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Abstract

Convexity plays a crucial role in mathematical optimization theory. In order to extend
the existing results depending on convexity, numerous attempts of generalizing the con-
cept have been published during years. Different types of generalized convexities has
proved to be the main tool when constructing optimality conditions, particularly suffi-
cient conditions for optimality.

The purpose of this paper is to analyze the properties of the generalized pseudo- and
quasiconvexities for nondifferentiable locally Lipschitz continuous functions. The treat-
ment is based on the Clarke subdifferentials and generalized directional derivatives.
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1 Introduction
Convexity plays a crucial role in mathematical optimization theory. Especially, in dual-
ity theory and in constructing optimality conditions convexity has been the most impor-
tant concept since the basic reference by Rockafellar [15] was published. Recently there
have been numerous attempts to generalize the concept of convexity in order to weaken
the assumptions of the attained results (see e.g., [1, 2, 5, 9, 16, 18]). For an excellent
survey of generalized convexities we refer to [14].

Generalized convexities have proved to be the main tool when constructing optimal-
ity conditions, particularly sufficient conditions. There exist a wide amount of papers
published for smooth single-objective case (see [14] and references therein). For non-
smooth and multiobjective problems necessary conditions were derived for instance in
[12, 13, 17].

In this paper, we analyze the properties of the generalized pseudo- and quasicon-
vexities for nondifferentiable locally Lipschitz continuous functions. The treatment is
based on the Clarke subdifferentials and generalized directional derivatives [4]. The
paper is organized as follows. In Section 2 we recall some basic tools from nonsmooth
analysis. Sections 3 and 4 are devoted to generalized pseudo- and quasiconvexity, re-
spectively. Also, some relations between generalized pseudo- and quasiconvexities are
considered in Section 4. Finally, the derived results are summarized in Section 5.

2 Nonsmooth Analysis
In this section we collect some notions and results from nonsmooth analysis. Neverthe-
less, we start by recalling the notion of convexity and Lipschitz continuity. The function
f : Rn → R is convex if for all x,y ∈ Rn and λ ∈ [0, 1] we have

f
�

λx + (1− λ)y
�

≤ λf(x) + (1− λ)f(y).

In what follows the considered functions are assumed to be locally Lipschitz continuous.
A function is locally Lipschitz continuous at a point x ∈ Rn if there exist scalarsK > 0
and δ > 0 such that

|f(y)− f(z)| ≤ K�y − z� for all y, z ∈ B(x; δ),

where B(x; δ) ⊂ Rn is an open ball with center x and radius δ. Function is said to
be locally Lipschitz continuous on a set U ⊆ Rn if it is locally Lipschitz continuous at
every point belonging to the set U . Furthermore, ifU = Rn the function is called locally
Lipschitz continuous. Note that both convex and smooth (continuously differentiable)
functions are always locally Lipschitz continuous (see, e.g., [4]).

Function f : Rn → R is said to be Lipschitz continuous on a set U ⊆ Rn if there
exists a scalar K such that

|f(y)− f(z)| ≤ K�y − z� for all y, z ∈ U.

If U = Rn then f is said to be Lipschitz continuous.
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DEFINITION 2.1. Let f : Rn → R be locally Lipschitz continuous at x ∈ S ⊆ Rn. The
Clarke generalized directional derivative of f at x in the direction of d ∈ Rn is defined
by

f ◦(x;d) := lim sup
y→x
t↓0

f(y + td)− f(y)

t

and the Clarke subdifferential of f at x by

∂f(x) := {ξ ∈ Rn | f ◦(x;d) ≥ ξT d for all d ∈ Rn}.

Each element ξ ∈ ∂f(x) is called a subgradient of f at x.

Note that the Clarke generalized directional derivative f ◦(x;d) always exists for a lo-
cally Lipschitz continuous function f . If f is convex ∂f(x) coincides with the classical
subdifferential of convex function (cf. [15]), in other words the set of ξ ∈ Rn satisfying

f(y) ≥ f(x) + ξT (y − x) for all y ∈ Rn.

Furthermore, if f is smooth ∂f(x) reduces to ∂f(x) = {∇f(x)}. Smoothness is
critical here as the function

g(x) =

�

0, x = 0

x2 cos( 1
x
), x �= 0

(1)

shows. Function g is locally Lipschitz continuous and differentiable everywhere but
nonsmooth (not continuously differentiable) and ∂g(0) �= {∇g(0)} (see appendix A).

The following properties derived in [4] are characteristic to the generalized direc-
tional derivative and subdifferential.

THEOREM 2.2. If f : Rn → R is locally Lipschitz continuous at x ∈ Rn, then

(i) d �→ f ◦(x;d) is positively homogeneous, subadditive and Lipschitz continuous
function such that f ◦(x;−d) = (−f)◦(x;d).

(ii) ∂f(x) is a nonempty, convex and compact set.

(iii) f ◦(x;d) = max {ξT d | ξ ∈ ∂f(x)} for all d ∈ Rn.

The subdifferential can be constructed as a convex hull of all possible limits of gra-
dients at point xi converging to x. Let

Ωf = {x ∈ Rn | f is not differentiable at the point x}

be the set of points where f is not differentiable. By Rademacher’s Theorem [10] a func-
tion which is Lipschitz continuous on a set U ⊆ Rn is differentiable almost everywhere
on U , in other words, meas(Ωf )=0.
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THEOREM 2.3. Let f : Rn → R be locally Lipschitz continuous at x ∈ Rn. Then

∂f(x) = conv {ξ ∈ Rn | ∃(xi) ⊂ Rn\Ωf s.t. xi → x and ∇f(xi)→ ξ} ,

where conv denotes the convex hull of a set.

PROOF. See, for example, [10, pp. 50–51]. �

In order to maintain equalities instead of inclusions in subderivation rules we need the
following regularity property.

DEFINITION 2.4. The function f : Rn → R is said to be subdifferentially regular
at x ∈ Rn if it is locally Lipschitz continuous at x and for all d ∈ Rn the classical
directional derivative

f �(x;d) = lim
t↓0

f(x + td)− f(x)

t

exists and f �(x;d) = f ◦(x;d).

Note, that the equality f �(x;d) = f ◦(x;d) is not necessarily valid in general even if
f �(x;d) exists. This is the case, for instance, with concave nonsmooth functions. For
example, the function f(x) = − |x| has the directional derivative f �(0; 1) = −1, but
the generalized directional derivative is f ◦(0; 1) = 1. However, convexity, as well as
smoothness implies subdifferential regularity [4]. Furthermore, it is easy to show that a
necessary and sufficient condition for convexity is that for all x,y ∈ Rn we have

f(y)− f(x) ≥ f ◦(x;y − x)

= f �(x;y − x). (2)

Next we present two subderivation rules of composite functions, namely the finite
maximum and positive linear combination of subdifferentially regular functions.

THEOREM 2.5. Let fi : Rn → R be locally Lipschitz continuous at x for all i =
1, . . . , m. Then the function

f(x) := max {fi(x) | i = 1, . . . , m}

is locally Lipschitz continuous at x and

∂f(x) ⊆ conv {∂fi(x) | fi(x) = f(x), i = 1, . . . , m} (3)

In addition, if fi is subdifferentially regular at x for all i = 1, . . . , m, then f is also
subdifferentially regular at x and equality holds in (3).

PROOF. See, for example, [4, p. 47]. �

THEOREM 2.6. Let fi : Rn → R be locally Lipschitz continuous at x and λi ∈ R for
all i = 1, . . . , m. Then the function

f(x) :=
m

�

i=1

λifi(x)
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is locally Lipschitz continuous at x and

∂f(x) ⊆
m

�

i=1

λi∂fi(x). (4)

In addition, if fi is subdifferentially regular at x and λi ≥ 0 for all i = 1, . . . , m, then
f is also subdifferentially regular at x and equality holds in (4).

PROOF. See, for example, [4, pp. 39–40]. �

The following two results generalize the classical Mean-Value Theorem and the
Chain Rule, respectively.

THEOREM 2.7. Let x,y ∈ Rn be such that x �= y and let the function f be locally
Lipschitz continuous on an open set U ⊆ Rn such that the line segment [x,y] ⊂ U .
Then there exists a point z ∈ (x,y) such that

f(y)− f(x) ∈ ∂f(z)T (y − x).

PROOF. See, for example, [4, pp. 41–42]. �

THEOREM 2.8. Let h : Rn → R be locally Lipschitz continuous at x and g : R → R be
locally Lipschitz continuous at h(x). Then the composite function f = g ◦ h : Rn → R
is also locally Lipschitz continuous at x and one has

∂f(x) ⊆ conv {∂g(h(x))∂h(x)}.

PROOF. See, for example, [4, pp. 72–73]. �

Next we shall give the basic unconstrained optimality condition.

THEOREM 2.9. Let f : Rn → R be locally Lipschitz continuous at x∗. If f attains its
local minimum at x∗, then

000 ∈ ∂f(x∗).

If, in addition, f is convex, then the above condition is also sufficient for x∗ to be a
global minimum.

PROOF. See, for example, [10, pp. 70–71]. �

Now we shall present a theorem and two lemmas that are used later.

THEOREM 2.10. Let ε > 0, function f : Rn → R be locally Lipschitz continuous at x

and d ∈ Rn, d �= 000. Then

f ◦(x;d)− ε ≤ lim sup
�

∇f(y)T d | y → x, y /∈ Ωf

�

.

PROOF. See, for example, [10, pp. 51–52]. �
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LEMMA 2.11. Let x ∈ Rn be a point, where f : Rn → R is locally Lipschitz continuous
and differentiable. Let K be the Lipschitz constant of the function f at the point x. Then
the function d �→ f �(x;d) is positively homogeneous and Lipschitz continuous with the
constant K.

PROOF. Since f is differentiable at the point x the directional derivatives f �(x;d) exist
for all d ∈ Rn. Let λ > 0, then

f �(x;λd) = lim
t↓0

f(x + λdt)− f(x)

t
= lim

t↓0
λ
f(x + λdt)− f(x)

λt

= λ lim
t↓0

f(x + λdt)− f(x)

λt
= λf �(x;d),

which proves the positive homogeneity.
Let u,w ∈ Rn be arbitrary. Since f is locally Lipschitz continuous there exists

ε > 0 such that the Lipschitz condition holds in B(x; ε). Furthermore, there exists
t0 > 0 such that x + wt,x + ut ∈ B(x; ε) when 0 < t < t0. Then

f(x + ut)− f(x + wt) ≤ Kt �u−w� ,

and, thus,

lim
t↓0

f(x + ut)− f(x)

t
≤ lim

t↓0

f(x + wt)− f(x)

t
+K �u−w�

whence
f �(x;u)− f �(x;w) ≤ K �u−w� .

Reversing the roles of u andw we obtain

f �(x;w)− f �(x;u) ≤ K �u−w� .

Thus
|f �(x;w)− f �(x;u)| ≤ K �u−w�

completing the proof of the Lipschitz continuity. �

The level set of f with a parameter α ∈ R is defined as

levα f := {x ∈ Rn | f(x) ≤ α}

LEMMA 2.12. Let x,y ∈ Rn and on [x,y] locally Lipschitz continuous function f be
such that f(x) < f(y). Then, there exists a point x̄ = λx + (1− λ)y, λ ∈ (0, 1) such
that f(x̄) > f(x) and f ◦(x̄;y − x) > 0.

PROOF. Consider the nonempty set A = levf(x)f ∩ [x,y]. Since level sets of a contin-
uous function are closed sets and [x,y] is compact, the set A is a compact set. Since
function g(w) := �w − y� is continuous, it has a minimum on the set A according
to the well-known Weierstrass Theorem. Let this minimum point be z. Then z is the
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nearest point to y on the set A and the continuity of function f implies f(z) = f(x).
Also, z �= y since f(x) < f(y). The Mean-Value Theorem implies that there exist
z̄ ∈ (z,y) and ξ ∈ ∂f(z̄) such that

f(y)− f(z) = ξT (y − z).

Since f(z) < f(y) we have

0 < f(y)− f(z) = ξT (y − z) ≤ f ◦(z̄;y − z) ≤ f ◦(z̄;y − x),

where the last inequality follows from positive homogeneity and inequality �y − z� ≤
�y − x�. By the choice of the point z we know that f(z) < f(z̄) since z̄ ∈ (z,y).
Choosing x̄ = z̄ we have f(x) = f(z) < f(x̄) and the lemma has been proven. �

3 Generalized Pseudoconvexity
The most famous definition of pseudoconvexity for smooth functions was introduced
in [11].

DEFINITION 3.1. A continuously differentiable function f : Rn → R is pseudoconvex,
if for all x,y ∈ Rn

f(y) < f(x) implies ∇f(x)T (y − x) < 0.

The main result for a smooth pseudoconvex function f is that the convexity assumption
of Theorem 2.9 can be weakened, in other words, a smooth pseudoconvex function f
attains a global minimum at x∗, if and only if ∇f(x∗) = 000 (see [11]).

Lately, the concept of pseudoconvexity has been extended for nonsmooth case by
many authors (see e.g., [1, 14] and the references therein). One way to do this is the us-
age of directional derivatives. The Dini directional derivatives were used, for example,
by Diewert [5], Komlósi [8] and Borde and Crouzeix [3]. In [9] this idea was general-
ized for lower semicontinuous functions via h-pseudoconvexity, where h(x,d) is any
real-valued bifunction, that is, for example, any directional derivative. In this paper we
use the definition by Hiriart-Urruty [7] for locally Lipschitz continuous functions.

DEFINITION 3.2. A function f : Rn → R is f ◦-pseudoconvex, if it is locally Lipschitz
continuous and for all x,y ∈ Rn

f(y) < f(x) implies f ◦(x;y − x) < 0.

Note that due to (2) a convex function is always f ◦-pseudoconvex. The next result
shows that f ◦-pseudoconvexity is a natural extension of pseudoconvexity.

THEOREM 3.3. If f is smooth, then f is f ◦-pseudoconvex, if and only if f is pseudo-
convex.
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PROOF. Follows immediately from Theorem 2.2 (iii), since for a smooth f we have
f ◦(x;y − x) = f �(x;y − x) = ∇f(x)T (y − x). �

Sometimes the reasoning chain in the definition of f ◦-pseudoconvexity needs to be con-
verted.

LEMMA 3.4. A locally Lipschitz continuous function f is f ◦-pseudoconvex, if and only
if for all x,y ∈ Rn

f ◦(x;y − x) ≥ 0 implies f(y) ≥ f(x).

PROOF. Follows directly from the definition of f ◦-pseudoconvexity. �

The important sufficient extremum property of pseudoconvexity remains also for f ◦-
pseudoconvexity.

THEOREM 3.5. An f ◦-pseudoconvex f attains its global minimum at x∗, if and only if

000 ∈ ∂f(x∗).

PROOF. If f attains its global minimum at x∗, then by Theorem 2.9 we have 000 ∈
∂f(x∗). On the other hand, if 000 ∈ ∂f(x∗) and y ∈ Rn, then by Definition 2.1

f ◦(x∗;y − x∗) ≥ 000T (y − x∗) = 0

and, thus by Lemma 3.4 we have

f(y) ≥ f(x∗).

�

The following example shows, that f ◦-pseudoconvexity is a more general property
than pseudoconvexity.

EXAMPLE 3.1. Define f : R → R such that f(x) := min {|x|, x2}. Then f is clearly
locally Lipschitz continuous but not convex nor pseudoconvex. However, for all y > x
we have

f ◦(x; y − x) =











−1, x ∈ (−∞,−1]

2x, x ∈ (−1, 1]

1, x ∈ (1,∞),

and thus, due to the symmetricity of the function f and Lemma 3.4, f is f ◦-pseudoconvex.
Furthermore for the unique global minimum x∗ = 0 we have ∂f(x∗) = {0}.

The notion of monotonicity is closely related to convexity.

DEFINITION 3.6. The generalized directional derivative f ◦ is called pseudomonotone,
if for all x,y ∈ Rn

f ◦(x;y − x) ≥ 0 implies f ◦(y;x− y) ≤ 0
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or, equivalently

f ◦(x;y − x) > 0 implies f ◦(y;x− y) < 0.

Furthermore, f ◦ is strictly pseudomonotone, if

f ◦(x;y − x) ≥ 0 implies f ◦(y;x− y) < 0.

THEOREM 3.7. If f is locally Lipschitz continuous such that f ◦ is pseudomonotone,
then f is f ◦-pseudoconvex.

PROOF. Let us, on the contrary, assume that f is not f ◦-pseudoconvex. Then there exist
x,y ∈ Rn such that f(y) < f(x) and

f ◦(x;y − x) ≥ 0. (5)

Then by theMean-Value Theorem 2.7 there exists λ̂ ∈ (0, 1) such that x̂ = x+λ̂(y−x)
and

f(x)− f(y) ∈ ∂f(x̂)T (x− y).

This means that due to the definition of the Clarke subdifferential there exists ξ̂ ∈ ∂f(x̂)
such that

0 < f(x)− f(y) = ξ̂
T
(x− y) ≤ f ◦(x̂;x− y). (6)

On the other hand, from (5) and the positive homogeneity of d �→ f ◦(x;d) (see Theo-
rem 2.2 (i)) we deduce that

f ◦(x; x̂− x) = f ◦(x; λ̂(y − x)) = λ̂f ◦(x;y − x) ≥ 0.

Then the pseudomonotonicity, the positive homogeneity of d �→ f ◦(x;d) and (6) imply
that

0 ≥ f ◦(x̂;x− x̂) = λ̂f ◦(x̂;x− y) > 0,

which is impossible. Thus f is f ◦-pseudoconvex. �

The converse is true too. Few lemmas is needed before the proof.

LEMMA 3.8. Let f be an f ◦-pseudoconvex function, x,y ∈ Rn and λ̄ ∈ (0, 1). Denote
x̄ = λ̄x + (1− λ̄)y. Then, f(x̄) ≤ max {f(x), f(y)}

PROOF. On the contrary assume that f(x̄) > max {f(x), f(y)}. Since f is f ◦-pseudo-
convex and d �→ f ◦(x;d) is positively homogeneous by Theorem 2.2 (i), we have

0 > f ◦(x̄;x− x̄) = f ◦(x̄; (1− λ̄)(x− y)) = (1− λ̄)f ◦(x̄;x− y)

and thus
f ◦(x̄;x− y) < 0.
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Correspondingly, we obtain

0 > f ◦(x̄;y − x̄) = f ◦(x̄; λ̄(y − x)) = λ̄f ◦(x̄;y − x)

and thus
f ◦(x̄;y − x) < 0.

Since d �→ f ◦(x;d) is subadditive by Theorem 2.2 (i), we have

0 > f ◦(x̄;x− y) + f ◦(x̄;y − x) ≥ f ◦(x̄; (x− y) + (y − x)) = f ◦(x̄; 000) = 0,

which is impossible. In other words, f(x̄) ≤ max {f(x), f(y)}. �

LEMMA 3.9. Let f be an f ◦-pseudoconvex function. Then there exist no points x,y ∈
Rn, which satisfy the following conditions

(i) f(x) = f(y) and

(ii) f ◦(x;y − x) > 0.

PROOF. On the contrary, assume that there exist points x,y ∈ Rn and δ > 0 such
that f ◦(x;y − x) = δ and f(x) = f(y). Since f is locally Lipschitz continuous
there exist ε,K > 0 such that K is the Lipschitz constant in the ball B(x; ε). Since
f ◦(x;y − x) = δ Theorem 2.10 implies that there exists a sequence (zi) of points
where f is differentiable and I ∈ N such that zi → x and

f �(zi;y − x) = ∇f(zi)T (y − x) >
δ

2
(7)

holds when i ≥ I . Let

ε̂ = min

�

ε,
δ

2K

�

and z ∈ B(x; ε̂) ∩ {(zi) | i ≥ I}. According to Lemma 2.11 f �(z; ·) is Lipschitz con-
tinuous with the constantK. Hence,

|f �(z;y − x)− f �(z;y − z)| ≤ K �y − x− (y − z)�

= K �z − x� < K
δ

2K
=

δ

2
. (8)

Thus, f �(z;y − z) > 0 according to (7) and (8). Since f �(z;y − z) > 0 there exists
µ ∈ (0, 1) such that

f(µz + (1− µ)y) > f(z). (9)

Since f ◦(x;y − x) = δ, Theorem 2.2 (i) implies that there exists ε̄ > 0 such that
f ◦(x;d) > 0 when d ∈ B(y − x; ε̄). Let z̄ ∈ B(y; ε̄). Since

�z̄ − x− (y − x)� = �z̄ − y� < ε̄,
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it follows that z̄−x ∈ B(y−x; ε̄). Thus, f ◦(x; z̄−x) > 0 and the f ◦-pseudoconvexity
of the function f implies f(z̄) ≥ f(x) = f(y). Thus, y is a local minimum for the
function f and Theorem 2.9 implies that 000 ∈ ∂f(y). Due to Theorem 3.5 y is also a
global minimum. Thus, we have f(y) ≤ f(z) and the inequality (9) implies that

f(µz + (1− µ)y) > max {f(z), f(y)} ,

which is impossible by Lemma 3.8. �

REMARK 3.1. It is good to note that differentiability at the point x is crucial in Lemma
2.11. This allows us to assume that directional derivatives f �(x;d) exist at x which was
needed in Lemma 3.9. Unlike the convexity, the f ◦-pseudoconvexity does not guarantee
that directional derivatives exist at every point. An example of f ◦-pseudoconvex func-
tion for which directional derivatives do not exist at every point is presented in Appendix
B.

Now we are ready to prove the converse result of Theorem 3.7.

THEOREM 3.10. The generalized directional derivative of a f ◦-pseudoconvex function
is pseudomonotone.

PROOF. Let f be f ◦-pseudoconvex and, on the contrary, assume that there exist x,y ∈
Rn such that f ◦(x;y − x) ≥ 0 and f ◦(y;x − y) > 0. Then, by f ◦-pseudoconvexity
f(x) ≤ f(y) and f(y) ≤ f(x), hence f(x) = f(y). Thus, we have f ◦(y;x− y) > 0
and f(x) = f(y), which contradicts Lemma 3.9. �

In what follows we consider how to verify the f ◦-pseudoconvexity in practice. Be-
fore that, however, we need the following result.

LEMMA 3.11. A locally Lipschitz continuous function g : R → R is f ◦-pseudoconvex
and strictly increasing, if and only if ς > 0 for all ς ∈ ∂g(x) and x ∈ R.

PROOF. Suppose first that g is both f ◦-pseudoconvex and strictly increasing and let
v < 0. Then for every x ∈ R we have g(x+ v) < g(x) and due to f ◦-pseudoconvexity
g◦(x; v) < 0. By the definition of the subdifferential for all ς ∈ ∂g(x) we have

ςv ≤ g◦(x; v) < 0,

which implies ς > 0.
On the other hand, let all the subgradients of g be positive. We first prove that g is

strictly increasing. Suppose, on the contrary, that there exist y, x ∈ R such that y < x
and g(y) ≥ g(x). By the Mean-Value Theorem 2.7 there exists x̂ ∈ (y, x) such that

g(x)− g(y) ∈ ∂g(x̂)(x− y).

This means that there exists ς̂ ∈ ∂g(x̂) such that ς̂ > 0 and

0 ≥ g(x)− g(y) = ς̂(x− y) > 0,
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which is impossible. Thus, g is strictly increasing.
Since g is strictly increasing we have g(y) < g(x) if and only if y < x, where

x, y ∈ R. Thus, to prove f ◦-pseudoconvexity we need to show that y < x implies
f ◦(x; y − x) < 0. Let x, y ∈ R be arbitrary such that y < x. By Theorem 2.2 (iii)

f ◦(x; y − x) = max {ς(y − x) | ς ∈ ∂f(x)} < 0

which proves the f ◦-pseudoconvexity. �

THEOREM 3.12. Let h : Rn → R be f ◦-pseudoconvex and g : R → R be f ◦-
pseudoconvex and strictly increasing. Then the composite function f := g◦h : Rn → R
is also f ◦-pseudoconvex.

PROOF. According to Theorem 2.8 function f is locally Lipschitz continuous. Suppose
now that f(y) < f(x). Then g(h(y)) = f(y) < f(x) = g(h(x)) and since g is strictly
increasing we have

h(y) < h(x). (10)

From Theorems 2.2 (iii) and 2.8 we deduce that

f ◦(x;y − x) = max {ξT (y − x) | ξ ∈ ∂f(x)} (11)

≤ max
�

ξT (y − x) | ξ ∈ conv {∂g(h(x))∂h(x)}

Due to the definition of a convex hull the right hand side of (11) is equivalent to

max
��

m
�

i=1

λiςiζi

�T

(y − x) | ςi ∈ ∂g(h(x)), ζi ∈ ∂h(x), λi ≥ 0,
m

�

i=1

λi = 1
�

≤ max
��

m
�

i=1

λiςi

�

· max
ζ

i
∈∂h(x)

ζT
i (y − x) | ςi ∈ ∂g(h(x)), λi ≥ 0,

m
�

i=1

λi = 1
�

= max
��

m
�

i=1

λiςi

�

h◦(x;y − x) | ςi ∈ ∂g(h(x)), λi ≥ 0,
m

�

i=1

λi = 1
�

,

since by Lemma 3.11 we have ςi > 0 for all i = 1, . . . , m and thus
m

�

i=1

λiςi > 0.

On the other hand, since h is f ◦-pseudoconvex, (10) implies that h◦(x;y − x) < 0.
Then

f ◦(x;y − x) ≤ max
��

m
�

i=1

λiςi

�

h◦(x;y − x) | ςi ∈ ∂g(h(x)), λi ≥ 0,

m
�

i=1

λi = 1
�

< 0

thus f is f ◦-pseudoconvex. �

11



THEOREM 3.13. Let fi : Rn → R be f ◦-pseudoconvex for all i = 1, . . . , m. Then the
function

f(x) := max {fi(x) | i = 1, . . . , m}

is also f ◦-pseudoconvex.

PROOF. According to Theorem 2.5 f is locally Lipschitz continuous. Suppose that
f(y) < f(x). Define the index set

I(x) := {i ∈ {1, . . . , m} | fi(x) = f(x)}.

Then for all i ∈ I(x) we have

fi(y) ≤ f(y) < f(x) = fi(x). (12)

From Theorem 2.2 (iii) and 2.5, the definition of a convex hull, f ◦-pseudoconvexity of
fi, and (12) we deduce that

f ◦(x;y − x) = max {ξT (y − x) | ξ ∈ ∂f(x)}

≤ max
�

ξT (y − x) | ξ ∈ conv {∂fi(x)) | i ∈ I(x)}
�

= max
��

�

i∈I(x)

λiξi

�T

(y − x) | ξi ∈ ∂f(x), λi ≥ 0,
�

i∈I(x)

λi = 1
�

≤ max
�

�

i∈I(x)

λi · max
ξ

i
∈∂fi(x)

ξT
i (y − x) | λi ≥ 0,

�

i∈I(x)

λi = 1
�

= max
�

�

i∈I(x)

λif
◦
i (x;y − x) | λi ≥ 0,

�

i∈I(x)

λi = 1
�

< 0.

Thus, f is f ◦-pseudoconvex. �

Due to the fact that the sum of f ◦-pseudoconvex functions is not necessarily f ◦-pseudo-
convex we need the following new property.

DEFINITION 3.14. The functions fi : Rn → R for i = 1, . . . , m are said to be additively
strictly monotone, if for all x,y ∈ Rn and λi ≥ 0, i = 1, . . . , m

m
�

i=1

λifi(y) <
m

�

i=1

λifi(x) implies fi(y) < fi(x).

THEOREM 3.15. Let fi : Rn → R be f ◦-pseudoconvex and additively strictly monotone,
and let λi ≥ 0 for all i = 1, . . . , m. Then the function

f(x) :=

m
�

i=1

λifi(x)

is f ◦-pseudoconvex.
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PROOF. According to Theorem 2.6 f is locally Lipschitz continuous. Suppose that
f(y) < f(x). Then the additive strict monotonicity implies that for all i = 1, . . . , m
we have

fi(y) < fi(x). (13)

From Theorem 2.2 (iii) and 2.6, nonnegativity of λi, f ◦-pseudoconvexity of fi, and (13)
we deduce that

f ◦(x;y − x) = max {ξT (y − x) | ξ ∈ ∂f(x)}

≤ max {ξT (y − x) | ξ ∈
m

�

i=1

λi∂fi(x)}

= max
��

m
�

i=1

λiξi

�T

(y − x) | ξi ∈ ∂fi(x)
�

≤
m

�

i=1

λi · max
ξ

i
∈∂fi(x)

ξT
i (y − x)

=

m
�

i=1

λif
◦
i (x;y − x) < 0.

Thus, f is f ◦-pseudoconvex. �

4 Generalized Quasiconvexity
The notion of quasiconvexity is the most widely used generalization of convexity, and,
thus, there exist various equivalent definitions and characterizations. Next we recall the
most commonly used definition of quasiconvexity (see e.g. [1]).

DEFINITION 4.1. The function f : Rn → R is quasiconvex, if for all x,y ∈ Rn and
λ ∈ [0, 1]

f(λx + (1− λ)y) ≤ max {f(x), f(y)}.

REMARK 4.1. Lemma 3.8 implies that f ◦-pseudoconvex function is also quasiconvex.

Note, that unlike pseudoconvexity, the previous definition of quasiconvexity does not
require differentiability. Next we will give a well-known important geometrical charac-
terization to quasiconvexity.

THEOREM 4.2. A function f is quasiconvex, if and only if the level set levαf is a convex
set for all α ∈ R.

PROOF. Let f be quasiconvex, x,y ∈ levαf , λ ∈ [0, 1] and α ∈ R. Then

f(λx + (1− λ)y) ≤ max {f(x), f(y)} ≤ max {α, α} = α,
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thus λx + (1− λ)y ∈ levαf .
On the other hand, let levα f be a convex set for all α ∈ R. By choosing β :=

max {f(x), f(y)} we have x,y ∈ levβ f . The convexity of levβ f implies, that λx +
(1− λ)y ∈ levβ f for all λ ∈ [0, 1], in other words

f(λx + (1− λ)y) ≤ β = max {f(x), f(y)}.

�

We give also a useful result concerning a finite maximum of quasiconvex functions.

THEOREM 4.3. Let fi : Rn → R be quasiconvex at x for all i = 1, . . . , m. Then the
function

f(x) := max {fi(x) | i = 1, . . . , m}

is also quasiconvex.

PROOF. Follows directly from the definition of quasiconvexity. �

Also the concept of quasiconvexity has been studied by many authors (see [14] and
references therein). The Dini directional derivatives were used in the characterization
of quasiconvexity for radially lower semicontinuous functions in [5]. Analogously to
the Definition 3.2 we can define the corresponding generalized concept, which is a spe-
cial case of h-quasiconvexity defined by Komlósi [9] when h is the Clarke generalized
directional derivative.

DEFINITION 4.4. A function f : Rn → R is f ◦-quasiconvex, if it is locally Lipschitz
continuous and for all x,y ∈ Rn

f(y) ≤ f(x) implies f ◦(x;y − x) ≤ 0.

Similarly to f ◦-pseudoconvexity, the reasoning chain may be converted.

LEMMA 4.5. The locally Lipschitz continuous function f is f ◦-quasiconvex, if and only
if for all x,y ∈ Rn

f ◦(x;y − x) > 0 implies f(y) > f(x).

PROOF. Follows directly from the definition of f ◦-quasiconvexity. �

There is a way, similar to Definition 4.4, to express locally Lipschitz continuous and
quasiconvex function.

DEFINITION 4.6. A function f : Rn → R is l-quasiconvex, if it is locally Lipschitz
continuous and for all x,y ∈ Rn

f(y) < f(x) implies f ◦(x;y − x) ≤ 0.

REMARK 4.2. Definitions 4.4 and 4.6 imply that an f ◦-quasiconvex function is l-quasi-
convex.
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Next, we prove that l-quasiconvexity coincides with quasiconvexity in locally Lipschitz
continuous case. This result can be found in [6].

THEOREM 4.7. If a locally Lipschitz continuous function f : Rn → R is quasiconvex
then it is l-quasiconvex.

PROOF. Let f be locally Lipschitz continuous and quasiconvex. Let x, z ∈ Rn be such
that f(z) < f(x). Since local Lipschitz continuity implies continuity there exists ε > 0
such that f(z+d) < f(x+d) for all d ∈ B(000; ε). For generalized directional derivative
f ◦(x; z − x) we have

f ◦(x; z − x) = lim sup
y→x

t↓0

f(y + t(z − x))− f(y)

t

= lim sup
y→x
t↓0

f(y + t(z − x + y − y))− f(y)

t

= lim sup
y→x

t↓0

f((1− t)y + t(z + y − x))− f(y)

t

When t ∈ (0, 1) and y − x ∈ B(000; ε) the quasiconvexity of f implies

f((1− t)y + t(z + y − x))− f(y)

t

≤
max {f(y), f(z + y − x)} − f(y − x + x)

t

=
max {0, f(z + y − x)− f(x + y − x)}

t
= 0

Passing to the limit t → 0 and y → xwe get f ◦(x; z−x) ≤ 0. Thus, f is l-quasiconvex.
�

THEOREM 4.8. If function f : Rn → R is l-quasiconvex then it is quasiconvex.

PROOF. On the contrary assume that an l-quasiconvex function f is not quasiconvex.
Then there exist x,y ∈ Rn and λ̄ ∈ (0, 1) such that f(x̄) > max {f(x), f(y)}, where
x̄ = λ̄x + (1 − λ̄)y. Without a loss of generality we may assume that f(x) ≥ f(y).
Lemma 2.12 implies that there exists x̃ ∈ (x, x̄), for which

f(x̃) > f(x) and f ◦(x̃; x̄− x) > 0.

Denote x̃ = λ̃x + (1 − λ̃)y, where λ̃ ∈ (λ̄, 1). From the definitions of points x̄ and x̃

we see that
x̄− x = (1− λ̄)(y − x) and y − x̃ = λ̃(y − x)

Thus,

x̄− x =
1− λ̄

λ̃
(y − x̃)
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and

0 < f ◦(x̃; x̄− x) =
1− λ̄

λ̃
f ◦(x̃;y − x̃).

Thus, 0 < f ◦(x̃;y−x̃) and f(x̃) > f(x) ≥ f(y)which contradicts the l-quasiconvexity
of function f . Hence, f is quasiconvex. �

COROLLARY 4.9. A function f : Rn → R is locally Lipschitz continuous and quasi-
convex if and only if it is l-quasiconvex.

PROOF. The result follows directly from Theorems 4.7 and 4.8. �

COROLLARY 4.10. If f is f ◦-quasiconvex, then f is quasiconvex.

PROOF. The result follows from Remark 4.2 and Theorem 4.8. �

Likewise the pseudomonotonicity there exists also a concept of quasimonotonicity
(see [9]).

DEFINITION 4.11. The generalized directional derivative f ◦ is called quasimonotone,
if for all x,y ∈ Rn

f ◦(x;y − x) > 0 implies f ◦(y;x− y) ≤ 0

or, equivalently
min {f ◦(x;y − x), f ◦(y;x− y)} ≤ 0.

Note that analogously to the pseudomonotonicity (see Definition 3.6) we could define
also the strict quasimonotonicity, but it would be equivalent to the pseudomonotonicity.

It turns out that the generalized directional derivative f ◦ of the function f : Rn → R
is quasimonotone if and only if the function is locally Lipschitz continuous and quasi-
convex.

THEOREM 4.12. If f ◦ is quasimonotone, then f is quasiconvex.

PROOF. Let us, on the contrary assume, that f is not quasiconvex. Then there exist
x,y ∈ Rn and λ̄ ∈ (0, 1) such that

f(x̄) > f(x) ≥ f(y),

where x̄ = x+ λ̄(y−x). Then by the Mean-Value Theorem 2.7 there exist x̂, x̃ ∈ Rn

such that
f(x̄)− f(y) ∈ ∂f(x̂)T (x̄− y)

and
f(x̄)− f(x) ∈ ∂f(x̃)T (x̄− x),

where

x̂ = x + λ̂(y − x), x̃ = x + λ̃(y − x), 0 < λ̃ < λ̄ < λ̂ < 1.
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This means that, due to the definition of the Clarke subdifferential, there exist ξ̂ ∈ ∂f(x̂)
and ξ̃ ∈ ∂f(x̃) such that

0 < f(x̄)− f(y) = ξ̂
T
(x̄− y) ≤ f ◦(x̂; x̄− y) = (1− λ̄)f ◦(x̂;x− y)

and
0 < f(x̄)− f(x) = ξ̃

T
(x̄− x) ≤ f ◦(x̃; x̄− x) = λ̄f ◦(x̃;y − x)

by the positive homogeneity of d �→ f ◦(x;d) (see Theorem 2.2 (i)). Then we deduce
that

f ◦(x̂; x̃− x̂) = (λ̂− λ̃)f ◦(x̂;x− y) > 0

and
f ◦(x̃; x̂− x̃) = (λ̂− λ̃)f ◦(x̃;y − x) > 0,

which contradicts the quasimonotonicity. Thus, f is quasiconvex. �

THEOREM 4.13. If function f : Rn → R is locally Lipschitz continuous and quasicon-
vex then the generalized directional derivative f ◦ is quasimonotone.

PROOF. On the contrary, assume that f ◦ is not quasimonotone. Then there exist x,y ∈
Rn such that f ◦(x;y − x) > 0 and f ◦(y;x− y) > 0 Let

δ = min {f ◦(x;y − x), f ◦(y;x− y)} .

Let ε1 > 0 be such that the local Lipschitz condition holds in the ball B(x; ε1) with
Lipschitz constantK1. Correspondingly, let ε2 > 0 be such that the local Lipschitz con-
dition holds in the ball B(y; ε2) with Lipschitz constant K2. Let K = max {K1, K2}
and ε = min

�

δ
4K

, ε1, ε2

�

. According to Theorem 2.10 there exists a sequence (zi
1),

such that f is differentiable, limi→∞ zi
1 = x and an index I ∈ N such that

f �(zi
1;y − x) = ∇f(zi

1)
T (y − x) ≥

δ

2

when i ≥ I . Similarly, there exists a sequence (zj
2), such that f is differentiable,

limj→∞ z
j
2 = y and an index J ∈ N such that

f �(zj
2;x− y) = ∇f(zj

2)
T (x− y) ≥

δ

2

when j ≥ J . Let z1 ∈ B(x; ε) ∩ {(zi
1) | i ≥ I} and z2 ∈ B(y; ε) ∩

�

(zj
2) | j ≥ J

�

.
Due to symmetry we may assume that f(z1) ≥ f(z2) without a loss of generality.
According to Lemma 2.11

|f �(z1; z2 − z1)− f �(z1;y − x)| ≤ K �z2 − z1 − (y − x)�

≤ K �x− z1�+K �z2 − y� < 2K
δ

4K
=

δ

2
.

Since f �(z1;y − x) > δ
2
also f �(z1; z2 − z1) > 0. Thus, there exists λ ∈ (0, 1) such

that
f(z1 + λ(z2 − z1)) > f(z1) ≥ f(z2),

which contradicts the quasiconvexity. �
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COROLLARY 4.14. A function f is l-quasiconvex if and only if f ◦ is quasimonotone.

PROOF. The result follows from Corollary 4.9 and Theorems 4.12 and 4.13. �

COROLLARY 4.15. If f is f ◦-quasiconvex, then f ◦ is quasimonotone.

PROOF. The results follows from Remark 4.2 and Corollary 4.14. �

By Corollary 4.10 f ◦-quasiconvex function is quasiconvex. The next result shows, that
for a subdifferentially regular function quasiconvexity and f ◦-quasiconvexity coincides.

THEOREM 4.16. If f is both quasiconvex and subdifferentially regular, then f is f ◦-
quasiconvex.

PROOF. Due to the subdifferential regularity f is locally Lipschitz continuous. Suppose,
that f(y) ≤ f(x). Then the subdifferential regularity and quasiconvexity implies, that

f ◦(x;y − x) = f �(x;y − x) = lim
t↓0

f(x + t(y − x))− f(x)

t

= lim
t↓0

f(ty + (1− t)x)− f(x)

t
≤ lim

t↓0

f(x)− f(x)

t
= 0

in other words, f is f ◦-quasiconvex. �

COROLLARY 4.17. A subdifferentially regular l-quasiconvex function is f ◦-quasiconvex.

PROOF. The result follows from Corollary 4.9 and Theorem 4.16. �

COROLLARY 4.18. A subdifferentially regular function f with quasimonotone f ◦ is f ◦-
quasiconvex.

PROOF. The result follows from Corollaries 4.14 and 4.17. �

In Theorem 4.16 the subdifferential regularity cannot be omitted, as the next example
shows.

EXAMPLE 4.1. Define f : R → R such that

f(x) :=











|x|, x ∈ (−∞, 1)

1, x ∈ [1, 2]

x− 1, x ∈ (2,∞).

Then f is clearly locally Lipschitz continuous and quasiconvex. However, by taking
x := 1 and y := 2 we have f ◦(x; y − x) = f ◦(1; 1) = 1 > 0, but f(y) = f(2) = 1 ≯
1 = f(1) = f(x) and thus, due to Lemma 4.5, f is not f ◦-quasiconvex. Note that f is
not subdifferentially regular since f �(1; 1) = 0 �= 1 = f ◦(1; 1). Furthermore, f is not
f ◦-pseudoconvex, since 0 ∈ ∂f(1) = [0, 1] although x = 1 is not a global minimum
(cf. Theorem 3.5).
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As stated in Corollary 4.17 the subdifferential regularity ensures that the l-quasicon-
vexity implies f ◦-quasiconvexity. In sequel we show that also the following noncon-
stancy property [9] has the similar consequence.

DEFINITION 4.19. The function f : Rn → R is said to satisfy nonconstancy property
(in short, NC-property), if there exists no line segment [a, b] along which f is constant.

It is good to note that the subdifferential regularity and the NC-property are two separate
concepts. An example of function which is subdifferentially regular but does not satisfy
the NC-property is

g1(x) =











(x+ 1)2 , if x ≤ −1

0 , if − 1 ≤ x ≤ 1

(x− 1)2 , if x ≥ 1

.

On the other hand, the function

g2(x) =

�

2x , if x ≤ 0
1
2
x , if x ≥ 0

poses the NC-property but it is not subdifferentially regular since g◦2(0; 1) = 2 �= 1
2
=

g�2(0; 1).
For the function with NC-property also the quasimonotonicity and the f ◦-quasicon-

vexity coincides.

THEOREM 4.20. If f ◦ is quasimonotone and f poses the NC-property, then f is f ◦-
quasiconvex.

PROOF. Let us, on the contrary, assume that f is not f ◦-quasiconvex. Then there exist
x,y ∈ Rn such that f(y) ≤ f(x) and

f ◦(x;y − x) > 0. (14)

According to Theorem 4.12 f is quasiconvex, which means that f(z) ≤ f(x) for all z ∈
[y,x]. Thus, due to the NC-property, there exists λ̄ ∈ (0, 1] such that x̄ = x+ λ̄(y−x)
and f(x̄) < f(x). By the Mean-Value Theorem 2.7 there exists x̂ ∈ (x̄,x) such that

f(x)− f(x̄) ∈ ∂f(x̂)T (x− x̄),

where x̂ = x + λ̂(x̄ − x) and λ̂ ∈ (0, 1). This means that there exists ξ̂ ∈ ∂f(x̂) such
that

0 < f(x)− f(x̄) = ξ̂
T
(x− x̄) ≤ f ◦(x̂;x− x̄). (15)

On the other hand, from the positive homogeneity of d �→ f ◦(x;d) and (14) we deduce
that

f ◦(x; x̂− x) = λ̂f ◦(x; x̄− x) = λ̂λ̄f ◦(x;y − x) > 0.
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Then the quasimonotonicity, the positive homogeneity and (15) imply that

0 ≥ f ◦(x̂;x− x̂) = λ̂f ◦(x̂;x− x̄) > 0,

which is impossible. Thus f is f ◦-quasiconvex. �

COROLLARY 4.21. A l-quasiconvex function with NC-property is f ◦-quasiconvex.

PROOF. The result follows from Corollary 4.14 and Theorem 4.20. �

COROLLARY 4.22. A locally Lipschitz continuous and quasiconvex function with NC-
property is f ◦-quasiconvex.

PROOF. The result follows from Theorems 4.13 and 4.20. �

EXAMPLE 4.2. Consider the function in Example 4.1. Its generalized directional deriva-
tive is quasimonotone since the function is quasiconvex and locally Lipschitz continu-
ous. However, the function does not satisfy the non-constancy property and, thus, it
is not guaranteed to be f ◦-quasiconvex. As shown in Example 4.1 the function is not
f ◦-quasiconvex.

The next results concerning the verification of the f ◦-quasiconvexity are, in practice,
analogous to those of f ◦-pseudoconvexity.

LEMMA 4.23. A locally Lipschitz continuous function g : R → R is increasing, if and
only if ς ≥ 0 for all ς ∈ ∂g(x) and x ∈ R.

PROOF. The proof is almost similar to that of Lemma 3.11 by changing the meanings
of < and ≤. �

THEOREM 4.24. Let h : Rn → R be f ◦-quasiconvex and g : R → R locally Lipschitz
continuous and increasing. Then the composite function f := g ◦ h : Rn → R is also
f ◦-quasiconvex.

PROOF. The proof is similar to that of Theorem 3.12. �

THEOREM 4.25. Let fi : Rn → R be f ◦-quasiconvex for all i = 1, . . . , m. Then the
function

f(x) := max {fi(x) | i = 1, . . . , m}

is also f ◦-quasiconvex.

PROOF. The proof is similar to that of Theorem 3.13. �

As in the case of f ◦-pseudoconvexity, the following property guarantees that the sum of
f ◦-quasiconvex functions is also f ◦-quasiconvex.

DEFINITION 4.26. The functions fi : Rn → R for i = 1, . . . , m are said to be additively
monotone, if for all x,y ∈ Rn and λi ≥ 0, i = 1, . . . , m

m
�

i=1

λifi(y) ≤
m

�

i=1

λifi(x) implies fi(y) ≤ fi(x).
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THEOREM 4.27. Let fi : Rn → R be f ◦-quasiconvex and additively monotone, and
λi ≥ 0 for all i = 1, . . . , m. Then the function

f(x) :=
m

�

i=1

λifi(x)

is f ◦-quasiconvex.

PROOF. The proof is similar to that of Theorem 3.15. �

Finally we study the relations between pseudo- and quasiconvexity. According to [1]
for differentiable functions pseudoconvexity implies quasiconvexity. Also, It turns out
that f ◦-pseudoconvexity implies f ◦-quasiconvexity.

THEOREM 4.28. An f ◦-pseudoconvex function is f ◦-quasiconvex.

PROOF. On the contrary, assume that an f ◦-pseudoconvex function f is not f ◦-quasicon-
vex. Then, there exist points x,y ∈ Rn such that f ◦(x,y − x) > 0 and f(x) = f(y).
According to Lemma 3.9 this is impossible for f ◦-pseudoconvex function. Thus, f is
f ◦-quasiconvex. �

COROLLARY 4.29. If f ◦ is pseudomonotone then it is also quasimonotone.

PROOF. The result follows from Corollary 4.15 and Theorems 3.7 and 4.28. �

The next example shows that the result in Theorem 4.28 cannot be converted.

EXAMPLE 4.3. Define f : R → R such that f(x) := x3. Clearly f is quasiconvex
and as a smooth function also subdifferentially regular. Thus, by Theorem 4.16 it is
f ◦-quasiconvex. However, by taking x := 0 and y := −1 we have f ◦(x; y − x) =
f ◦(0;−1) = 0, but f(y) = f(−1) = −1 � 0 = f(0) = f(x) and thus, due to Lemma
3.4, f is not f ◦-pseudoconvex.

5 Concluding Remarks
To the end we summarize all the relationships presented above:
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convex

pseudoconvex f ◦-pseudoconvex f ◦ is pseudomonotone

f ◦-quasiconvex

quasiconvex l-quasiconvex f ◦ is quasimonotone

1)

2)

2),3)

3)

3)

1) demands continuous differentiability,
2) demands local Lipschitz continuity,
3) demands NC-property or subdifferential regularity.
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A An example of differentiable but nonsmooth function
Here is the proof that function

f(x) =

�

0, x = 0

x2 cos( 1
x
), x �= 0

is locally Lipschitz continuous, differentiable but nonsmooth and there exists a point
y ∈ R such that ∂f(y) �= {∇f(y)}.

−0.2 −0.1 0.0 0.1 0.2

−0
.0

1
0.

00
0.

01
0.

02

x

f(x
)

Figure 1: A plot of function f when x ∈ [−0.2, 0.2].

We first show the differentiability. Function f̃(x) := x2 cos( 1
x
) is differentiable

everywhere but at 0 and it’s derivative is

f̃ �(x) = sin(
1

x
) + 2x cos(

1

x
). (16)

The derivative is also continuous when x �= 0. Thus, f is continuously differentiable
when x �= 0. Since

f(0 + x)− f(0) = 0 · x+ |x− 0| |x| cos(
1

x
)

and limx→0 |x| cos(
1
x
) = 0 the function f is differentiable at the point 0 and f �(0) = 0.

However, from (16) we see that the limit limx→0 f
�(x) does not exist implying that

f is not continuously differentiable.
Next we prove that f is locally Lipschitz continuous. As stated before, continu-

ously differentiable function is locally Lipschitz continuous. Hence, f is locally Lip-
schitz continuous, when x �= 0. We prove that f is locally Lipschitz continuous
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also at the point x = 0 by considering Lipschitz condition with different values of
y, z ∈ (−1, 1), y �= z.

Let −1 < y < z < 0. The function f is continuously differentiable at (y, z). Then,

|f(z)− f(y)| =

�

�

�

�

� z

y

f �(x)dx

�

�

�

�

≤

� z

y

max
x∈[y,z]

{|f �(x)|} dx

= max
x∈[y,z]

�
�

�

�

�

sin(
1

x
) + 2x cos(

1

x
)

�

�

�

�

�

(z − y)

≤ (1 + 2 · 1 · 1) |z − y| = 3 |z − y| ,

hence the Lipschitz condition holds. Due to the symmetry of the function f the Lipschitz
condition holds also when 0 < y < z < 1.

Now, let −1 < y < 0 and 0 < z < 1. Then |y + z| < |y − z| and the symmetry
implies f(−z) = f(z). Thus,

|f(y)− f(z)| = |f(y)− f(−z)| ≤ 3 |y + z| ≤ 3 |y − z| ,

where the first inequality follows from the consideration of the case −1 < y < z < 0.
Thus, the Lipschitz condition holds when −1 < y < 0 and 0 < z < 1. Finally, let
y = 0 and z ∈ (−1, 1) \ {0}. Then

|f(0)− f(z)| =

�

�

�

�

z2 cos(
1

z
)

�

�

�

�

≤ |z| 1 · 1 = |0− z| ,

and the Lipschitz condition holds for this case too. Thus, the function f is locally
Lipschitz continuous.

Consider the subdifferential of the function f at the point 0. By choosing the se-
quence xi = ( 1

2iπ+ π

2

), i ∈ N we see that limi→∞ f �(xi) = 1. Correspondingly, by

choosing the sequence xi = ( 1
2iπ−π

2

), i ∈ N we see that limi→∞ f �(x) = −1. Thus, by
Theorem 2.3

[−1, 1] ⊆ ∂f(0).

Particularly, ∂f(0) �= f �(0).

B An example of f◦-pseudoconvex function with no di-
rectional derivative

Next we show a function that is f ◦-pseudoconvex, but whose directional derivative is
not defined at every point.

Consider the following piecewise linear function

f(x) =











x , if x ≤ 0

2(−1)α 1
10α + (5

4
+ (−1)α 11

12
)(x− 1

10α ) , if 0 < x < 1
10

x− 1
20

, if x ≥ 1
10
,
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where
α = α(x) = �−log10(x)� .
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15
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)

Figure 2: A plot of function f when x ∈ [−0.1, 0.2].

The f is drawn in figure 2. The dashed lines represents lines y = 2x and y = 1
2
x.

Function f always lies between these two lines.
The function f is not differentiable at points ( 1

10i ), i = 1, 2, . . . and 0. From the
definition of the function f we see that everywhere but at 0 the classical directional
derivative f �(x; 1) has an upper bound

max

�

1,
5

4
+

11

12

�

=
5

4
+

11

12
=

13

6

and a lower bound

min

�

1,
5

4
−

11

12

�

=
1

3
.

Correspondingly, the directional derivative f �(x;−1) has lower and upper bounds −13
6

and −1
3
. When x = 0 wee see from the figure 2 that |f(y)| ≤ 2 |y| for all y ∈ R. Thus,

we see that when x, y ∈ R the inequality

|f(x)− f(y)| ≤
13

6
|x− y|

holds and f is Lipschitz continuous. Actually, at an arbitrary point x0 the function lies
between the lines

y =
13

6
(x− x0) + f(x0) and y =

1

3
(x− x0) + f(x0).
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Next, we prove the f ◦-pseudoconvexity of the function f . As stated previously, for all
x ∈ R, t > 0 the inequalities

−
13

6
≤

f(x− t)− f(x)

t
≤ −

1

3
,

holds implying f ◦(x,−1) ≤ −1
3
. Now, the f ◦-pseudoconvexity follows from the fact

that f(y) < f(x) if and only if y < x.
Finally, we prove that directional derivative f �(0; 1) does not exist.

THEOREM B.1. Function f does not have the directional derivative f �(0; 1).

PROOF. Consider the limit

lim
t↓0

ϕ(t) = lim
t↓0

f(0 + t)− f(0)

t
(17)

with different sequences (ti). Let the sequence be ti = 1
102i , i ∈ N. Then

α(ti) = 2i

f(ti) = 2
1

102i
+

13

6
(

1

102i
−

1

102i
) = 2

1

102i

ϕ(ti) =
2 1

102i

1
102i

= 2,

and the limit (17) is 2. Now, let the sequence be si = 1
102i+1 , i ∈ N. Then

α(si) = 2i+ 1

f(si) =
1

2

1

102i+1
+

1

3
(

1

102i+1
−

1

102i+1
) =

1

2

1

102i+1

ϕ(si) =
1

2

1
102i+1

1
102i+1

=
1

2
,

and the limit (17) is 1
2
. The sequences (ti) and (si) generates different limits and thus,

the function f does not have the directional derivative f �(0; 1). �

27
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