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Abstract

During the last decade, a lot of research has been devoted to anew class of
derivative-free optimization methods using radial basis function (RBF) models.
Methods of this type usually involve finding a (global) minimizer of the model
function. However, the development of practical methods for solving this diffi-
cult minimization problem has received very little attention in the literature. In
this paper, a new method for global minimization of the Gaussian RBF model is
presented. The proposed method is based on a homotopy continuation approach.
In particular, it is shown that the special structure of the Gaussian RBF model
allows a natural way of using the Gaussian transform as a homotopy mapping.
This integral transformation effectively removes local minima and preserves the
underlying structure of the original RBF model. For tracingthe solution curve of
the resulting differential equation, a robust trust region-based predictor-corrector
method is described. Numerical results are given to demonstrate the reliability of
the proposed method.

Keywords: global optimization; derivative-free optimization; radial basis func-
tion; Gaussian transform; continuation method; homotopy;trust region; predictor-
corrector method
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1 Introduction

Recently, there has been growing interest in usingradial basis function(RBF)
models both in global optimization [7, 19] and in trust region-based local opti-
mization [15, 22]. Rather than directly minimizing the objective function, which
may be noisy or computationally expensive, thesemodel-basedmethods con-
struct a model function that is easier to minimize. Given a set of distinct points
P = {p1, . . . ,pn} ⊂ R

d, the model functionm : Rd → R is constructed by
interpolating the objective functionf : Rd → R subject to the conditions

m(pi) = f(pi), pi ∈ P, i = 1, . . . , n. (1)

The RBF models considered in this paper are of the form

m(x) =
n
∑

i=1

wiφi(‖x− pi‖), (2)

wherewi ∈ R areweighting coefficientsandφi : R → R are radial basis func-
tions. Imposing the interpolation conditions (1) on the interpolant (2) leads to an
n× n system of linear equations for the weighting coefficientswi. That is,

Φw = F, (3)

whereΦij = φj(‖pi − pj‖), w = [w1, . . . , wn]
T andF = [f(p1), . . . , f(pn)]

T .
The literature on RBF interpolation is extensive (see e.g. [3, 20]). This type of
interpolation has also been used in numerous practical applications such as neural
networks [16], computer graphics [4], medical imaging [5] and solving partial
differential equations [6].

Differently to RBF interpolation, for which the mathematical theory is well-
established [3, 20], the theoretical framework of optimization methods using RBF
interpolation models is still deficient in many areas. Also,despite an apparent
need, a remarkably small amount of research has been carriedout concerning
minimization of RBF models. For instance, solving the trustregion subproblem
involving a RBF model is identified as one of the major challenges in [22]. The
problem of finding the global minimum of a RBF model is also discussed in [7]
and [19]. To our knowledge, no problem-specific approach forthe global solution
of this nonconvex and multimodal minimization problem has been proposed. To
fill this gap in the literature, we propose a new method specifically designed for
the global minimization of theGaussian RBF model

m(x) =
n
∑

i=1

wi exp

(

−‖x− pi‖2
γ2i

)

(4)

induced by the Gaussian RBF

φi(r) = exp

(

− r
2

γ2i

)

, (5)

whereγi > 0, i = 1, . . . , n, are user-supplied shape parameters.
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The proposed method is based on the idea of smoothing the Gaussian RBF
model via theGaussian transform. This integral transformation tends to remove
local minima and preserve the structure of the original function. Previously, the
Gaussian transform has been applied, for instance, to molecular distance geome-
try problems [12, 13]. Even though this integral transformation has very limited
applicability to general objective functions, we show herethat it has an analytic
expression when applied to the Gaussian RBF model interpolating the objective
function. This fact eliminates the need for computationally expensive numeri-
cal integration. Our approach can be viewed as a generalization of the method
proposed by Kostrowicki et al. [9] for molecular conformation problems. In their
approach, the Fourier-Poisson integral transformation isapplied to Gaussian func-
tions approximating the Lennard-Jones potential.

Adapting the ideas by Kostrowicki et al. [17] and Wu [23], we give a differ-
ential equation formulation for the transformation between the minimizers of the
smoothed Gaussian RBF model and the original one. The idea ofthiscontinuation
approach is to seek for a parametrized curve that connects the global minimizer
of the smoothed RBF model, which is easier to obtain, to the global minimizer of
the original RBF model. While the formulations proposed in [17] and [23] have
been successfully applied to objective functions appearing in molecular distance
geometry problems [9, 13], our aim is to show their applicability to the more gen-
eral Gaussian RBF model. A distinguishing feature of our formulation is that we
establish the conditions for convexity of the smoothed RBF model. This funda-
mental result allows a unique solution to our differential equation. For solving
the associated initial value problem, we adapt the trust region-based method pro-
posed by Moré and Wu [13]. Exploiting the special structureof the Gaussian
RBF model, we also show that the modified conjugate gradient method described
in [21] is particularly efficient for solving the trust region subproblem.

This paper is organized as follows. In Section 2, we define theGaussian trans-
form and derive a closed-form expression for the Gaussian transform of the Gaus-
sian RBF model. In Section 3, we formulate the transformation between the min-
imizers of the smoothed RBF model and the original one as a solution to a differ-
ential equation. The choice of the initial values is discussed in Section 4. Section
5 is devoted for describing a predictor-corrector method for solving the resulting
initial value problem. To demonstrate the reliability of our method, numerical
results are presented in Section 6. Finally, Section 7 summarizes this paper and
points out some directions of future research.

2 The Gaussian Transform

The main result of this section is that theGaussian transformof the Gaussian
RBF model has an analytic expression. The Gaussian transform has turned out to
be a viable tool for global optimization because of its smoothing and structure-
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preserving properties [23]. In many cases, it has been shownto remove local
minima while preserving the global one [10, 11, 12, 13]. Another advantage of
this transformation is that it provides a parameter for controlling the degree of
smoothing.

We begin our analysis with the definition of the Gaussian transform.

Definition 2.1. TheGaussian transformof a functionf : Rd → R is

〈f〉σ(x) = Cσ

∫

Rd

f(y) exp

(

−‖y − x‖2
σ2

)

dy, (6)

whereσ > 0 is a smoothing parameter and

Cσ =

(

1√
πσ

)d

.

This integral transformation can be viewed as a distance-weighted average off
with respect to the Gaussian weighting function. The width of the smoothing
kernel, and thus the degree of smoothing is proportional toσ. On the other hand,
asσ approaches zero, we obtain the original function. Another way of viewing
the smoothing properties of this transformation is to consider its relation to the
Fourier transform. For instance, it is shown in [23] that theGaussian transform
reduces the high frequency components of the Fourier transform of the original
function.

Figure 1: A Gaussian RBF model and its convex Gaussian transform withσ = 3.
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The Gaussian transform〈m〉σ of the Gaussian RBF model (4) is illustrated
in Figure 1. In this case, the transformation produces a strictly convex func-
tion that also gives a good approximation of the global minimizer of the original
RBF model. The convexity of the transformed RBF model is not acoincidence.
Namely, in Section 4 we establish the conditions for convexity of 〈m〉σ if σ is
sufficiently large.

Next, we show that the transformed Gaussian RBF model〈m〉σ has a closed-
form expression. It is derived by using the well-known formula for the univariate
Gaussian integral [1].

Lemma 2.1. Leta, b ∈ R. Then
∞
∫

−∞

exp

(

−(x− a)
2

b2

)

dx = b
√
π.

The following lemma facilitates the proof of our main result.

Lemma 2.2. Let

ψ(y) = exp

(

−(y − z)
2

γ2
− (y − x)2

σ2

)

,

wherex, y, z, γ, σ ∈ R. Then
∞
∫

−∞

ψ(y)dy =
γ
√
πσ

√

σ2 + γ2
exp

(

−(x− z)
2

σ2 + γ2

)

.

Proof. See Appendix A.

Theorem 2.1.The Gaussian transform of the Gaussian RBF model(4) is

〈m〉σ(x) =
n
∑

i=1

C̃σ,iwi exp

(

−‖x− pi‖2
σ2 + γ2i

)

, (7)

whereσ > 0, γi > 0 and

C̃σ,i =

(

γi
√

σ2 + γ2i

)d

, i = 1, . . . , n.

Proof. Let σ > 0 andϕi(x) = exp
(

−‖x−pi‖2

γ2

i

)

, i = 1, . . . , n. Then

〈ϕi〉σ(x) = Cσ

∫

Rd

exp

(

−‖y − pi‖2
γ2i

)

exp

(

−‖y − x‖2
σ2

)

dy

= Cσ

∞
∫

−∞

∞
∫

−∞

. . .

∞
∫

−∞

d
∏

j=1

exp

(

−(yj − pi,j)
2

γ2i
− (yj − xj)2

σ2

)

dyj.

4



The above expression is a product of one-dimensional integrals. Thus, by virtue
of Lemma 2.2 we have

〈ϕi〉σ(x) = Cσ

d
∏

j=1

γi
√
πσ

√

σ2 + γ2i
exp

(

−(xj − pi,j)
2

σ2 + γ2i

)

=

(

γi
√

σ2 + γ2i

)d

exp

(

−‖x− pi‖2
σ2 + γ2i

)

, i = 1, . . . , n,

from which equation (7) follows, since〈m〉σ(x) =
n
∑

i=1

wi〈ϕi〉σ(x).

Remark 2.1. We can extend the definition of(7) by defining〈m〉0 = m.

3 Differential Equation Formulation

The basic idea of our method is to obtain a smoothed Gaussian RBF model via
the Gaussian transform. The smoothed RBF model is graduallydeformed back
to the original one by letting the transformation parameterσ approach zero. The
minimizers of the RBF model are traced along this deformation process by suc-
cessively applying local minimization procedures to the transformed RBF model.
This ”transportation” of minimizers, as illustrated in Figure 2, is likely to carry the
solution over undesired local minima as they are removed by the Gaussian trans-
form. Of particular interest is that the initial minimizer is uniquely determined due
to the strict convexity of the smoothed RBF model with the initial transformation
parameterσ.

In the following, we give a differential equation formulation for the curve
of minimizers illustrated in Figure 2. Our formulation is adapted from Wu [23]
who established the existence and uniqueness of such a solution curve for general
objective functions smoothed via the Gaussian transform. The formulations de-
scribed here and in [23] are in fact special cases of the more general homotopy
continuation approach (see e.g. [2]).

To begin our analysis, we note that the transformation defined by equation (7)
induces aC∞-homotopy mappingh : Rd × [0,∞[→ R defined as

h(x, σ) = 〈m〉σ(x),
h(x, 0) = m(x).

(8)

In order to formulate our differential equation, we note that the conditions

∇xh(x(σ), σ) = 0,
∇2

xh(x(σ), σ) is positive definite
∀σ ∈ [0, σ0], σ0 > 0, (9)

implicitly define the parametric curvex : [0, σ0]→ R
d passing through the mini-

mizers ofh(·, σ). By differentiating the condition∇xh(x(σ), σ) = 0 with respect

5



Figure 2: A curve connecting the minimizers of the smoothed Gaussian RBF
model〈m〉σ with different values of transformation parameterσ.

Figure 3: A noisy objective functionf , an oscillating Gaussian RBF interpolation
modelm and the smoothed RBF model〈m〉σ.
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to σ, we obtain a differential equation forx(σ). This leads us to an initial value
problem

∇2
xh(x(σ), σ)x

′(σ) +
∂

∂σ
∇xh(x(σ), σ) = 0 ∀σ ∈ [0, σ0],

x(σ0) = x0

(10)

for somex0 ∈ R
d andσ0 > 0 satisfying

∇xh(x0, σ0) = 0,
∇2

xh(x0, σ0) is positive definite.
(11)

Assuming that conditions (9) are satisfied, the existence and uniqueness of the
solution of (10) with the given initial valuesx0 andσ0 follows from the results
proven in [23]. In Section 4, we prove a stronger result whichensures that the
initial minimizer x0 can also be uniquely determined due to the strict convex-
ity of the smoothed RBF model with any sufficiently largeσ0. It then follows
from definition (8) that following the solution curve fromx(σ0) to x(0) gives a
uniquely defined minimizer of the original RBF model. Thoughthis minimizer is
not guaranteed to be the global one, due to the smoothing properties of the Gaus-
sian transform, this approach is more likely to give the global minimizer than a
local search started from an arbitrary point.

The minimizers obtained with intermediate values ofσ are also of interest.
For instance, interpolation of noisy objective functions leads to oscillating inter-
polants. In such cases, it makes sense to stop tracing the solution curve at some
σ > 0. As shown in Figure 3, the smoothed RBF model is less affectedby noise
and follows the underlying trend of the interpolated function.

For the following sections, we give the expressions of the derivatives of the
homotopy mappingh induced by the Gaussian transform (7). A straightforward
calculation yields

∇xh(x, σ) = −2
n
∑

i=1

C̃σ,i

σ2 + γ2i
wiEσ,i(ri)ri, (12)

∇2
xh(x, σ) = 2

n
∑

i=1

C̃σ,i

σ2 + γ2i
wi

(

2

σ2 + γ2i
rir

T
i − I

)

Eσ,i(ri), (13)

∂

∂σ
∇xh(x, σ) = 2σ

n
∑

i=1

C̃σ,i

(σ2 + γ2i )
2
wi

(

d+ 2− 2‖ri‖2
σ2 + γ2i

)

Eσ,i(ri)ri, (14)

whereri = x− pi,Eσ,i(r) = exp
(

− ‖r‖2

σ2+γ2

i

)

andI is thed× d identity matrix.

7



4 Choice of Initial Values

This section deals with the choice of the starting pointx0 and the initial homotopy
parameterσ0 for the initial value problem (10). The key issues are to guarantee
that conditions (11) are satisfied and thatx0 is uniquely determined. In order
to achieve this, we prove that the homotopy mappingh(·, σ) is strictly convex
for any sufficiently large homotopy parameterσ in a given sphere containing the
interpolation points. We also prove that the set of minimizers ofh(·, σ) converges
to a single point asσ approaches infinity.

4.1 Choice ofσ0
In the following, we show that choosing a sufficiently large initial homotopy pa-
rameterσ0 guarantees thath(·, σ0) is strictly convex in a given sphere

B(z; r) = {x ∈ R
d | ‖x− z‖ < r}, z ∈ R

d, r > 0 (15)

containing the interpolation pointspi, i = 1, . . . , n. The proof of our main result
necessitates the following assumption.

Assumption 4.1. The weighting coefficientswi and the shape parametersγi of
the Gaussian RBF modelm satisfy

n
∑

i=1

wiγ
d
i < 0. (16)

This assumption is not very restrictive. Namely, the following theorem gives
a formula for adjusting the weighting coefficientsw solved from equation (3) to
satisfy condition (16). This theorem also shows that the adjustment is equivalent to
adding a constant to the interpolated function valuesF. A linear translation of the
interpolated function values does not essentially alter our interpolation problem.

Theorem 4.1. Assume thatΦ ∈ R
n×n is a nonsingular matrix. Letw = Φ−1F

for someF ∈ R
n and letγi > 0, i = 1, . . . , n. Define

w̃ = w +Φ−1C, whereC = [c, . . . , c]T ∈ R
n (17)

such that

c =

µ−
n
∑

i=1

wiγ
d
i

n
∑

i=1

γdi

n
∑

j=1

Φ−1
ij

,

n
∑

i=1

γdi

n
∑

j=1

Φ−1
ij 6= 0, (18)

for someµ ∈ R. ThenΦw̃ = F+C and
n
∑

i=1

w̃iγ
d
i = µ.
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Proof. Due to the assumption thatw = Φ−1F, we have

w̃ = w +Φ−1C = Φ−1F+Φ−1C = Φ−1(F+C),

which is equivalent toΦw̃ = F+C. By multiplying w̃i by γdi we obtain

w̃iγ
d
i = wiγ

d
i + γdi

n
∑

j=1

Φ−1
ij c, i = 1, . . . , n.

Summation overi = 1, . . . , n and substitution of equation (18) into the above
expression yields

n
∑

i=1

w̃iγ
d
i =

n
∑

i=1

wiγ
d
i +

n
∑

i=1

γdi

n
∑

j=1

Φ−1
ij c

=

n
∑

i=1

wiγ
d
i +

n
∑

i=1

γdi

n
∑

j=1

Φ−1
ij

µ−
∑n

i=1wiγ
d
i

∑n

i=1 γ
d
i

∑n

j=1Φ
−1
ij

=

n
∑

i=1

wiγ
d
i + µ−

n
∑

i=1

wiγ
d
i = µ.

Next, we formally state the assumption thatB(z; r) contains the interpolation
points and give the following two lemmata to deduce our estimate for the smallest
eigenvalue of∇2

xh(·, σ) in B(z; r) for a givenσ ≥ 0.

Assumption 4.2.The center pointz ∈ R
d and radiusr > 0 of the sphereB(z; r)

defined by(15)are chosen such thatpi ∈ B(z; r) for all i = 1, . . . , n.

Lemma 4.1. Assume 4.2 and defineH1 : R
d × R→ R

d×d,

H1(x, σ) = −
n
∑

i=1

κi(σ) exp

(

−‖x− pi‖2
σ2 + γ2i

)

I, (19)

whereκi : [0,∞[→ R, i = 1, . . . , n, andI is thed× d identity matrix. Then

λmin
x∈B(z;r)

(H1(x, σ)) ≥ −
∑

κi(σ)>0

κi(σ)−
∑

κi(σ)<0

κi(σ) exp

(

−(‖z− pi‖+ r)2

σ2 + γ2i

)

.

Proof. See Appendix A.

Lemma 4.2. Assume 4.2 and defineH2 : R
d × R→ R

d×d,

H2(x, σ) =
n
∑

i=1

θi(σ)(x− pi)(x− pi)
T exp

(

−‖x− pi‖2
σ2 + γ2i

)

,

9



whereθi : [0,∞[→ R, i = 1, . . . , n. Then

λmin
x∈B(z;r)

(H2(x, σ)) ≥
∑

θi(σ)<0

θi(σ)r̂i(σ)
2 exp

(

− r̂i(σ)
2

σ2 + γ2i

)

,

where

r̂i(σ) = min{‖z− pi‖+ r,
√

σ2 + γ2i }.

Proof. See Appendix A.

The following theorem is utilized in the proofs of Lemmata 4.1-4.2 and Theo-
rem 4.3. For the proof of this result, see [8].

Theorem 4.2(Weyl). LetA ∈ R
d×d andB ∈ R

d×d be symmetric matrices. Then

λmin(A) + λmin(B) ≤ λmin(A+B),

whereλmin(·) denotes the smallest eigenvalue of a matrix.

Remark 4.1. If eitherA or B is the identity matrix, equality holds above.

With Lemmata 4.1-4.2 and Theorem 4.2, we can now prove the following
theorem that provides a lower bound for the smallest eigenvalue of the Hessian
(13) inB(z; r).

Theorem 4.3.Assume 4.1 and 4.2. Then

λmin
x∈B(z;r)

(∇2
xh(x, σ)) ≥ 2 [Λ1(σ) + Λ2(σ)] (20)

for all σ ≥ 0, where

Λ1(σ) = −
∑

wi>0

C̃σ,i

σ2 + γ2i
wi −

∑

wi<0

C̃σ,i

σ2 + γ2i
wi exp

(

−(‖z− pi‖+ r)2

σ2 + γ2i

)

,

Λ2(σ) =
∑

wi<0

2C̃σ,i

(σ2 + γ2i )
2
wir̂i(σ)

2 exp

(

− r̂i(σ)
2

σ2 + γ2i

)

and

r̂i(σ) = min{‖z− pi‖+ r,
√

σ2 + γ2i }.

Proof. The Hessian matrix defined by equation (13) can be written as

∇2
xh(x, σ) = 2[H1(x, σ) +H2(x, σ)],
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where

H1(x, σ) = −
n
∑

i=1

C̃σ,i

σ2 + γ2i
wi exp

(

−‖x− pi‖2
σ2 + γ2

)

I,

H2(x, σ) =
n
∑

i=1

2C̃σ,i

(σ2 + γ2i )
2
wi(x− pi)(x− pi)

T exp

(

−‖x− pi‖2
σ2 + γ2

)

.

By virtue of Theorem 4.2, we have

λmin
x∈B(z;r)

(∇2
xh(x, σ)) ≥ 2

[

λmin
x∈B(z;r)

(∇2
xH1(x, σ)) + λmin

x∈B(z;r)
(∇2

xH2(x, σ))

]

.

Define

κi(σ) =
C̃σ,i

σ2 + γ2i
wi, θi(σ) =

2C̃σ,i

(σ2 + γ2i )
2
wi, i = 1, . . . , n.

With these definitions, the claim follows from Lemmata 4.1 and 4.2 applied toH1

andH2, sinceC̃σ,i > 0 for all i = 1, . . . , n andσ ≥ 0.

Next, we show that under assumptions 4.1 and 4.2, inequality(20) gives a pos-
itive estimate for the smallest eigenvalue of∇2

xh(·, σ) inB(z; r) if σ is sufficiently
large.

Theorem 4.4.Assume 4.1 and 4.2. Then there existsσ∗ > 0 such that

Λ1(σ) + Λ2(σ) > 0

for all σ > σ∗.

Proof. Define

Λ̃1(σ) = −Dmax(σ)
∑

wi>0

wiγ
d
i −Dmin(σ)

∑

wi<0

wiγ
d
i exp

(

−(‖z− pi‖+ r)2

σ2 + γ2i

)

,

Λ̃2(σ) = 2Dmax(σ)
∑

wi<0

wiγ
d
i

σ2 + γ2i
r̂i(σ)

2 exp

(

− r̂i(σ)
2

σ2 + γ2i

)

,

where

Dmax(σ) = max
i=1,...,n

1

(σ2 + γ2i )
d
2
+1

and Dmin(σ) = min
i=1,...,n

1

(σ2 + γ2i )
d
2
+1
.

Sinceγi > 0 for all i = 1, . . . , n,Dmax(σ) > 0 andDmin(σ) > 0, we have

Λ1(σ) ≥ Λ̃1(σ) and − Λ2(σ) ≤ −Λ̃2(σ) (21)
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for all σ ≥ 0. By dividing the inequalitỹΛ1(σ) > −Λ̃2(σ) byDmax(σ), we obtain

−
∑

wi>0

wiγ
d
i −

Dmin(σ)

Dmax(σ)

∑

wi<0

wiγ
d
i exp

(

−(‖z− pi‖+ r)2

σ2 + γ2i

)

>−
∑

wi<0

2wiγ
d
i

σ2 + γ2i
r̂i(σ)

2 exp

(

− r̂i(σ)
2

σ2 + γ2i

)

.

By noting that lim
σ→∞

Dmin(σ)/Dmax(σ) = 1 and using assumption (16), we have

lim
σ→∞

Λ̃1(σ)

Dmax(σ)
= lim

σ→∞

[

−
∑

wi>0

wiγ
d
i −

Dmin(σ)

Dmax(σ)

∑

wi<0

wiγ
d
i exp

(

−(‖z − pi‖+ r)2

σ2 + γ2i

)

]

= −
n
∑

i=1

wiγ
d
i > 0.

On the other hand, we have

lim
σ→∞

Λ̃2(σ)

Dmax(σ)
= lim

σ→∞

[

−
∑

wi<0

2wiγ
d
i

σ2 + γ2i
r̂i(σ)

2 exp

(

− r̂i(σ)
2

σ2 + γ2i

)

]

= 0,

which implies that there existsσ∗ > 0 such that̃Λ1(σ) > −Λ̃2(σ) for all σ > σ∗

and thus, by virtue of equation (21),

Λ1(σ) ≥ Λ̃1(σ) > −Λ̃2(σ) ≥ −Λ2(σ)

for all σ > σ∗.

Theorem 4.4 leads to the following conclusion.

Corollary 4.1. Let the assumptions of Theorem 4.3 be satisfied. Then there ex-
ists σ∗ > 0 such thatλmin(∇2

xh(x, σ)) > 0 for all σ > σ∗ andx ∈ B(z; r).
Consequently,h(·, σ) is strictly convex inB(z; r) for all σ > σ∗.

Remark 4.2. We cannot obtain strict convexity ofh(·, σ) in the wholeRd for
any finite value ofσ. This follows from the fact that the second derivative of the
Gaussian function(5) necessarily changes its sign for somer > 0.

4.2 Choice ofx0

By virtue of Theorem 4.4, it is possible to chooseσ0 such thath(·, σ0) is strictly
convex in a sphereB(z; r) containing the interpolation points. Consequently,
h(·, σ0) has at most one minimizer that can be chosen as the starting point x0

in B(z; r). Though we cannot directly obtainx0 satisfying conditions (11) with
the givenσ0, the limiting stationary pointx∗ provided by the following theorem
serves the purpose of an initial guess forx0. If σ0 is large,x∗ is expected to be
close to the minimizer ofh(·, σ0).
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Theorem 4.5.Define

Sσ = {x ∈ R
d | ∇xh(x, σ) = 0}.

Then we havelim
σ→∞

Sσ = {x∗}, where

x∗ =

n
∑

i=1

wiγ
d
i pi

n
∑

i=1

wiγ
d
i

. (22)

Proof. See Appendix A.

4.3 Summary of Obtaining Initial Values

To summarize the above results, our aim is to apply Theorems 4.4 and 4.5 to obtain
the initial homotopy parameterσ0 and the initial guessx∗ for the starting pointx0

for the solution of (10). For the choice ofB(z; r), it makes sense to choosez and
r such thatB(z; r) encloses the set of interpolation points and also containsx∗.
Our choice is to setz = x∗ and chooser as

r = max{‖x∗ − pi‖ | i = 1, . . . , n}. (23)

Thenσ0 is chosen such that positive definiteness of∇2
xh(x, σ0) for all x ∈ B(x∗; r)

is guaranteed by inequality (20). As a consequence,h(·, σ0) is strictly convex
in B(x∗; r). Then the starting pointx0 satisfying the initial conditions (11) can
be uniquely determined by using the initial guessx∗ and the iterative corrector
method described in the next section. Assuming thatσ0 is sufficiently large,x0

obtained in this way is inB(x∗; r) by Theorem 4.5. Ifσ0 is not large enough, it is
increased as long as necessary.

To summarize the above discussion, we provide Algorithm 1 that outlines the
steps for obtaining the initial valuesx0 andσ0.

Algorithm 1 : Initial Values.
Obtainx∗ from equation (22).
r ← max{‖x∗ − pi‖ | i = 1, . . . , n}
Choose the initialσ0 > 0.
while Λ1(σ) + Λ2(σ) ≤ 0 do Increaseσ0.
repeat

Obtainx0 ∈ R
d such that∇xh(x0, σ0) = 0, usex∗ as starting point.

if x0 /∈ B(x∗, r) then Increaseσ0.
until x0 ∈ B(x∗, r)

13



5 Predictor-Corrector Method

This section is devoted to describing an iterative method for tracing the solution
curve of the initial value problem (10). We begin our analysis by noting that pre-
multiplying equation (10) by the inverse of∇2

xh yields the tangent of the solution
curve. That is,

x′(σ) = −∇2
xh(x(σ), σ)

−1 ∂

∂σ
∇xh(x(σ), σ). (24)

This form suggests using an iterativepredictor-correctormethod (see e.g. [18])
that is also our preferred choice. We recall that this has been the dominant ap-
proach for solving initial value problems of the form (10) arising in continuation
methods (see e.g. [2]). However, in contrast to the existingpredictor-corrector
methods, we propose a trust region-based corrector method.

5.1 Overview

Each iteration of a predictor-corrector method involves two steps, as illustrated in
Figure 4. The first step is to obtain a crude estimate of the thesolution curve by
taking apredictor step. For solving the initial value problem (10), a step along the
tangent of the solution curvex(σ) at the current iteratexk = x(σk) is given by

x̃k(τ) = xk − τT(xk, σk), (25)

where

T(x, σ) = −∇2
xh(x, σ)

−1 ∂

∂σ
∇xh(x, σ) (26)

denotes the tangent vector defined by equation (24) andτ > 0 denotes the step
size. The negative sign is chosen to express that we are tracing the solution curve
along decreasing values ofσ.

Figure 4: Iteration step of a predictor-corrector method.

To return the estimate obtained from the predictor step backto the solution
curve, acorrector iterationis started from the predictor estimate. The corrector
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iteration seeks for a point̂xk such that

∇xh(x̂k, σk − τ) = 0. (27)

After finishing the corrector iteration, the next main iteration step starts with
xk+1 = x̂k andσk+1 = σk − τ . The iteration terminates ifσk+1 < σmin, where
σmin ≥ 0 is a user-supplied parameter. Ifσmin = 0, a final corrector step is then
applied toh(·, 0) to obtain a minimizer of the original RBF modelm.

In order to determine the step sizeτ , we control the distance between the
predictor step̃xk(τ) and the current iteratexk via the user-supplied accuracy pa-
rameter∆p. We also need to restrict the ratio betweenσk+1 andσk in order to
avoid too large step sizes. Hence, we impose the requirements

‖x̃k(τ)− xk‖ = ∆p and σk − τ ≥
1

4
σk

that are satisfied if the step sizeτ is chosen according to

τ = min{ ∆p

‖T(xk, σk)‖
,
3σk
4
}.

To summarize the above discussion, a predictor-corrector algorithm for solv-
ing the initial value problem (10) is outlined as Algorithm 2.

Algorithm 2 : Predictor-Corrector Method.

Choosex0 ∈ R
d andσ0 > 0 satisfying (11) by using Algorithm 1.

while σk > σmin do
τ ← min{ ∆p

‖T(xk,σk)‖
, 3σk

4
}

x̃k(τ)← xk − τT(xk, σk)
Solve∇xh(x̂k, σk − τ) = 0 for x̂k, usex̃k(τ) as starting point.
xk+1 ← x̂k

σk+1 ← σk − τ
k ← k + 1

if σmin = 0 then
Solve∇xh(x̂k, 0) = 0 for x̂k, usexk as starting point.

5.2 Trust Region-Based Corrector Method

Since the step sizeτ is usually small and the predictor estimate is close to the
solution curve, a Newton-type method with rapid local convergence is a natural
choice for the corrector iteration [2]. In order to guarantee convergence, we pro-
pose a trust region approach. Despite the fact that this approach has proven out
to be very robust for Newton-type methods (see e.g. [14]), using it in predictor-
corrector methods is amazingly rare. To our knowledge, a similar approach has
only been taken by Moré and Wu [13] who used a trust-region based Newton
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method to successively minimize the transformed objectivefunction〈f〉σk
with a

predetermined sequence of transformation parametersσk.
Our trust region strategy for the corrector iteration is adapted from Newton-

based optimization methods (see e.g. [14]). At each corrector iteration stepj the
quadratic model

Qj(s) = h(x̂j, σk − τ) +∇xh(x̂
j, σk − τ)T s +

1

2
sT∇2

xh(x̂
j , σk − τ)s (28)

is used to approximateh(·, σk − τ) around the current corrector iterate denoted
by x̂j . This model is minimized in a trust region in which it can be considered
reliable. That is, the trust region subproblem

min
s

Qj(s) s.t.‖s‖ ≤ ∆j (29)

is solved, where∆j denotes the current trust region radius (the initial radius∆0 is
set to∆p). After this step, the ratio between the actual reduction ofh(·, σk − τ)
and the predicted reduction from the quadratic model definedas

ρ =
h(x̂j , σk − τ)− h(x̂j + s, σk − τ)

Qj(0)−Qj(s)
, (30)

whereQj(0) −Qj(s) 6= 0, is computed. Then the trust region radius is adjusted
according to (see [14])

∆j+1 =











1

4
∆j , if ρ < 1

4

min{2∆j,∆max}, if ρ > 3
4

and‖s‖ = ∆j

∆j , otherwise,

where∆max > 0 is a user-supplied upper bound for the trust region radius. The
next iteratêxj+1 is then chosen aŝxj + s if ρ > 1

10
, which ensures that the next

iterate is accepted only if a sufficient reduction is obtained.
In order to ensure that the distance between the final corrector stepx̂k and the

current main iteratexk is proportional to the predictor step norm∆p, we require
that

‖x̂k − xk‖ < α∆p, (31)

whereα > 1. If
‖∇xh(x̂

j , σk − τ)‖ < ǫc, (32)

whereǫc is a user supplied threshold parameter, and

‖x̂j − xk‖ < α∆p (33)

for some corrector iteration stepj, the iteration is terminated. Otherwise, if the
gradient condition (32) is satisfied but condition (33) is not, the step sizeτ is set
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to a smaller valuẽτ = βτ , whereβ ∈]0, 1[, and the next corrector iteratêxj+1 is
chosen aŝxj. Then the corrector iteration continues by minimizingh(·, σk − τ̃ ).
By the continuity ofh, these additional steps ensure that conditions (31) and (32)
are both satisfied when the corrector iteration terminates.

The steps of the corrector iteration are summarized in Algorithm 3.

Algorithm 3 : Corrector Iteration.
∆0 ← ∆p

for j = 0, 1, . . . do
Obtains by solving problem (29).
if ‖∇h(x̂j, σk − τ)‖ < ǫc then

if ‖x̂j + s− xk‖ ≥ α∆p then
τ ← β1τ
x̂j+1 ← x̂j

Continue to next iteration.
else

Terminate, return̂xj+1.

ρ← h(x̂j , σk − τ)− h(x̂j + s, σk − τ)
Qj(0)−Qj(s)

if ρ < 1
4

then
∆j+1 ← 1

4
∆j

else ifρ > 3
4

and‖s‖ = ∆j then
∆j+1 ← min{2∆j,∆max}

else
∆j+1 ← ∆j

if ρ > 1
10

then
x̂j+1 ← x̂j + s

else
x̂j+1 ← x̂j

5.3 Solving the Trust Region Subproblem

For solving the trust region subproblem (29), we have adapted the truncated con-
jugate gradient method proposed by Steihaug [21]. As the standard conjugate
gradient method applied to this problem, it solves the linear system

∇2
xh(x̂

j, σk − τ)s = −∇xh(x̂
j , σk − τ)

obtained by equating the gradient ofQj to zero. The Steihaug method, however,
handles the boundary constraint and nonpositive eigenvalues of∇2

xh, which may
occur if the predictor step is far from the solution curve.

The computationally most expensive steps of the conjugate gradient method
are the matrix-vector multiplications involving the matrix ∇2

xh defined by equa-
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tion (13). However, these computations reduce to vector operations since

∇2
xh(x, σ)v = 2

n
∑

i=1

C̃σ,i

σ2 + γ2i
wi exp

(

−‖x− pi‖2
σ2 + γ2i

)[

2(x− pi)
Tv

σ2 + γ2i
(x− pi)− v

]

for any vectorv ∈ R
d. This property offers a significant computational advantage,

since the Steihaug method produces the solution of a constrained d × d linear
system in at mostd iterations [14]. Since the complexity of the evaluation of
∇2

xh(x, σ)s andsT∇2
xh(x, σ)s reduces toO(nd), the worst-case complexity of

the matrix inversion is onlyO(nd2). In fact, this is the same as the complexity of
the evaluation of∇2

xh(x, σ). We also note that the Hessian does not need to be
explicitly evaluated or stored during the matrix inversion.

5.4 Obtaining the Tangent Vector

Recalling equation (26), obtaining the predictor estimateinvolves solving the tan-
gent vectorT(xk, σk) from

∇2
xh(xk, σk)T(xk, σk) = −

∂

∂σ
∇xh(xk, σk). (34)

Based on the above arguments, the conjugate gradient methodis a viable choice.
However, differently to the trust region subproblem (29), we do not impose the
boundary constraint, since the step size is controlled by the strategy described
above. Also, the Hessian matrix∇2

xh(xk, σk) is positive definite by assumptions
(9), and thus we can use the standard conjugate gradient method.

6 Numerical Results

In this section, we present preliminary numerical results for our algorithm. The
aim of our numerical experiments was to investigate its reliability. We tested our
algorithm on a large number of Gaussian RBF models with dimensiond = 1 and
with randomly chosen interpolation pointspi. In order to avoid any difficulties
introduced by the nonuniform spacing of the interpolation points, the weighting
coefficientswi were chosen randomly instead of solving them from equation (3).

6.1 Success Probabilities With Random RBF Models

To characterize the success rate, we define the probability of success as

Psucc =
Nsucc

N
,

whereN is the total number of runs andNsucc is the number of successful runs.
In each test, the interpolation pointspi ∈ [a, b], wherea = −10 andb = 10, were
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sampled from a uniform random distribution. For the estimation of the global
minimizer, a grid search withng = 501 evenly spaced points was used. In our
tests, we considered a run successful, if

‖xk − x∗‖ ≤ b− a
2(ng − 1)

,

wherexk is the final iterate for somek andx∗ is an estimate of the global mini-
mizer in the range[−10, 10] obtained by the grid search.1

If not stated otherwise, we used the following parameters inall our tests:

σmin = 10−4

∆p = 0.15
α = 1.5

β = 0.5
ǫc = 10−6

∆max = 106

Tests A: random RBF models, different values of shape parameters.

In the first set of tests, we tested our algorithm on randomly chosen Gaussian
RBF models of the form (4) with different choices of the shapeparametersγi. We
chosen = 50 and a uniform shape parameter, that is,γi = γ for all i = 1, . . . , n.
In effect, theγ-parameter determines the frequency of oscillation of the model
function. Small values ofγ yield a RBF model with sharp spikes, whereas larger
values yield a smoother one. The effect of theγ-parameter on the shape of the
RBF model and its Gaussian transform is illustrated in Figure B.1.

For each run, the weighting coefficientswi were sampled from a uniform ran-
dom distribution such thatwi ∈ [−5, 5] for i = 1, . . . , n. In order to satisfy As-
sumption 4.1, the weighting coefficientswi were sampled with the condition that
∑n

i=1wi < −10. The success probabilitiesPsucc of these tests withN = 10000
are plotted in Figure 5. For failed runs, we also computed theaverage distance to
the estimated global minimizerx∗, and the results are plotted in Figure 6.

Clearly, the reliability of our algorithm depends on the frequency of oscillation
in the Gaussian RBF model. Whenγ is0.25, our algorithm is unable to distinguish
between a large number of narrow local minima, and the success probability drops
but is still as high as50%. On the other hand, ifγ is larger, our algorithm yields a
higher rate of success, since the function has a small numberof wide minima. The
Gaussian transform is more likely to preserve these wide minima than the narrow
ones with smaller values ofγ. With γ = 2.5, a remarkably high90% success
probability can be observed. However, the results in Figure6 show that for failed
runs, the average distance tox∗ is relatively large for all values ofγ and increases
with γ. This indicates that for most failed runs, our algorithm is not even able to
give a good estimate for the global minimizer.

1Runs withxk /∈ [−10, 10] were not considered since the global minimizer was not searched
outside this interval.
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Figure 5: Success probabilityPsucc as a function of shape parameterγ.

Figure 6: Average distance (of failed runs) to the estimatedglobal minimizerx∗

as a function of shape parameterγ.
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We emphasize that the above results reflect the worst-case behaviour of our
algorithm. That is because a RBF model with weighting coefficients and inter-
polation points sampled from a uniform random distributiondoes not have any
underlying structure. This is especially the case with small values ofγ that pro-
duce highly oscillating RBF models. In this case, our algorithm is more likely to
converge to any local minimizer than the global one.

Tests B:Noisy Gaussian RBF models with a dominant convex term.

In practice, many noisy objective functions follow some kind of pattern or
trend. Thus, it is of particular interest to test our algorithm on RBF models possi-
bly interpolating functions of this type. For this reason, it would make sense to test
our algorithm on Gaussian RBF models having a dominant convex term and small
high-frequency noise terms. Under these conditions, the Gaussian transform is
expected to smooth out any small local minima and preserve the underlying con-
vex structure. As a result, our algorithm is expected to skipthese local minima
and converge to the global minimizer with a high probability.

To experimentally verify our hypothesis, we conducted a second set of tests.
For each run, we used a Gaussian RBF model of the form (4) with

p1 = 0, γ1 = 20, w1 = −15,
pi ∈ [−10, 10], γi =

1
ω
, wi ∈ [−λ, λ], i = 2, . . . , n,

whereω > 0, λ > 0 andn = 100. The shape parameterγ1 and the weighting
coefficientw1 of the first term are chosen significantly larger than the remaining
noise terms with indicesi = 2, . . . , n, which determines the shape of the RBF
model. In addition, the negativity ofw1 ensures that the first term is a convex
function on the interval[−10, 10]. Theω-parameter is inversely proportional to
the width of the noise terms and thus it determines the frequency of the noise. The
λ-parameter, which controls the range of the weighting coefficients of the noise
terms, determines the magnitude of the noise. The effect of the noise magnitude
λ on the Gaussian RBF model is illustrated in Figure B.2.

We computed the success probabilitiesPsucc as a function of noise magnitude
λ with different noise frequenciesω. The results of these tests withN = 10000
are plotted in Figure 7. For failed runs, we also computed theaverage distance to
estimated global minimizerx∗. These results are plotted in Figure 8.

It can be seen from Figure 7 that the frequency of the noise hasa major impact
on the success probability. In the case of high-frequency noise, the success proba-
bility drops rapidly as the noise magnitudeλ is increased. Namely, ifω = 10, the
success probability already drops below60% with λ = 0.3. On the other hand,
with ω = 1, the success probability remains over80% even ifλ = 1, which means
a very large noise magnitude. This follows from the propertythat the Gaussian
transform is more likely to preserve global minima resulting from low-frequency
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Figure 7: Success probabilityPsucc as a function of noise magnitudeλ with dif-
ferent values of noise frequencyω.

Figure 8: Average distance (of failed runs) to the estimatedglobal minimizerx∗

as a function of noise magnitudeλ with different values of noise frequencyω.
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noise terms in the RBF model. On the other hand, it tends to smooth out narrow
global minima resulting from high-frequency noise terms.

On the other hand, the results in Figure 8 indicate that for failed runs, our
algorithm is still able to give good estimates of the global minimizer. This is es-
pecially the case with high-frequency noise. Withω = 10, the average distance
to the estimated global minimizerx∗ remains below3, which is relatively small
compared to the overall length of the interval[−10, 10] under consideration. This
compensates the low success probabilities of accurately locating the global mini-
mizer. Even for smaller values ofω, the average distances remain below7, which
is much better than those observed in Tests A. The increase inthe average dis-
tance asω is decreased is mostly explained by the fact that the minimizers of the
Gaussian RBF model are usually further apart if the noise frequencyω is smaller,
and thus, the shape parametersγi are larger. These observations clearly indicate
that the Gaussian transform effectively preserves the underlying convex structure
of the original RBF model. As a result, the minimizer obtained via our algorithm
is in most cases the global one or close to it.

7 Conclusions and Future Research

In this paper, a new method for global minimization of the Gaussian RBF model
was proposed. The method is a truly global optimization method in the sense that
it is independent of the starting point. Our method uses the Gaussian transform to
smooth the RBF model and remove undesired local minima. The transformation
has an analytic expression, which eliminates the need for numerical integration.
The transformation between the minimizers of the smoothed RBF model and the
original one is characterized by a differential equation. Since the smoothed RBF
model was shown to be strictly convex under mild conditions,it has a unique
minimizer that can be easily identified. Consequently, the solution curve of this
differential equation is uniquely determined. Finally, a robust trust region-based
predictor-corrector method for tracing the solution curveof this differential equa-
tion was developed.

In our preliminary numerical results, our algorithm showedhigh success rates
at identifying global minima of Gaussian RBF models. The primary factors con-
tributing to the reliability were identified to be the underlying structure and the
amount of oscillation in the RBF model. In particular, very high success rates
were achieved with RBF models having an underlying convex structure and a rel-
atively small amount of noise. What makes our algorithm particularly useful, is
the fact that many objective functions appearing in practical applications, and thus
their corresponding RBF interpolation models, belong to this category. Also, sur-
prisingly high success rates were achieved with highly oscillating RBF models
not following any particular trend.

Though the computational performance of our algorithm in the large-scale

23



setting was not tested, its high computational complexity is an issue that needs to
be addressed. In particular, the inherent complexity of theGaussian RBF model
limits the performance of our present implementation. The Newton-type steps
requiring the exact Hessian of the homotopy mapping in the predictor-corrector
method are also main sources of computational cost. Therefore, a potential topic
of future research is replacing the exact Hessian matrix with a BFGS or SR1
approximation or their limited memory versions (see e.g. [14]). We note that the
Broyden update formula, which is closely related to the BFGSand SR1 formulas,
has been successfully used by Allgower and Georg [2] in homotopy methods for
solving nonlinear equations.

In this paper, we restricted our analysis to unconstrained problems. A con-
strained version of our method would definitely bring it closer to practical appli-
cations. That would require a reformulation of the initial value problem (10) by
including constraints. One possible approach could be to formulate it by using the
Lagrangian function of the constrained problem.

The fact that the Gaussian transform of the Gaussian RBF model has an ana-
lytic expression has important consequences. By virtue of this result, it is possible
to indirectly apply the Gaussian transform to the original,possibly noisy, objective
function via the interpolating Gaussian RBF model. This approach offers a viable
alternative to direct evaluation of the Gaussian transform, which is not compu-
tationally tractable for high-dimensional objective functions with no exploitable
structure. Thus, we aim to pursue this approach in our futureresearch.

The potential of our method has not yet fully realized, sincewe have not spec-
ified a way of constructing the Gaussian RBF model interpolating the original
objective function. In order to develop a complete global optimization method
using a RBF interpolation model, this issue needs to be addressed. The choice of
the interpolation pointspi and the shape parametersγi is a complicated issue that
deserves a study of its own. Therefore, we plan to address this issue in our future
research.
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A Proofs of Lemmata 2.2, 4.1, 4.2 and Theorem 4.5

Lemma 2.2 Let

ψ(y) = exp

(

−(y − z)
2

γ2
− (y − x)2

σ2

)

,

wherex, y, z, γ, σ ∈ R. Then
∞
∫

−∞

ψ(y)dy =
γ
√
πσ

√

σ2 + γ2
exp

(

−(x− z)
2

σ2 + γ2

)

.

Proof. By performing the variable substitutionu(y) = y−z

γ
, we have

∞
∫

−∞

ψ(y)dy = γ

∞
∫

−∞

exp

(

−u2 − (x− z − γu)2
σ2

)

du

= γ

∞
∫

−∞

exp

(

−σ
2u2 + (x− z − γu)2

σ2

)

du. (35)

Some algebraic manipulation of the exponent numerator in equation (35) yields

σ2u2 + (x− z − γu)2
= σ2u2 + (x− z)2 − 2(x− z)γu+ γ2u2

= (σ2 + γ2)u2 + (x− z)2 − 2(x− z)γu+ γ2

σ2 + γ2
(x− z)2 − γ2

σ2 + γ2
(x− z)2

=

[

√

σ2 + γ2u−
√

γ2

σ2 + γ2
(x− z)

]2

+ (x− z)2 − γ2

σ2 + γ2
(x− z)2

= (σ2 + γ2)

[

u−
√

γ2

(σ2 + γ2)2
(x− z)

]2

+
σ2

σ2 + γ2
(x− z)2.

Then, by substituting the above expression into equation (35) and by applying
Lemma 2.1, we obtain
∞
∫

−∞

ψ(y)dy = γ





∞
∫

−∞

exp



−σ
2 + γ2

σ2

(

u−
√

γ2

(σ2 + γ2)2
(x− z)

)2

− (x− z)2
σ2 + γ2



 du





= γ





∞
∫

−∞

exp



−σ
2 + γ2

σ2

(

u−
√

γ2

(σ2 + γ2)2
(x− z)

)2


 du



 exp

(

−(x− z)2
σ2 + γ2

)

=
γ
√
πσ

√

σ2 + γ2
exp

(

−(x− z)2
σ2 + γ2

)

.
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Lemma 4.1 Assume 4.2 and defineH1 : R
d × R→ R

d×d,

H1(x, σ) = −
n
∑

i=1

κi(σ) exp

(

−‖x− pi‖2
σ2 + γ2i

)

I, (36)

whereκi : [0,∞[→ R, i = 1, . . . , n, andI is thed× d identity matrix. Then

λmin
x∈B(z;r)

(H1(x, σ)) ≥ −
∑

κi(σ)>0

κi(σ)−
∑

κi(σ)<0

κi(σ) exp

(

−(‖z− pi‖+ r)2

σ2 + γ2i

)

.

Proof. The assumption thatpi ∈ B(z; r) for all i = 1, . . . , n implies that the
exponential functions in equation (36) are bounded inB(z; r) by

Ui(σ) = max
x∈B(z;r)

exp

(

−‖x− pi‖2
σ2 + γ2i

)

= exp

(

− min
x∈B(z;r)

‖x− pi‖2
σ2 + γ2i

)

= 1

and

Li(σ) = min
x∈B(z;r)

exp

(

−‖x− pi‖2
σ2 + γ2i

)

= exp

(

− max
x∈B(z;r)

‖x− pi‖2
σ2 + γ2i

)

= exp

(

−(‖z− pi‖+ r)2

σ2 + γ2i

)

.

By noting thatH1(x, σ) is a multiple of the identity matrix, we obtain

λmin
x∈B(z;r)

(H1(x, σ)) = λmin
x∈B(z;r)

(

−
n
∑

i=1

κi(σ) exp

(

−‖x− pi‖2
σ2 + γ2i

)

I

)

= min
x∈B(z;r)



−
∑

κi(σ)>0

κi(σ) exp

(

−‖x− pi‖2
σ2 + γ2i

)

−
∑

κi(σ)<0

κi(σ) exp

(

−‖x− pi‖2
σ2 + γ2i

)





≥−
∑

κi(σ)>0

κi(σ) max
x∈B(z;r)

[

exp

(

−‖x− pi‖2
σ2 + γ2i

)]

−
∑

κi(σ)<0

κi(σ) min
x∈B(z;r)

[

exp

(

−‖x− pi‖2
σ2 + γ2i

)]

=−
∑

κi(σ)>0

κi(σ)Ui(σ)−
∑

κi(σ)<0

κi(σ)Li(σ),

which concludes the proof.

For proving Lemma 4.2, we need the following result.

Lemma A.1. Assume 4.2. Letσ ≥ 0, γ > 0, p ∈ B(z; r) and defineĤ :
R

d × R→ R
d×d such that

Ĥ(x, σ) = (x− p)(x− p)T exp

(

−‖x− p‖2
σ2 + γ2

)

.
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Then

λmax
x∈B(z;r)

(Ĥ(x, σ)) = r̂(σ)2 exp

(

− r̂(σ)2

σ2 + γ2

)

,

where

r̂(σ) = min{‖z− p‖+ r,
√

σ2 + γ2}

andλmax(·) denotes the largest eigenvalue.

Proof. The only nonzero eigenvalue of the matrix(x− p)(x− p)T is ‖x− p‖2.
Thus,

λmax
x∈B(z;r)

(Ĥ(x, σ)) = λmax
x∈B(z;r)

(

(x− p)(x− p)T exp

(

−‖x− p‖2
σ2 + γ2

))

= max
x∈B(z;r)

‖x− p‖2 exp
(

−‖x− p‖2
σ2 + γ2

)

Due to the radial symmetry, we consider maximization of the univariate function

ϕ(s) = s2 exp

(

− s2

σ2 + γ2

)

.

Now, ϕ′(s) has a unique root ats∗ =
√

σ2 + γ2 that gives the maximum value
of ϕ. Also,ϕ(s) is monotoneously increasing in the interval[0, s∗]. On the other
hand, we have

max
x∈B(z;r)

‖x− p‖ = ‖z− p‖+ r.

If we denote the above expression byr̃, we obtain

max
x∈B(z;r)

ϕ(‖x− p‖) = max
0<s≤r̃

ϕ(s) = ϕ(min{r̃, s∗})

= min{r̃, s∗}2 exp
(

−min{r̃, s∗}2
σ2 + γ2

)

.

Thus, we have

λmax
x∈B(z;r)

(Ĥ(x, σ)) = max
x∈B(z;r)

ϕ(‖x− p‖)

= min{r̃, s∗}2 exp
(

−min{r̃, s∗}2
σ2 + γ2

)

= r̂(σ)2 exp

(

− r̂(σ)2

σ2 + γ2

)

.
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Lemma 4.2 Assume 4.2 and defineH2 : R
d × R→ R

d×d,

H2(x, σ) =
n
∑

i=1

θi(σ)(x− pi)(x− pi)
T exp

(

−‖x− pi‖2
σ2 + γ2i

)

,

whereθi : [0,∞[→ R, i = 1, . . . , n. Then

λmin
x∈B(z;r)

(H2(x, σ)) ≥
∑

θi(σ)<0

θi(σ)r̂i(σ)
2 exp

(

− r̂i(σ)
2

σ2 + γ2i

)

,

where
r̂i(σ) = min{‖z− pi‖+ r,

√

σ2 + γ2i }.

Proof. Define

Ĥi(x, σ) = (x− pi)(x− pi)
T exp

(

−‖x− pi‖2
σ2 + γ2i

)

, i = 1, . . . , n.

By considering the positive and negative terms ofH(x, σ) separately and by ap-
plying Theorem 4.2, we obtain

λmin
x∈B(z;r)

(H2(x, σ)) = λmin
x∈B(z;r)





∑

θi(σ)>0

θi(σ)Ĥi(x, σ) +
∑

θi(σ)<0

θi(σ)Ĥi(x, σ)





≥ λmin
x∈B(z;r)





∑

θi(σ)>0

θi(σ)Ĥi(x, σ)



 + λmin
x∈B(z;r)





∑

θi(σ)<0

θi(σ)Ĥi(x, σ)





≥
∑

θi(σ)>0

θi(σ) λmin
x∈B(z;r)

(Ĥi(x, σ)) +
∑

θi(σ)<0

λmin
x∈B(z;r)

(θi(σ)Ĥi(x, σ))

By noting that the only nonzero eigenvalue ofĤi(x, σ) is positive, we obtain
∑

θi(σ)>0

θi(σ) λmin
x∈B(z;r)

(Ĥi(x, σ)) +
∑

θi(σ)<0

λmin
x∈B(z;r)

(θi(σ)Ĥi(x, σ))

≥
∑

θi(σ)<0

λmin
x∈B(z;r)

(θi(σ)Ĥi(x, σ)) =
∑

θi(σ)<0

θi(σ) λmax
x∈B(z;r)

(Ĥi(x, σ)).

Consequently, by virtue of Lemma A.1 we have

λmin
x∈B(z;r)

(H2(x, σ)) ≥
∑

θi(σ)<0

θi(σ) λmax
x∈B(z;r)

(Ĥi(x, σ))

=
∑

θi(σ)<0

θi(σ)r̂i(σ)
2 exp

(

− r̂i(σ)
2

σ2 + γ2i

)

,

where

r̂i(σ) = min{‖z− pi‖+ r,
√

σ2 + γ2i }.
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Theorem 4.4 Define

Sσ = {x ∈ R
d | ∇xh(x, σ) = 0}.

Then we havelim
σ→∞

Sσ = {x∗}, where

x∗ =

n
∑

i=1

wiγ
d
i pi

n
∑

i=1

wiγ
d
i

.

Proof. From equation (12), we obtain

x ∈ Sσ ⇔ ∇xh(x, σ) = 0

⇔
n
∑

i=1

C̃σ,i

σ2 + γ2i
wi exp

(

−‖x− pi‖2
σ2 + γ2i

)

(x− pi) = 0

⇔ x =

n
∑

i=1

[

C̃σ,i

σ2 + γ2i
wi exp

(

−‖x− pi‖2
σ2 + γ2i

)

pi

]

n
∑

i=1

C̃σ,i

σ2 + γ2i
wi exp

(

−‖x− pi‖2
σ2 + γ2i

)
.

To denote the right-hand side of the above equation, define

Xj(σ) =

n
∑

i=1

[

C̃σ,i

σ2 + γ2i
wi exp

(

−‖x− pi‖2
σ2 + γ2i

)

pi,j

]

n
∑

i=1

C̃σ,i

σ2 + γ2i
wi exp

(

−‖x− pi‖2
σ2 + γ2i

)

=

n
∑

i=1

[

wiγ
d
i

(σ2 + γ2i )
d
2
+1

exp

(

−‖x− pi‖2
σ2 + γ2i

)

pi,j

]

n
∑

i=1

wiγ
d
i

(σ2 + γ2i )
d
2
+1

exp

(

−‖x− pi‖2
σ2 + γ2i

)
, j = 1, . . . , d.

Define
M(σ) = max

i=1,...,n
(σ2 + γ2i )

d
2
+1.

Since

lim
σ→∞

M(σ)

(σ2 + γ2i )
d
2
+1

= 1
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for all i = 1, . . . , n, multiplying the numerator and denominator ofXj(σ) by
M(σ) and taking the limitσ →∞ yields

lim
σ→∞

M(σ)

M(σ)
Xj(σ) =

lim
σ→∞

n
∑

i=1

[

M(σ)

(σ2 + γ2i )
d
2
+1
wiγ

d
i exp

(

−‖x− pi‖2
σ2 + γ2i

)

pi,j

]

lim
σ→∞

n
∑

i=1

M(σ)

(σ2 + γ2i )
d
2
+1
wiγ

d
i exp

(

−‖x− pi‖2
σ2 + γ2i

)

=

n
∑

i=1

[

wiγ
d
i lim
σ→∞

exp

(

−‖x− pi‖2
σ2 + γ2i

)

pi,j

]

n
∑

i=1

wiγ
d
i lim
σ→∞

exp

(

−‖x− pi‖2
σ2 + γ2i

)

=

n
∑

i=1

wiγ
d
i pi,j

n
∑

i=1

wiγ
d
i

= x∗j

for all j = 1, . . . , d, which concludes the proof.
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B Figures

Figure B.1: Random Gaussian RBF models with different values of shape parameter
γ, whereγi = γ for all i = 1, . . . , n, and their Gaussian transforms withσ = 5.
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Figure B.2: Gaussian RBF models with a dominant convex term and noise with fre-
quencyω = 2 and different magnitudesλ. The corresponding Gaussian transforms
are plotted withσ = 2.5.
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