
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Developing Cloud Software

Algorithms, Applications, and Tools

Edited by

Ivan Porres
Tommi Mikkonen
Adnan Ashraf

TUCS General Publication

No 60, October 2013

ISBN 978-952-12-2952-7

ISSN 1239-1905

3 Prediction-Based Virtual Machine
Provisioning and Admission Control for
Multi-tier Web Applications

Adnan Ashraf, Benjamin Byholm, and Ivan Porres
Department of Information Technologies
Åbo Akademi University, Turku, Finland
Email: {aashraf, bbyholm, iporres}@abo.fi

Abstract–This chapter presents a prediction-based, cost-e�cient Virtual
Machine (VM) provisioning and admission control approach for multi-tier
web applications. The proposed approach provides automatic deployment
and scaling of multiple simultaneous web applications on a given Infra-
structure as a Service (IaaS) cloud in a shared hosting environment. It
monitors and uses resource utilization metrics and does not require a perfor-
mance model of the applications or the infrastructure dynamics. The shared
hosting environment allows us to share VM resources among deployed appli-
cations, reducing the total number of required VMs. The proposed approach
comprises three sub-approaches: a reactive VM provisioning approach called
ARVUE, a hybrid reactive-proactive VM provisioning approach called Cost-
e�cient Resource Allocation for Multiple web applications with Proactive
scaling (CRAMP), and a session-based adaptive admission control approach
called adaptive Admission Control for Virtualized Application Servers (AC-
VAS). Performance under varying load conditions is guaranteed by automatic
adjustment and tuning of the CRAMP and ACVAS parameters. The pro-
posed approach is demonstrated in discrete-event simulations and is evalu-
ated in a series of experiments involving synthetic as well as realistic load
patterns.

Keywords-Cloud computing, virtual machine provisioning, admission con-
trol, web application, cost-e�ciency, performance.

71

72 A. Ashraf, B. Byholm, and I. Porres

3.1 Introduction

The resource needs of web applications vary over time, depending on the
number of concurrent users and the type of work performed. This stands in
contrast to static content, which requires no further processing by the server
than sending predefined data to an output stream. As the demand for an
application grows, so does its demand for resources, until the demand for
a key resource outgrows the supply and the performance of the application
deteriorates. Users of an application starved for resources tend to notice this
as increased latency and lower throughput for requests, or they might receive
no service at all if the problem progresses further.

To handle multiple simultaneous users, web applications are traditionally
deployed in a three-tiered architecture, where a computer cluster of fixed
size represents the application server tier. This cluster provides dedicated
application hosting to a fixed amount of users. There are two problems with
this approach: firstly, if the amount of users grows beyond the predetermined
limit, the application will become starved for resources. Secondly, while the
amount of users is lower than this limit, the unused resources constitute
waste.

A recent study showed that the underutilization of servers in enterprises
is a matter of concern [37]. This ine�ciency is mostly due to application
isolation: a consequence of dedicated hosting. Sharing of resources between
applications leads to higher total resource utilization and thereby to less
waste. Thus, the level of utilization can be improved by implementing what
is known as shared hosting [36]. Shared hosting is already commonly used
by web hosts to serve static content belonging to di↵erent customers from
the same set of servers, as no sessions need to be maintained.

Cloud computing already allows us to alleviate the utilization problem by
dynamically adding or removing available Virtual Machine (VM) instances
at the infrastructure level. However, the problem remains to some extent,
as Infrastructure as a Service (IaaS) providers operate at the level of VMs,
which does not provide high granularity. This can be solved by operating at
the Platform as a Service (PaaS) level instead. However, one problem still
remains: resources cannot be immediately allocated or deallocated. In many
cases, there exists a significant provisioning delay on the order of minutes.

Shared hosting of dynamic content also presents new challenges: capacity
planning is complicated, as di↵erent types of requests might require varying
amounts of a given resource. For example, consider a web shop: adding items
to the shopping basket might require less resources than computing the final
price with taxes and rebates included. During a shopping session, a user
might add several items to their shopping basket, while the final price is only

Multi-tier Web Applications 73

computed at checkout. The session also has to be reliably maintained, so that
the contents of the shopping basket do not suddenly disappear. Otherwise,
the shop might lose customers.

Application-specific knowledge is necessary for a PaaS provider to ef-
ficiently host complex applications with highly varying resource needs.
When hosting third-party dynamic content in a shared environment that
application-specific knowledge might be unavailable. It is also unfeasible for
a PaaS provider to learn enough about all of the applications belonging to
their customers.

Traditional performance models based on queuing theory try to capture
the behavior of purely open or closed systems [25]. However, Rich Internet
Applications (RIAs) have workloads with sessions, exhibiting a partially-open
behavior, which includes components from both the open and the closed
model. Given a better performance model of an application, it might be
possible to plan the necessary capacity, but the problem of obtaining said
model remains.

If the hosted applications are seldom modified it might be feasible to au-
tomatically derive the necessary performance models by benchmarking each
application in isolation [36]. This might apply to hosting first- or second-
party applications. However, when hosting third-party applications under
continuous development, they may well change frequently enough for this to
be unfeasible.

Another problem is determining the amount of VMs to have at a given
moment. As one cannot provision fractions of a VM, the actual capacity
demand will need to be quantized in one way or another. Figure 3.1 shows
a demand and a possible quantization thereof. Overallocation implies an
opportunity cost — underallocation implies lost revenue.

Finally, there is also the issue of admission control. This is the problem
of determining how many users to admit to a server at a given moment in
time, so that said server does not become overloaded. Preventive measures
are a good way of keeping server overload from occurring at all. This is
traditionally achieved by only relying on two possible decisions: rejection or
acceptance.

Once more, the elastic nature of the cloud means that we have more
resources available at our discretion and can scale up to accommodate the
increase in tra�c. However, resource allocation still takes a considerable
amount of time, due to the provisioning delay, and admitting too much tra�c
is an unattractive option, even if new resources will arrive in a while.

This chapter presents a prediction-based, cost-e�cient VM provisioning
and admission control approach for multi-tier web applications. The pro-
posed approach provides automatic deployment and scaling of multiple si-

74 A. Ashraf, B. Byholm, and I. Porres















       









Figure 3.1: The actual capacity demand has to be quantized at a resolution
determined by the capacity of the smallest VM available for provisioning.
Overallocation means an opportunity cost, underallocation means lost rev-
enue.

multaneous third-party web applications on a given IaaS cloud in a shared
hosting environment. It monitors and uses resource utilization metrics and
does not require a performance model of the applications or the infrastructure
dynamics. The research applies to PaaS providers and large Software as a
Service (SaaS) providers with multiple applications. We deal with stateful
RIAs over the Hypertext Transfer Protocol (HTTP).

The proposed approach comprises three sub-approaches. It provides a
reactive VM provisioning approach called ARVUE [9], a hybrid reactive-
proactive VM provisioning approach called Cost-e�cient Resource Alloca-
tion for Multiple web applications with Proactive scaling (CRAMP) [8], and
a session-based adaptive admission control approach called adaptive Admis-
sion Control for Virtualized Application Servers (ACVAS) [7]. Both ARVUE
and CRAMP provide autonomous shared hosting of third-party Java Servlet
applications on an IaaS cloud. However, CRAMP provides better respon-
siveness and results than the purely reactive scaling of ARVUE. We con-
cluded that admission control might be able to reduce the risk of servers
becoming overloaded. Therefore, the proposed approach augments VM pro-
visioning with a session-based adaptive admission control approach called
ACVAS. ACVAS implements per-session admission, which reduces the risk
of over-admission. Furthermore, instead of relying only on rejection of new
sessions, it implements a simple session deferment mechanism that reduces

Multi-tier Web Applications 75

the number of rejected sessions while increasing session throughput. Thus,
the admission controller can decide to admit, defer, or reject an incoming
new session. Performance under varying load conditions is guaranteed by
automatic adjustment and tuning of the CRAMP and ACVAS parameters.
The proposed approach is demonstrated in discrete-event simulations and is
evaluated in a series of experiments involving synthetic as well as realistic
load patterns. Byholm [11] described the prototype implementation of these
concepts.

We proceed as follows. Section 3.2 discusses important related works.
Section 3.3 presents the system architecture. The proposed VM provisioning
and admission control algorithms are described in Section 3.4. In Section 3.5,
we present simulation results before concluding in Section 3.6.

3.2 Related Work

Due to the problems mentioned in Section 3.1, existing works on PaaS solu-
tions tend to use dedicated hosting on a VM-level for RIAs. This gives the
level of isolation needed to reliably host di↵erent applications without them
interfering with each other, as resource management will be handled by the
underlying operating system. However, this comes at the cost of prohibiting
resource sharing among instances. In order to reliably do shared hosting
of third-party applications, there is a need for a way to prevent applications
from interfering with each other, without preventing the sharing of resources.
Google App Engine is di↵erent here in that it instead o↵ers a sandboxed run-
time for the applications to run in [17]. Another way is to use shared hosting
to run multiple applications in the same Java Virtual Machine (JVM) [1].

There are many metrics available for measuring Quality of Service (QoS).
A common metric is Round Trip Time (RTT), which is a measure of the time
required for sending a request and receiving a response. This approach has a
drawback in that di↵erent programs might have various expected processing
times for requests of di↵erent types. This means that application-specific
knowledge is required when using RTT as a QoS metric. This information
might not be easy to obtain if an application is under constant development.
Furthermore, when a server nears saturation, its response time grows expo-
nentially. This makes it di�cult to obtain good measurements in a high-load
situation. For this reason, we use server Central Processing Unit (CPU) load
average and memory utilization as the primary QoS metrics. An overloaded
server will fail to meet RTT requirements.

Reactive scaling works by monitoring user load in the system and re-
acting to observed variations therein by making decisions for allocation or

76 A. Ashraf, B. Byholm, and I. Porres

deallocation. In our previous work [11, 1, 9], we built a prototype of an
autonomous PaaS called ARVUE. It implements reactive scaling. However,
in many cases, the reactive approach su↵ers in practice, due to delays of
several minutes inherent in the provisioning of VMs [31]. This shortcoming
is avoidable with proactive scaling.

Proactive scaling attempts to overcome the limitations of reactive scaling
by forecasting future load trends and acting upon them, instead of directly
acting on observed load. Forecasting usually has the drawback of added un-
certainty, as it introduces errors into the system. The error can be mitigated
by a hybrid approach, where forecast values are supplemented with error
estimates, which a↵ect a blend weight for observed and forecast values. We
have developed a hybrid reactive-proactive VM provisioning algorithm called
CRAMP [8].

Admission control is a strategy for keeping servers from becoming over-
loaded. This is achieved by limiting the amount of tra�c each server receives
by means of an intermediate entity known as an admission controller. The
admission controller may deny entry to fully utilized servers, thereby avoid-
ing server overload. If a server were to become overloaded, all users of that
server, whether existing or arriving, would su↵er from deteriorated perfor-
mance and possible Service-Level Agreement (SLA) violations.

Traditional admission control strategies have mostly been request-based,
where admission control decisions would be made for each individual request.
This approach is not appropriate for stateful web applications from a user
experience point of view. If a request were to be denied in the middle of an
active session, when everything was working well previously, the user would
have a bad experience. Session-Based Admission Control (SBAC) is an al-
ternative strategy, where the admission decision is made once for each new
session and then enforced for all requests inside of a session [26]. This app-
roach is better from the perspective of the user, as it should not lead to ser-
vice being denied in the middle of a session. This approach has usually been
implemented using interval-based on-o↵ control, where the admission con-
troller either admits or rejects all sessions arriving within a predefined time
interval. This approach has a flaw in that servers may become overloaded
if they accept too many requests in an admission interval, as the decisions
are made only at interval boundaries. Per-session admission control avoids
this problem by making a decision for each new session, regardless of when
it arrives. We have developed ACVAS [7], a session-based admission con-
trol approach with per-session admission control. ACVAS uses SBAC with
a novel deferment mechanism for sessions, which would have been rejected
with the traditional binary choice of acceptance or rejection.

Multi-tier Web Applications 77

3.2.1 VM Provisioning Approaches

Most of the existing works on VM provisioning for web-based systems can
be classified into two main categories: plan-based approaches and control
theoretic approaches [15, 29, 30]. Plan-based approaches can be further clas-
sified into workload prediction approaches [31, 6] and performance dynamics
model approaches [39, 21, 14, 23, 19]. One common di↵erence between all
existing works discussed here and the proposed approach is that the proposed
approach uses shared hosting. Another distinguishing characteristic of the
proposed approach is that in addition to VM provisioning for the application
server tier, it also provides dynamic scaling of multiple web applications. In
ARVUE [9], we used shared hosting with reactive resource allocation. In
contrast, our proactive VM provisioning approach CRAMP [8] provides im-
proved QoS with prediction-based VM provisioning.

Ardagna et al. [6] proposed a distributed algorithm for managing SaaS
cloud systems that addresses capacity allocation for multiple heterogeneous
applications. Raivio et al. [31] used proactive resource allocation for short
message services in hybrid clouds. The main drawback of their approach
is that it assumes server processing capacity in terms of messages per sec-
ond, which is not a realistic assumption for HTTP tra�c where di↵erent
types of requests may require di↵erent amounts of processing time. Never-
theless, the main challenge in the prediction-based approaches is in making
good prediction models that could ensure high prediction accuracy with low
computational cost. In our proposed approach, CRAMP is a hybrid reactive-
proactive approach. It uses a two-step prediction method with Exponential
Moving Average (EMA), which provides high prediction accuracy under real-
time constraints. Moreover, it gives more or less weight to the predicted
utilizations based on the Normalized Root Mean Square Error (NRMSE).

TwoSpot [39] supports hosting of multiple web applications, which are
automatically scaled up and down in a dedicated hosting environment. The
scaling down is decentralized, which may lead to severe random drops in
performance. Hu et al. [21] presented an algorithm for determining the min-
imum number of required servers, based on the expected arrival rate, service
rate, and SLA. In contrast, the proposed approach does not require knowl-
edge about the infrastructure or performance dynamics. Chieu et al. [14]
presented an approach that scales servers for a particular web application
based on the number of active user sessions. However, the main challenge
is in determining suitable threshold values on the number of user sessions.
Iqbal et al. [23] proposed an approach for multi-tier web applications, which
uses response time and CPU utilization metrics to determine the bottleneck
tier and then scales it by provisioning a new VM. Han et al. [19] proposed

78 A. Ashraf, B. Byholm, and I. Porres

a reactive resource allocation approach to integrate VM-level scaling with a
more fine-grained resource-level scaling. In contrast, CRAMP supports hy-
brid reactive-proactive resource allocation with proportional and derivative
factors to determine the number of VMs to provision.

Dutreilh et al. [15] and Pan et al. [29] used control theoretic models to
design resource allocation solutions for cloud computing. Dutreilh et al.
presented a comparison of static threshold-based and reinforcement learning
techniques. Pan et al. used Proportional-Integral (PI)-controllers to provide
QoS guarantees. Patikirikorala et al. [30] proposed a multi-model frame-
work for implementing self-managing control systems for QoS management.
The work is based on a control theoretic approach called the Multi-Model
Switching and Tuning (MMST) adaptive control. In comparison to the con-
trol theoretic approaches, our proposed approach also uses proportional and
derivative factors, but it does not require knowledge about the performance
models or infrastructure dynamics.

3.2.2 Admission Control Approaches

The existing works on admission control for web-based systems can be clas-
sified according to the scheme presented in Almeida et al. [3]. For instance,
Robertsson et al. [32] and Voigt and Gunningberg [38] are control theoretic
approaches, while Huang et al. [22] and Muppala and Zhou [26] use machine
learning techniques. Similarly, Cherkasova and Phaal [13], Almeida et al. [3],
Chen et al. [12], and Shaaban and Hillston [33] are utility-based approaches.

Almeida et al. [3] proposed a joint resource allocation and admission
control approach for a virtualized platform hosting a number of web ap-
plications, where each VM runs a dedicated web service application. The
admission control mechanism uses request-based admission control. The op-
timization objective is to maximize the provider’s revenue, while satisfying
the customers’ QoS requirements and minimizing the cost of resource uti-
lization. The approach dynamically adjusts the fraction of capacity assigned
to each VM and limits the incoming workload by serving only the subset of
requests that maximize profits. It combines a performance model and an op-
timization model. The performance model determines future SLA violations
for each web service class based on a prediction of future workloads. The
optimization model uses these estimates to make the resource allocation and
admission control decisions.

Cherkasova and Phaal [13] proposed an SBAC approach that uses the
traditional on-o↵ control. It supports four admission control strategies: re-
sponsive, stable, hybrid, and predictive. The hybrid strategy tunes itself to
be more stable or more responsive based on the observed QoS. The proposed

Multi-tier Web Applications 79

approach measures server utilizations during predefined time intervals. Us-
ing these measured utilizations, it computes predicted utilizations for the
next interval. If the predicted utilizations exceed specified thresholds, the
admission controller rejects all new sessions in the next time interval and
only serves the requests from already admitted sessions. Once the predicted
utilizations drop below the given thresholds, the server changes its policy for
the next time interval and begins to admit new sessions again.

Chen et al. [12] proposed Admission Control based on Estimation of Ser-
vice times (ACES). That is, to di↵erentiate and admit requests based on the
amount of processing time required by a request. In ACES, admission of a re-
quest is decided by comparing the available computation capacity to the pre-
determined delay bound of the request. The service time estimation is based
on an empirical expression, which is derived from an experimental study on a
real web server. Shaaban and Hillston [33] proposed Cost-Based Admission
Control (CBAC), which uses a congestion control technique. Rather than
rejecting user requests at high load, CBAC uses a discount-charge model to
encourage users to postpone their requests to less loaded time periods. How-
ever, if a user chooses to go ahead with the request in a high load period,
then an extra charge is imposed on the user request. The model is e↵ective
for e-commerce web sites when more users place orders that involve monetary
transactions. A disadvantage of CBAC is that it requires CBAC-specific web
pages to be included in the web application.

Muppala and Zhou [26] proposed the Coordinated Session-based Admis-
sion Control (CoSAC) approach, which provides SBAC for multi-tier web
applications with per-session admission control. CoSAC also provides coor-
dination among the states of tiers with a machine learning technique using
a Bayesian network. The admission control mechanism di↵erentiates and
admits user sessions based on their type. For example, browsing mix ses-
sion, ordering mix session, and shopping mix session. However, it remains
unclear how it determines the type of a particular session in the first place.
Huang et al. [22] proposed admission control schemes for proportional di↵er-
entiated services. It applies to services with di↵erent priority classes. The
paper proposes two admission control schemes to enable Proportional De-
lay Di↵erentiated Service (PDDS) at the application level. Each scheme is
augmented with a prediction mechanism, which predicts the total maximum
arrival rate and the maximum waiting time for each priority class based on
the arrival rate in the current and last three measurement intervals. When a
user request belonging to a specific priority class arrives, the admission con-
trol algorithm uses the time series predictor to forecast the average arrival
rate of the class for the next interval, computes the average waiting time for
the class for the next interval, and determines if the incoming user request

80 A. Ashraf, B. Byholm, and I. Porres

is admitted to the server. If admitted, the client is placed at the end of the
class queue.

Voigt and Gunningberg [38] proposed admission control based on the
expected resource consumption of the requests, including a mechanism for
service di↵erentiation that guarantees low response time and high throughput
for premium clients. The approach avoids overutilization of individual server
resources, which are protected by dynamically setting the acceptance rate of
resource-intensive requests. The adaptation of the acceptance rates (aver-
age number of requests per second) is done by using Proportional-Derivative
(PD) feedback control loops. Robertsson et al. [32] proposed an admission
control mechanism for a web server system with control theoretic methods. It
uses a control theoretic model of a G/G/1 system with an admission control
mechanism for nonlinear analysis and design of controller parameters for a
discrete-time PI-controller. The controller calculates the desired admittance
rate based on the reference value of average server utilization and the esti-
mated or measured load situation (in terms of average server utilization). It
then rejects those requests that could not be admitted.

3.3 Architecture

The system architecture of the proposed VM provisioning and admission
control approach is depicted in Figure 3.2. It consists of the following com-
ponents: a load balancer with an accompanying configuration file, the global
controller, the admission controller, the cloud provisioner, the application
servers containing local controllers, the load predictors, an entertainment
server, and an application repository.

The purpose of the load balancer is to distribute the workload evenly
throughout the system, while the admission controller is responsible for ad-
mitting users, when deemed possible. The cloud provisioner is an exter-
nal component, which represents the control service of the underlying IaaS
provider. Application servers are dynamically provisioned VMs belonging to
the underlying IaaS cloud, capable of running multiple concurrent applica-
tions contained in an application repository.

3.3.1 Load Balancer

The purpose of the load balancer is to distribute the workload among the
available application servers. The prototype implementations of ARVUE [1,
9, 11] and CRAMP [8] use the free, lightweight load balancer HAProxy [34],
which can act as a reverse proxy in either of two modes: Transmission Control

Multi-tier Web Applications 81

Global Controller

Config

Entertainment Server

Admission Controller

Cloud Provisioner

Application Server 1

Application 1

.

.

.

Application m1

Predictor

Local Controller

Application Server n

Application 1

.

.

.

Application mn

Predictor

Local Controller

Load Balancer Repository

HTTP

HTTP

HTTP

HTTP

CRAMP

ACVAS External

Figure 3.2: System architecture of the proposed VM provisioning and admis-
sion control approach.

Protocol (TCP) or HTTP, which correspond to layers 4 and 7 in the Open
Systems Interconnection (OSI) model. We use the HTTP mode, as ARVUE
and CRAMP are designed for stateful web applications over HTTP.

HAProxy includes powerful logging capabilities using the Syslog standard.
It also supports session a�nity, the ability to direct requests belonging to a
single session to the same server, and Access Control Lists (ACLs), even in
combination with Secure Socket Layer (SSL) since version 1.5.

Session a�nity is supported by cookie rewriting or insertion. As the
prototype implementations of ARVUE and CRAMP are designed for Vaadin
applications [18], which use the Java Servlet technology, applications already
use the JSESSIONID cookie, which uniquely identifies the session the request
belongs to. Thus, HAProxy only has to intercept the JSESSIONID cookie
sent from the application to the client and prefix it with the identifier of the
backend in question. Incoming JSESSIONID cookies are similarly intercepted
and the inserted prefix is removed before they are sent to the applications.

HAProxy also comes with a built-in server health monitoring system,
based on making requests to servers and measuring their response times.
However, this system is currently not in use, as the proposed approach does
its own health monitoring by observing di↵erent metrics.

82 A. Ashraf, B. Byholm, and I. Porres

When an application request arrives at the load balancer, it gets redi-
rected to a suitable server according to the current configuration. A request
for an application not deployed at the moment is briefly sent to a server
tasked with entertaining the user and showing that the request is being pro-
cessed until the application has been successfully deployed, after which it is
delivered to the correct server. This initial deployment of an application will
take a much longer time than subsequent requests, currently on the order of
several seconds.

The load balancer is dynamically reconfigured by the global controller as
the properties of the cluster change. When an application is deployed, the
load balancer is reconfigured with a mapping between a Uniform Resource
Identifier (URI) that uniquely identifies the application and a set of applica-
tion servers hosting the application, by means of an ACL, a usage declaration
and a backend list. Weights for servers are periodically recomputed accord-
ing to the health of each server, with higher weights assigned to less loaded
servers.

The weights are integers in the range [0,WMAX], where higher values mean
higher priority. In the case of HAProxy, WMAX = 255. The value 0 is special
in that it e↵ectively prevents the server from receiving any new requests. This
is explained by the weighting algorithm in Algorithm 3.1, which distributes
the load among the servers so that each server receives a number of requests
proportional to its weight divided by the sum of all the weights. This is
a simple mapping of the current load to the weight interval. Here, S(k) is
the set of servers at discrete time k, C

w

(s, k) is the weighted load average
of server s at time k, C(s, k) is the measured load average of server s at
time k, and similarly Ĉ(s, k) is the predicted load average of server s at time
k. w

c

2 [0, 1] is the weighting coe�cient for CPU load average, C
U

S

is the
server load average upper threshold, and W (s, k) is the weight of server s at
time k for load balancing. Thus, the algorithm obtains C(s, k) and Ĉ(s, k)
of each server s 2 S(k) and uses them along with w

c

to compute C
w

(s, k) of
each server (line 1). Afterwards, it uses C

w

(s, k) to compute W (s, k) of each
server s (lines 2–10). The notation used in the algorithm is also defined in
Table 3.1 in Section 3.4.

3.3.2 Global Controller

The global controller is responsible for managing the cluster by monitoring its
constituents and reacting to changes in the observed parameters, as reported
by the local controllers. It can be viewed as a control loop that implements
the VM provisioning algorithms described in Section 3.4. Inter-VM commu-
nication is performed using Java Remote Method Invocation (RMI), which

Multi-tier Web Applications 83

Algorithm 3.1. Weighting algorithm

1: 8s 2 S(k)|C
w

(s, k) := w

c

· C(s, k) + (1� w

c

) · Ĉ(s, k)
2: for s 2 S(k) do
3: if C

w

(s, k) � C

U

S

then

4: W (s, k) := 0
5: else if C

w

(s, k) > 0 then

6: W (s, k) :=
l
WMAX � C

w

(s,k)
C

U

S

·WMAX

m

7: else

8: W (s, k) := WMAX

9: end if

10: end for

is a practical implementation of the Proxy pattern, performing distributed
object communication: the object-oriented equivalent of Remote Procedure
Call (RPC).

An alternative to RMI could be the Remote Open Services Gateway initia-
tive (OSGi) specification [28], implemented in both Apache CXF and Eclipse
ECF. This was not attempted, as it would have taken more time to imple-
ment. However, this approach might be easier to maintain. It would also be
possible to use a Representational State Transfer (REST) interface through
HTTP, which could make it easier to interface with the inner workings of
the platform.

3.3.3 Admission Controller

The admission controller is responsible for admitting users to application
servers. It supplements the load balancer in ensuring that the servers do
not become overloaded by deciding whether to admit, defer, or reject traf-
fic. It makes admission control decisions per session, not per request. This
allows for a smoother user experience in a stateful environment, as a user of
an application would not enjoy suddenly having requests to the application
denied, when everything was working fine a moment ago. The admission
controller implements per-session admission control. Unlike the traditional
on-o↵ approach, which makes admission control decisions on an interval ba-
sis, the per-session admission approach is not as vulnerable to sudden tra�c
fluctuations. The on-o↵ approach can lead to servers becoming overloaded if
they are set to admit tra�c and a sudden tra�c spike occurs [7]. The admis-
sion control decisions are based on prediction of future load trends combined
with server health monitoring, as explained in Section 3.4.4.

84 A. Ashraf, B. Byholm, and I. Porres

3.3.4 Cloud Provisioner

The cloud provisioner is an external component, which represents the control
service of the underlying IaaS provider. The global controller communicates
with the cloud provisioner through its custom Application Programming In-
terface (API) in order to realize the decisions on how to manage the server
tier. Proper application of the façade pattern decouples the proposed app-
roach from the underlying IaaS provider. The prototypes [1, 9, 8, 11] cur-
rently support Amazon Elastic Compute Cloud (EC2) in homogeneous con-
figurations. For now, we only provision m1.small instances, as our workloads
are quite small, but the instance type can be changed easily. Provisioning
VMs of di↵erent capacity could eventually lead to better granularity and
lower operating costs. Support for more providers and heterogeneous config-
urations is planned for the future.

3.3.5 Entertainment Server

The entertainment server acts as a default service, which is used whenever a
requested service is unavailable. It amounts to a polling session, notifying the
user when the requested service is available and showing a waiting message
or other distraction until then. Using server push technology or websockets,
the entertainment server could be moved to the client instead.

3.3.6 Application Server

The application servers are dynamically provisioned VMs belonging to the
underlying IaaS cloud, capable of concurrently running multiple applica-
tions inside an OSGi environment [27]. The prototype implementations of
ARVUE [1, 9, 11] and CRAMP [8] use Apache Felix, which is a free implemen-
tation of the OSGi R4 Service Platform and other related technologies [35].

The OSGi specifications were originally intended for embedded devices,
but have since outgrown their original purpose. They provide a dynamic
component model, addressing a major shortcoming of Java. Figure 3.3 illus-
trates the OSGi architecture.

Each application server has a local controller, responsible for monitoring
the state of said server. Metrics such as CPU load and memory usage of both
the VM and of the individual deployed applications are collected and fed to
the global controller for further processing. The global controller delegates
application-tier tasks such as deployment and undeployment of bundles to the
local controllers, which are responsible for notifying the OSGi environment
of any actions to take.

Multi-tier Web Applications 85

Applications / Bundles

Services

Service Registry

Life Cycle

Modules

S
ec

u
ri
ty

Java Virtual Machine

Operating System

Hardware

Figure 3.3: The OSGi platform.

The predictor from CRAMP [8] is also connected to each application
server, making predictions based on the values obtained through the two-step
prediction process. The prototype implementation computes an error esti-
mate based on the NRMSE of predictions in the past window and uses that
as a weighting parameter when determining how to blend the predicted and
observed utilization of the monitored resources, as explained in Section 3.4.1.

3.3.7 Application Repository

Application bundles are contained in an application repository. When an
application is deployed to a server, the server fetches the bundle from the
repository. This implies that the repository is shared among application
servers. A newly provisioned application server is assigned an application
repository by the global controller. The applications are self-contained OSGi
bundles, which allows for dynamic loading and unloading of bundles at the
discretion of the local controller. The service-oriented nature of the OSGi
platform suits this approach well.

A bundle is a collection of Java classes and resources together with a

86 A. Ashraf, B. Byholm, and I. Porres

Listing 3.1: Example manifest file with OSGi headers.
Bundle�Name : He l lo World
Bundle�SymbolicName : org . arvue . h e l l owor ld
Bundle�Desc r ip t i on : A He l lo World bundle
Bundle�Mani festVers ion : 2
Bundle�Vers ion : 1 . 0 . 0
Bundle�Act ivator : org . arvue . h e l l owor ld . Act ivator
Export�Package : org . arvue . h e l l owor ld ; v e r s i on=” 1 . 0 . 0 ”
Import�Package : org . o s g i . framework ; v e r s i on=” 1 . 3 . 0 ”

manifest file MANIFEST.MF augmented with OSGi headers. Listing 3.1 shows
an example manifest file complete with headers.

3.4 Algorithms

The VM provisioning algorithms used by the global controller constitute a
hybrid reactive-proactive PD-controller [8]. They implement proportional
scaling augmented with derivative control in order to react to changes in
the health of the system [9]. The server tier can be scaled independently of
the application tier in a shared hosting environment. The VM provisioning
algorithms are supplemented by a set of allocation policies. The prototype
currently supports the following policies: lowest memory utilization, lowest
CPU load, least concurrent sessions, and newest server first. In addition to
this, we have also developed an admission control algorithm [7]. A summary
of the concepts and notations used to describe the VM provisioning algo-
rithms is available in Table 3.1. The additional concepts and notations for
the admission control algorithm are provided in Table 3.2.

The input variables are average CPU load and memory usage. Average
CPU load is the average Unix-like system load, which is based on the queue
length of runnable processes, divided by the number of CPU cores present.

The VM provisioning algorithms have been designed to prevent oscilla-
tions in the size of the application server pool. There are several motivating
factors behind this choice. Firstly, provisioning VMs takes substantial time.
Combined with frequent scaling operations, this may lead to bad perfor-
mance [39]. Secondly, usage based billing requires the time to be quantized
at some resolution. For example, Amazon EC2 bases billing on full used
hours. Therefore, it might not make sense to terminate a VM until it is close
to a full billing hour, as it is impossible to pay for less than an entire hour.
Thus, no scaling actions are taken until previous operations have been com-
pleted. This is why an underutilized server is terminated only after being
consistently underutilized for at least UC

T

consecutive iterations.

Multi-tier Web Applications 87

Table 3.1: Summary of VM provisioning concepts and their notation

A(k) set of web applications at time k

A

i

(k) set of inactive applications at time k

A

li

(k) set of long-term inactive applications at time k

A

over

(k) set of overloaded applications at time k

S(k) set of servers at time k

S

lu

(k) set of long-term underutilized servers at time k

S

n

(k) set of new servers at time k

S

over

(k) set of overloaded servers at time k

S¬over

(k) set of non-overloaded servers at time k

S

t

(k) set of servers selected for termination at time k

S

u

(k) set of underutilized servers at time k

C(a, k) measured CPU utilization of application a at time k

C(s, k) measured load average of server s at time k

Ĉ(s, k) predicted load average of server s at time k

C

w

(s, k) weighted load average of server s at time k

dep apps(s, k) applications deployed on server s at time k

inactive c(a) inactivity count of application a

M(a, k) measured memory utilization of application a at time k

M(s, k) measured memory utilization of server s at time k

M̂(s, k) predicted memory utilization of server s at time k

M

w

(s, k) weighted memory utilization of server s at time k

under u c(s) underutilization count of server s
W (s, k) weight of server s at time k for load balancing
A

A

aggressiveness factor for additional capacity
A

P

aggressiveness factor for VM provisioning
A

T

aggressiveness factor for VM termination
P

P

(k) proportional factor for VM provisioning
D

P

(k) derivative factor for VM provisioning
P

T

(k) proportional factor for VM termination
D

T

(k) derivative factor for VM termination
w

c

weighting coe�cient for CPU load average
w

m

weighting coe�cient for memory usage
w

p

weighting coe�cient for VM provisioning
w

t

weighting coe�cient for VM termination
C

L

A

application CPU utilization lower threshold
C

L

S

server load average lower threshold
C

U

A

application CPU utilization upper threshold
C

U

S

server load average upper threshold
IC

T

A

inactivity count threshold for an application
IC

T

S

inactivity count threshold for a server
M

L

A

application memory utilization lower threshold
M

L

S

server memory utilization lower threshold
M

U

A

application memory utilization upper threshold
M

U

S

server memory utilization upper threshold
W

MAX

maximum value of a server weight for load balancing
N

A

(k) number of additional servers at time k

N

B

number of servers to use as base capacity
N

P

(k) number of servers to provision at time k

N

T

(k) number of servers to terminate at time k

88 A. Ashraf, B. Byholm, and I. Porres

Table 3.2: Additional concepts and notation for admission control

se

a

(k) set of aborted sessions at time k

se

d

(k) set of deferred sessions at time k

se

n

(k) set of new session requests at time k

se

r

(k) set of rejected sessions at time k

S

open

(k) set of open application servers at time k

C(ent, k) load average of the entertainment server at time k

M(ent, k) memory utilization of the entertainment server at time k

w weighting coe�cient for admission control

The memory usage metricM(s, k) for a server s at discrete time k is given
in (3.1). It is based on the amount of free memory mem

free

, the size of the
disk cachemem

cache

, the bu↵ersmem
buf

, and the total memory sizemem
total

.
The disk cache mem

cache

is excluded from the amount of used memory, as
the underlying operating system is at liberty to use free memory for such
purposes as it sees fit. It will automatically be reduced as the demand for
memory increases. The goal is to keep M(s, k) below the server memory
utilization upper threshold M

U

S

. Likewise, the memory usage metric for an
application a at discrete time k is defined as M(a, k), which is the amount
of the memory used by the application deployment plus the memory used by
the user sessions divided by the total memory size mem

total

.

M(s, k) =
mem

total

� (mem
free

+mem
buf

+mem
cache

)

mem
total

(3.1)

The proposed approach maintains a fixed minimum number of application
servers, known as the base capacity N

B

. In addition, it also maintains a
dynamically adjusted number of additional application servers N

A

(k), which
is computed as in (3.2), where the aggressiveness factor A

A

2 [0, 1] restricts
the additional capacity to a fraction of the total capacity, S(k) is the set of
servers at time k, and S

over

(k) is the set of overloaded servers at time k. This
extra capacity is needed to account for various delays and errors, such as VM
provisioning time and sampling frequency. For example, A

A

= 0.2 restricts
the maximum number of additional application servers to 20% of the total
|S(k)|.

N
A

(k) =

(d|S(k)| · A
A

e , if |S(k)|� |S
over

(k)| = 0l
|S(k)|

|S(k)|�|S
over

(k)| · AA

m
, otherwise

(3.2)

The number of VMs to provision N
P

(k) is determined by (3.3), where
w

p

2 [0, 1] is a real number called the weighting coe�cient for VM provision-

Multi-tier Web Applications 89

ing. It balances the influence of the proportional factor P
P

(k) relative to the
derivative factor D

P

(k). For example, w
p

= 0.5 would give equal weight to
P
P

(k) and D
P

(k). A suitable value for this coe�cient should be determined
experimentally for a given workload. We have used w

p

= 0.5 in all our exper-
iments so far. The proportional factor P

P

(k) given by (3.4) uses a constant
aggressiveness factor for VM provisioning A

P

2 [0, 1], which determines how
many VMs to provision. The derivative factor D

P

(k) is defined by (3.5). It
observes the change in the total number of overloaded servers between the
previous and the current iteration.

N
P

(k) = dw
p

· P
P

(k) + (1� w
p

) ·D
P

(k)e (3.3)

P
P

(k) = |S
over

(k)| · A
P

(3.4)

D
P

(k) = |S
over

(k)|� |S
over

(k � 1)| (3.5)

The number of servers to terminate N
T

(k) is computed as in (3.6). It
uses a weighting coe�cient for VM termination w

t

2 [0, 1], similar to w
p

in (3.3). The currently required base capacity N
B

and additional capacity
N

A

(k) have to be taken into account. The proportional factor for termi-
nation P

T

(k) is calculated as in (3.7). Here A
T

2 [0, 1], the aggressiveness
factor for VM termination, works like A

P

in (3.4). Finally, the derivative
factor for termination D

T

(k) is given by (3.8), which observes the change in
the number of long-time underutilized servers between the previous and the
current iteration.

N
T

(k) = dw
t

· P
T

(k) + (1� w
t

) ·D
T

(k)e �N
B

�N
A

(k) (3.6)

P
T

(k) = |S
lu

(k)| · A
T

(3.7)

D
T

(k) = |S
lu

(k)|� |S
lu

(k � 1)| (3.8)

3.4.1 Load Prediction

Prediction is performed with a two-step method [4, 5] based on EMA, which
filters the monitored resource trends, producing a smoother curve. EMA is
the weighted mean of the n samples in the past window, where the weights
decrease exponentially. Figure 3.4 illustrates an EMA over a past window of
size n = 20, where less weight is given to old samples when computing the
mean in each measure.

As we use a hybrid reactive-proactive VM provisioning algorithm, there
is a need to blend the measured and predicted values. This is done through
linear interpolation [7] with the weights w

c

and w
m

[8], the former for CPU

90 A. Ashraf, B. Byholm, and I. Porres

















    









Figure 3.4: Example of EMA over a past window of size n = 20, where less
weight is given to old samples when computing the mean in each measure.

load average and the latter for memory usage. In the current implementa-
tion, each of these weights is set to the NRMSE of the predictions so that
lower prediction error will favor predicted values over observed values. The
NRMSE calculation is given by (3.9), where y

i

is the latest measured utiliza-
tion, ŷ

i

is the latest predicted utilization, n is the number of observations,
and max is the maximum value of both measured and observed utilizations
formed over the current interval, whilemin is analogous tomax. More details
of our load prediction approach are provided in [7, 8].

NRMSE =

q
1
n

P
n

i=1(yi � ŷ
i

)2

max�min
(3.9)

3.4.2 The Server Tier

The server tier consists of the application servers, which can be dynamically
added to or removed from the cluster. The VM provisioning algorithm for
the application server tier is presented in Algorithm 3.2. At each sampling
interval k, the global controller retrieves the performance metrics from each
of the local controllers, evaluates them and decides whether or not to take
an action. The set of application servers is partitioned into disjoint subsets
according to the current state of each server. The possible server states are:
overloaded, non-overloaded, underutilized, and long-term underutilized.

Multi-tier Web Applications 91

Algorithm 3.2. Proactive VM provisioning for the application server tier

1: while true do

2: 8s 2 S(k)|C
w

(s, k) := w

c

· C(s, k) + (1� w

c

) · Ĉ(s, k)
3: 8s 2 S(k)|M

w

(s, k) := w

m

·M(s, k) + (1� w

m

) · M̂(s, k)
4: S

over

(k) := {8s 2 S(k)|C
w

(s, k) � C

U

S

} [{8s 2 S(k)|M
w

(s, k) �M

U

S

}
5: A

over

(k) :=
S

s2S
over

(k) d a(s, k)
6: S¬over(k) := S(k) \ S

over

(k)
7: if |S

over

(k)| � 1 ^ |S¬over(k)| � 1 then

8: for a 2 A

over

(k) do
9: deploy application a as per application-to-server allocation policy

10: end for

11: end if

12: if |S
over

(k)| � (|S(k)|�N

A

(k)) ^N

P

(k) � 1 then

13: provision N

P

(k) VMs as a set of new servers S
n

(k)
14: S(k) := S(k) [S

n

(k)
15: Wait until servers S

n

(k) become operational
16: for a 2 A

over

(k) do
17: deploy application a on servers S

n

(k)
18: end for

19: end if

20: S

u

(k) := {8s 2 S(k)|C
w

(s, k)  C

L

S

} \ {8s 2 S(k)|M
w

(s, k) M

L

S

}
21: S

lu

(k) := {8s 2 S

u

(k)|under u c(s) � IC

T

S

}
22: if (|S

lu

(k)|�N

B

�N

A

(k)) � 1 ^N

T

(k) � 1 then

23: sort servers S
lu

(k) with respect to server utilization metrics
24: select N

T

(k) servers from S

lu

(k) as servers selected for termination S

t

(k)
25: migrate all applications and user sessions from servers S

t

(k)
26: S(k) := S(k) \ S

t

(k)
27: terminate VMs for servers S

t

(k)
28: end if

29: end while

The algorithm starts by partitioning the set of application servers into a
set of overloaded servers S

over

(k) and a set of non-overloaded servers S¬over(k)
according to the supplied threshold levels (C

U

S

and M
U

S

) of the observed
input variables: memory utilization and CPU load (lines 2–4). A server
is overloaded if the utilization of any resource exceeds its upper threshold
value. All other servers are considered to be non-overloaded (line 6). The
applications running on overloaded servers are added to a set of overloaded
applications A

over

(k) to be deployed on any available non-overloaded appli-
cation servers as per the allocation policy for applications to servers (line 5).
If the number of overloaded application servers exceeds the threshold level, a
proportional amount of virtualized application servers is provisioned (line 13)

92 A. Ashraf, B. Byholm, and I. Porres

and the overloaded applications are deployed to the new servers as they be-
come available (lines 16–18).

The server tier is scaled down by constructing a set of underutilized
servers S

u

(k) (line 20) and a set of long-term underutilized servers S
lu

(k)
(line 21), where servers are deemed idle if their utilization levels lie below
the given lower thresholds (C

L

S

and M
L

S

). Long-term underutilized servers
are servers that have been consistently underutilized for more than a given
number of iterations IC

T

S

. When the number of long-term underutilized
servers exceeds the base capacity N

B

plus the additional capacity N
A

(k)
(line 22), the remainder are terminated after their active sessions have been
migrated to other servers (lines 23–27).

3.4.3 The Application Tier

Applications can be scaled to run on many servers according to their indi-
vidual demand. Due to memory constraints, the näıve approach of always
running all applications on all servers is unfeasible. Algorithm 3.3 shows how
individual applications are scaled up and down according to their resource
utilization. The set of applications is partitioned into disjoint subsets accord-
ing to the current state of each application. The possible application states
are: overloaded, non-overloaded, inactive and long-term inactive.

Algorithm 3.3. Reactive scaling of applications

1: while true do

2: A

over

(k) := {s 2 S(k), a 2 dep apps(s, k) |
C(a, k) > C

U

A

/|dep apps(s, k)| _M(a, k) > M

U

A

}
3: if |A

over

(k)| � 1 then

4: for all a 2 A

over

(k) do
5: deploy application a as per application-to-server allocation policy
6: end for

7: end if

8: A

i

(k) := {s 2 S(k), a 2 dep apps(s, k) |C(a, k) < C

L

A

^M(a, k) < M

L

A

}
9: A

li

(k) := {a 2 A

i

(k) | inactive c(a) � IC

T

A

}
10: if |A

li

(k)| � 1 then

11: migrate all applications and user sessions for applications A
li

(k)
12: A(k) := A(k) \A

li

(k)
13: for all a 2 A

li

(k) do
14: unload application a

15: end for

16: end if

17: end while

Multi-tier Web Applications 93

An application is overloaded when it uses more resources than allotted
(line 2). Each overloaded application a 2 A

over

(k) is deployed to another
server according to the allocation policy for applications to servers (lines 4–
6). When an application has been running on a server without exceeding
the lower utilization thresholds (C

L

A

and M
L

A

), possible active sessions are
migrated to another deployment of the application and then said applica-
tion is undeployed (lines 8–15). This makes the memory available to other
applications that might need it.

3.4.4 Admission Control

The admission control algorithm is given as Algorithm 3.4. It continuously
checks for new se

n

(k) or deferred sessions se
d

(k) (line 1). If any are found
(line 2), it updates the weighting coe�cient w 2 [0, 1], representing the
weight given to predicted and observed utilizations (line 3). If w = 1.0, no
predictions are calculated (lines 5–6). The prediction process uses a two-step
approach, providing filtered input data to the predictor [5]. We currently per-
form automatic adjustment and tuning in a similar fashion to Cherkasova and
Phaal [13], where the weighting coe�cient w is defined according to (3.10).
It is based on the following metrics: number of aborted sessions |se

a

(k)|,
number of deferred sessions |se

d

(k)|, number of rejected sessions |se
r

(k)|,
and number of overloaded servers |S

over

(k)|.

w =

8
><

>:

1, if |se
a

(k)| > 0 _ |se
d

(k)| > 0 _ |se
r

(k)| > 0

1, if |S
over

(k)| > 0

max(0.1, w � 0.01), otherwise
(3.10)

For each iteration, a bit more preference is given to the predicted values,
up to the limit of 90 %. However, as soon as a problem is detected, full
preference is given to the observed values, as the old predictions cannot be
trusted. This should help in reducing lag when there are sudden changes in
the load trends after long periods of good predictions.

If the algorithm finds servers in good condition (line 12), the session is
admitted (lines 13–17), else the session is deferred to the entertainment server
(line 20). Only if also the entertainment server is overloaded, will the session
be rejected (line 22).

94 A. Ashraf, B. Byholm, and I. Porres

Algorithm 3.4. Admission control

1: while true do
2: if |se

n

(k)| � 1 _ |se
d

(k)| � 1 then
3: update the weighting coe�cient w according to (3.10)
4: if w = 1 then
5: 8s 2 S(k)|C

w

(s, k) := C(s, k)
6: 8s 2 S(k)|M

w

(s, k) := M(s, k)
7: else
8: 8s 2 S(k)|C

w

(s, k) := w · C(s, k) + (1� w) · Ĉ(s, k)
9: 8s 2 S(k)|M

w

(s, k) := w ·M(s, k) + (1� w) · M̂(s, k)
10: end if
11: S

open

(k) := {8s 2 S(k)|C
w

(s, k) < LA
UT

^M
w

(s, k) < MU
UT

}
12: if |S

open

(k)| � 1 then
13: if |se

d

(k)| � 1 then
14: pop first session in se

d

(k) and admit it on a server in S
open

(k)
15: else
16: pop first session in se

n

(k) and admit it on a server in S
open

(k)
17: end if
18: else if |se

n

(k)| � 1 then
19: if C(ent, k) < LA

UT

^M(ent, k) < MU
UT

then
20: pop first session in se

n

(k) and defer it
21: else
22: pop first session in se

n

(k) and reject it
23: end if
24: end if
25: end if
26: end while

3.5 Experimental Evaluation

To validate and evaluate the proposed VM provisioning and admission control
approaches, we developed discrete-event simulations for ARVUE, CRAMP,
and ACVAS and performed a series of experiments involving synthetic as
well as realistic load patterns. The synthetic load pattern consists of two
artificial load peaks, while the realistic load pattern is based on real world
data. In this section, we present experimental results based on the discrete-
event simulations.

Multi-tier Web Applications 95

3.5.1 VM Provisioning Experiments

This section presents some of the simulations and experiments that have been
conducted to validate and evaluate ARVUE and CRAMP VM provisioning
algorithms. The goal of these experiments was to test the two approaches
and to compare their results.

In order to generate workload, a set of application users was needed. In
our discrete-event simulations, we developed a load generator to emulate a
given number of user sessions making HTTP requests on the web applica-
tions. We also constructed a set of 100 simulated web applications of varying
resource needs, designed to require a given amount of work on the hosting
server(s). When a new HTTP request arrived at an application, the appli-
cation would execute a loop for a number of iterations, corresponding to the
empirically derived time required to run the loop on an unburdened server.
As the objective of the VM provisioning experiments was to compare the
results of ARVUE and CRAMP, admission control was not used in these
experiments.

Design and Setup

We performed two experiments with the proposed VM provisioning ap-
proaches: ARVUE and CRAMP. The first experiment used a synthetic load
pattern, which was designed to scale up to 1000 concurrent sessions in two
peaks with a period of no activity between them. In the second peak, the
arrival rate was twice as high as in the first peak.

The second experiment was designed to simulate a load representing a
workload trace from a real web-based system. The traces were derived from
Squid proxy server access logs obtained from the IRCache project [24]. As the
access logs did not include session information, we defined a session as a series
of requests from the same originating Internet Protocol (IP)-address, where
the time between individual requests was less than 15 minutes. We then
produced a histogram of sessions per second and used linear interpolation
and scaling by a factor of 30 to obtain the load traces used in the experiment.

In a real-world application, there would be di↵erent kinds of requests
available, requiring di↵erent amounts of CPU time. Take the simple case
of a web shop: there might be one class of requests for adding items to the
shopping basket, requiring little CPU time, and another class of requests
requiring more CPU time, like computing the sum total of the items in the
shopping basket. Users of an application would make a number of varying
requests through their interactions with the application. After each request,
there would be a delay while the user was processing the newly retrieved

96 A. Ashraf, B. Byholm, and I. Porres

information, like when presented with a new resource. In both experiments,
each user was initially assigned a random application and a session duration
of 15 minutes. Application 1 to 10 were assigned to 50 % of all users, appli-
cation 11 to 20 were used by 25 %, application 21 to 30 received 20 % of all
users, while the remaining 5 % was shared among the other 70 applications.
Each user made requests to its assigned application, none of which was to
require more than 10 ms of CPU time on an idle server. In order to emulate
the time needed for a human to process the information obtained in response
to a request, the simulated users waited up to 20 s between requests. All
random variables were uniformly distributed. This means they do not fit the
Markovian model.

The sampling period was k = 10 s. The upper threshold for server load
average C

U

S

and the upper threshold for server memory utilizationM
U

S

were
both set to 0.8. These values are considered reasonable for e�cient server
utilization [25, 2].

The application-server allocation policy used was lowest load average.
The session-server allocation policy was also set to lowest load average, real-
ized through the weighted round-robin policy of HAProxy, where the weights
were assigned by the global controller according to the load averages of the
servers, as described in Section 3.3.1.

Results and Analysis

The results from the VM provisioning experiment with the synthetic load
pattern are shown in Figures 3.5a and 3.5b. The depicted observed parame-
ters are: number of servers, average response time, average server CPU load,
average memory utilization, and applications per server. The upper half of
Table 3.3 contains a summary of the results.

The results from the two approaches are compared based on the following
criteria: number of servers used, average CPU load average, maximum CPU
load average, average memory utilization, maximum memory utilization, av-
erage RTT, and maximum RTT. The resource utilizations are ranked ac-
cording to the utilization error, where over-utilization is considered infinitely
bad.

In Figures 3.5a and 3.5b, the number of servers plots show that the num-
ber of application servers varied in accordance with the number of simul-
taneous user sessions. In this experiment, ARVUE used a maximum of 16
servers, whereas CRAMP used no more than 14 servers. The RTT remained
quite stable around 20 ms, as expected. The server CPU load average and
the memory utilization never exceeded 1.0.

The results from the experiment with the synthetic load pattern indicate

Multi-tier Web Applications 97

that the system is working as intended. The use of additional capacity seems
to alleviate the problem of servers becoming overloaded due to long reaction
times. The conservative VM termination policy of the proposed approach
explains why the decrease in the number of servers occurs later than the
decrease in the number of sessions. As mentioned in Section 3.4, one of
the objectives of the proposed VM provisioning algorithms is to prevent
oscillations in the number of application servers used. The results indicate
that this was achieved.

Figures 3.6a and 3.6b present the results of the VM provisioning exper-
iment with the realistic load pattern. The results are also presented in the
lower half of Table 3.3.

In this experiment, ARVUE used a maximum of 16 servers, whereas
CRAMP used no more than 8 servers. In the case of ARVUE, the maximum
response time was 21.3 ms and the average response time was 12.63 ms. In
contrast, CRAMP had a maximum response time of 27.43 ms and an average
response time of 14.7 ms. For both ARVUE and CRAMP, the server CPU
load average and the memory utilization never exceeded 1.0.

The results from the experiment with the realistic load pattern show sig-
nificantly better performance of CRAMP compared to ARVUE in terms of
number of servers. CRAMP used half as many servers as ARVUE, but it
still provided similar results in terms of average response time, CPU load
average, and memory utilization. The ability to make predictions of future
trends is a significant advantage, even if the predictions may not be fully
accurate. Still, there were significant problems with servers becoming over-
loaded due to the provisioning delay. Increasing the safety margins further
by lowering the upper resource utilization threshold values or increasing the
extra capacity bu↵er further might not be economically viable. We suspect
that an appropriate admission control strategy will be able to prevent the
servers from becoming overloaded in an economically viable fashion.

Figure 3.7a shows the utilization error in the first experiment that uses the
synthetic load pattern. For brevity, we only depict the CPU load in the error
analysis. Therefore, error is defined as the absolute di↵erence between the
target CPU load average level C

U

S

and the measured value of the CPU load
average C(s, k) averaged over all servers in the system. Initially, the servers
are naturally underloaded due to the lack of work. Thereafter, as soon as the
first peak of load arrives, the error shrinks significantly and becomes as low as
0.1 for ARVUE and 0.3 for CRAMP. The higher CPU load error for CRAMP
at this point was due to the fact that CRAMP results in this experiment
were mostly memory-driven, as can be seen in Figure 3.5b. In other words,
CRAMP had higher error with respect to the CPU load, but it had lower
error with respect to the memory utilization. The error grows again as the

98 A. Ashraf, B. Byholm, and I. Porres

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8
 0
 3
 6
 9
 12
 15
 18
 21
 24
 27
 30

se
ss

io
n

s

se
rv

e
rs

time (hours)

sessions
servers

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0

 20

 40

 60

 80

 100

 120

 140

lo
a

d
 a

ve
ra

g
e

re
sp

o
n

se
 t

im
e

 (
m

s)

load average
1.0

response time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0

 20

 40

 60

 80

 100

 120

 140
m

e
m

o
ry

 u
til

iz
a

tio
n

a
p

p
s.

 p
e

r
se

rv
e

r

memory utilization
1.0

apps. per server

(a) Results of ARVUE with synthetic load.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8
 0
 3
 6
 9
 12
 15
 18
 21
 24
 27
 30

se
ss

io
n

s

se
rv

e
rs

time (hours)

sessions
servers

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0

 20

 40

 60

 80

 100

 120

 140

lo
a

d
 a

ve
ra

g
e

re
sp

o
n

se
 t

im
e

 (
m

s)
load average

1.0
response time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0

 20

 40

 60

 80

 100

 120

 140

m
e

m
o

ry
 u

til
iz

a
tio

n

a
p

p
s.

 p
e

r
se

rv
e

r

memory utilization
1.0

apps. per server

(b) Results of CRAMP with synthetic load.

Figure 3.5: Results of VM provisioning experiment with the synthetic load
pattern. In this experiment, both ARVUE and CRAMP had similar results,
except that CRAMP used fewer servers.

Multi-tier Web Applications 99

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6
 0
 3
 6
 9
 12
 15
 18
 21
 24
 27
 30

se
ss

io
n

s

se
rv

e
rs

time (hours)

sessions
servers

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0

 20

 40

 60

 80

 100

 120

 140

lo
a

d
 a

ve
ra

g
e

re
sp

o
n

se
 t

im
e

 (
m

s)

load average
1.0

response time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0

 20

 40

 60

 80

 100

 120

 140

m
e

m
o

ry
 u

til
iz

a
tio

n

a
p

p
s.

 p
e

r
se

rv
e

r

memory utilization
1.0

apps. per server

(a) Results of ARVUE with realistic load.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6
 0
 3
 6
 9
 12
 15
 18
 21
 24
 27
 30

se
ss

io
n

s

se
rv

e
rs

time (hours)

sessions
servers

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0

 20

 40

 60

 80

 100

 120

 140

lo
a

d
 a

ve
ra

g
e

re
sp

o
n

se
 t

im
e

 (
m

s)

load average
1.0

response time (ms)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0

 20

 40

 60

 80

 100

 120

 140

m
e

m
o

ry
 u

til
iz

a
tio

n

a
p

p
s.

 p
e

r
se

rv
e

r

memory utilization
1.0

apps. per server

(b) Results of CRAMP with realistic load.

Figure 3.6: Results of VM provisioning experiment with the realistic load
pattern. In this experiment, CRAMP used half as many servers as ARVUE,
but it still provided similar performance.

100 A. Ashraf, B. Byholm, and I. Porres

Table 3.3: Results from VM provisioning experiments. The upper half of
the table contains results from the first experiment with the synthetic load
pattern, while the lower half contains results from the second experiment
with the realistic load pattern. Entries in bold are better according to the
evaluation criteria.

approach servers load
avg.

load
max

mem
avg.

mem
max

RTT
avg.

RTT
max

ARVUE
synth

16 0.21 0.9 0.21 0.71 12.23 ms 32.88 ms
CRAMP

synth

14 0.17 0.58 0.25 0.84 12.97 ms 34.72 ms
ARVUE

real

16 0.25 0.9 0.27 0.71 12.63 ms 21.3 ms
CRAMP

real

8 0.28 0.58 0.4 0.82 14.7 ms 27.43 ms

period of no activity starts after the first peak of load. In the second peak,
both ARVUE and CRAMP showed similar results, where the error becomes
as low as 0.25. Finally, as the request rate sinks after the second peak of
load, the error grows further due to underutilization. This can be attributed
to the intentionally cautious policy for scaling down, which is explained in
Section 3.4 and ultimately to the lack of work. A more aggressive policy
for scaling down might work without introducing oscillating behavior, but
when using a third-party IaaS it would still not make sense to terminate a
VM until the current billing interval is coming to an end, as that resource
constitutes a sunk cost.

Error analysis of the second experiment that uses the realistic load pattern
can be seen in Figure 3.7b. CRAMP appears to have lower error than ARVUE
throughout most of the experiment, with the only exceptions being due to
underutilization.

3.5.2 Admission Control Experiments

This section presents experiments with admission control. The goal of these
experiments was to test our proposed admission control approach ACVAS [7]
and to compare it against an existing SBAC implementation [13], here re-
ferred to as the alternative approach. As in the VM provisioning experiments,
the experiments in this section also used 100 simulated web applications of
various resource requirements. The experiments were conducted through
discrete-event simulations.

Design and Setup

We performed two experiments with ACVAS and the alternative approach.
The first admission control experiment used the synthetic load pattern, which

Multi-tier Web Applications 101

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7 8
time (hours)

ARVUE error
CRAMP error

(a) Synthetic load pattern experiment: error analysis.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6
time (hours)

ARVUE error
CRAMP error

(b) Realistic load pattern experiment: error analysis.

Figure 3.7: CPU load average error analysis in the VM provisioning ex-
periments. In the first experiment, CRAMP appears to have higher error
because its results were mostly memory-driven. In the second experiment,
CRAMP had lower error than ARVUE, with the only exceptions being due
to underutilization.

102 A. Ashraf, B. Byholm, and I. Porres

was also used in the first VM provisioning experiment described in Sec-
tion 3.5.1. This workload was designed to scale up to 1000 concurrent ses-
sions in two peaks with a period of no activity between them. Similarly, the
second admission control experiment was designed to use the realistic load
pattern, which was also used in the second VM provisioning experiment in
Section 3.5.1. The sampling period k, the upper threshold for server load
average C

U

S

, the upper threshold for server memory utilization M
U

S

, the
application-server allocation policy, and the session-server allocation policy
were all same as in the VM provisioning experiments in Section 3.5.1.

Results and Analysis

In our previous work [7], we proposed a way of measuring the quality of an
admission control mechanism based on the trade-o↵ between the number of
servers used and six important QoS metrics: zero overloaded servers, maxi-
mum achievable session throughput, zero aborted sessions, minimum deferred
sessions, zero rejected sessions and minimum average response time for all
admitted sessions. The results from the two approaches will be compared
based on these criteria.

Figures 3.8a and 3.8b present the results from the experiment with the
synthetic load pattern. A summary of the results is also available in the
upper half of Table 3.4. The prediction accuracy was high, the Root Mean
Square Error (RMSE) of the predicted CPU and memory utilization was
0.0163 and 0.0128 respectively. ACVAS used a maximum of 19 servers with
0 overloaded servers, 0 aborted sessions, 30 deferred sessions, and 0 rejected
sessions. There were a total of 8620 completed sessions with an average RTT
of 59 ms. Thus, ACVAS provided a good trade-o↵ between the number of
servers and the QoS requirements. The alternative approach also used a
maximum of 19 servers, but with several occurrences of server overloading.
On average, there were 0.56 overloaded servers at all time with 0 aborted
sessions and 488 rejected sessions. A total of 9296 sessions were completed
with an average RTT of 112 ms. Thus, in the first experiment, the alternative
approach completed 9296 sessions compared to 8620 sessions by ACVAS, but
with 488 rejected sessions and several occurrences of server overloading.

Figures 3.9a and 3.9b show the results of the experiment with the realistic
load trace derived from access logs. The lower half of Table 3.4 shows that
ACVAS used a maximum of 16 servers with 0 overloaded servers, 0 aborted
sessions, 20 deferred sessions, and 0 rejected sessions. There were a total
of 8559 completed sessions with an average RTT of 59 ms. In contrast, the
alternative approach used a maximum of 17 servers with 3 occurrences of
server overloading. On average, there were 0.0046 overloaded servers at all

Multi-tier Web Applications 103

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7
 0
 4
 8
 12
 16
 20
 24
 28

se
ss

io
n
s

se
rv

e
rs

time (hours)

sessions
servers

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

lo
a
d
 a

ve
ra

g
e

m
e
m

o
ry

CPU load average
1.0

memory utilization

 0

 4

 8

 12

 16

 20

 24

 0

 120

 240

 360

 480

 600

 720

o
ve

rl
o
a
d
e
d
 s

e
rv

e
rs

re
sp

o
n
se

 t
im

e
 (

m
s)overloaded servers

response time (ms)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

w
e
ig

h
te

d
 lo

a
d
 a

ve
ra

g
e

w
e
ig

h
te

d
 m

e
m

o
ryweighted CPU load average

1.0
weighted memory utilization

(a) Results of ACVAS with synthetic load.

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5
 0
 4
 8
 12
 16
 20
 24
 28

se
ss

io
n
s

se
rv

e
rs

time (hours)

sessions
servers

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

lo
a
d
 a

ve
ra

g
e

m
e
m

o
ry

CPU load average
1.0

memory utilization

 0

 4

 8

 12

 16

 20

 24

 0

 120

 240

 360

 480

 600

 720

o
ve

rl
o
a
d
e
d
 s

e
rv

e
rs

re
sp

o
n
se

 t
im

e
 (

m
s)overloaded servers

response time (ms)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

w
e
ig

h
te

d
 lo

a
d
 a

ve
ra

g
e

w
e
ig

h
te

d
 m

e
m

o
ryweighted CPU load average

1.0
weighted memory utilization

(b) Results of alternative approach with synthetic load.

Figure 3.8: Results of admission control experiment with the synthetic load
pattern. ACVAS performed better than the alternative approach in all as-
pects but session deferment and throughput.

104 A. Ashraf, B. Byholm, and I. Porres

Table 3.4: Results from admission control experiments. The upper half of
the table contains results from the first experiment with the synthetic load
pattern, while the lower half contains results from the second experiment
with the realistic load pattern. Entries in bold are better according to the
evaluation criteria.

approach servers overl. abort. def. rej. compl. RTT
avg.

ACVAS
synth

19 0 0 30 0 8620 59 ms
alternative

synth

19 0.56 0 N/A 488 9296 112 ms
ACVAS

real

16 0 0 20 0 8559 59 ms
alternative

real

17 0.0046 0 N/A 55 8577 72 ms

time with 0 aborted sessions and 55 rejected sessions. There were a total of
8577 completed sessions with an average RTT of 72 ms. Thus, the alternative
approach used an almost equal number of servers, but it did not prevent them
from becoming overloaded. Moreover, it completed 8577 sessions compared
to 8559 sessions by ACVAS, but with 55 rejected sessions and 3 occurrences
of server overloading.

The results from these two experiments indicate that the ACVAS app-
roach provides significantly better results in terms of the previously men-
tioned QoS metrics. In the first experiment, ACVAS had the best results
in three areas: overloaded servers, rejected sessions, and average RTT. The
alternative approach performed better in two areas: there were no deferred
sessions, as it did not support session deferment, and it had more com-
pleted sessions. In the second experiment, ACVAS performed better in four
aspects: number of servers used, overloaded servers, rejected sessions, and
average RTT. The alternative approach again showed better performance in
the number of completed sessions and in the number of deferred sessions. We
can therefore conclude that ACVAS performed better than the alternative
approach in both experiments.

The EMA-based predictor appears to be doing a good job on predicting
these types of loads. It remains unclear how the system reacts to sudden
drops in a previously increasing load trend. Such a scenario could temporarily
lead to high preference for predicted results, which are no longer valid.

A plot of the utilization error with the synthetic load pattern can be seen
in Figure 3.10a. Likewise, a plot of the utilization error with the realistic
load can be seen in Figure 3.10b. Again, we only depict the CPU load, as
it played the most significant part. The periods where ACVAS appears to
have higher error than the alternative approach are due to underutilization
amplified by ACVAS being more e↵ective at keeping the average utilization

Multi-tier Web Applications 105

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 1 2 3 4 5 6
 0
 4
 8
 12
 16
 20
 24
 28

se
ss

io
n
s

se
rv

e
rs

time (hours)

sessions
servers

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

lo
a
d
 a

ve
ra

g
e

m
e
m

o
ry

CPU load average
1.0

memory utilization

 0

 2

 4

 6

 8

 10

 12

 0

 40

 80

 120

 160

 200

 240

o
ve

rl
o
a
d
e
d
 s

e
rv

e
rs

re
sp

o
n
se

 t
im

e
 (

m
s)overloaded servers

response time (ms)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

w
e
ig

h
te

d
 lo

a
d
 a

ve
ra

g
e

w
e
ig

h
te

d
 m

e
m

o
ryweighted CPU load average

1.0
weighted memory utilization

(a) Results of ACVAS with realistic load.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 1 2 3 4 5
 0
 4
 8
 12
 16
 20
 24
 28

se
ss

io
n
s

se
rv

e
rs

time (hours)

sessions
servers

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

lo
a
d
 a

ve
ra

g
e

m
e
m

o
ry

CPU load average
1.0

memory utilization

 0

 2

 4

 6

 8

 10

 12

 0

 40

 80

 120

 160

 200

 240

o
ve

rl
o
a
d
e
d
 s

e
rv

e
rs

re
sp

o
n
se

 t
im

e
 (

m
s)overloaded servers

response time (ms)

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 0

 0.3

 0.6

 0.9

 1.2

 1.5

w
e
ig

h
te

d
 lo

a
d
 a

ve
ra

g
e

w
e
ig

h
te

d
 m

e
m

o
ryweighted CPU load average

1.0
weighted memory utilization

(b) Results of alternative approach with realistic load.

Figure 3.9: Results of admission control experiment with the realistic load
pattern. ACVAS performed better than the alternative approach in all as-
pects but session deferment and throughput.

106 A. Ashraf, B. Byholm, and I. Porres

down, as no servers became overloaded during this time. Overall, the results
are quite similar, as they should be, the only di↵erence being the admission
controller.

3.6 Conclusions

In this chapter, we presented a prediction-based, cost-e�cient VM provi-
sioning and admission control approach for multi-tier web applications. It
provides automatic deployment and scaling of multiple simultaneous web ap-
plications on a given IaaS cloud in a shared hosting environment. The pro-
posed approach comprises three sub-approaches: a reactive VM provisioning
approach called ARVUE, a hybrid reactive-proactive VM provisioning app-
roach called CRAMP, and a session-based adaptive admission control app-
roach called ACVAS. Both ARVUE and CRAMP provide autonomous shared
hosting of third-party Java Servlet applications on an IaaS cloud. However,
CRAMP provides better responsiveness and results than the purely reac-
tive scaling of ARVUE. ACVAS implements per-session admission, which
reduces the risk of over-admission. Moreover, it implements a simple session
deferment mechanism that reduces the number of rejected sessions while
increasing session throughput. The proposed approach is demonstrated in
discrete-event simulations and is evaluated in a series of experiments involv-
ing synthetic as well as realistic load patterns.

The results of the VM provisioning experiments showed that both
ARVUE and CRAMP provide good performance in terms of average response
time, CPU load average, and memory utilization. Moreover, CRAMP pro-
vides significantly better performance in terms of number of servers. It also
had lower utilization error than ARVUE in most of the cases.

The evaluation and analyses concerning our proposed admission control
approach compared ACVAS against an existing admission control approach
available in the literature. The results indicated that ACVAS provides a good
trade-o↵ between the number of servers used and the QoS metrics. In com-
parison with the alternative admission control approach, ACVAS provided
significant improvements in terms of server overload prevention, reduction of
rejected sessions, and average response time.

Future work includes implementing and testing the admission controller
on the prototype ARVUE PaaS [1, 11]. Furthermore, a case study of the
final ARVUE PaaS could yield real data from an actual business case. We
have been currently working on server consolidation approaches for web ap-
plications. Improved allocation through e�cient consolidation should be
possible. Moreover, applying metaheuristic approaches [10, 20] to optimize

Multi-tier Web Applications 107

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6 7
time (hours)

ACVAS error
Alternative error

(a) Synthetic load pattern experiment: error analysis.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6
time (hours)

ACVAS error
Alternative error

(b) Realistic load pattern experiment: error analysis.

Figure 3.10: CPU load average error analysis in the admission control ex-
periments. In the first experiment, both approaches had a similar error plot.
However, in the second experiment, ACVAS appears to have lower error than
the alternative approach throughout most of the experiment, with the only
exceptions being due to underutilization.

108 A. Ashraf, B. Byholm, and I. Porres

cost-e�ciency is also part of our ongoing research. However, optimal so-
lutions can be seen as a form of the bin-packing problem and is therefore
NP -complete [16].

Acknowledgments

This work was supported by an Amazon Web Services research grant. Adnan
Ashraf was partially supported by the Foundation of Nokia Corporation and
by a doctoral scholarship from the Higher Education Commission (HEC) of
Pakistan.

References

[1] T. Aho et al. “Designing IDE as a Service”. In: Communications of
Cloud Software 1 (2011), pp. 1–10.

[2] J. Allspaw. The Art of Capacity Planning: Scaling Web Resources.
O’Reilly Media, Inc., 2008. isbn: 0596518579, 9780596518578.

[3] J. Almeida et al. “Joint admission control and resource allocation in
virtualized servers”. In: J. Parallel Distrib. Comput. 70.4 (Apr. 2010),
pp. 344–362. issn: 0743-7315. doi: 10.1016/j.jpdc.2009.08.009.

[4] M. Andreolini and S. Casolari. “Load prediction models in web-based
systems”. In: Proceedings of the 1st international conference on Per-
formance evaluation methodolgies and tools. valuetools ’06. New York,
NY, USA: ACM, 2006. isbn: 1-59593-504-5. doi: 10.1145/1190095.
1190129.

[5] M. Andreolini, S. Casolari, and M. Colajanni. “Models and Frame-
work for Supporting Runtime Decisions in Web-Based Systems”. In:
ACM Transactions on the Web 2.3 (2008), pp. 1–43. issn: 1559-1131.
doi: 10.1145/1377488.1377491.

[6] D. Ardagna et al. “Service Provisioning on the Cloud: Distributed
Algorithms for Joint Capacity Allocation and Admission Control”.
In: Towards a Service-Based Internet. Ed. by E. Di Nitto and R.
Yahyapour. Vol. 6481. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2010, pp. 1–12.

REFERENCES 109

[7] A. Ashraf, B. Byholm, and I. Porres. “A Session-Based Adaptive Ad-
mission Control Approach for Virtualized Application Servers”. In:
The 5th IEEE/ACM International Conference on Utility and Cloud
Computing. Ed. by C. Varela and M. Parashar. IEEE Computer So-
ciety, 2012, pp. 65–72.

[8] A. Ashraf, B. Byholm, and I. Porres. “CRAMP: Cost-E�cient Re-
source Allocation for Multiple Web Applications with Proactive Scal-
ing”. In: 4th IEEE International Conference on Cloud Computing
Technology and Science (CloudCom). Ed. by T. W. W lodarczyk, C.-
H. Hsu, and W.-C. Feng. IEEE Computer Society, 2012, pp. 581–586.

[9] A. Ashraf et al. “Feedback Control Algorithms to Deploy and Scale
Multiple Web Applications per Virtual Machine”. In: 38th Euromi-
cro Conference on Software Engineering and Advanced Applications.
Ed. by V. Cortellessa, H. Muccini, and O. Demirors. IEEE Computer
Society, 2012, pp. 431–438.

[10] C. Blum et al. “Hybrid metaheuristics in combinatorial optimization:
A survey”. In: Applied Soft Computing 11.6 (2011), pp. 4135 –4151.
issn: 1568-4946. doi: 10.1016/j.asoc.2011.02.032.

[11] B. Byholm. “An Autonomous Platform as a Service for Stateful Web
Applications”. MA thesis. Åbo Akademi University, 2013.

[12] X. Chen, H. Chen, and P. Mohapatra. “ACES: An e�cient admission
control scheme for QoS-aware web servers”. In: Computer Communi-
cations 26.14 (2003), pp. 1581–1593. issn: 0140-3664. doi: 10.1016/
S0140-3664(02)00259-1.

[13] L. Cherkasova and P. Phaal. “Session-Based Admission Control: A
Mechanism for Peak Load Management of Commercial Web Sites”.
In: Computers, IEEE Transactions on 51.6 (2002), pp. 669–685. issn:
0018-9340. doi: 10.1109/TC.2002.1009151.

[14] T. C. Chieu et al. “Dynamic Scaling of Web Applications in a Virtu-
alized Cloud Computing Environment”. In: e-Business Engineering,
2009. ICEBE ’09. IEEE International Conference on. 2009, pp. 281–
286. doi: 10.1109/ICEBE.2009.45.

[15] X. Dutreilh et al. “From Data Center Resource Allocation to Control
Theory and Back”. In: Cloud Computing (CLOUD), 2010 IEEE 3rd
International Conference on. 2010, pp. 410–417. doi: 10.1109/CLOU
D.2010.55.

110 A. Ashraf, B. Byholm, and I. Porres

[16] M. R. Garey and D. S. Johnson. ““Strong” NP-Completeness Results:
Motivation, Examples, and Implications”. In: Journal of the ACM
25.3 (1978), pp. 499–508. issn: 0004-5411. doi: 10.1145/322077.
322090.

[17] Google. App Engine. https://developers.google.com/appengine.

[18] M. Grönroos. Book of Vaadin. fourth. Vaadin Ltd, 2011.

[19] R. Han et al. “Lightweight Resource Scaling for Cloud Applications”.
In: Cluster Computing and the Grid, IEEE International Symposium
on (2012), pp. 644–651.

[20] M. Harman et al. “Cloud engineering is Search Based Software En-
gineering too”. In: Journal of Systems and Software 86.9 (2013),
pp. 2225 –2241. issn: 0164-1212. doi: http://dx.doi.org/10.
1016/j.jss.2012.10.027.

[21] Y. Hu et al. “Resource provisioning for cloud computing”. In: Pro-
ceedings of the 2009 Conference of the Center for Advanced Studies
on Collaborative Research. CASCON ’09. New York, NY, USA: ACM,
2009, pp. 101–111.

[22] C.-J. Huang et al. “Admission control schemes for proportional di↵er-
entiated services enabled internet servers using machine learning tech-
niques”. In: Expert Systems with Applications 31.3 (2006), pp. 458–
471. issn: 0957-4174. doi: 10.1016/j.eswa.2005.09.071.

[23] W. Iqbal et al. “Adaptive resource provisioning for read intensive
multi-tier applications in the cloud”. In: Future Generation Computer
Systems 27.6 (2011), pp. 871–879. issn: 0167-739X.

[24] IRCache Project Squid Logs. http://www.ircache.net/.

[25] H. H. Liu. Software Performance and Scalability: A Quantitative App-
roach. Wiley Publishing, 2009. isbn: 0470462531, 9780470462539.

[26] S. Muppala and X. Zhou. “Coordinated Session-Based Admission
Control with Statistical Learning for Multi-Tier Internet Applica-
tions”. In: Journal of Network and Computer Applications 34.1
(2011), pp. 20–29. issn: 1084-8045. doi: 10.1016/j.jnca.2010.
10.007.

[27] OSGi Alliance. OSGi Service Platform Core Specification, Release 4,
Version 4.2. AQute Publishing, 2010.

[28] OSGi Alliance. OSGi Service Platform Enterprise Specification, Re-
lease 4, Version 4.2. AQute Publishing, 2010.

REFERENCES 111

[29] W. Pan et al. “Feedback Control-Based QoS Guarantees in Web Ap-
plication Servers”. In: High Performance Computing and Communi-
cations, 2008. HPCC ’08. 10th IEEE International Conference on.
2008, pp. 328–334. doi: 10.1109/HPCC.2008.106.

[30] T. Patikirikorala et al. “A multi-model framework to implement self-
managing control systems for QoS management”. In: Proceedings of
the 6th International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems. SEAMS ’11. New York, NY, USA:
ACM, 2011, pp. 218–227. isbn: 978-1-4503-0575-4.

[31] Y. Raivio et al. “Hybrid Cloud Architecture for Short Message Ser-
vices”. In: Proceedings of the 2nd International Conference on Cloud
Computing and Services Science. Ed. by F. Leymann et al. SciTePress,
2012, pp. 489–500.

[32] A. Robertsson et al. “Admission control for Web server systems -
design and experimental evaluation”. In: Decision and Control, 2004.
CDC. 43rd IEEE Conference on. Vol. 1. 2004, pp. 531–536. doi: 10.
1109/CDC.2004.1428685.

[33] Y. A. Shaaban and J. Hillston. “Cost-based admission control for
Internet Commerce QoS enhancement”. In: Electronic Commerce Re-
search and Applications 8.3 (2009), pp. 142–159. issn: 1567-4223. doi:
10.1016/j.elerap.2008.11.007.

[34] W. Tarreau. HAProxy. http://haproxy.1wt.eu/.

[35] The Apache Software Foundation. Apache Felix. http://felix.apa
che.org/site/.

[36] B. Urgaonkar, P. Shenoy, and T. Roscoe. “Resource Overbooking
and Application Profiling in a Shared Internet Hosting Platform”.
In: ACM Trans. Internet Technol. 9.1 (Feb. 2009), pp. 1–45. issn:
1533-5399. doi: 10.1145/1462159.1462160.

[37] W. Vogels. “Beyond Server Consolidation”. In: Queue 6.1 (Jan. 2008),
pp. 20–26. issn: 1542-7730. doi: 10.1145/1348583.1348590.

[38] T. Voigt and P. Gunningberg. “Adaptive resource-based Web server
admission control”. In: Computers and Communications, 2002. Pro-
ceedings. ISCC 2002. Seventh International Symposium on. 2002. doi:
10.1109/ISCC.2002.1021682.

[39] A. Wolke and G. Meixner. “TwoSpot: A Cloud Platform for Scaling
out Web Applications Dynamically”. In: Towards a Service-Based In-
ternet. Ed. by E. di Nitto and R. Yahyapour. Vol. 6481. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, 2010, pp. 13–24.
isbn: 978-3-642-17693-7.

112

