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Abstract

During the last decade, a lot of research has been devotech&weclass of
derivative-free optimization methods using radial basisction (RBF) models.
Methods of this type usually involve finding a (global) minear of the model
function. However, the development of practical methodssfuving this diffi-
cult minimization problem has received very little attemtin the literature. In
this paper, a new method for global minimization of the Gaeus&BF model is
presented. The proposed method is based on a homotopy watiim approach.
In particular, it is shown that the special structure of theeu&ian RBF model
allows a natural way of using the Gaussian transform as a tapyonapping.
This integral transformation effectively removes locahima and preserves the
underlying structure of the original RBF model. For tracthg solution curve of
the resulting differential equation, a robust trust regi@sed predictor-corrector
method is described. Numerical results are given to demateghe reliability of
the proposed method.

Keywords: global optimization; derivative-free optimization; ratlbasis func-
tion; Gaussian transform; continuation method; homottongt region; predictor-
corrector method
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1 Introduction

Recently, there has been growing interest in usemjal basis function(RBF)
models both in global optimization [7, 19] and in trust regisased local opti-
mization [15, 22]. Rather than directly minimizing the atfjee function, which
may be noisy or computationally expensive, thesedel-basednethods con-
struct a model function that is easier to minimize. Given tao$alistinct points
P = {p1,...,pn} C RY, the model functionn : R — R is constructed by
interpolating the objective functiofi: R? — R subject to the conditions

The RBF models considered in this paper are of the form
= witi(|lx — pil]), (2)
i=1

wherew; € R areweighting coefficientand¢, : R — R are radial basis func-
tions. Imposing the interpolation conditions (1) on theerpblant (2) leads to an
n x n system of linear equations for the weighting coefficiantsThat is,

dw =F, 3)

Whel’e(I)ij = (bJ(HpZ - p]H), W = [U}l, c ,wn]T andF = [f(p1)7 NP f(pn)]T
The literature on RBF interpolation is extensive (see 8g2p]). This type of
interpolation has also been used in numerous practicaicappins such as neural
networks [16], computer graphics [4], medical imaging [8dasolving partial
differential equations [6].

Differently to RBF interpolation, for which the mathemaic¢heory is well-
established [3, 20], the theoretical framework of optirtimamethods using RBF
interpolation models is still deficient in many areas. Aldespite an apparent
need, a remarkably small amount of research has been cautecbncerning
minimization of RBF models. For instance, solving the tmegfion subproblem
involving a RBF model is identified as one of the major chajlesin [22]. The
problem of finding the global minimum of a RBF model is alsacdissed in [7]
and [19]. To our knowledge, no problem-specific approachHerglobal solution
of this nonconvex and multimodal minimization problem hageib proposed. To
fill this gap in the literature, we propose a new method spedifi designed for
the global minimization of th&aussian RBF model

Zwlexp( HX_pZH ) 4)

v
induced by the Gaussian RBF

T2
<Z>z'(7’) = exp (—?) ) (5)
wherey; > 0,7 =1,...,n, are user-supplied shape parameters.



The proposed method is based on the idea of smoothing thesi@aauRBF
model via theGaussian transformThis integral transformation tends to remove
local minima and preserve the structure of the original fiomc Previously, the
Gaussian transform has been applied, for instance, to nialedistance geome-
try problems [12, 13]. Even though this integral transfatiorahas very limited
applicability to general objective functions, we show htrat it has an analytic
expression when applied to the Gaussian RBF model intdrpglthe objective
function. This fact eliminates the need for computationalkpensive numeri-
cal integration. Our approach can be viewed as a geneiatizat the method
proposed by Kostrowicki et al. [9] for molecular confornwattiproblems. In their
approach, the Fourier-Poisson integral transformatiapdied to Gaussian func-
tions approximating the Lennard-Jones potential.

Adapting the ideas by Kostrowicki et al. [17] and Wu [23], wigega differ-
ential equation formulation for the transformation betwége minimizers of the
smoothed Gaussian RBF model and the original one. The idé&sabntinuation
approach is to seek for a parametrized curve that conneztgldfal minimizer
of the smoothed RBF model, which is easier to obtain, to tbbajlminimizer of
the original RBF model. While the formulations proposediii][and [23] have
been successfully applied to objective functions appgarirmolecular distance
geometry problems [9, 13], our aim is to show their applitgitio the more gen-
eral Gaussian RBF model. A distinguishing feature of oumfalation is that we
establish the conditions for convexity of the smoothed RB¥deh. This funda-
mental result allows a unique solution to our differentigliation. For solving
the associated initial value problem, we adapt the trusbrelgased method pro-
posed by Moré and Wu [13]. Exploiting the special structaféhe Gaussian
RBF model, we also show that the modified conjugate gradiethaod described
in [21] is particularly efficient for solving the trust regicubproblem.

This paper is organized as follows. In Section 2, we definé&tassian trans-
form and derive a closed-form expression for the Gaussanstorm of the Gaus-
sian RBF model. In Section 3, we formulate the transfornmatietween the min-
imizers of the smoothed RBF model and the original one aswdisolto a differ-
ential equation. The choice of the initial values is disedls® Section 4. Section
5 is devoted for describing a predictor-corrector methadstdving the resulting
initial value problem. To demonstrate the reliability ofrauethod, numerical
results are presented in Section 6. Finally, Section 7 sumesathis paper and
points out some directions of future research.

2 The Gaussian Transform
The main result of this section is that ti@aussian transfornof the Gaussian

RBF model has an analytic expression. The Gaussian transfas turned out to
be a viable tool for global optimization because of its srhowg and structure-
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preserving properties [23]. In many cases, it has been showemove local
minima while preserving the global one [10, 11, 12, 13]. Awmotadvantage of
this transformation is that it provides a parameter for mahihg the degree of
smoothing.

We begin our analysis with the definition of the Gaussiansti@m.

Definition 2.1. TheGaussian transformf a functionf : R — R is
2
y—X
(a0 = [ rres (-0 ) ay ©
R4

whereo > 0 is a smoothing parameter and

1 d
Co=——] .
(%)
This integral transformation can be viewed as a distanaghted average of
with respect to the Gaussian weighting function. The widthhe smoothing
kernel, and thus the degree of smoothing is proportional tOn the other hand,
aso approaches zero, we obtain the original function. Anothay wf viewing
the smoothing properties of this transformation is to coesits relation to the
Fourier transform. For instance, it is shown in [23] that G&ussian transform

reduces the high frequency components of the Fourier wamsbf the original
function.
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Figure 1: A Gaussian RBF model and its convex Gaussian vamskitho = 3.



The Gaussian transforin), of the Gaussian RBF model (4) is illustrated
in Figure 1. In this case, the transformation produces atstrconvex func-
tion that also gives a good approximation of the global minenof the original
RBF model. The convexity of the transformed RBF model is nobiacidence.
Namely, in Section 4 we establish the conditions for conyeaf (m), if o is
sufficiently large.

Next, we show that the transformed Gaussian RBF madél has a closed-
form expression. It is derived by using the well-known fotenfor the univariate
Gaussian integral [1].

Lemma 2.1. Leta,b € R. Then

7exp (- (@ ;;”2) dz = by/7.

—00

The following lemma facilitates the proof of our main result

www:mp(xy—QQ_@_fy)’

2 o

Lemma 2.2. Let

wherezx,y, z,v,0 € R. Then

[e.e]

/ D)y = L e (— - Z)j) .

Vo2 + 72 0%+
Proof. See Appendix A. O
Theorem 2.1. The Gaussian transform of the Gaussian RBF mé#gk
Ix — pi?
Z@Mm(aum, @)

whereos > 0,; > 0 and

d
Coi= | —eu ], i=1,...,n.
Vor 4+

Proof. Leto > 0 andyp;(x) = exp <—”X;+H2), i=1,...,n. Then

i

2 2
Y~ pi y—x
()0 (x) :cJ/exp (_H = I )exp (_H = I )d
R4 ‘
2

oo o0 [ee] d
_ _(y Pij) _ (y; — z;)°
=C, / / /jl_[lexp< ” = dy;



The above expression is a product of one-dimensional ialegimhus, by virtue
of Lemma 2.2 we have

=C, H Vo (_(%‘—Pz‘,j)z)
\/024-% o? + 97

d
N < ||x—pz-||2) .
= —_— exp 5, 2 |- 2—1,...,71,
Vo477 o=+
from which equation (7) follows, sincen), ( Zwl ©Oi)o 0

Remark 2.1. We can extend the definition ¢f) by defining(m), = m.

3 Differential Equation Formulation

The basic idea of our method is to obtain a smoothed Gaus$&nnkodel via
the Gaussian transform. The smoothed RBF model is graddeftymed back
to the original one by letting the transformation parametapproach zero. The
minimizers of the RBF model are traced along this defornmagimocess by suc-
cessively applying local minimization procedures to tlsformed RBF model.
This "transportation” of minimizers, as illustrated in big 2, is likely to carry the
solution over undesired local minima as they are removedheyzaussian trans-
form. Of particular interest is that the initial minimizeruniquely determined due
to the strict convexity of the smoothed RBF model with théi@hitransformation
parameter.

In the following, we give a differential equation formulai for the curve
of minimizers illustrated in Figure 2. Our formulation isegded from Wu [23]
who established the existence and uniqueness of such &ésaiutve for general
objective functions smoothed via the Gaussian transforhe formulations de-
scribed here and in [23] are in fact special cases of the memergl homotopy
continuation approach (see e.g. [2]).

To begin our analysis, we note that the transformation defirtyeequation (7)
induces a>°-homotopy mapping : R? x [0, co[— R defined as

h(x, o) = (m)s(x),
h(x,0) = m(x). (8)

In order to formulate our differential equation, we notet tine conditions

Vih(x(o),0) =0,

V2h(x(o),0) is positive definite "0 € (07 o0>0.(9)

implicitly define the parametric curve: [0, 0y] — R? passing through the mini-
mizers ofh(-, o). By differentiating the conditioV A (x(c), o) = 0 with respect

5



—925 I I I I I

Figure 2: A curve connecting the minimizers of the smoothedissian RBF
model(m), with different values of transformation parameter
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Figure 3: A noisy objective functiofi, an oscillating Gaussian RBF interpolation
modelm and the smoothed RBF modegh), .



to o, we obtain a differential equation far(c). This leads us to an initial value
problem

0
2 / —
Vih(x(0),0)x (o) + %Vxh(x(a), 0)=0 Vo €|0,0), (10)
x(0g) = Xo
for somex, € R? ando, > 0 satisfying
Vxh(X07 UO) = 07 (11)

V2h(xg,00) is positive definite.

Assuming that conditions (9) are satisfied, the existendeuamgueness of the
solution of (10) with the given initial values, ando, follows from the results
proven in [23]. In Section 4, we prove a stronger result wheasures that the
initial minimizer x, can also be uniquely determined due to the strict convex-
ity of the smoothed RBF model with any sufficiently largg It then follows
from definition (8) that following the solution curve from(c,) to x(0) gives a
uniquely defined minimizer of the original RBF model. Thougts minimizer is
not guaranteed to be the global one, due to the smoothinggrep of the Gaus-
sian transform, this approach is more likely to give the glahinimizer than a
local search started from an arbitrary point.

The minimizers obtained with intermediate valuessoére also of interest.
For instance, interpolation of noisy objective functioeads to oscillating inter-
polants. In such cases, it makes sense to stop tracing thiosoturve at some
o > 0. As shown in Figure 3, the smoothed RBF model is less affdoyetbise
and follows the underlying trend of the interpolated fuonti

For the following sections, we give the expressions of thevdtves of the
homotopy mapping induced by the Gaussian transform (7). A straightforward
calculation yields

__2 (0 crz )4y 12
Vih E 0_2+% (r;)r (12)
- 9
2 cr,z T

V2h(x,0) = 2 Z e (02 ol - I) By, (13)

o) 2|4
=2 d+2— E,i(r;)r;, 14
9 g o—z s ( +2 U ) Eaalrr (19

wherer; = x — p;, E,i(r) = exp (—Jl‘”—l‘fk) andI is thed x d identity matrix.



4 Choice of Initial Values

This section deals with the choice of the starting painand the initial homotopy
parameter, for the initial value problem (10). The key issues are to gntee
that conditions (11) are satisfied and thgtis uniquely determined. In order
to achieve this, we prove that the homotopy mappitigo) is strictly convex
for any sufficiently large homotopy parametem a given sphere containing the
interpolation points. We also prove that the set of miniméz# /.(-, o) converges
to a single point as approaches infinity.

4.1 Choice ofo

In the following, we show that choosing a sufficiently largéial homotopy pa-
rametero, guarantees that(-, o) is strictly convex in a given sphere

B(zir) = {x €R'||x—z| <r}, zeR'r>0 (15)

containing the interpolation poinis, i = 1,...,n. The proof of our main result
necessitates the following assumption.

Assumption 4.1. The weighting coefficients; and the shape parametefs of
the Gaussian RBF model satisfy

Zwmf < 0. (16)
i=1

This assumption is not very restrictive. Namely, the follogvtheorem gives
a formula for adjusting the weighting coefficientssolved from equation (3) to
satisfy condition (16). This theorem also shows that thastdjent is equivalent to
adding a constant to the interpolated function valEleé linear translation of the
interpolated function values does not essentially alteirderpolation problem.

Theorem 4.1. Assume thap € R™ " is a nonsingular matrix. Letv = &~ 'F
forsomeF € R™ and lety; > 0,7 = 1,...,n. Define

Ww=w+®'C, whereC=1[c,....d" eR" (17)

such that .
p=>y wad
¢= T D WD B A0, (18)
Sy ey =S
i=1  j=1

for somey € R. Then®dw = F + C and ) _ 7y’ = p.

i=1
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Proof. Due to the assumption that = ®~'F, we have
WwW=w+® 'C=®'F+®'C=0"'(F+0QO),

which is equivalent tébw = F + C. By multiplying @; by ¢ we obtain
Wiy = wiy? 44 ZCID c, 1=1,...,n.

Summation over = 1,...,n and substitution of equation (18) into the above
expression yields

ol =D wd + > Y Pte
i=1 i=1 =1 j=1
= wiyd
—sz% +Z% Z wlZz 1 21: o

= wa?w - wa? =
i=1 i=1

0

Next, we formally state the assumption th#(z; ) contains the interpolation
points and give the following two lemmata to deduce our estinfior the smallest
eigenvalue oN2h(-, o) in B(z;r) for a giveno > 0.

Assumption 4.2. The center point € R? and radiusr > 0 of the sphere3(z; r)
defined by(15) are chosen such that; € B(z;r) foralli=1,...,n

Lemma 4.1. Assume 4.2 and defil®, : R¢ x R — R,

H,(x,0) = — Z ki(o)exp <—M) I, (29)

i=1 0%+

wherek; : [0,00[— R,i=1,...,n,andlis thed x d identity matrix. Then

Amin (Hi(x,0)) > — Z Ki(o) — Z Ki(o)exp <_(HZ - pil ‘;T> ) .

2
x€B(zr) ki(0)>0 ki(0)<0 om0

Proof. See Appendix A. O
Lemma 4.2. Assume 4.2 and defid#, : R? x R — R4*¢,

2
o) — ok o e (X =P
§j = px-po e (P

9



whered; : [0,00[— R,i=1,...,n. Then

Amin (Ha(x,0)) > Z 0;(0)7:(0)? exp <—;2i(j:)72> ;

x€B(z;r) 9,(0)<0

where

7i(0) = min{||z — p;|| + 1, \/0* + 7}
Proof. See Appendix A. O

The following theorem is utilized in the proofs of Lemmat&-4.2 and Theo-
rem 4.3. For the proof of this result, see [8].

Theorem 4.2(Weyl). Let A € R4 andB € R%*?¢ be symmetric matrices. Then
Amin(A) + Amin(B) < Amin(A + B),

where\,,.;,(-) denotes the smallest eigenvalue of a matrix.

Remark 4.1. If either A or B is the identity matrix, equality holds above.

With Lemmata 4.1-4.2 and Theorem 4.2, we can now prove tHewuoig
theorem that provides a lower bound for the smallest eigaavaf the Hessian
(13) in B(z; 7).

Theorem 4.3. Assume 4.1 and 4.2. Then

Amin (Vih(x,0)) > 2[A1(0) + Az(0)] (20)

x€B(z;r)

forall o > 0, where

w; >0 ? w;<0 g i
2@01' fi(0'>2
As(o) = : wﬁi(a)Q exp (—
g;o (02 +17) 0%+

and
7i(0) = min{||z — pi|| + 7, /0% + 77}

Proof. The Hessian matrix defined by equation (13) can be written as
V2h(x,0) = 2[Hi(x,0) + Hy(x, 0)],

10



~_Coi Ix — pill*
Hl(x,a):—zaz+72wiexp (— PR I,

" 20, Ix — pill?
Huix.0) = 3 - p)c - ) e (- 2P
i=1 ?

By virtue of Theorem 4.2, we have

Amin (V2h(x,0)) > 2

x€B(z;r)

Amin (VEH(X,0)) + Apin (V2Hs(x, 0))].

x€B(z;r) x€B(z;r)

Define

CUZ'

2éoi
0% +7

M wy, i=1,...,n.
CEE '

/QZ'(O'> = ws, 092(0') =

With these definitions, the claim follows from Lemmata 4.8 4 applied td;
andH,, sinceC,; > 0foralli =1,...,nando > 0. O

Next, we show that under assumptions 4.1 and 4.2, ineqa0iygives a pos-
itive estimate for the smallest eigenvalu&afh(-, o) in B(z;r) if o is sufficiently
large.

Theorem 4.4. Assume 4.1 and 4.2. Then there exists> 0 such that
Al(O') -+ AQ(O’) >0
for all o > o*.

Proof. Define

]\1(0) = —Dinaz(0) Z wi%d — Dipin(0) Z wi%dexp (_(”Z —pill +7) ) ’

2 2
o :
w; >0 w; <0 + 7

Rs(0) = 2Dpan(0) 3 wiy f-(a)2exp< Fifo)” )

2 21 ) 2
ag - g -
) +; +;

where
Dipaz(0) = max v and D,,,(0) = min
Sincey; > 0foralli =1,...,n, Dyu.(0) > 0andD,,;,(c) > 0, we have
Ai(o) > Ai(0) and — Ay(0) < —Ay(0) (21)

11



for all o > 0. By dividing the inequality\, (o) > —Ay(0) by Dy, (o), we obtain

Dinin(0) < (Ilz = pill +7")2>
d mn d 4
- g Wiy — g w;y; exp | —

i Diaz (o) w; <0 o o? 7i2

w; >0
2wind 7i(0)?
> — E —57i(o)“exp | — .
2 270 2 2
oc0 0 T o+

By noting thatlim D,,;,(0)/ D (o) = 1 and using assumption (16), we have
T—00

- Ai(o) . d_ Dmin(0) d ( (llz — pill +7")2>
lim = lim |- Wi, — w;y; exp | —
o—00 Dmax(g) o—00 EO i Dmaa}(a) U;O i o2 + 722
n
= - szfyzd > 0.
i=1

On the other hand, we have

. Ay(0) . 2wy 7i(0)?
e Rt I D A N

w; <0 3

Y

which implies that there exists* > 0 such that\,(¢) > —A,(0) forall o > o*
and thus, by virtue of equation (21),

Al(O') > ]\1(0’) > —]\2(0’) > —AQ(O')
foralloc > o*. 0J
Theorem 4.4 leads to the following conclusion.

Corollary 4.1. Let the assumptions of Theorem 4.3 be satisfied. Then there ex
istsa* > 0 such that\,,;,(V2h(x,0)) > 0 for all o > o* andx € B(z;r).
Consequently; (-, o) is strictly convex inB(z; r) for all ¢ > o*.

Remark 4.2. We cannot obtain strict convexity &f-, o) in the wholeR? for
any finite value ob. This follows from the fact that the second derivative of the
Gaussian functioif5) necessarily changes its sign for some 0.

4.2 Choice ofx

By virtue of Theorem 4.4, it is possible to choasgsuch thati(-, 0y) is strictly
convex in a spheré(z;r) containing the interpolation points. Consequently,
h(-,00) has at most one minimizer that can be chosen as the startingpp

in B(z;r). Though we cannot directly obtaiy, satisfying conditions (11) with
the givenoy, the limiting stationary poink* provided by the following theorem
serves the purpose of an initial guess$gr If o is large,x* is expected to be
close to the minimizer ok(-, o).

12



Theorem 4.5. Define
Sy = {x € R*| V, h(x,0) = 0}.
Then we havdim S, = {x*}, where
T—00

Z wi%'dpz'
i=1

* __ = @000
== )
d
E Wi,
i=1

Proof. See Appendix A. O

X

(22)

4.3 Summary of Obtaining Initial Values

To summarize the above results, our aim is to apply Theorefres 4.5 to obtain
the initial homotopy parametet, and the initial guess* for the starting poink
for the solution of (10). For the choice &f(z; r), it makes sense to choosand
r such thatB(z; ) encloses the set of interpolation points and also contains
Our choice is to set = x* and choose as

r=max{|[|[x" —p;|| |i=1,...,n}. (23)

Theno, is chosen such that positive definitenes¥ofi(x, o) forallx € B(x*;r)
is guaranteed by inequality (20). As a consequengeoy) is strictly convex
in B(x*;r). Then the starting point, satisfying the initial conditions (11) can
be uniquely determined by using the initial guessand the iterative corrector
method described in the next section. Assuming thas sufficiently large x,
obtained in this way is iB(x*; r) by Theorem 4.5. It is not large enough, itis
increased as long as necessary.

To summarize the above discussion, we provide Algorithmal dlutlines the
steps for obtaining the initial valueg andoy.

Algorithm 1 : Initial Values.

Obtainx* from equation (22).

r < max{||x* —pi| | i =1,...,n}

Choose the initiaby > 0.

while Ay (o) + As(0) < 0 do Increaser.

repeat
Obtainx, € R¢ such thatV,h(xo, o9) = 0, usex* as starting point.
if xo ¢ B(x*,r) then Increaser,.

until x, € B(x*,r)

13



5 Predictor-Corrector Method

This section is devoted to describing an iterative methodréxing the solution
curve of the initial value problem (10). We begin our anaysy noting that pre-
multiplying equation (10) by the inverse & yields the tangent of the solution
curve. That s,

X' (o) = —V2h(x(0), U)la%vxh(x(a), o). (24)
This form suggests using an iteratigeadictor-correctormethod (see e.g. [18])
that is also our preferred choice. We recall that this has blee dominant ap-
proach for solving initial value problems of the form (10jsarg in continuation
methods (see e.g. [2]). However, in contrast to the exigpirglictor-corrector
methods, we propose a trust region-based corrector method.

5.1 Overview

Each iteration of a predictor-corrector method involves steps, as illustrated in
Figure 4. The first step is to obtain a crude estimate of thesohgtion curve by
taking apredictor step For solving the initial value problem (10), a step along the
tangent of the solution curve(c) at the current iterate,, = x(oy,) is given by

X (1) = x5 — 7T (Xp, O% ) (25)

where 5
T(x,0) = —V2h(x, U)_lﬁ—vxh(x, o) (26)

o

denotes the tangent vector defined by equation (24)rand0 denotes the step
size. The negative sign is chosen to express that we aragrée solution curve
along decreasing values of

Figure 4: Iteration step of a predictor-corrector method.

To return the estimate obtained from the predictor step badke solution
curve, acorrector iterationis started from the predictor estimate. The corrector

14



iteration seeks for a poirt, such that
vxh(f(k, O — T) =0. (27)

After finishing the corrector iteration, the next main itiva step starts with
X1 = X, andog 1 = o, — 7. The iteration terminates ;.1 < 0,.:,, Where
omin > 0is a user-supplied parameter.dif,;, = 0, a final corrector step is then
applied toh(-, 0) to obtain a minimizer of the original RBF model.

In order to determine the step size we control the distance between the
predictor stepx,(7) and the current iterate, via the user-supplied accuracy pa-
rameterA,. We also need to restrict the ratio betwegn, andoy, in order to
avoid too large step sizes. Hence, we impose the requirsment

1
|%i(7) —xx|| =4, and o, —7> Zak

that are satisfied if the step sizes chosen according to

B 30

oo 4

7 = min{

To summarize the above discussion, a predictor-corretgorithm for solv-
ing the initial value problem (10) is outlined as Algorithm 2

Algorithm 2 : Predictor-Corrector Method.
Choosex, € R? ando, > 0 satisfying (11) by using Algorithm 1.
while o, > 0,,:, dO

: Ap 30k
7 = min{ et 7

xi(T)  x — 7T (Xp, 0%)
SolveVh(xy, o — 7) = 0 for x;, usex,(7) as starting point.
Xpt1 ¢ Xg
Ok41 < O — T
L k< k+1
if 0,,:, = 0then
| SolveV,h(xy,0) = 0 for x;, usex,, as starting point.

5.2 Trust Region-Based Corrector Method

Since the step size is usually small and the predictor estimate is close to the
solution curve, a Newton-type method with rapid local cageace is a natural
choice for the corrector iteration [2]. In order to guar@atenvergence, we pro-
pose a trust region approach. Despite the fact that thisoapprhas proven out
to be very robust for Newton-type methods (see e.g. [14]hgus in predictor-
corrector methods is amazingly rare. To our knowledge, d@irapproach has
only been taken by Moré and Wu [13] who used a trust-regisetidNewton
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method to successively minimize the transformed objedtinetion (f),, with a
predetermined sequence of transformation parameters

Our trust region strategy for the corrector iteration isgdd from Newton-
based optimization methods (see e.g. [14]). At each carderation stepy the
guadratic model

. ) 1 )
Q;(s) = h(x?, 04 — 7) + Vi h(%, 0, — 7)Ts + 5sTvih(fa, or—7)s (28)

is used to approximatk(-, o, — 7) around the current corrector iterate denoted
by x7. This model is minimized in a trust region in which it can bensiolered
reliable. That is, the trust region subproblem

minQ(s) stllsl| < 4, (29)

is solved, where\ ; denotes the current trust region radius (the initial radiyss
set toA,). After this step, the ratio between the actual reduction(efo;, — 7)
and the predicted reduction from the quadratic model defased

_ h(X, oy —7) = h(% 48,0, —7)
a Q;(0) — Q;(s) ’

whereQ,(0) — Q,(s) # 0, is computed. Then the trust region radius is adjusted
according to (see [14])

(30)

1

ZAj’ if p< i
A1 = min{24;, Apee}, if p> 3and|s| = A,
A, otherwise,

whereA,,... > 0is a user-supplied upper bound for the trust region radilie T
next iteratex’*! is then chosen a&’ + s if p > % which ensures that the next
iterate is accepted only if a sufficient reduction is obtdine

In order to ensure that the distance between the final comrstdpx, and the
current main iterate, is proportional to the predictor step nory),, we require
that

1%k — xi|| < @\, (31)

wherea > 1. If '
|Vxh(X?, o — 7)|| <€, (32)

wheree,. is a user supplied threshold parameter, and
%7 — xx]| < al, (33)

for some corrector iteration step the iteration is terminated. Otherwise, if the
gradient condition (32) is satisfied but condition (33) i$,ribe step size is set
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to a smaller valug = 37, wherej €]0, 1, and the next corrector iterafé ! is
chosen a%’. Then the corrector iteration continues by minimizing, o, — 7).
By the continuity ofh, these additional steps ensure that conditions (31) and (32
are both satisfied when the corrector iteration terminates.

The steps of the corrector iteration are summarized in Atigor 3.

Algorithm 3: Corrector Iteration.
AO < Ap
for j=0,1,... do
Obtains by solving problem (29).
if |Vh(x?, 01 —7)| < €. then
if ||%x7 +s —xx|| > al, then

T T
xIt %I

Continue to next iteration.
else
| Terminate, returx/*!,

h(xi,op —7) = h(XI +s,0, —7)
Q;(0) — Q;(s)
if p< 1then

IRAVISR R ViV
elseifp > 2 and||s|| = A, then
L Aj+1 <— min{QAj, Amax}
else
IEAVIS I AV
if p> 5 then
L X/« %9 + s
else
L %/t %

p

5.3 Solving the Trust Region Subproblem

For solving the trust region subproblem (29), we have adbibie truncated con-
jugate gradient method proposed by Steihaug [21]. As thedsta conjugate
gradient method applied to this problem, it solves the lirsyatem

V2, o — T)s = —Vxh(X, 0 — T)

obtained by equating the gradient@f to zero. The Steihaug method, however,
handles the boundary constraint and nonpositive eigeesaltV2 5, which may
occur if the predictor step is far from the solution curve.

The computationally most expensive steps of the conjugatgient method
are the matrix-vector multiplications involving the mat&W2h defined by equa-
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tion (13). However, these computations reduce to vectoratipes since

n .
Co,i Ix — pil* [2(x—p)"v
V2h(x,0)v =2 T _wje — ’ ’ X—Pp;)—V
x ( U) ;UQ_’_,%Q i €XpP 0_2_’_,%’2 02—1—%2 ( pz)

for any vectow € R?. This property offers a significant computational advaatag
since the Steihaug method produces the solution of a camstid x d linear
system in at most iterations [14]. Since the complexity of the evaluation of
V2h(x,0)s ands’ V2h(x, o)s reduces taD(nd), the worst-case complexity of
the matrix inversion is only)(nd?). In fact, this is the same as the complexity of
the evaluation o2k (x, o). We also note that the Hessian does not need to be
explicitly evaluated or stored during the matrix inversion

5.4 Obtaining the Tangent Vector

Recalling equation (26), obtaining the predictor estinmatelves solving the tan-
gent vectorT'(xy, o) from

Vih(Xk,Uk)T(Xk,O'k) = —a%vxh(xk,ak). (34)
Based on the above arguments, the conjugate gradient misthodable choice.
However, differently to the trust region subproblem (29% @o not impose the
boundary constraint, since the step size is controlled kysthategy described
above. Also, the Hessian matiW h(xy, o) is positive definite by assumptions
(9), and thus we can use the standard conjugate gradienbdeth

6 Numerical Results

In this section, we present preliminary numerical reswtsdur algorithm. The
aim of our numerical experiments was to investigate itabglity. We tested our
algorithm on a large number of Gaussian RBF models with dgioen/ = 1 and

with randomly chosen interpolation poings In order to avoid any difficulties
introduced by the nonuniform spacing of the interpolatiomgs, the weighting
coefficientsw; were chosen randomly instead of solving them from equaByn (

6.1 Success Probabilities With Random RBF Models
To characterize the success rate, we define the probaliktyozess as
NSUCC
N )
where N is the total number of runs andl,,,.. is the number of successful runs.
In each test, the interpolation pointse [a, b], wherea = —10 andb = 10, were

Psucc -
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sampled from a uniform random distribution. For the estiarabf the global
minimizer, a grid search with, = 501 evenly spaced points was used. In our
tests, we considered a run successful, if

b_
Ix — x| <
2(”9 - 1)

wherex; is the final iterate for some andx* is an estimate of the global mini-
mizer in the rangé—10, 10] obtained by the grid search.
If not stated otherwise, we used the following parametesdliour tests:

Omin  — 1074 5 = 05
A, = 015 e = 107
o = 1.5 Apaw = 10°

Tests A:random RBF models, different values of shape parameters.

In the first set of tests, we tested our algorithm on randorhbsen Gaussian
RBF models of the form (4) with different choices of the shppeameters;. We
chosen = 50 and a uniform shape parameter, thatjis= ~ foralli =1,... n.

In effect, they-parameter determines the frequency of oscillation of tloeleh
function. Small values of yield a RBF model with sharp spikes, whereas larger
values yield a smoother one. The effect of thparameter on the shape of the
RBF model and its Gaussian transform is illustrated in Fedsul.

For each run, the weighting coefficientswere sampled from a uniform ran-
dom distribution such that; € [—5,5] fori = 1,...,n. In order to satisfy As-
sumption 4.1, the weighting coefficienis were sampled with the condition that
Yo, w; < —10. The success probabiliti€’,,.. of these tests wit' = 10000
are plotted in Figure 5. For failed runs, we also computedattezage distance to
the estimated global minimizer, and the results are plotted in Figure 6.

Clearly, the reliability of our algorithm depends on theginency of oscillation
in the Gaussian RBF model. Whetis 0.25, our algorithm is unable to distinguish
between a large number of narrow local minima, and the ssquedability drops
but is still as high as0%. On the other hand, i is larger, our algorithm yields a
higher rate of success, since the function has a small nuofildede minima. The
Gaussian transform is more likely to preserve these widémaithan the narrow
ones with smaller values of. With v = 2.5, a remarkably high0% success
probability can be observed. However, the results in Figusbow that for failed
runs, the average distancexbis relatively large for all values of and increases
with ~. This indicates that for most failed runs, our algorithma¢ even able to
give a good estimate for the global minimizer.

'Runs withx,, ¢ [—~10,10] were not considered since the global minimizer was not bearc
outside this interval.
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Figure 6: Average distance (of failed runs) to the estimaletial minimizerx*
as a function of shape parameter
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We emphasize that the above results reflect the worst-cdseviber of our
algorithm. That is because a RBF model with weighting coeeffits and inter-
polation points sampled from a uniform random distributdwes not have any
underlying structure. This is especially the case with $nales ofy that pro-
duce highly oscillating RBF models. In this case, our aldponi is more likely to
converge to any local minimizer than the global one.

Tests B:Noisy Gaussian RBF models with a dominant convex term.

In practice, many noisy objective functions follow somediof pattern or
trend. Thus, it is of particular interest to test our algoniton RBF models possi-
bly interpolating functions of this type. For this reasdnyould make sense to test
our algorithm on Gaussian RBF models having a dominant coreven and small
high-frequency noise terms. Under these conditions, thes§an transform is
expected to smooth out any small local minima and preseeverierlying con-
vex structure. As a result, our algorithm is expected to shgse local minima
and converge to the global minimizer with a high probahility

To experimentally verify our hypothesis, we conducted asdcset of tests.
For each run, we used a Gaussian RBF model of the form (4) with

p1:0, ’}/1:20, w1:—15,
pi €[-10,10], vi=2, wie[-A\A, i=2,...,n,

wherew > 0, A\ > 0 andn = 100. The shape parameter and the weighting
coefficientw, of the first term are chosen significantly larger than the reimg
noise terms with indices = 2,...,n, which determines the shape of the RBF
model. In addition, the negativity af; ensures that the first term is a convex
function on the interval—10, 10]. Thew-parameter is inversely proportional to
the width of the noise terms and thus it determines the frequef the noise. The
A-parameter, which controls the range of the weighting coefits of the noise
terms, determines the magnitude of the noise. The effedteohbise magnitude
A on the Gaussian RBF model is illustrated in Figure B.2.

We computed the success probabilitiés,.. as a function of noise magnitude
A with different noise frequencies. The results of these tests wifti = 10000
are plotted in Figure 7. For failed runs, we also computedtlezage distance to
estimated global minimizex*. These results are plotted in Figure 8.

It can be seen from Figure 7 that the frequency of the noisa hagjor impact
on the success probability. In the case of high-frequentsenthe success proba-
bility drops rapidly as the noise magnitudes increased. Namely, if = 10, the
success probability already drops bel60% with A = 0.3. On the other hand,
with w = 1, the success probability remains o86f% even if A = 1, which means
a very large noise magnitude. This follows from the propéngt the Gaussian
transform is more likely to preserve global minima reswgtirom low-frequency
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Figure 7: Success probability,,.. as a function of noise magnitudewith dif-
ferent values of noise frequency
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Figure 8: Average distance (of failed runs) to the estimaletial minimizerx*
as a function of noise magnitudewith different values of noise frequency
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noise terms in the RBF model. On the other hand, it tends t@#maut narrow
global minima resulting from high-frequency noise terms.

On the other hand, the results in Figure 8 indicate that fiedaruns, our
algorithm is still able to give good estimates of the glob&limizer. This is es-
pecially the case with high-frequency noise. With= 10, the average distance
to the estimated global minimizer* remains belows, which is relatively small
compared to the overall length of the inter{all0, 10] under consideration. This
compensates the low success probabilities of accuratedifeg the global mini-
mizer. Even for smaller values af, the average distances remain belgwvhich
is much better than those observed in Tests A. The increafeiaverage dis-
tance asv is decreased is mostly explained by the fact that the mir@msinf the
Gaussian RBF model are usually further apart if the noissugacyw is smaller,
and thus, the shape parametgrsire larger. These observations clearly indicate
that the Gaussian transform effectively preserves thernydg convex structure
of the original RBF model. As a result, the minimizer obtaimea our algorithm
is in most cases the global one or close to it.

7 Conclusions and Future Research

In this paper, a new method for global minimization of the &aan RBF model
was proposed. The method is a truly global optimization meih the sense that
it is independent of the starting point. Our method uses thesGian transform to
smooth the RBF model and remove undesired local minima. fEmsfiormation
has an analytic expression, which eliminates the need forenigal integration.
The transformation between the minimizers of the smoothgl Rodel and the
original one is characterized by a differential equatiomc® the smoothed RBF
model was shown to be strictly convex under mild conditiahfias a unique
minimizer that can be easily identified. Consequently, thlat®n curve of this
differential equation is uniquely determined. Finally,abust trust region-based
predictor-corrector method for tracing the solution cuo¥éhis differential equa-
tion was developed.

In our preliminary numerical results, our algorithm showgh success rates
at identifying global minima of Gaussian RBF models. Thenaniy factors con-
tributing to the reliability were identified to be the undenlg structure and the
amount of oscillation in the RBF model. In particular, venghnsuccess rates
were achieved with RBF models having an underlying convescsire and a rel-
atively small amount of noise. What makes our algorithmipalarly useful, is
the fact that many objective functions appearing in pratapplications, and thus
their corresponding RBF interpolation models, belong te tategory. Also, sur-
prisingly high success rates were achieved with highlyllegicig RBF models
not following any particular trend.

Though the computational performance of our algorithm e rge-scale
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setting was not tested, its high computational complexsityn issue that needs to
be addressed. In particular, the inherent complexity ofGhessian RBF model
limits the performance of our present implementation. Tlesvidn-type steps
requiring the exact Hessian of the homotopy mapping in tleeliptor-corrector
method are also main sources of computational cost. Theredgotential topic
of future research is replacing the exact Hessian matrik wiBFGS or SR1
approximation or their limited memory versions (see e.g4])[1We note that the
Broyden update formula, which is closely related to the BRG& SR1 formulas,
has been successfully used by Allgower and Georg [2] in hopyomethods for
solving nonlinear equations.

In this paper, we restricted our analysis to unconstraimetdlpms. A con-
strained version of our method would definitely bring it @o$o practical appli-
cations. That would require a reformulation of the initialuwe problem (10) by
including constraints. One possible approach could bertadtate it by using the
Lagrangian function of the constrained problem.

The fact that the Gaussian transform of the Gaussian RBF Irhadean ana-
lytic expression has important consequences. By virtukistesult, it is possible
to indirectly apply the Gaussian transform to the origipaksibly noisy, objective
function via the interpolating Gaussian RBF model. Thisrapph offers a viable
alternative to direct evaluation of the Gaussian transfommich is not compu-
tationally tractable for high-dimensional objective ftinas with no exploitable
structure. Thus, we aim to pursue this approach in our futsearch.

The potential of our method has not yet fully realized, sweehave not spec-
ified a way of constructing the Gaussian RBF model interpajathe original
objective function. In order to develop a complete globdiroEation method
using a RBF interpolation model, this issue needs to be addde The choice of
the interpolation pointp,; and the shape parameterss a complicated issue that
deserves a study of its own. Therefore, we plan to addresssthue in our future
research.
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A Proofs of Lemmata 2.2, 4.1, 4.2 and Theorem 4.5

Lemma 2.2 Let

Y(y) = exp <— y ;22)2 ¢ —;:)2) |

wherez, y, z,v,0 € R. Then
Ry
/ sy = -y <_<x2 z>2) |
Vo2 +q? oc+y
Proof. By performing the variable substitutiariy) = ==, we have
o0 o0 _ B 9
/ U(y)dy =~ / exp (—u2 - (:CZO,—QWO) du

=X / exp (—UQUQ Rl Gl fyu)Q) du. (35)

o2

Some algebraic manipulation of the exponent numeratoruaton (35) yields
o?u? + (v — 2z — yu)?
= o + (v — 2)* — 2(z — 2)yu + y*u?

2 2

= (> + )+ (v — 2)* — 2(x — 2)yu + ﬁ(w —2)? - p _i_ny(:c — 2)?
/2 L 2 7’ 2 2 ’ 2

= O'2+’}/2U— m(.T—Z) +<.T—Z) —0_2_'_’}/2(37—2)

2
2

o 2
+ 55— —2)"

72
Tr—Zz
( ) 0_2_'_7

(0-2 + 72)2

Then, by substituting the above expression into equatiéh §é8d by applying
Lemma 2.1, we obtain

o0 [ o o2 4 A2 2 ? x— 2)2

/ Y(y)dy =~ / exp ( ;_27 (u - (02_7_772)2(30 - Z)) - 722 n 32 ) du}
. o?+7 72 2 (z —2)°
=y / oxp | ———; u— m(m —z) du| exp <— o212

— OO

= (0" +9%) |u-

[\
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Lemma 4.1 Assume 4.2 and defifd; : R? x R — R4x¢,

H,(x,0) = — i ki(o)exp —M I (36)
, i=1 of + 7
wherex; : [0,00[— R,i=1,...,n,andl is thed x d identity matrix. Then
(lz = pil| +17)?
Amin (Hi(x,0)) > — Ki(o) — Ki(o)exp (— )
x€EB(z;r) ni(az)>0 ni(az)<0 o+ 7@2

Proof. The assumption that; € B(z;r) for all i = 1,...,n implies that the
exponential functions in equation (36) are bounde@in; r) by

—p.2 T
o) = max oo (2RI —op (< 2R

x€B(z;r) o2+ ”}/22 x€B(z;r) o? + 712

—nll? _n.ll2
Li(oc) = min exp (—7HX 2 ):exp (— max 7”X pz||)

x€B(z;r) o2 + f}/ZQ x€EB(z;r) o2+ 7@2

= exp (—(”Z — pif +r)2> |

0%+ 7

By noting thatH, (x, o) is a multiple of the identity matrix, we obtain

Aumin (Hl(x U)) = Amin —ifii(U)exp _M I
| i=1 o2 + 77

x€EB(z;r) x€EB(z;r)
: I — pil|? I — pil|?
= min |- Z ki(o) exp (—ﬁ - Z Ki(o)exp | ——5——5—
x€B(zir) ki(0)>0 0"+ ki(0)<0 om
Ix — pi? , Ix — pi?
> — Z ki(0) max {exp <—ﬁ - Z ki(0) min jexp ( ——5——5
ki (2)50 x€EB(z;r) 0%+ i (0)<0 x€EB(z;r) oc+7;
== > wi(o)WUilo) = > ki(0)Li(o),
ki(0)>0 ki(0)<0
which concludes the proof. O

For proving Lemma 4.2, we need the following result.

Lemma A.1. Assume 4.2. Let > 0, v > 0, p € B(z;r) and defineH :
R? x R — R4 such that

fi(x.0) = (x = p)(x )" e (- 521
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Then

~

s (F1(x,0)) = i(0)exp - o) ).

x€B(z;r) 02 + 2

where
#(0) = min{|lz — p|| +r,v/o? + 72}

and \,,...(-) denotes the largest eigenvalue.

Proof. The only nonzero eigenvalue of the matfi— p)(x — p)” is ||x — p||*.
Thus,

A~

Ay (10,0) = g (6= w7 e (-2 )

x€B(z;r) x€B(z;r) o? + 72
= max ||x—p|?exp —7”X_pH2
x€B(z;r) o2 + ’}/2

Due to the radial symmetry, we consider maximization of thiwariate function

2
_ 2 s
o(s) =s exp( g +72) :

Now, ¢'(s) has a unique root at* = /0% + 4?2 that gives the maximum value
of p. Also, ¢(s) is monotoneously increasing in the interi@ls*]. On the other
hand, we have

max |[x —pl| = ||z - p[| +r

x€B(z;r)

If we denote the above expressionhywe obtain

max o([|x — p||) = max ¢(s) = @(min{7, s*})

xEB(z;r) 0<s<r
LR 12
= min{7, s*}? exp (—M) :

o2+ 2
Thus, we have

Amar (H(x,0)) = max ¢(|x - pl|)

x€B(z;r) xE€B(z;r)

ol k12
= min{7, s*}? exp (_7mm{r, all )

0—2+72

7(0)? exp (— (o)’ )

O'2+’)/2
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Lemma 4.2 Assume 4.2 and defirfd, : R? x R — R4x¢,

2
010 — pu)x — po)Texp (P
z = px - poenp (- 2R

wheref; : [0,00[— R,i=1,...,n. Then
Pi(0)?
>\mz’n H X O' 9 eX - y
x€B(z; r) ’ Z P < 0%+ ’7@2>
where

7i(0) = min{||z — pi|| + 7, /0% + 77}
Proof. Define

112
H, =(x—p)(x—pi)" —7”X_pl|| =1,...,n.
(x,0) = (x — ps)(x — Pi) exp< T2 ) i=1,....,n

By considering the positive and negative termdXf, o) separately and by ap-
plying Theorem 4.2, we obtain

Amin (HQ(X U) Amin Z 9 Z 9
x€B(z;r) x€B(z7) \ g,(0)>0 9;(0) <0
> Amin Z 9 + Amin Z ai(a)ﬂi(x70)
x€B(z:7) \ g.(5)>0 x€B(z1) \ g, (0)<0
> Z 0i(0) Amin (Hi(x,0))+ D> Apin (0i(0)Hi(x,0))

9,;(c) xeB(z r) 9,()<0 x€B(z;r)

By noting that the only nonzero eigenvalueﬁl');‘(x o) is positive, we obtain

Ze Ain Z Amin (0:(0)Hi(x, 7))

0,( x€B(z;r) XEB(Z r)
LY e 0 z 00) Ay (L (x,0)
0,(0)<0 x€B(z;r) 0,(c) XEB(Z r)

Consequently, by virtue of Lemma A.1 we have

Ain: (Ha(x,0)) > Y 0:(0) Apaw (Hi(x,0))

x€B(z;r) 9,(c)<0 xE€B(z;r)
2
= Z 0;(0)7i(0)? exp (— T;(U) 2) ,
0:(0)<0 o i

where
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Theorem 4.4 Define
Sy = {x € R*| V, h(x,0) = 0}.

Then we havelim S, = {x*}, where
o—00

n
d
E W;; Pi
x« 1=l
X =——.
d
E wW;;
i=1

Proof. From equation (12), we obtain

x €8, < Vih(x,0)=0

I”

i Co w; €Xp =il (x —pi) =0
a2+72 ‘ o2+ 2 ‘
Z 5 W; exXp —*HX_piHQ Pi
— 7 0_2+,yz2 (2
Z w; exp _HX—Pin
i=1 2 Z O-2+,yi2

Z

To denote the right-hand side of the above equation, define

i Cos w; exp —7”X_pi|’2 Di,j
el Kl o? )

2

X;(0) = =
j S Cot o (=P
ot} 0%+ 7
o I A S 1 A
— (02 +1}) 2+l o + 7 s
= P P 2 5 j = 1, ey d
Z Wi, exp <_||X—Pz'|| )
= (02 +2)8 ! 0% +7
Define
M(o) = max (" +7)5"
Since



for all i = 1,...,n, multiplying the numerator and denominator &f (o) by
M (o) and taking the limit — oo yields
lim Z

& e (IX=RIPY
9 Z’Yi eXp 0_2+ 2 pl,]
. M(o) i1 (o +7) i
lim X(o) =
% M (o) x—pd
lim Z wl% exp [ == .
o—00 O-2+,yl o —|-fyi
Py e o2 +712 Z’j
~ Ix — pi|?
2wl Jim exp (s

n
d
E Wi; Dij
=1

n

*

n = xj
>
=1
forall j =1,...,d, which concludes the proof. O
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B Figures

— m(x)

— m(x) — m(x)

Figure B.1: Random Gaussian RBF models with different \e@bfeshape parameter
v, wherey; = yforalli = 1,...,n, and their Gaussian transforms with= 5.
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Figure B.2: Gaussian RBF models with a dominant convex temdmaise with fre-
quencyw = 2 and different magnitudes. The corresponding Gaussian transforms
are plotted withr = 2.5.
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