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Abstract

As services and applications move away from the one-to-may relationship of the
client-server model towards many-to-many relations such as cloud-based services
and peer-to-peer networks, there is a need for a reusable model of how a node
could work in such a network that transfers content between nodes. While dis-
tributed systems and in particular peer-to-peer technology has found success in
file transfer use, on-demand media streaming has so far largely eluded this kind of
decentralisation. In this paper we use the Event-B formalism to describe a struc-
tured formal model, from the more general node in a content transfer network to
the more specific one of a peer-to-peer file sharing based content streaming.

Keywords: Formal Modelling, Streaming, Event-B, Rodin Platform Tool, Re-
finement
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1 Introduction

There is a trend in moving services and applications away from the one-to-many
relationship of the traditional client-server model towards many-to-many relations
such as cloud-based services and peer-to-peer networks. These latter two form a
part of the “utility computing vision” [6] in which computer services are accessed
without needing to know the specific underlying structure. Because of this, there
is a need for a model of how a reliable node could work in such a network that
transfers content between nodes. We have created a formal model of this kind of
node, in such a way that our model can be reused and adapted to many different
applications.

For large-scale data transfer, such as installation media for operating systems
and data files for multiplayer games, peer-to-peer file sharing technologies such as
BitTorrent have become important. However, the out-of-order nature of BitTorrent
file transfers have made them unsuitable for streaming media applications. It has
already been argued [26] that with some modifications, it would be possible to cre-
ate a streaming media solution based on BitTorrent. Indeed, there are proprietary
and commercial efforts to create exactly such a thing, for instance “to turn Bit-
Torrent into a point-click-watch experience much more similar to YouTube” [25],
and a hybrid web/peer-to-peer video solution based on technology developed by
the P2P-Next consortium [19] has been employed on Wikipedia [5].

We have previously described our idea [21] as well as presented an ap-
proach [22] for modifying the BitTorrent piece selection to work in an on-demand
content streaming situation. In this paper we describe a structured formal model,
from the more general node in a content transfer network to the more specific one
of our approach, using the Event-B [2] formalism. We will describe this formal-
ism in section 2, and in Section 3 we will describe on-demand streaming and the
technologies we base our work on. In Section 4 we show the steps we take to
create a formal model of our application using Event-B. Section 5 concludes this
report with discussion about our results and future work.

2 Event-B

Event-B is a formalism based on Action Systems [4, 27] and the B Method [1]. In
Event-B development is carried out stepwise from abstract specification to con-
crete implementation. In order to achieve a reliable system we use superposition
refinement [3, 15] to add functionality while preserving the overall consistency,
which means that we add new variables and functionality in such a way that it
prevents the old functionality from being disturbed [23]. In order to prove the
correctness of each step of the development, we rely on the Rodin Platform [10]
tool where proof obligations are generated automatically and proven either auto-
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matically or interactively. This integrated tool support is a major reason for us to
choose Event-B as the formalism to use for a model of this kind.

Each model in Event-B consists of two parts. The first part, called a con-
text, describes the static parts such as constants. The properties of the constants
are written as axioms. The second part is called a machine, and it contains the
dynamic parts such as variables and events. Properties that should be preserved
during execution are written as a list of invariants. If the machine is a refinement
of another, more abstract machine, the keyword refines and the name of the previ-
ous machine is included. Figure 1 shows the structure of an Event-B machine.

machine machine-name
refines abstract-machine
sees context-name
variables list of variables
invariants list of invariants/predicates
events

event INITIALISATION
then
actions

end
event other event
...

end
...

end

Figure 1: A machine in Event-B. Based on Abrial [2].

The INITIALISATION event is executed only once, at the very beginning.
As the name implies, this event is used to set the initial values of the variables.
Other events follow the structure shown in Figure 2.

The keyword refines is used whenever an event is a refinement of a more ab-
stract event described in a previous machine. If there are no parameters, the key-
word any is left out and the keyword where can be replaced with the keyword
when for readability. A witness must be provided for each parameter which ex-
isted in an abstract event but has been replaced by a concrete implementation in
the refined event. When all the guards evaluate to true the event is said to be
enabled. This means that the event can occur and execute its actions, which are
statements describing how the variables change.

Before we start describing how we create and refine our model using Event-B,
we will look at the background of the application we will model. This includes
the terminology used and the specifics of our approach.
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event event-name ≙

refines abstract-event
any parameters
where
guards

with
witnesses

then
actions

end

Figure 2: An event in Event-B. Based on Abrial [2].

3 On-Demand Streaming

Streaming can be seen as the transport of data in a continuous flow, in which
the data can be used before it has been received in its entirety. There are two
different approaches to streaming content; live streaming and on-demand stream-
ing. From an end user perspective live streaming is similar to a broadcast; that
is, everyone who receives the media is intended to receive the same content at
the same time. On-demand streaming is different, in that it is “essentially play-
back, as a stream, of prerecorded content” [21]. This makes on-demand stream-
ing more similar to traditional file transfer. However, on-demand streaming is
still “play-while-downloading” and not “open-after-downloading”[28], and tradi-
tional file sharing protocols can therefore not be used without modifications. This
holds true especially if we look at peer-to-peer file sharing, where content is often
transferred out-of-order. Although we will model media streaming in general, our
intended target is the algorithms used in on-demand streaming solutions based on
peer-to-peer file sharing protocols, and in particular the BitTorrent-based solution
described by us previously [22]. We will therefore start by describing BitTorrent
and how it can be modified for streaming.

3.1 BitTorrent and Piece Selection

BitTorrent is originally a peer-to-peer file sharing protocol and an application,
designed by Bram Cohen and first released in July 2001 [8]. In the following
years, BitTorrent evolved into one of the most popular peer-to-peer protocols [11,
14]. While the terminology used by Cohen [9] could be seen as a standard, the
terminology used in this paper will be same as the one used by us previously [22]
and based on that of Legout et al [16]. This terminology is close to that of the
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application Vuze, formerly known as Azureus, a BitTorrent client often used as a
basis for research applications [7, 12, 20].

When transferring data, BitTorrent needs to decide what piece of the content
to request, i.e. piece selection, and which peers to send or not send data to, i.e.
peer selection. The reference BitTorrent implementation starts by selecting pieces
at random until one complete piece has been transferred [9]. The piece selec-
tion method is then switched to the rarest-first piece selection method, in which
the piece with the lowest availability, i.e. the piece held by the fewest connected
peers, is selected as the piece to request. This has the effect of reducing the likeli-
hood that one piece may become unavailable, as peers will request the pieces with
the lowest availability first. If more than one piece has the lowest availability,
one of them is selected at random. When a single block from a piece has been
downloaded, priority is given to the other blocks from that piece, in order to try
to keep the number of incomplete pieces as small as possible. BitTorrent then
continues requesting pieces using the rarest-first method until all pieces have been
requested, at which time all remaining blocks are requested from all peers in the
active peer set. This final step is done to prevent one slow peer from hindering the
completion of the transfer.

To create an incentive for peers to upload as well as download, the reference
BitTorrent implementation uses a tit-for-tat (TFT) mechanism for selecting peers.
Based on the rate of data sent, the fastest peers are chosen for sending data to,
and this is done every ten seconds. There is also one additional peer selected
at random, re-evaluated every thirty seconds. This peer is called the “optimistic
unchoke” [9, 16] and exists for two reasons: to allow newly joined peers to enter
the TFT game, and to potentially discover faster peers that could become regular,
non-optimistic unchokes [16, 20]. This approach is not necessarily the optimal
way of peer selection. It has been shown that the TFT incentive mechanism can
be exploited to allow peers to participate in a torrent without sending any data
[17, 24]. Alternative approaches have been suggested, such as the one used by
BitTyrant [20]. However, the basic TFT strategy remains an essential part of the
BitTorrent protocol as used today.

After a peer has received all the pieces of the torrent, it may continue to par-
ticipate in sending data to other peers, and in many cases the peer is actually
encouraged to do so. When the peer thus has become a seed the peer selection
method based on how much other peers have sent is of course not possible, and
the reference BitTorrent implementation therefore switches to sending to the peers
which can receive data the fastest [9]. However, as this feature could be exploited,
later clients have switched to selecting peers randomly when seeding [20].

3.2 Piece Selection for Streaming

The original rarest-first piece selection method used in BitTorrent works well for
file transfer, where the goal is the complete transfer and the order in which pieces
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are received do not matter. However, when dealing with streaming media, out-
of-order transfers are not optimal, as the content should be played back in-order.
Therefore, the rarest-first piece selection method will not work as-is for stream-
ing, and needs to be changed. Several different modifications to the BitTorrent
protocol to enable streaming media have been proposed, for instance BiToS [26]
and Give-to-Get [18]. We have chosen to model three different piece selection
methods adapted for streaming.

The first piece selection method we chose to model was the distance-availability
weighted method (DAW), described by us previously [22]. The idea behind DAW
is to strike a balance between selecting lots of consecutive pieces and rarest pieces.
The former is good for playback, and the latter is good for overall piece availabil-
ity and for making the TFT mechanism work. In other words, we want to balance
between requests between distance, i.e. the difference in piece number from the
piece currently in playback to the given piece, and availability. While the distance
and availability can be given different weights, we have kept them equal for the
sake of simplicity. Pieces with low availability which are close to being played
back are therefore selected before pieces which have high availability and are far
from being scheduled for playback.

We begin by partitioning the pieces into those who are inside the buffer area,
i.e. some k pieces after the one currently being played back, and those outside
the buffer. The priority for requesting the pieces in the buffer will be the highest.
Outside the buffer we will use the following formula for calculating the priority
for each piece, ignoring pieces which have already been requested:

P = (ps − pc) ∗ms

where ms is the number of peers who hold a particular piece, ps is the sequence
number of that piece, and pc is the sequence number of the currently playing piece.
The piece which has the lowest P is selected, and if there are multiple pieces with
the same value of P , we chose the one with the smallest distance.

It should be noted that when we talk about availability of a piece, we do not
mean the amount of peers in total who are involved in the torrent and hold that
particular piece. What we actually look at is how many peers our peer knows
that hold that particular piece. As one peer need not necessarily be connected to
all other peers, especially if the total number of peers is very large, we must by
necessity look at the system from one peer’s point of view.

Another way of doing piece selection for streaming is the rarest-first method
with buffer (RFB), described by Vlavianos et al [26]. In essence, this is the rarest-
first method from the original BitTorrent implementation, but with a fixed size
buffer in which pieces are selected with the highest priority. The special cases for
the first and last pieces in the original rarest-first method are also neither required
nor implemented here, and if there is more than one piece with the same availabil-
ity the one with the lowest piece number is selected first. This is the second piece
selection we chose to model.

5



The third piece selection method we chose to model is the sequential method,
representing a straightforward streaming solution. In this case, pieces are re-
quested in the order they appear. While this may not work in conjunction with
the TFT strategy for exchanging data, it is used when streaming content in the
OneSwarm friend-to-friend sharing application [12].

4 Modelling with Event-B
While entire peer-to-peer systems and other distributed architectures have been
formally modelled [13, 30, 29], we focus on modelling just the actual piece se-
lection methods. The difference between these two approaches is that instead of
looking at the whole network of peers, we model just how one peer looks at the
system, with a focus on how the piece selection is done. Our idea when creating
a model is to build it in separate layers, separating the functional parts from each
other so that the model could easily be adopted for use with different functionality,
e.g. different piece selection methods. Therefore, we intend to create all events
as independent of each other as possible, leaving the concrete implementations
of events to later refinements in order to prevent them from affecting other, less
concrete events.

As we model our peer-to-peer client as a client for streaming media, we see
that three major functions are needed; piece selection (possibly out-of-order),
piece transfer (possibly out-of-order) and playback (always in-order). These three
functions are independent of each other, but must be performed in this sequence.
Hence, pieces must be selected before they are transferred, and pieces must be
transferred before they can be played back. An example situation is hown in Fig-
ure 3. We require that selection will always happen at a greater rate than playback;
that is, for each time we will advance playback we will have selected at least one
additional piece.

4.1 Our Initial Model

We start from an abstract specification with events only for selecting pieces and
advancing playback, and in these just counting how many pieces have been se-
lected and played back. The constants and variables of the initial model, along
with the corresponding axioms and invariants, can be seen in Figure 4. We note
that we cannot play more pieces than we have selected (@inv0 5), and that we can-
not complete until we have selected and played all pieces (@inv0 6 and @inv0 3,
respectively).

Our initial model contains five events: INITIALISATION, SELECT,
SELECT AND ADVANCE, ADVANCE and FINAL. A representation of the event
flow is shown in Figure 5, and the Event-B code representations of these events are
shown in Figure 6. The three important ones are for selecting a piece, selecting a
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selected

transferred

playing

numselected

numtransferred

pieces1 2 3 ..

Figure 3: The relation between selected, transferred and playing. The
arrows indicate the number of pieces (7 selected, 5 transferred and 3 playing),
while the gray squares indicate the specific pieces.

context PieceSelect C0
constants pieces
axioms

@axm1 pieces ∈ N1

end
machine PieceSelect M0

sees PieceSelect C0
variables playing completed numselected
invariants

@inv0 1 playing ∈ 0..pieces
@inv0 2 completed ∈ BOOL
@inv0 3 playing < pieces⇒ completed = FALSE
@inv0 4 numselected ∈ 0..pieces
@inv0 5 playing ≤ numselected
@inv0 6 numselected < pieces⇒ completed = FALSE

events
...

end

Figure 4: The constants and variables of our initial model, and their correspond-
ing axioms and invariants.

piece and advancing playback, and just advancing playback. The model is done in
this way because we require that selection will happen at a greater rate than play-
back, and therefore the action taken in each step can be that of selecting a piece, or
selecting a piece and advancing playback. In other words, everytime something
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INITIALISATION SELECT

SELECT
AND ADVANCEADVANCE

FINAL

numselected = pieces

numselected
=pieces

numselected < pieces

numselected < pieces

numselected < pieces

playing = pieces

playing < pieces

Figure 5: A representation of the event flow of our initial model.

happens in our model we will select a piece, and some of those times we also
advance playback. The first event after INITIALISATION is always SELECT,
because we cannot do a SELECT AND ADVANCE before we have received a piece
to advance playback onto. The event ADVANCE, which only advances playback,
is reserved for the case when all pieces have already been selected. The main
purpose of the FINAL event is to show the requirements for successful termina-
tion. In this case that state is reached when all pieces have been both selected and
played back.

4.2 The First Refinement
In the first refinement we introduce a new variable, selected, to keep track of
exactly which pieces have been selected, in addition to the number of pieces as
before. Because playback happens in-order, there is no need for a similar variable
to keep track of which pieces have been played back. In Figure 7, the variables and
invariants of the first refinement are shown. In addition to simple type constraints,
we note that all pieces up to and including the currently playing one must have
been selected (@inv1 7) and that if there is a piece which has not been selected, it
implies that we have not selected all pieces (@inv1 8).

After this, we refine the SELECT, SELECT AND ADVANCE and ADVANCE
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event INITIALISATION ≙

then
@act0 1 playing ∶= 0
@act0 2 completed ∶= FALSE
@act0 3 numselected ∶= 0

end
event SELECT ≙

when
@grd0 1 numselected < pieces

then
@act0 1 numselected ∶= numselected + 1

end
event SELECT AND ADVANCE ≙

when
@grd0 1 numselected < pieces
@grd0 a playing < numselected

then
@act0 1 numselected ∶= numselected + 1
@act0 a playing ∶= playing + 1

end
event ADVANCE ≙

when
@grd0 1 numselected = pieces
@grd0 a playing < numselected

then
@act0 a playing ∶= playing + 1

end
event FINAL ≙

when
@grd0 1 playing = pieces
@grd0 2 numselected = pieces

then
@act0 1 completed ∶= TRUE

end

Figure 6: The events of our initial model.

events in the following way: the piece selected must not have been selected before
(@grd1 3), and playback will only advance onto a piece if that specific piece
has already been selected (@grd1 b). We also add the action which denotes a
particular piece as selected (@act1 2). While the FINAL event is left as-is, the
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machine PieceSelect M1
refines PieceSelect M0
sees PieceSelect C0
variables playing completed numselected selected
invariants
...
@inv1 7 selected ∈ 1..pieces → BOOL
@inv1 8 ∀k ⋅ (k ∈ 1..pieces ∧ k ≤ playing
⇒ (selected(k) = TRUE))

@inv1 9 ∃s ⋅ (s ∈ 1..pieces ∧ (selected(s) = FALSE)
⇒ (numselected < pieces))

events
...

end

Figure 7: The variables of the first refinement of our model, and the invariants
that were added in this refinement.

INITIALISATION event is updated with setting selected to 1..pieces ×
FALSE. The refined events can be seen in Figure 8.

4.3 The Second Refinement

After the additions done in the previous refinement, we will add information about
which pieces have been requested and which have been completely transferred.
We will do this in two refinement steps, the first of which is this one. As seen
in Figure 9, the context is extended to include a constant, simreq. This is the
limit on how many outstanding requests we can have, i.e. how many pieces we
can have selected but not transferred. To enable this we need a new variable,
numtransferred, which keeps track of the number of pieces which have been
completely transferred, and already in Figure 3 this function was described. Fig-
ure 10 shows the definition of numtransferred and the use of simreq as
a limit on outstanding requests (@inv2 12). Furthermore, we require that the
number of transferred pieces is less than or equal to the number of selected pieces
(@inv2 11) and at the same time greater or equal than the number of pieces played
back (@inv2 13).

The INITIALISATION event sets the number of transferred pieces to zero
initially, and we introduce an event called TRANSFER for transferring a piece that
has already been selected. These events can be seen in Figure 11. Furthermore,
the events dealing with piece selection and advancing playback, i.e. SELECT,
SELECT AND ADVANCE and ADVANCE, are refined by strengthening the guards.
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event INITIALISATION ≙

then
...
@act1 4 selected ∶= 1..pieces × {FALSE}

end
event SELECT1 ≙

refines SELECT
any n
where
...
@grd1 2 n ∈ playing+1..pieces
@grd1 3 selected(n) = FALSE

then
...
@act1 2 selected(n) ∶= TRUE

end
event SELECT AND ADVANCE1 ≙

refines SELECT AND ADVANCE
any n
where
...
@grd1 2 n ∈ playing+1..pieces
@grd1 3 selected(n) = FALSE
@grd1 b selected(playing+1) = TRUE

then
...
@act1 2 selected(n) ∶= TRUE

end
event ADVANCE1 ≙

refines ADVANCE
when
...
@grd1 b selected(playing+1) = TRUE

then
...

end

Figure 8: The refined events in the first refinement of our model.

The first two of these events gain a guard requiring that the difference between
the number of pieces selected and the number of pieces transferred is less than
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context PieceSelect C2
sees PieceSelect C0
constants simreq
axioms

@axm1 simreq ∈ N1

end

Figure 9: The constant and axiom that was added in the second refinement of our
model.

machine PieceSelect M2
refines PieceSelect M1
sees PieceSelect C2
variables ... numtransferred
invariants
...
@inv2 10 numtransferred ∈ 0..pieces
@inv2 11 numtransferred ≤ numselected
@inv2 12 numselected − numtransferred ≤ simreq
@inv2 13 playing ≤ numtransferred

events
...

end

Figure 10: The variable and invariants that were added in the second refinement
of our model.

simreq (@grd2 4). The latter two of these events gain a guard requiring that
the number of the currently playing piece is less than the total number of pieces
transferred so far (@grd2 c). We also refine the FINAL event to only be enabled
when all pieces have been transferred. These refined events can be seen in Figure
12.

4.4 The Third Refinement

In this refinement, we add to the the transfer functionality by introducing a new
variable, numrequested, which is similar to the numtransferred vari-
able introduced in the previous refinement in that it keeps track of the num-
ber of pieces requested. Additionally, two new variables, requested and
transferred, are introduced to keep track of exactly which pieces have been
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event INITIALISATION ≙

then
...
@act2 5 numtransferred ∶= 0

end
event TRANSFER2 ≙

when
@grd2 1 numtransferred < numselected

then
@act2 1 numtransferred ∶= numtransferred + 1

end

Figure 11: The INITIALISATION and TRANSFER events in the second refine-
ment of our model.

requested and completely transferred, respectively. Thus, we now have variables
to keep track of the number of pieces and the exact pieces for three steps taken on
each piece, select (numselected and selected), request (numrequested
and requested), and transfer (numtransferred and transferred). The
fourth step, playback, only has a single variable, playing, associated with it,
as playback always happens in-order. Figure 13 shows the variables of the third
refinement of our model, and their corresponding invariants that have been added
in this refinement step. We note that numrequested must always be between
numselected and numtransferred (@inv3 16 and @inv3 17). The con-
text PieceSelect C3 does not add anything to the previous one, and is there-
fore not shown.

The events in this third refinement of our model also gain these new variables.
As seen in Figure 14, the INITIALISATION event sets the new variables to indi-
cate that nothing has been requested or transferred initially. Because the addition
of transferred, numrequested and requested does not affect piece se-
lection, the SELECT event is not modified in this refinement. However, because
we need to have transferred a piece before we can advance playback to that piece,
the SELECT AND ADVANCE and ADVANCE events are refined to include a guard
for this. Figure 15 shows these two events with the added guard (@grd3 d). Sim-
ilarly, the FINAL event is updated with a guard requiring all pieces to have been
requested before the event is enabled. This can be seen in Figure 16 (@grd3 4).

In the previous refinement, we introduced the TRANSFER event, and in this
refinement we introduce a very similar event called REQUEST. These two events
can be seen in Figure 17. The REQUEST event requests a piece that has been
previously selected but not yet transferred (@grd3 4 and @grd3 5), while the
TRANSFER event is updated to require that before a piece can be transferred that
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event SELECT2 ≙

refines SELECT1
any n
where
...
@grd2 4 numselected − numtransferred < simreq

then
...

end
event SELECT AND ADVANCE2 ≙

refines SELECT AND ADVANCE1
any n
where
...
@grd2 4 numselected − numtransferred < simreq
@grd2 c playing < numtransferred

then
...

end
event ADVANCE2 ≙

refines ADVANCE1
when
...
@grd2 c playing < numtransferred

then
...

end
event FINAL2 ≙

refines FINAL1
when
...
@grd2 3 numtransferred = pieces

then
...

end

Figure 12: The SELECT, SELECT AND ADVANCE, ADVANCE and FINAL
events in the second refinement of our model.

piece must be not only selected, but also requested, as well as not yet transferred
(@grd3 4, @grd3 5 and @grd3 6, respectively).
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machine PieceSelect M3
refines PieceSelect M2
sees PieceSelect C3
variables ... transferred numrequested requested
invariants
...
@inv3 14 transferred ∈ 1..pieces → BOOL
@inv3 15 numrequested ∈ 0..pieces
@inv3 16 numrequested ≤ numselected
@inv3 17 numrequested ≥ numtransferred
@inv3 18 requested ∈ 1..pieces → BOOL

events
...

end

Figure 13: The variables and invariants that were added in the third refinement of
our model.

event INITIALISATION ≙

then
...
@act3 6 transferred ∶= 1..pieces × {FALSE}
@act3 7 numrequested ∶= 0
@act3 8 requested ∶= 1..pieces × {FALSE}

end

Figure 14: The additions made to the INITIALISATION event in the third re-
finement of our model.

So far, our refined machine is still very abstract, in the sense that it can be
applied to any generic system which transfers content out-of-order and then uses
the content in-order. In particular, the piece selection does not yet specify ex-
catly how pieces whould be selected. In the following refinements we will work
towards the concrete implementations of piece selection in BitTorrent streaming
systems, starting with the Distance-Availability Weighted Method as described in
Section 3.2. However, as piece selection methods generally use a concept of nu-
meric priority, we will start by introducing priority in an abstract way in the next
refinement, and requiring the piece selection to use it. After that we can model the
priority in concrete ways as described by diffrerent piece selection methods. If we
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event SELECT AND ADVANCE3 ≙

refines SELECT AND ADVANCE2
any n
where
...
@grd3 d transferred(playing+1) = TRUE

then
...

end
event ADVANCE3 ≙

refines ADVANCE2
when
...
@grd3 d transferred(playing+1) = TRUE

then
...

end

Figure 15: The SELECT AND ADVANCE and ADVANCE events in the third re-
finement of our model.

event FINAL3 ≙

refines FINAL2
when
...
@grd3 4 numrequested = pieces

then
...

end

Figure 16: The FINAL event in the third refinement of our model.

were to model a piece selection method which does not use numerical priority in
the way we do, we would use the third refinement as our starting point.

4.5 The Fourth Refinement

In this refinement we introduce new variables for the purpose of describing pri-
ority. These variables, and their corresponding invariants, can be seen in Figure
18. The first one, priority, is a function from each piece number to a non-zero
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event REQUEST3 ≙

any j
where

@grd3 1 numrequested < numselected
@grd3 2 numrequested < numtransferred + simreq
@grd3 3 j ∈ 1..pieces
@grd3 4 selected(j) = TRUE
@grd3 5 requested(j) = FALSE

then
@act3 1 numrequested ∶= numrequested + 1
@act3 2 requested(j) ∶= TRUE

end
event TRANSFER3 ≙

refines TRANSFER2
any j
where

@grd2 1 numtransferred < numselected
@grd3 2 numtransferred < numrequested
@grd3 3 j ∈ 1..pieces
@grd3 4 selected(j) = TRUE
@grd3 5 requested(j) = TRUE
@grd3 6 transferred(j) = FALSE

then
@act2 1 numtransferred ∶= numtransferred + 1
@act3 2 transferred(j) ∶= TRUE

end

Figure 17: The REQUEST and TRANSFER events in the third refinement of our
model.

natural number representing the priority for that piece (@inv4 19). The second
one, priupd, contains the piece number of the last piece for which we updated
the priority (@inv4 20). Because there is no need for updating the priority of
pieces we have already played back (and therefore already selected, requested
and transferred), we require that the number of the last piece for which we up-
dated priorities to be at least as large as the currently playing one (@inv4 21).

In the INITIALISATION event, seen in Figure 19, the addition of new vari-
ables to the model requires new initialisations. The variable priupd is set to
zero (@act4 9), because in the beginning we have not updated any priorities. The
priority of each piece is set to one initially (@act4 10), but this value does not
matter because we will update all priorities before they are actually used. Pri-
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machine PieceSelect M4
refines PieceSelect M3
sees PieceSelect C4
variables ... priority priupd
invariants
...
@inv4 19 priority ∈ 1..pieces → N1

@inv4 20 priupd ∈ 0..pieces
@inv4 21 priupd ≥ playing

events
...

end

Figure 18: The variables and invariants that were added in the fourth refinement
of our model.

event INITIALISATION ≙

then
...
@act4 9 priority ∶= 1..pieces × {1}
@act4 10 priupd ∶= 0

end

Figure 19: The additions made to the INITIALISATION event in the fourth
refinement of our model.

event CHANGE PRIORITIES4 ≙

any p
where

@grd4 1 priupd < pieces
@grd4 2 p ∈ N1

then
@act4 1 priority(priupd+1) ∶= p
@act4 2 priupd ∶= priupd + 1

end

Figure 20: The CHANGE PRIORITIES event in the fourth refinement of our
model.
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orities will be updated by a new, abstract event called CHANGE PRIORITIES,
which can be seen in Figure 20. Initially, this event is enabled as long as we have
not updated priorities for all possible pieces to request (@grd4 1) and where p is a
non-zero natural number (@grd4 2). The priority of the piece after the previously
updated one is then set to p (@act4 1), while the value of priupd is set to that
piece (@act4 2). This means that we will update priorities of all pieces from the
currently playing one to the last one.

The events REQUEST, TRANSFER and FINAL in this refinement are iden-
tical to the ones in the previous refinement, but the remaining events, SELECT,
SELECT AND ADVANCE and ADVANCE, receive important additions, as can be
seen in Figure 21. The first one is a guard requiring priorities to have been
updated for all pieces before piece selection can happen (@grd4 5). Simi-
larly, the value of priupd needs to be reset so that priorities can be updated
again. In the SELECT event this means setting priupd to playing (@act4 3).
However, in the SELECT AND ADVANCE event this means setting priupd to
playing + 1 (@act4 3). The reason for this is that in this event the playback
position is also advanced, as can be seen in Figure 6 (@act0 a). The ADVANCE
event also gains an update to priupd, but here we set the value to pieces
because we do not need to update priorities any longer (@act4 b).

The most important addition to the SELECT and SELECT AND ADVANCE
events in the fourth refinement of our model is the addition of a guard regarding
the priorities of pieces (@grd4 6). This requires the chosen n to be such that all
possible pieces k which are not identical to n have a priority value equal to or
higher than that of n. In practise, this means that the maximum priority that can
be given to any piece is a numerical value of one, with higher numerical values
being less prioritised. It also means that if there is more than one piece with the
same priority, and that priority has the lowest numerical value of all priorities
given to valid pieces, which one of these pieces to select is not determined. In
our case, we will in the next refinement specify which of these pieces to select.
However, as it is in this refinement the piece selection is actually consistent with
the original BitTorrent specification, which does not specify an order when two or
more pieces have the same availability [9].

4.6 The Fifth Refinement

So far our refinements have not been restricted to any particular piece selection
method, although the last refinement introduced the concept of numerical priority
and therefore restricted us to piece selection methods which can be modelled in
such a way. Here, we will refine the model in different ways to focus on particular
piece selection methods, starting with the distance-availability weighted method.
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event SELECT4 ≙

refines SELECT3
any n
where
...
@grd4 5 priupd = pieces
@grd4 6 ∀k ⋅ (k ∈ playing+1..pieces ∧ k ≠ n ∧

selected(k)= FALSE⇒ priority(n) ≤ priority(k))
then
...
@act4 3 priupd ∶= playing

end
event SELECT AND ADVANCE4 ≙

refines SELECT AND ADVANCE3
any n
where
...
@grd4 5 priupd = pieces
@grd4 6 ∀k ⋅ (k ∈ playing+1..pieces ∧ k ≠ n ∧

selected(k)= FALSE⇒ priority(n) ≤ priority(k))
then
...
@act4 3 priupd ∶= playing + 1

end
event ADVANCE4 ≙

refines ADVANCE3
when
...

then
...
@act4 b priupd ∶= pieces

end

Figure 21: The SELECT, SELECT AND ADVANCE and ADVANCE events in the
fourth refinement of our model.

4.6.1 The Distance-Availability Weighted Method

To model the distance-availability weighted method (DAW) from our already con-
structed abstract model, we need to refine the abstract priority introduced in the
last refinement into a concrete one. As described in Section 3.2, the priority in
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DAW is the highest in the buffer, which consists of a fixed number of pieces af-
ter the playing one. For other pieces the priority is calculated by multiplying the
availability of the piece with its distance to the last piece in the buffer. Thus,
we add a constant buffersize to describe the size of the buffer, and constants
minavail and maxavail to describe the minimum and maximum values for
piece availability. These constants can be seen in Figure 22. We assume that
the availabilities must be larger than zero, because allowing zero availability for
a piece would introduce additional complexity in piece selection and uncertainty
whether all pieces could actually be transferred.

context PieceSelect C5 daw
sees PieceSelect C4
constants minavail maxavail buffersize
axioms

@axm1 minavail ∈ N1

@axm2 maxavail ∈ N1

@axm3 minavail ≤ maxavail
@axm4 buffersize ∈ 0..pieces

end

Figure 22: The constants and axioms that were added in the fifth refinement when
modelling DAW.

We also need a new variable, availability, to describe the availability of
each piece. This can be seen in Figure 23, along with the two invariants added.
The first one of these simply states that the availability of each piece whould be
between minavail and maxavail (@inv5 22). The second one states that
when we have updated priorities for some but not all pieces, the pieces that we
have updated priorities for and that are outside the buffer will have their priorities
defined as distance times availability (@inv5 23).

Initially we set availability to minavail for all pieces, as seen in Figure 24.
Because the availability is controlled by external forces, we need an abstract event
which can change the availability of a piece. This event should be enabled inde-
pendently of piece selection, but not be enabled when updating priorities, which
depends on the availability of pieces. The new event CHANGE AVAILABILITY
can be seen in Figure 25. As described, the event is enabled for any valid
piece (@grd5 1) and availability (@grd5 2) whenever we have updated priorities
for all pieces (@grd5 3), and sets the availability of that piece (@act5 1).

The CHANGE PRIORITIES event from the previous refinement is here re-
fined into two separate events, CHANGE PRIORITIES5 BUF for setting prior-
ities for pieces in the buffer, and CHANGE PRIORITIES for the other pieces.
These events can be seen in Figure 26. The guard (@grd5 3) separates the two
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machine PieceSelect M5 daw
refines PieceSelect M4
sees PieceSelect C5 daw
variables ... availability
invariants
...
@inv5 22 availability ∈ 1..pieces

→ minavail..maxavail
@inv5 23 ∀t ⋅ (t ∈ playing+1..priupd ∧ priupd < pieces

∧ t > playing+buffersize
⇒ (priority(t) = (t − (playing+buffersize)) ∗

availability(t)))
events
...

end

Figure 23: The variables and invariants that were added in the fifth refinement
when modelling DAW.

event INITIALISATION ≙

then
...
@act5 11 availability ∶= 1..pieces × {minavail}

end

Figure 24: The additions made to the INITIALISATION event in the fifh refine-
ment of our model when modelling DAW.

different events, ensuring that only one of them is enabled at a time. In both events
the parameter p from the abstract event is changed into a concrete one, necessi-
tating the witness (@p) and removal of the guard stating the type of p (@grd4 2
in Figure 20). In these events, p is replaced with the corresponding concrete pri-
ority according to the DAW piece selection method, as can be seen both in the
witnesses and in the actions (@act4 1).

Of all the remaining events, the events ADVANCE, REQUEST, TRANSFER
and FINAL do not need changing in this refinement. However, the SELECT
and SELECT AND ADVANCE events both gain one guard. This guard corre-
sponds to the requirement that if two pieces have the same priority, the one
with the lowest piece number is selected. Figure 27 shows this guard in the
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event CHANGE AVAILABILITY5 ≙

any n a
where

@grd5 1 n ∈ 1..pieces
@grd5 2 a ∈ minavail..maxavail
@grd5 3 priupd = pieces

then
@act5 1 availability(n) ∶= a

end

Figure 25: The CHANGE AVAILABILITY event in the fifth refinement when
modelling DAW.

SELECT AND ADVANCE event (@grd5 7), and because it is identical in the
SELECT event that event is not shown.

4.6.2 The Rarest-First Method with Buffer

When modelling the rarest-first method with buffer (RFB), we can use our ex-
perience with modelling DAW as many parts are similar. In this fifth refinement
of our model, the contexts of RFB and DAW are identical, and so are the vari-
ables and invariants of the machine. The CHANGE AVAILABILITY event in-
troduced in the fifth refinement for DAW is abstract enough that it can be used
as-is for RFB as well, but the big difference is with the CHANGE PRIORITIES
event. Like in DAW, we refine the abstract event introduced in the fourth re-
finement of our model into two different events; one for pieces in the buffer
and one for pieces outside the buffer. The CHANGE PRIORITIES5 BUF event
for pieces in the buffer is, again, identical to the DAW one, as they both assign
the highest priority to buffersize pieces after the playing one. However, the
CHANGE PRIORITIES event for pieces outside the buffer is different. This event
is shown in Figure 28. As before, the parameter p from the abstract event is re-
placed in this refinement with a witness stating the concrete value. In this case,
the priority is set to availability of the piece in question (@act4 1), which
results in pieces with low availability being prioritised over pieces with high avail-
ability.

The remaining events are either unchanged from the fourth refinement, as is
the case with ADVANCE, REQUEST, TRANSFER and FINAL, or identical to the
DAW ones. The requirement that if two or more pieces have identical priority the
one with the lowest piece number must be selected is also present in RFB, and
the corresponding SELECT and SELECT AND ADVANCE events are exactly as
in Figure 27.
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event CHANGE PRIORITIES5 BUF ≙

refines CHANGE PRIORITIES4
when

@grd4 1 priupd < pieces
@grd5 3 priupd < playing + buffersize

with
@p 1 = p

then
@act4 1 priority(priupd+1) ∶= 1
...

end
event CHANGE PRIORITIES5 ≙

refines CHANGE PRIORITIES4
when

@grd4 1 priupd < pieces
@grd5 3 priupd ≥ playing + buffersize

with
@p ((priupd+1) − (playing+buffersize)) ∗

availability(priupd+1) = p
then

@act4 1 priority(priupd+1) ∶=
((priupd+1) − (playing+buffersize)) ∗
availability(priupd+1)

...
end

Figure 26: The CHANGE PRIORITIES events in the fifth refinement when mod-
elling DAW.

4.6.3 The Sequential Piece Selection Method

The sequential piece selection method is much simpler than the two previously
described ones. Essentially, pieces are selected in order by setting the priority for
a piece to its piece number. To model such a piece selection method we can use the
fourth refinement of our model as a basis, without needing any new variables, con-
stants or events. In fact, the only change is refining the CHANGE PRIORITIES
event. This can be seen in Figure 29.

As in the previous two final refinements, the parameter p from the abstract
event is replaced by its concrete representation. In this case it is priupd+1,
which is the piece number of the piece for which we are changing priority. This
necessitates the addition of a witness (@p), and we also remove the type guard for
p (@grd4 2 in Figure 20).
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event SELECT AND ADVANCE5 ≙

refines SELECT AND ADVANCE4
any n
where
...
@grd5 7 ∀j ⋅ (j ∈ playing+1..pieces ∧ j ≠ n

∧ selected(j) = FALSE
∧ (priority(n) = priority(j))⇒ (n < j))

then
...

end

Figure 27: The fifth refinement of the SELECT AND ADVANCE event when mod-
elling DAW.

event CHANGE PRIORITIES5 ≙

refines CHANGE PRIORITIES4
when

@grd4 1 priupd < pieces
@grd5 3 priupd ≥ playing + buffersize

with
@p availability(priupd+1) = p

then
@act4 1 priority(priupd+1) ∶= availability(priupd+1)
...

end

Figure 28: The CHANGE PRIORITIES event in the fifth refinement when mod-
elling RFB.

4.7 Proof Obligations

The Rodin platform automatically generates proof obligations, which define what
needs to be proved for an Event-B model. The Rodin platform tool can automati-
cally discharge most of these proof obligations by means of automatic provers, but
some may need to be proved interactively, which the Rodin platform also provides
the means for. Figure 30 shows the amount of proof obligations generated for each
machine by version 2.0.1 of the Rodin platform tool, and how many of those that
needed user interaction. The Rodin platform tool was used on a computer with a
2.4 GHz Intel Core 2 Duo processor running Mac OS X 10.5.8.
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event CHANGE PRIORITIES5 ≙

refines CHANGE PRIORITIES4
when

@grd4 1 priupd < pieces
with

@p priupd+1 = p
then

@act4 1 priority(priupd+1) ∶= priupd+1
...

end

Figure 29: The CHANGE PRIORITIES event in the fifth refinement of our model,
when modelling sequential piece selection.

Machine Total Proofs Interactive Proofs
PieceSelect M0 18 0
PieceSelect M1 34 0
PieceSelect M2 44 0
PieceSelect M3 64 0
PieceSelect M4 71 2
PieceSelect M5 daw 93 4
PieceSelect M5 rfb 92 3
PieceSelect M5 seq 72 2

Figure 30: Proof Obligations of our Event-B Model.

5 Conclusions

Using Event-B we have created a formal model of a node in a content transfer net-
work, from the point of view of that node. We have refined our generic model into
more specific ones, ultimately representing three different piece selection meth-
ods for media streaming. Our intent by creating a model using this method is to
be able to reuse our generic model and adapt it in different ways. This gives us
a foundation for creating formal models of different aspects of specialised dis-
tributed services. Previously we have been able to compare different distributed
services using simulations [22]. However, having models refined as described
here makes it possible to compare such services formally as well. Moreover, as
consumers come to expect reliable and always available service infrastructure [6],
we believe that our work is a step towards meeting these expectations. Future
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work on the subject could include using our model as a basis for modelling other
aspects of content transfer networks.
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