f(x0).

It can be proven that the subdifferential of a convex function is a nonempty,
convex and compact set. Also, a gradient of a differentiable convex function is
always a subgradient [11].

In our attempt to generalize the ECP and OA methods, gradients are replaced
by subgradients. In the following, we shall prove that generalization will be suc-
cessful with the ECP method presented in [17] but not with the OA method pre-
sented in [4]. However, after some modifications to the OA method it will also
cover problems of form (P̂ ) with some further assumptions on object and con-
straint functions. Next, some useful definitions and lemmas needed in the conver-
gence proofs are presented.

Definition 2.2. Function f : R
n → R is locally Lipschitz continuous at point x0,

if there exist � > 0 and K such that the inequality

|f(y)− f(z)| ≤ K �y − z� (2)

holds for all y, z ∈ B(x0, �). Here K is called a local Lipschitz constant of
function f at point x0 and B(x0, �) is an open ball with a center x0 and radius
�.

Note that convex functions are locally Lipschitz continuous [11].
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Lemma 2.1. Let K be a local Lipschitz constant of a convex function f at point
x0. Then, the inequality

�

�ξ(x0)
�

� ≤ K (3)

holds for all ξ(x0) ∈ ∂f(x0).

Proof: See [11] page 14. �

A convex combination of sets A1, . . . , AI is denoted by
conv {A1, . . . , AI} :=

�

λ1a1 + · · ·+ λIaI | ai ∈ Ai,

I
�

i=1

λi = 1, λi ≥ 0, i = 1, . . . , I

�

.

Lemma 2.2. If functions fi, i = 1, . . . , I are convex then the function

f(x) := max
i=1,...,I

{fi(x)}

is also convex and

∂f(x) = conv {∂fi(x) | i ∈ I(x)} ,

where I(x) = {i | fi(x) = f(x)}.

Proof: See [11] page 47. �

3 Generalization of ECP method
In the ECP method [17] the objective function of problem (P̂ ) is turned into a
constraint by introducing a constraint

gJ+1(x, y, µ) := f(x, y)− µ ≤ 0

and minimizing variable µ. Function gJ+1 is convex since it is a sum of two
convex functions f(x, y) and −µ. Also, the scalars µmin and µmax such that the
inequalities

µmin ≤ f(x, y) ≤ µmax (4)

hold for all x ∈ X and y ∈ Y for which gj(x, y) ≤ 0, j = 1, . . . , J , should be
known a priori. This is necessary in order to keep the decision space compact and
to guarantee the convergence to a global optimum.

Introducing variable z = (x, y, µ) ∈ R
n × Z

m × R will simplify notations.
Now, the constraint functions gj are treated as functions of z. The usage of the
function

g̃(z) := max
j=1,...,J+1

{gj(z)}
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will facilitate the proof. According to lemma 2.2 g̃ is convex and

∂g̃(z) = conv {∂gi(z) | gi(z) = g̃(z)} .

If we denote L := X × Y × [µmin, µmax] and N := {z | g̃(z) ≤ 0} then the
problem (P̂ ) can be stated as follows

min zm+n+1

s.t. z ∈ N ∩ L. (P )

Theorem 3.1. Point (x̂, ŷ, ẑm+n+1) is a global optimum of problem (P ) iff the
point (x̂, ŷ) is a global optimum of problem (P̂ ).

Proof: Due to box constraints (4) and constraints of problems (P̂ ) and (P ) a point
(x, y) is feasible in problem (P̂ ) iff (x, y, f(x, y)) is feasible in problem (P ).
If (x̃, ỹ, z̃m+n+1) is a global optimum of problem (P ) then, z̃m+n+1 = f(x̃, ỹ)
due to constraint f − zm+n+1 ≤ 0. Now, assume that (x̂, ŷ) is a global opti-
mum of the problem (P̂ ) and (x̃, ỹ, f(x̃, ỹ)) is a global optimum of problem (P ).
Since (x̂, ŷ, f(x̂, ŷ)) is feasible in (P ) the inequality f(x̃, ỹ) ≤ f(x̂, ŷ) holds.
Since the point (x̃, ỹ) is feasible in problem (P̂ ) also f(x̂, ŷ) ≤ f(x̃, ỹ). Hence,
f(x̂, ŷ) = f(x̃, ỹ) and the theorem is proven. �

In the ECP method, MILP problem where nonlinear constraint g̃ is linearized
at previous solution points, is solved in each step. In the beginning the nonlinear
constraints are left out and the problem

min zm+n+1

z ∈ L (P 0)

is solved. Then, at iteration i > 0 we solve the problem

min zm+n+1

s.t. g̃(zk) + ξ̃(zk)T (z − zk) ≤ 1, k = 0, . . . , i− 1 (P i)

z ∈ L,

where zk is the solution of problem (P k). The algorithm goes as follows:

ECP Algorithm 3.1.
Step 0. Set i = 0, give some small feasibility tolerance �g > 0 and create problem
(P 0).

Step 1. Solve MILP problem (P i). Let the solution point be zi.

Step 2. Check whether zi satisfies the nonlinear constraints that is g̃(zi) ≤ �g.
If the nonlinear constraints are satisfied stop, point zi is a global optimum of the
problem (P ).
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Step 3. Create a new problem (P i+1) by adding the constraint li(z) = g̃(zi) +
ξ̃(zi)T (z − zi) ≤ 0, where ξ̃(zi) ∈ ∂g̃(zi) is arbitrary.

Step 4. Set i = i + 1 and go to step 1.

Note, that in step 1 the optimization problem can be solved by using any suit-
able MILP solver.

Next, the convergence proof of the algorithm to a global optimum is given.
The proof necessitates that �g = 0. First, we show that cutting planes introduced
in the algorithm does not cut off any part of the feasible set of the problem (P ).
Let zi be a solution point of the problem (P i). Due to convexity of the function g̃

the inequality
li(z) = g̃(zi) + ξ̃(zi)T (z − zi) ≤ g̃(z) ≤ 0 (5)

holds for all z ∈ N ∩L. Thus, any feasible point of (P ) remains feasible in MILP
problems. If we denote the feasible set of problem (P i) by

Ωi =
�

z | z ∈ Ωi−1, li(z) ≤ 0
�

and Ω0 = L we get a sequence

N ∩ L ⊆ · · · ⊆ Ωi ⊆ · · · ⊆ Ω0. (6)

If the algorithm ends with finite amount of iterations say at i, the last solution
point is feasible in problem (P ). This point is also a global optimum of the prob-
lem (P ), since the point is optimum at the feasible set of problem (P i) and this
set includes the feasible set of problem (P ) according to (6).

Next, we assume that the algorithm doesn’t stop after finite amount of itera-
tions. Since li(zi) = g̃(zi) > 0 the constraint (5) makes the point zi infeasible
in subsequent MILP problems. Hence, the algorithm generates a sequence of dif-
ferent points. The solution sequence belongs to the compact set L. Since L is
bounded, the classical Bolzano-Weierstrass theorem implies that the sequence has
an accumulation point. It remains to prove that the accumulation point is feasible
in (P ).

Lemma 3.1. An accumulation point generated by the ECP algorithm in problem
(P ) is a feasible point.

Proof: Let the accumulation point be ẑ. Since the sequence (zi) belongs to the
closed set L, also ẑ ∈ L. To prove the feasibility of ẑ it suffices to prove that ẑ ∈
N . Let � > 0 be arbitrary and δ > 0 be so small that local Lipschitz condition (2)
with Lipschitz constant K holds for g̃ in B(ẑ, δ). Denote �̂ = max

�

�
3K

, δ
�

. Since
ẑ is the accumulation point, there exist indices k > j such that for MILP solution
points zj and zk the relation zj , zk ∈ B(ẑ, �̂) holds. Since the algorithm does not
terminate after a finite amount of iterations, points in the solution sequence (zi)
are in the closed set {z | g̃(z) ≥ 0}. The accumulation point ẑ also belongs to this
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set, because the set is closed. Since k > j, the inequality lj(zk) ≤ 0 holds, and
thus the inequality

g̃(ẑ) ≤
�

�g̃(ẑ)− lj(zk)
�

� =
�

�

�
g̃(ẑ)− g̃(zj)− ξ̃(zj)T (zk − zj)

�

�

�

is also true. From the triangle and Cauchy-Schwarz inequalities it follows that
�

�

�
g̃(ẑ)− g̃(zj)− ξ̃(zj)T (zk − zj)

�

�

�

≤
�

�g̃(ẑ)− g̃(zj)
�

� +
�

�

�
ξ̃(zj)

�

�

�

�

�zk − zj
�

� .

Then the local Lipschitz continuity and lemma 2.1 implies
�

�g̃(ẑ)− g̃(zj)
�

� +
�

�

�
ξ̃(zj)

�

�

�

�

�zk − zj − ẑ + ẑ
�

�

≤ K
�

�ẑ − zj
�

� + K
�

�zk − ẑ
�

� + K
�

�ẑ − zj
�

�

< K
�

3K
+ K

�

3K
+ K

�

3K
= �.

Thus, g̃(ẑ) = 0 proving the lemma. �

We sum up the convergence result in the following theorem.

Theorem 3.2. ECP algorithm 3.1 with �g = 0 converges to a global optimum
when solving problem (P ).

Proof: As stated earlier, the added cutting planes does not cut off any part of the
feasible set of problem (P ). Thus, the feasible set of problem (P ) is a subset of
the feasible set of any occuring MILP problem. If the solution of the MILP prob-
lem is feasible in (P ) it is also a global optimum. If the algorithm stops after finite
amount of iterations a feasible point will be obtained. If the algorithm generates
an infinite sequence it will have an accumulation point that satisfies the constraints
according to lemma 3.1. Hence, the algorithm converges to a global optimum. �

It is good to note that there can be many accumulation points, but all the accu-
mulation points are, possibly different, global optima.

As a consequence of the above results, the ECP method presented in [17] can
be applied also to nonsmooth problems without any modifications.

4 About the generalization of outer approximation
Next, the classical outer approximation method presented in [4] is considered.
It is assumed here that the objective function and the constraint functions of the
problem (P̂ ) are continuously differentiable. A short presentation of the algorithm
follows.
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The OA method proceeds by alternating between a continuous nonlinear pro-
gramming problem and a MILP problem. The nonlinear problem corresponds to
problem (P̂ ) with fixed integer value y = yi, that is, the problem

min f(x, yi)

s.t. gj(x, y
i) ≤ 0, j = 1, . . . , J (NLPyi)

x ∈ X

is solved at iteration i. If (NLPyi) is feasible, an upper bound UBi is obtained for
the objective function. The best upper bound is stored for the MILP problem as

UBDi = min
�

UBj | j ≤ i and (NLPyj ) is feasible
�

.

If (NLPyi) is infeasible a feasibility problem (Fyi) is solved instead. A special
case of feasibility problems presented in [4] is

min µ

s.t. gj(x, y
i) ≤ µ, j = 1, . . . , J (Fyi)

x ∈ X.

Indices for which (NLPyi) is feasible is stored in set T i:

T i =
�

j | j ≤ i, (NLPyj ) was feasible
�

.

Similarly, Si stores indices where (NLPyi) was infeasible:

Si =
�

j | j ≤ i, (NLPyj ) was infeasible
�

.

Let xi be the solution of (NPLyi) or (Fyi). The MILP problem is then formulated
as follows:

min µ

s.t. µ < UBDi

f(xi, yi) +∇f(xi, yi)T

�

x− xi

y − yi

�

≤ µ ∀i ∈ T i (M i)

gj(x
i, yi) +∇gj(x

i, yi)T

�

x− xi

y − yi

�

≤ 0 ∀i ∈ T i ∪ Si, j = 1, . . . , J

x ∈ X, y ∈ Y.

Let the solution of (M i) be (xi+1, yi+1). Next, the problem (NLPyi+1) or, if
infeasible, the problem (Fyi+1) is solved. The OA algorithm proceeds as follows:

Algorithm 4.1. (Fletcher & Leyffer)
Step 0. Let y0 ∈ Z

m be given. Set i = 0, T−1 = ∅, S−1 = ∅ and UBD−1 = ∞.
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Step 1. Solve the problem (NLPyi), or the feasibility problem (Fyi), if (NLPyi)
is infeasible, and let the solution be xi.

Step 2. Linearize the objective and constraint functions about (xi, yi). Set T i =
T i−1 ∪ {i} or Si = Si−1 ∪ {i} as appropriate.

Step 3. If (NLPyi) is feasible and f(xi, yi) < UBDi−1 then update current best
point by setting x∗ = xi, y∗ = yi and UBDi = f(xi, yi).

Step 4. Solve the problem (M i), giving a new integer assignment yi+1 to be
tested in the algorithm. If (M i) is infeasible stop: the solution is (x∗, y∗), else set
i = i + 1 and go to step 1.

In addition to the assumptions of problem (P̂ ), the constraints are supposed
to satisfy the Slater constraint qualification condition in problems (NLPyi) and
(Fyi) for every yi. This means that for every yi there should exist a point x ∈ X

such that gj(x, y
i) < 0 for all j = 1, . . . , J . This requirement enables us to use

KKT-conditions.
The proof that OA method converges is based on the following three steps.

Lemma 4.1. If (NLPyi) is infeasible and (xi, yi) is the solution to (Fyi) problem,
then y = yi is infeasible in the constraints

gj(x
i, yi) +∇gj(x

i, yi)T

�

x− xi

y − yi

�

≤ 0, j = 1, . . . , J

for all x ∈ X .

Proof: See [4] lemma 1. �

Lemma 4.2. If (NLPyi) is feasible and (xi, yi) is the solution point, then y = yi

is infeasible in the constraints

µ < UBDi

f(xi, yi) +∇f(xi, yi)T

�

x− xi

y − yi

�

≤ µ

gj(x
i, yi) +∇gj(x

i, yi)T

�

x− xi

y − yi

�

≤ 0, j = 1, . . . , J

for all x ∈ X .

Proof: This proof can be found in [4] as a part of the proof of theorem 2. �

Two previous lemmas show that the integer part of the solution of the feasi-
ble (M i) problem is different from the previous solutions. Since Y is finite the
algorithm ends up with an infeasible (M i) problem. Now, it remains to prove
that when (M i) is infeasible the upper bound UBDi is a global optimum. This
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follows from the fact that linearizations in (M i) do not cut off any feasible point
of problem (P ) if the objective function f is smaller than UBDi at the feasible
point. This in turn follows from the convexity of the objective and constraint func-
tions, specially, from inequality (1) for gradients. The proof can be found in [4]
(theorem 2).

4.1 Counterexample

Next, we shall show that substitution of the gradient by an arbitrary subgradient
in outer approximation is insufficient. Let

g(x, y) = max
�

−
3

2
− x + y,−

7

2
+ y + x

�

be the convex, nonsmooth constraint function and consider the following problem

min 2x− y

s.t. g(x, y) ≤ 0

y − 4x− 1 ≤ 0 (E)

0 ≤ x ≤ 2, y ∈ Y,

where Y = {0, 1, 2, 3, 4, 5}. Let the initial point be y0 = 3.
There is no feasible points in problem (NLPy0) and thus problem (Fy0)

min µ

s.t. max
�

3

2
− x,−

1

2
+ x

�

≤ µ

2− 4x ≤ 0

0 ≤ x ≤ 2

will be solved. The solution is x0 = 1 with µ = 1

2
. Then g will be linearized at

point (x0, y0) = (1, 3) for the next MILP problem. Both of the functions −3

2
−

x+y and−7

2
+y+x has the same value 1

2
at the point (x0, y0) and thus according

to lemma 2.2 the subdifferential is

∂g(1, 3) =
�

(α, 1)T | α ∈ [−1, 1]
�

. (7)

Since we may select an arbitrary subgradient we can choose for example
ξ(z0) = (1, 1)T . Thus, the new linear constraint is

1

2
+ (1, 1)(x− 1, y − 3)T ≤ 0 ⇒ x + y −

7

2
≤ 0.
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The resulting problem (M0) is

min 2x− y

s.t. x + y −
7

2
≤ 0

y − 4x− 1 ≤ 0

0 ≤ x ≤ 2, y ∈ Y.

The solution point of problem (M0) is (1

2
, 3). Here y1 = y0 and Fy1 ≡ Fy0 ,

thus outer approximation may generate an infinite loop between points (1, 3) and
(1

2
, 3). Both of them are infeasible, but the problem (E) has a feasible point

(0, 1) for example. Thus, outer approximation with subgradients could not find an
optimum.

4.2 Modified OA method
If the integer variables of the solutions obtained in problems (M i) are explicitly
cut off with integer cuts from the following problems (M i) then the generaliza-
tion would be sufficient. This follows from the inequality (1) which ensures that
feasible solutions for which f is smaller than UBDi are not cut off in problem
(M i). However, as pointed out in [4], integer cuts are practical only with binary
variables.

When tracking down why properties proven for continuously differentiable
functions in [4] are not valid here, the reason was noticed to be the KKT-conditions.

We know that for differentiable functions the KKT-conditions for (Fyi) prob-
lem are the equations

∇µ +

J
�

j=1

λj∇(gj(x, y
i)− µ) + η = 0 (8)

λj(gj(x, y
i)− µ) = 0, j = 1, . . . , J (9)

λj ≥ 0, j = 1, . . . , J,

where η ∈ NX(x) and NX(x) is the normal cone of the set X at the point x. Since
X is a convex set the inequality

ηT (x0 − x) ≤ 0 (10)

holds for all x0 ∈ X and η ∈ NX(x). For nonsmooth functions the relation
corresponding to (8) reads

0 ∈ ∂µ +
J

�

j=1

λj∂(gj(x, y
i)− µ) + NX(x). (11)
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Specially, for arbitrary subgradients, equality like (8) does not hold. If we could
always find such subgradients that the equality holds for (11) also the proof in [4]
would hold and outer approximation would converge also in the nonsmooth case.

A special class of nonsmooth functions can be dealt with in the following way.
Consider a nonsmooth function f for which at any point the subdifferential can be
generated by a convex combination of finite amount of subgradients. That is, for
a point z there exist subgradients ξ1(z), . . . , ξK(z) such that

∂f(z) =

�

αkξ
k(z) |

K
�

k=1

αk = 1, αk ≥ 0, k = 1, . . . , K

�

. (12)

An example of such a function is the maximum of a finite number of convex dif-
ferentiable functions [11]. It should be noted that this type of functions can be
dealt with also with the exact penalty function formulation used in [4]. In the
generalization of the OA method to work with this kind of functions possibly
many linearizations are made instead of one in step 2 of algorithm 4.1. For exam-
ple, consider the function f that should be linearized at point (xi, yi) for the next
MILP problem (M i) and its subdifferential, which is of the form (12). Then, new
linearizations for (M i) would be

f(xi, yi) + ξ1(xi, yi)T

�

x− xi

y − yi

�

≤ 0

...

f(xi, yi) + ξK(xi, yi)T

�

x− xi

y − yi

�

≤ 0.

For a certain linearized function subgradients in different linearizations must be
such that the subdifferential can be constructed with a convex combination of
those subgradients.

Next, we shall prove that with this generalization lemma 4.1 holds.

Lemma 4.3. If (NLPyi) is infeasible and (xi, yi) is the solution to problem (Fyi),
then y = yi is infeasible in the constraints

gj(x
i, yi) + ξk

j (xi, yi)T

�

x− xi

y − yi

�

≤ 0, j = 1, . . . , J, k = 1, . . . , Kij , (13)

where ξ1
j , . . . ξ

Kij

j are such subgradients that any vector from the subdifferential
∂gj(x

i, yi) is a convex combination of those subgradients.

Proof: Suppose as a contrary, that yi is feasible in constraints (13). Since xi is
optimal in (Fyi), the KKT-conditions hold and

0 ∈ ∂µ +
J

�

j=1

λj∂(gj(x
i, yi)− µ) + NX(xi).
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From the component corresponding to µ we see that

J
�

j=1

λj = 1. (14)

From the other components we see that there exist appropriate subgradients ξj(x
i, yi)

and a normal vector η such that the equation

0 =

J
�

j=1

λjξj(x
i, yi) + η (15)

holds. For all j we can choose constants αjk such that

ξj(x
i, yi) =

Kij

�

k=1

αjkξ
k
j (xi, yi)

Kij
�

k=1

αjk = 1, j = 1, . . . , J

αjk ≥ 0, j = 1, . . . , J, k = 1, . . . , Kij.

Multiplying all the inequalities in (13) with corresponding constants αjk, inserting
y = yi and summing over k we obtain

Kij

�

k=1

αjkgj(x
i, yi) +

Kij

�

k=1

αjkξ
k
j (xi, yi)T

�

x− xi

yi − yi

�

≤ 0, j = 1, . . . , J

⇒ gj(x
i, yi) + ξj(x

i, yi)T

�

x− xi

0

�

≤ 0, j = 1, . . . , J.

Multiplying these equations with the KKT-multipliers λj and summing them up
results in equation

J
�

j=1

λjgj(x
i, yi) +

J
�

j=1

λjξj(x
i, yi)T

�

x− xi

0

�

≤ 0.

From the KKT-condition (9) and equation (14) we see that
�

j λjgj(x
i, yi) = µ.

Also, since η ∈ NX(xi) equation ηT (x − xi) ≤ 0 holds. Summing this equation
and making substitution

�

j λjgj(x
i, yi) = µ results in equation

µ +
�

j

λjξj(x
i, yi)T

�

x− xi

0

�

+ ηT (x− xi) ≤ 0. (16)

From equation (15) we know that

(
�

j

λjξj(x
i, yi) + η)T (x− xi) = 0,

12



thus inequality (16) results in µ ≤ 0 implying there is a feasible solution for prob-
lem (NLPyi). This is impossible since problem (Fyi) was solved. Hence, the
lemma is proved. �

Similarly, corresponding lemma 4.2 holds. The proof of this lemma is very
similar to the previous one. Also, if a point is feasible and the objective function
f is smaller than UBDi at the point, then the point is feasible in problem (M i).
This follows from the definition of a subgradient and convexity of the objective
and constraint functions. Thus, the modified OA method converges. Also, if
functions are continuously differentiable this procedure reduces to the OA method
in [4].

5 An example problem
Next, the example problem (E) is solved with the modified outer approximation
and extended cutting plane methods. First, we continue the solving process of
outer approximation from point (1, 3) obtained in previous section. Now, for con-
straint g1 two cutting planes are generated, one with gradient (1, 1)T and the other
with (−1, 1)T , resulting in the constraints

x + y −
7

2
≤ 0 and

−x + y −
3

2
≤ 0.

The resulted MILP problem is

min 2x− y

s.t. x + y −
7

2
≤ 0

−x + y −
3

2
≤ 0

y − 4x− 1 ≤ 0

0 ≤ x ≤ 2, y ∈ Y,

and the solution is (0, 1)T . Problem (NLPy1) has the same optimum and (M1) is
infeasible. Thus, the algorithm ends up with the solution (0, 1)T which is a global
optimum.

For the ECP method the first MILP problem is

min 2x− y

s.t. y − 4x− 1 ≤ 0

0 ≤ x ≤ 2, y ∈ Y.

13



The solution point (1, 5)T is not feasible in (E) since g(1, 5) = 5

2
≥ 0. Both the

linear functions of g have the same value and the subdifferential is the same as in
(7). According to algorithm 3.1 we may choose any subgradient from the subd-
ifferential. We will see how algorithm proceeds if we would choose subgradients
(1, 1), (0, 1) or (−1, 1) respectively. Results are summarized in table 1.

ξi i xi yi g(xi, yi) 2x− y

0 1 5 5

2
−3

(1,1) 1 1

2
3 1 −3

2

2 0 1 −1

2
−1

(0,1) 1 1

4
2 1 −7

4

2 0 1 −1

2
−1

(-1,1) 1 0 1 −1

2
−1

Table 1: Quantities in the ECP algorithm with different choices of subgradient

As can be seen from table 1, the ECP method converged to optimal point in this
example with all chosen subgradients. However, different choices of subgradients
resulted in different amount of iterations. The global optimum was found fastest
with the subgradient (−1, 1)T .

6 Conclusions
The ECP and OA methods with nonsmooth MINLP problems were studied. The
ECP method could solve the problem if subgradients are used in linearizations
when the gradient does not exist. An example showed that different choices of
subgradients may affect how fast the global optimum is found. The OA method
presented in [4] could not solve the problem generally, but with slight modifica-
tions to the algorithm a special class of nonsmooth functions could be dealt with.
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Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi



University of Turku
• Department of Information Technology
• Department of Mathematics
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