Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’'s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.icee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Developing Cloud Software
Algorithms, Applications, and Tools

Edited by

Ivan Porres
Tommi Mikkonen

Adnan Ashraf

TUCS General Publication
No 60, October 2013

ISBN 978-952-12-2952-7
ISSN 1239-1905

1 Introduction to Cloud Computing
Technologies

Adnan Ashraf', Mikko Hartikainen?, Usman Hassan®, Keijo Heljanko?,
Johan Lilius!, Tommi Mikkonen?, Ivan Porres', Mahbubul Syeed?,
and Sasu Tarkoma?

1Abo Akademi University, Turku, Finland
Email: firstname.lastname@abo.fi

2Tampere University of Technology, Tampere, Finland
Email: firstname.lastname@tut.fi

3Aalto University, Espoo, Finland
Email: firstname.lastname@aalto.fi

4University of Helsinki, Helsinki, Finland
Email: firstname.lastname@helsinki.fi

Abstract—This chapter presents the main technologies currently used in
cloud computing, what are the main commercial offerings and what are their
programming models. We discuss hardware virtualization technologies used
in datacenters, three different service abstraction levels: infrastructure, plat-
form and application and the main driver and adoption problems in cloud
computing.

Keywords-Cloud computing, virtualization, scalability, [aaS, PaaS, SaaS.

The authors are listed in alphabetical order.

2 A. Ashraf et al.

1.1 Technology Drivers and Adoption Problems

The cloud computing paradigm is a new framework for purchasing comput-
ing as a utility (Utility Computing) instead of using traditional datacenters
to provide data processing capability. Perhaps the best overview of the tech-
nology drivers behind cloud computing is given in the report “Above the
Clouds” [7, 6] from Berkeley, which also discusses the main obstacles and
opportunities in cloud computing.

Cloud computing contains a number of technologies that are required to
realize the “computing as utility” promise made by cloud computing ven-
dors. Many of the key technologies have existed already before the term
“cloud computing” was invented, while others have been born out of the
Internet-scale deployment of computing in distributed data centers by sev-
eral big companies such as Google, Amazon, Yahoo, and Salesforce.com.
Consequently there are many definitions of cloud computing but the main
distinguishing features of cloud computing are:

e Computing resources can be purchased on-demand from a virtually
unlimited supply.

e The capital expenses needed to purchase computing resources up-front
are changed to operational expenses, shifting the capital investment
risk for under/overprovisioning to the cloud computing vendor.

e Computing is priced with a pay-as-you-go pricing model where capacity
can be scaled up and down on a short term basis.

The National Institute of Standards (NIST) in the US has also decided to
emphasize the elasticity of computing resources in their definition of cloud
computing [40], which is a definition we can largely agree with. One fre-
quently cited article defines the cloud as follows:

Clouds are a large pool of easily usable and accessible virtual-
ized resources (such as hardware, development platforms and/or
services). These resources can be dynamically reconfigured to
adjust to a variable load (scale), allowing also for an optimum
resource utilization. This pool of resources is typically exploited
by a pay-per-use model in which guarantees are offered by the
Infrastructure Provider by means of customized SLAs [54].

One of the main drivers for cloud computing are the economics of scale in
datacenter building and operations costs. The pricing of hardware, electric-
ity, cooling, and especially global network capacity is much more competitive

Introduction to Cloud Computing Technologies 3

when bought for data centers with tens or hundreds of thousands of servers
instead of small scale datacenter operations with maybe a hundred to a thou-
sand servers.

This chapter focuses on the technical aspects of the available cloud com-
puting platforms and mostly overlooks financial and business aspects of cloud
computing. The key technologies we are discussing in this chapter are:

1. Hardware virtualization: In order to allow for maximum flexibility of
offering customers the illusion of dedicated computing, storage, and
networking infrastructure on a computing infrastructure shared with
other clients, virtualization technologies are heavily used. Section 1.2.1
discusses the commonly used virtualization technologies, for example
Xen is used by the Amazon cloud offering.

2. Sandboring: Sometimes the overhead per (Linux or Windows) virtual
machine can be quite significant, as typically each virtual machine is
running its own kernel instance. Another commonly used approach
is to use high-level programming languages with sandboxing (Python,
Java, etc.) virtual machines to do the isolation between clients on
a multi-tenant cloud infrastructure. Examples of this are the Google
App Engine that uses Python and Java runtime environments that
have been sandboxed to disallow things such as writing to files and
opening of network sockets. Sandboxing is discussed in more detail in
Section 1.2.2.

3. Virtualized network block storage: This is similar to having a virtualized
network file server with redundancy available to mount storage to a
virtual machine. A typical product is the Amazon Elastic Block Store,
which can be used to mount network attached storage to a cloud server
instance. The technologies employed here are similar to traditional file
serving technology with a virtualization layer on top. This technology
is discussed in more detail in Section 1.2.3.

4. Scalable datastore: One of the key technologies in scalable web services
is the scalable datastore, a database component to manage the data
behind the web application. There is a large interest in NoSQL (for No
SQL or Not Only SQL) datastores. This is a quite central topic that
we will discuss at length in Section 1.3.1.

5. Scalable file storage: Another basic cloud building blocks is that of
geographically replicated hashed file storage. Examples of this service
include the Amazon S3 storage system, and the recently announced

4 A. Ashraf et al.

Google storage system. The data in replicated hashed file storage is
accessed through a REST (via HTTP) based interface, and can thus be
directly linked into in web sites. Replicated hashed file storage is often
used to store the virtual machine images that are loaded to virtual
machines at startup, to store backups of block storage, as well as to
store large binary blobs (images, software, etc.) of data served through
Web servers, as well as the seeds of data to be distributed through
content distribution networks. These will be discussed in Section 1.3.2

6. Scalable batch processing: One of the key new technologies used in the
cloud are scalable batch processing systems. The main reference imple-
mentation here is Google MapReduce and its open source implementa-
tion Apache Hadoop. This will be discussed in detail in Section 1.3.3.

7. Cloud controller: All of the cloud offering provide either a command
line or a Web based interface to deploy and administer cloud computing,
including not only computing but also storage and networking. Exam-
ples include the Eucalyptus Cloud Controller (CLC), the OpenNebula
Virtual Infrastructure Manager, and the Web based Google App En-
gine Administration Console. These technologies will be discussed in
Chapter 1.4. The different types of approaches (Infrastructure as a
Service, Platform as a Service, Software as a Service) are addressed in
individual Sections 1.4.1, 1.4.2, and 1.4.3.

In addition to technologies listed above most of the traditional Web appli-
cation and web content serving technologies such as web services using load
balancing and caching are quite predominant in Cloud application develop-
ment, as one of the main drivers of scalable technologies are Web applications
deployed at the massive Internet scale. For example, clouds are used to do
the distribution of static Web content globally. Several providers such as
Akamai and Amazon with its Cloudfront service offer caching services for
static content using globally distributed network of datacenters to minimize
the Internet data transfer fees for providing Web-based services. As these are
basically Web serving content delivery networks, they will not be discussed
further in this chapter.

Figure 1.1 presents an overview of the central elements in cloud com-
puting. The lowest layer pertains to datacenters, clusters, and networking.
Flexibility is achieved by using virtualization, and creating and moving plat-
form instances at runtime. On the client-side, the Web browser is becoming
a key platform for applications. Various Web application frameworks are
then used through the browser. On a higher level, the aim of the cloud infra-

Introduction to Cloud Computing Technologies 5

structure is to support on-demand service creation, management, and access.
Open APIs are key components for interoperable cloud-based systems.

Private, community, public, hybridclouds

Software as Platformasa | |Infrastructure as
a Service (SaaS) Service (PaaS) a Service (laaS)

On-demand service

Information demand and Ubiquitous Network
supply (Open APIs) Access
Location Independent ‘ | Elasticity ‘

Resource Pooling

Web Application

Virtualization
Frameworks

Datacenters and clusters Browser as a Platform

Figure 1.1: Overview of cloud services

The figure highlights the different roles found in cloud computing, namely
the service consumer, provider, and developer. The service provider is a
central element of cloud computing, because it facilitates the deployment and
execution of various building blocks. The service provider achieves flexibility
through virtualization and dynamic configuration of the runtime system.
This flexibility that takes the supply and demand of content into account can
be seen as a central feature of clouds. Virtualized resources include networks,
CPUs, and storage. In order to implement and manage a cloud platform, a
number of management features are needed. The necessary management
features include reporting, Service Level Agreements, capacity planning, and
billing. The software layer providing the virtualization is called a virtual
machine monitor or hypervisor. A hypervisor can run on bare hardware
(Type 1 or native VM) or on top of an operating system (Type 2 or hosted
VM). The service developer uses APIs exposed by the cloud platform and the
software it is executing. The service developer needs to have tools for service
creation, deployment and publishing, and analyzing the service at runtime.

6 A. Ashraf et al.

The service consumer uses various APIs and user interfaces to access the
deployed services.

The services of Cloud computing can be divided into three categories:
Software-as-a-Service (SaaS), in which a vendor supplies the hardware infra-
structure, the software product, and interacts with the user using a portal.
Platform-as-a-Service (PaaS), in which a set of software and development
tools are hosted by a provider on the provider’s infrastructure, for exam-
ple, Google’s AppEngine. Infrastructure-as-a-Service (IaaS), which involves
virtual server instances with unique IP addresses and blocks of on-demand
storage, for example, Amazon’s Web services infrastructure. Figure 1.2 shows
layer architecture of cloud computing.

Client

Software

\ Platform as a Service

Infrastructure as a Service

Hardware

i)
E { Cloud provider

D Traditional Web Services

5 Cloud Web Services

Figure 1.2: Layer architecture of cloud software

This chapter focuses on the cloud computing technologies from two dif-
ferent perspectives. The first one is the view of the application programmer:
What kinds of application frameworks do the different cloud providers pro-
vide and what are the benefits and drawbacks on the frameworks in question.
The second perspective is that of a cloud service provider: What technologies
are employed in the cloud platforms, especially concerning the scalability of
services. Many of the available implementations share similar (or even the
same) components, and they are often composed by mixing and matching

Introduction to Cloud Computing Technologies 7

proprietary and open source components.

1.2 Background Technologies

There are some commonly used technologies that have already existed before
the introduction of cloud computing, but which have lately experienced a
renaissance due to the introduction of cloud computing. Such technologies
include in particular the following:

e hardware virtualization technologies
e virtualized network block storage

e sandboxing

These technologies play such a big role in current approaches to cloud com-
puting that we have decided to address them separately.

1.2.1 Cloud Hardware Virtualization Technologies

Virtualization, or the capability to make one computer appear as several
computers or a totally different computer, is a 4 decades old idea, introduced
by IBM in its 7044 computer together with the Compatible Time Sharing
System (CTSS) developed by MIT.

Virtualization is key component in Cloud computing as it allows one to
distinguish the underlying hardware from the operating system, and allows
the cloud hardware provider to easily let the client run any operating system
that is needed.

The report Secure Virtualization and Multicore Platforms State-of-the-
Art report, by Heradon Douglas and Christian Gehrmann [20] provides a
good overview of the underlying techniques and issues.

Virtualization techniques can be split into two main approaches:

1. System virtualization in which the entire system is virtualized. This en-
ables multiple virtual systems to run concurrently totally isolated from
each other. The hypervisor or virtual machine monitor provides access
to memory, devices, network, including the CPU. As a consequence,
the Guest operating system thinks it has the machine for itself.

2. Para-virtualization in which the guest operating system is modified to
cooperate with the hypervisor. The guest is modified to use interfaces
that are safer or more efficient to use than the original guest operating
system interfaces.

8 A. Ashraf et al.

The two main hypervisor types are the following:

e Type 1 runs directly on the host’s hardware and executes the guest
operating system.

e Type 2 (or hosted) runs within an operating system.

System virtualization typically requires hardware support from the pro-
cessor. Such support is provided e.g. by Intel Virtualization technology
Intel-VT [33], AMD’s support for virtualisation AMD-V [4], or ARM’s Trust-
Zone [53] . Thus, system virtualization is typically only supported for newer
[A-32, Xeon, Itanium, Athlon, and Phenom families of processors.

System virtualization can also be achieved by pre-virtualization, in which
the guest operating system code is scanned before execution by the hypervisor
and then modified at run-time, thus resembling a Just-In-Time compiler.
This approach naturally comes at a premium performance wise.

A comprehensive list of different virtualization solutions is available on
wikipedia [15]. The list contains over 70 different solutions, with either open-
source, or commercial licensing. Below, we focus on 3 solutions, KVM, XEN|,
and VMWare. This choice is motivated by the fact that XEN is the open-
source market leader, while VMWare can be considered the commercial mar-
ket leader. KVM has been included in the list as it is gaining quite a lot of
interest in the Linux community.

XEN

The Xen hypervisor was created at the University of Cambridge at the end of
the 1990’s as part of the Xenoserver research project. The first open-source
release of the Xen hypervisor was done 2002, and the current version of the
hypervisor is 4.0. It can thus be considered a mature and stable product.
Commercial support is provided by XenSource Inc. Xen is also provided as
the virtualization solution by solution providers like Red Hat, Novell, and
Sun. Xen is currently marketed by Citrix (http://www.citrix.com/).

Xen is usually considered a para-virtualization solution, although version
4.0 adds capabilities for system virtualization. Xen handles device drivers by
running a special operating system in a special high-privilege Xen domain
(dom0). This operating system handles all device driver requests and has
optimized device drivers for the available hardware. The guest operating
system then has to be modified to work against these interfaces.

Introduction to Cloud Computing Technologies 9

VMWare

VMware (http://www.vmware.com/) offers a commercial hypervisor
ESX [58]. ESX runs on “bare metal” and does not require a separate oper-
ating system. Instead it comes with an included Linux kernel that is booted
first and used to load special device drivers and other features required by
the hypervisor. The Linux kernel provides access to all devices of the system
to the guest operating system using these drivers. In principle, VMWare is
thus a para-virtualization solution. However “Scan-Before-Execution” the
VMWare marketing term for its run-time pre-virtualization technology, al-
lows the guest operating system to run unmodified on VM Ware.

KVM

KVM is a newcomer among virtualization solutions. What KVM provides is a
solution to make a Linux kernel into a hypervisor by loading a module. Each
guest operating system is now a process in user-mode of the KVM hypervisor.
KVM assumes that it is running on a processor with hardware support for
virtualization. Thus it is not possible to run it on older processors, nor is
any such support planned.

KVM consists of two parts: the KVM module that is used to virtualize
memory and QEMU [46], an emulator, for virtualization of I/O.

Summary

Figure 1.3 presents a summary of well-known hypervisors including the three
hypervisors mentioned above. The key properties of hypervisors include
whether or not the system is open source, on what level does it operate
(type 1 or 2), what hardware is supported and what hardware can be vir-
tualized, and additional features such as live nested virtualization and live
migration.

1.2.2 Sandboxing

Sandboxing is a commonly used security mechanism that separates programs
and resurces from one another. By including the different applications in
separate sandboxes, the infrastructure used to host them can be shared by
numerous applications, some of which may have different trust levels. More-
over, it is easy to use experimental software in the same infrastructure as
the production software, since by encapsulating the different systems into
sandboxes of their own they can not cause harm to each other.

10

A. Ashraf et al.

KVM

VMWare

Hyper-V

Open source

Type 1/2

1.5 (DomoO privileged guest)

1.5 (Linux kernel, Qemu)

Hardware

x86 / x86_64

x86 / x86_64

x86 / x86_64

X86_64

Virtual hardware

Qemu: x86 / x86_64

Qemu: X86 / x86_64

x86 / x86_64

x86 / x86_64

Features

Nested virtualization, live
migration

Nested virtualization, live
migration

Association

Citrix

Red Hat/ Intel

VmWare

Microsoft

Figure 1.3: Comparison of hypervisors

In the simplest form, sandbox systems are really isolating applications
from each other and the hosting operating system in full. They have no
way to interact, exept indirectly in terms of processor time, which they must
share, provided that the same computing infrastructure is used. However, it
is also common that not everything is isolated to such a degree, but differ-
ent privileges can be offered to applications in exchange for e.g. providing
reasonable evidence that the developer is authorized to use some services.
Such a fine-grained sandboxing system can be implemented using so-called
capabilities, which can be used to provide an access to different resources
based on more detailed definitions.

Since sandboxing has been proven a really useful technology in many
fields of computing, it is not uncommon to find different implementations
that have been geared towards some particular area of application. In the
realm of cloud computing, the most common use of sandboxing is together
with a virtualization system, where the goal of sandboxing is to provide an
illusion of a single computer, dedicated to the developer, which is isolated
from the rest of the applications run in the same server farm or datacenter.

1.2.3 Virtualized Network Block Storage

The goal of storage virtualization is to abstract the physical location of the
data from users and developers. Provided with adequate implementation,

Introduction to Cloud Computing Technologies 11

this leads to location independence. The role of the virtualization storage is
to provide a mapping from the perceived data to the actual physical location.

For obvious reasons, the actual form of the mapping is implementation
dependent. For example, there may be limitations on granularity of the map-
ping, where different implementations provide a scale from a full, physical
single disk residing physically in a certain computer to small subsets of the
disk, provided in e.g. megabytes or gigabytes.

Commonly available implementations allow heterogeneous management
of multi-vendor storage systems. Consequently it is possible to build a virtu-
alized system out of best-suited component subsystems, which may provide
different quality of service in terms of e.g. access speed.

The benefits of virtualized storage systems in general are many. They
include at least the following:

e Non-distruptive data migration. With the virtualized system, data can
be migrated to different locations even if it is being used. Consequently,
there is more freedom on organizing the data in the network in accor-
dance to the services that are being provided and computers and data
storages that are currently available.

o Improved utilization. As is general with cloud computing, one of the
gains of using a virtualized storage is the ability to use the available
resources in a more optimized fashion.

o Simplified management. Another common gain of cloud computing
is the fact that one needs less management points when relying on
virtualized storage. This in turn simplifies management.

1.2.4 Network Virtualization

OpenFlow is an open standard that allows to run experimental protocols in
production networks [39]. OpenFlow is a feature added to switches, routers,
access points (APs) and basestations, allowing these datapath devices to
be controlled through an external, standardized API. Major switch vendors
are now implementing the system and it is used by universities to deploy
innovative networking technology. Basically, OpenFlow is a software-defined
Ethernet switch. Software-defined networking is expected to be one of the
new emerging research topics in computer networking.

Figure 1.4 presents an overview of the OpenFlow protocol. Routers and
switches implement the open API that allows administrators and control
components to create, modify, and remove flows in the flow table. The pro-
tocol is a step towards software-defined networks.

12 A. Ashraf et al.

/\ \l‘]
OpenFlow Ope(\\;\o e »

i N
Switch o 0\30‘0‘
.
Secure L ssv Controller and API
SwW Py
Channel [4*
+ Add/delete flow entries

hw Flow » Encapsulated packets

Table + Controller discovery

Interfaces

Figure 1.4: The OpenFlow protocol

NOX is an open source network control platform that can control all
connectivity on the network including forwarding, routing, which hosts and
users are allowed. NOX is a control plane element that can be used with
OpenFlow switches [28].

1.3 Scalable Cloud Technologies

A key driver behind cloud computing are Web applications deployed at the
Internet scale. One of the problems with these applications is the variability
of demand in the capacity needed to serve users. An application that proves
successful on the Internet, for example a game, can have its load increased
dramatically in a very short time period. For example, when released as a
Facebook plugin, Animoto (http://animoto.com/) traffic doubled every 12
hours for 3 days [6]. If the application serving the load is not constructed
from scalable building blocks, such scaling to heavy Internet scale loads is not
possible. Another way to see these scalable cloud computing technologies is
that they are software based approaches to horizontally scale data processing
to be run on a large number of small machines instead of a few very powerful
machines. This can have potential in cost reduction for hardware as well as
potential for energy consumption reduction. As an example, Google discusses

Introduction to Cloud Computing Technologies 13

the high energy consumption of typical servers at idle, and are suggesting
architectures that are more energy-proportional, that is, the server power
should be proportional to its application performance level [5, §]. Thus
the cloud should also be able to scale not only up but also down: when
application load decreases, the number of active servers needed to serve the
load should also be automatically decreased as well. Another example is the
paper [52], which discusses the use of virtualization technology to power off
idle machines for better power efficiency during hours of low load.

The scalable cloud computing technologies presented here can also be
seen as a preview of technologies to be employed on a smaller (company
private datacenter) scale in the future, as the need of scaling of systems to a
“private cloud” of small commodity servers in an economical fashion becomes
an issue.

1.3.1 Scalable Datastore

One of the key components to scalability on the Internet scale is that of a
scalable datastore. The datastore is needed as a backend to Web applica-
tions serving dynamic Web pages built on top of the Representational State
Transfer (REST) architectural style [23]. These datastores can be seen as
databases with often very limited functionality but they are able to scale to
even tens of thousands of servers in a single datastore instance. For exam-
ple, all of the Google App Engine applications are sharing a single datastore
instance making up a massively distributed datastore system.

Example scalable cloud datastores include Google Datastore (based on
Google Bigtable [12, 13]), Amazon SimpleDB (http://aws.amazon.com/
simpledb/), Amazon Dynamo [19] (based on Chord [48, 49]), the Yahoo!
PNUTS (also called Sherpa) [16] system (which internally uses MySQL
(http://www.mysql.com/) for ordered storage), the open source Apache
Cassandra [36] (http://cassandra.apache.org/) system, the open source
Tokyo Tyrant (http://1978th.net/tokyotyrant/) system, and the open
source Project Voldemort (http://project-voldemort.com/), just to name
a few examples. As can be seen from the list of systems above the field is
still quite fragmented but also in very active development.

NoSQL Datastores

One of the current hot topics is NoSQL (for No SQL or Not Only SQL)
datastores. A good short overview of the topic can be found in [50, 51].
In traditional database systems literature [29] the guarantees given to the
user by most traditional database systems are denoted with the term ACID

14 A. Ashraf et al.

(Atomicity, Consistency, Integrity, Durability). A part of the NoSQL move-
ment is instead insisting on that a much more limited datastore functionality
called BASE [24] (Basically available, soft state, eventually consistent) is to
be adopted. The main idea of datastores implementing BASE is to favor
availability (and often also low write latency) over consistency.

An example given by the Amazon Dynamo paper [19] is that of a shopping
cart: A customer would prefer to have the shopping cart application available
even though some datacenters of the Amazon infrastructure would not be
currently available due to e.g., disk failures or network connection problems
to other datacenters which might also manipulate the same shopping cart.
In the rare occasion that a shopping cart update should manage to write its
data only to a subset of the servers storing the database, and another update
for the cart comes in, the database would contain two conflicting versions of
the shopping cart data. This is conceptually very similar to merge conflicts in
distributed revision control systems. When such inconsistency is noticed, the
shopping cart application would eventually be presented with two conflicting
versions of the contents of the shopping cart.

The approach taken by Amazon was to use the union of the two shopping
carts as the “true contents” of the shopping cart in the case of such rare fail-
ure, and to handle the exceptional cases of missing deletes of items from the
shopping cart by the user being presented with a slightly wrong contents of
the shopping cart. This allowed the Amazon system to scale easier but at the
expense of having each of the applications handle the inconsistent versions
of the datastore contents in an application dependent fashion. Amazon also
employs a lot of ACID systems in billing and order manipulation, but these
are often not customer facing applications, and thus can tolerate the longer
latencies and lower availability than the applications the customers are di-
rectly interacting with. So a good system design might employ a mixture of
BASE and ACID datastores, depending on the application and its inherent
requirements.

So one of the main debates in scalable datastores is BASE vs. ACID [45].
The debate is based on a theoretical result on distributed databases: Brewer
argued in his CAP conjecture that it is impossible to build a database system
that is:

e (Consistent: The client perceives that a set of operations has occurred
all at once.

e Available: Every operation must terminate in an intended response.

e Partition tolerant: Operations will complete, even if individual com-
ponents are unavailable.

Introduction to Cloud Computing Technologies 15

This was later proved to indeed be true [26], and without additional assump-
tions it is indeed impossible to create a distributed database system satisfying
all the three properties at the same time. To overcome this impossibility re-
sult, one has to drop one of these three guarantees by either:

e Discarding partitions: CA: The database has to be centralized which
immediately leads to scalability problems.

e Discarding availability: CP: A database server must disallow writes in
case the update can not be written to a majority of the database servers
due to network partition.

e Discarding consistency: AP: The database must allow for inconsistency
of writes in case of network partition of the database servers.

Brewer gives in his PODC 2000 keynote some examples of systems in the
different classes:

e CA systems include: Single-site databases, LDAP, and NFS. These
systems are often based on two-phase commit algorithms, or cache
invalidation algorithms.

e CP systems include: Distributed databases, distributed locking sys-
tems, and majority protocols. The systems often use pessimistic lock-
ing or majority (aka quorum) algorithms such as Paxos [37].

e AP systems include: Filesystems allowing updates while disconnected
from the main server such as Coda, Web caching, and DNS. The em-
ployed mechanisms include cache expiration times and leases.

One of the key observations here is that caching of Web applications have
already discarded consistency as caches might contain stale data not available
anymore in the database. So in a way data staleness of data already exists
in Web applications to some extent.

When we look at the BASE vs. ACID debate, it is interesting to note that
the Google App Engine Datastore is by default ACID. The BASE proponents
are the Amazon Dynamo and Yahoo! PNUTS (Sherpa) system, as well as
the Cassandra datastore that can be configured either in BASE or ACID
mode on a per table basis.

The Google App Engine Datastore as well as most other NoSQL datas-
tores support a very limited notion of transactions, and most systems do not
support table joins used in relational databases. The Google Datastore stores
its key values in a sorted fashion by the primary key, and thus range queries

16 A. Ashraf et al.

are still efficient. Also Google itself notes that Datastore writes are expen-
sive compared to reads that can be usually served from a cache. This is not
surprising given the fact that the written data has to be replicated (using
GFS) to ensure durability. Thus a common scalable application program-
ming strategy Google proposes to be used is to batch datastore writes using
a memory cache and only periodically flush the required writes to the data-
store “backup”. So the Google Datastore can be seen as quite database-like
datastore system (without complex transactions or table joins) engineered
for massive scalability.

Key/Value Datastores

The other interesting approach to datastores is that of pure key/value stores.
These are systems built on top of massive distributed hash-tables, and the
only thing one can do is lookup a value based on a key (md5 checksums
of key material are often used). One of the ideas underlying these systems
was presented in the peer-to-peer system Chord [48, 49]. Tt uses a technique
called consistent hashing to allow for nodes to enter and leave a peer-to-
peer content lookup network with minimal overhead. Basically if a network
contains n nodes each containing a set of values, if one node leaves the
system, only (9(%) data items have to be reallocated to the remaining nodes.
In other words only the data that went missing by the node leaving needs
to be reallocated while other nodes do not have to move the data they still
store around to other nodes. Similar result also holds for new nodes entering
the system. The Amazon Dynamo and its descendant the Cassandra system
uses this idea to implement a scalable key/value store with replication, and
it is used in internal Amazon infrastructure (to implement parts of Amazon
S3, most likely file location lookup). Many of the other key/value stores use
the consistent hashing primitive as well to do load balancing in a way that
minimizes the effects of adding or removing servers to the servers remaining to
serve the application load. For an overview on the performance of Cassandra,
which copies heavily from Dynamo for its load balancing and configurable
consistency levels, as well as from Bigtable for its on-disk storage design,
see [35].

Also in-memory caching systems based on key-value lookup such as the
open source memcached (http://www.memcached.org/) are heavily used in
cloud computing offerings and usually used as very high performance caches
to persistent databases. However, as memcached is just a least-recently-used
cache (forgetting data is a feature, not a bug), we do not discuss it at length
here. It should be noted that memcached seems to be one of the most widely
deployed pieces of infrastructure, though. For example, the combination of

Introduction to Cloud Computing Technologies 17

memcached with MySQL database is often used datastore solution for ap-
plications with small load, and for applications where the load is almost
exclusively read-load and MySQL replication is used to improve the read ca-
pacity by having lots of read-only MySQL replicas of a single master MySQL
database. However, once write load is significant, the replication overhead
becomes problematic with a straightforward MySQL replication solution.

Scalable Consensus Datastores

One of the interesting pieces of technology Google uses in their system is
the Chubby system [10, 11]. It is a highly fault tolerant database, where the
contents of the database are replicated over a number of servers. If more than
half of the servers are available, the database can serve requests. The system
is used to mainly maintain configuration data for other Google services, for
example BigTable uses Chubby to store the master node identity, servers
that are up, and the location of the root table in GFS. Bigtable (as well as
other Google services) has been designed to reboot quickly if needed, and it
fetches the initial configuration data from Chubby. Google also uses Chubby
internally to store the DNS records of internal services, which allows for
atomic updates of DNS data. Chubby is thus a piece of the infrastructure
that needs to be kept running 24/7. The design is based on the classic Paxos
algorithm [37]. In Paxos writes are very expensive, but read performance can
be made quite good by using extensive client caching and cache invalidation
technologies [10, 11]. An open source implementation of the Paxos algorithm
is Keyspace by Scalien (http://scalien.com/keyspace/). Also the Cassandra
datastore can be configured to implements a majority algorithm on a table
basis.

1.3.2 Scalable File Storage

Another key component in scalable cloud computing technologies is that
of scalable file storage. The main reference here is the Amazon S3 system
that implements a file storage that is geographically replicated for durability.
Amazon says that the data should still be available even if two different
datacenters are affected. In practice this means that all of the data must
be available on at least three geographic location. In practice storing data
in many different geographically disjoint locations means high latency for
updating data. The Amazon S3 system uses standard HTTP methods to
read and write data, and also data stored on S3 can be directly linked into
on Web pages as standard URLs. Google has a new competing product
with almost identical interface called Google storage. Scalable file storage

18 A. Ashraf et al.

can use many methods in data storage inside the cloud: it can compress
the customer data, it can deduplicate (detect identical data blocks and only
store one copy of the data), and it can replicate the data not only for storage
but also for caching purposes on geographically disjoint locations, trying to
minimize latencies in accessing data stored on the file storage.

These scalable file storages can be used for example to: Store virtual
machine images and disk images for servers, backups, serving static content
to the Web, seeding content distribution networks. For example Amazon
S3 can be used to seed BitTorrent feeds of data, thus feeding peer-to-peer
distribution of content on the Internet.

For filesystem type interface to data, see the Google filesystem (GFS) [25],
and the Hadoop HDFS filesystem (http://hadoop.apache.org/common/
docs/current/hdfs_design.html) whose design is heavily influenced by
GFS.

1.3.3 Scalable Batch Processing

In addition to scaling up datastores and storage horizontally to a large num-
ber of machines, also asynchronous batch processing of data needs to hori-
zontally scale to a large number of computers. The main cloud reference here
is the Google MapReduce system [18, 17] and its open source clone Apache
Hadoop (http://hadoop.apache.org/) originally developed at Yahoo!.
The Google MapReduce is an implementation of MapReduce, a dis-
tributed batch programming paradigm based on functional programming
techniques. It consists of a framework for automatically distributing batch
jobs onto a large number of worker machines, and the framework takes care
of the scheduling and synchronization between the jobs. An overview of the
system is presented in Figure 1.5. The input data to MapReduce is given
in a very large file, usually split into large (64MB is typical) chunks of data
to be processed in parallel by n mapper tasks. Each one of the chunks con-
tains number of records (for example lines of text), which are fed into a user
provided map function record at a time. The map function processes each
line at a time and decides for each record to produce some number of records
consisting of a pair (key, value). Next the MapReduce framework does what
is called a shuffle operation, which groups all the data from all the parallel
mappers using a (user provided) hash function to distribute them over m
reducer tasks. This is a very network bandwidth heavy operation, as each
one of the n mappers has to communicate the values it has for each of the
m reducers in parallel, amounting to O(n - m) pairs of file transfers. After
the temporary files have been transfered by the shuffle, they are next sorted
locally by the reducers in order to give the user provided reduce function,

Introduction to Cloud Computing Technologies 19

which is presented with the list of values attached to each key, for example

as (key, (valuey, values, .. .)).

4

(Dfork & f(1)fork™,
' %, (1)fork
s '(.2)a55|gn (2) R ".‘
4 aSS|gn-,. Y
reduce %

s,
4, ‘.

[vorer
R (6)write
(5)Remote output
split 1 read file O
m(:ﬁ)ﬂql llocal write II/
output
file 1

split 4 II
Map Intermediate files

phase (on local disks)

Input
files

Reduce
phase

Output
files

Figure 1.5: Overview of MapReduce

A really nice feature of the MapReduce framework is that it automatically
parallelizes the work among the user provided number of computer nodes.
Furthermore, the programs can be easily debugged, as the output of the
program (following the rules of the framework) run in parallel is exactly the
same as running the same program sequentially. This is the guarantee given
by the functional programming framework. Also the functional programming
paradigm gives very good fault tolerance: all the data produced by any
number of mapper or reducer tasks can be lost and the framework can still
continue making progress by rescheduling the re-execution of the lost jobs.

Google has been using the MapReduce framework to compute the pro-
duction Web indexes Google uses to index the Web. For example, one of the
heavy processing task is to compute the reverse Web link graph. That is, for
each indexed site, collect all the sites linking to it. This perfectly matches the
MapReduce framework. Also things like processing and doing statistics from
log files matches the MapReduce framework nicely. Interestingly Google is
not providing the full MapReduce feature to its customers. Also unfortu-

20 A. Ashraf et al.

nately the MapReduce programming paradigm has been recently patented
by Google.

The Apache Hadoop system is directly based on the design of the Google
MapReduce and the Google Filesystem for its own distributed filesystem
HDFS. The Hadoop system is written fully in Java and many cloud providers,
for example Amazon, provides support for it in their service offering. Hadoop
is used by many high volume production sites (http://wiki.apache.org/
hadoop/PoweredBy), for example Facebook is running Hadoop clusters with
15 PetaBytes of storage using mainly the Hive (http://hadoop.apache.
org/hive/) system implementing a SQL-style query language on top of the
Hadoop MapReduce engine. Another Hadoop HDFS based database used
mainly for batch processing is HBase (http://hbase.apache.org/), which
is heavily inspired by Google Bigtable. The main applications for Hadoop
seem to be log analysis, web indexing, and various data mining and customer
analysis applications.

If a batch processing task fits the MapReduce framework, the framework
gives good parallelization. In addition, MapReduce and Hadoop do not offer
control of multiple parallel frameworks. In practice, there is a requirement
to execute several different data processing frameworks, such as different
versions of MapReduce and Hadoop, in parallel. The Nexus system presents
a framework for running multiple frameworks in the same cluster [31]. The
key idea of Nexus is to multiplex resources across frameworks and decouple
job execution management from resource management. Figure 1.6 gives an
overview of the Nexus framework.

1.3.4 Approaches to Fault Tolerance in Cloud Infra-
structure

When providing scalable computing infrastructure on the cloud level the sys-
tems must be very fault tolerant and self-healing. When running datacenters
with tens of thousands of computers there will always be some number of
machines and hard disks that are broken. Most of the scalability solutions
in the cloud space are built to have redundancy in a shared-nothing infra-
structure. The aim of these systems is to provide an environment where
one can power off any individual server in the datacenter, and the cloud
infrastructure will recover automatically from the loss of the server without
any manual intervention. The key techniques to achieve this is to have high
redundancy in the datastore system for fault tolerance, and to never store
any persistent data on the servers themselves: all data on the servers is just
cached /preprocessed contents of the real application data that is stored in

Introduction to Cloud Computing Technologies 21

App 1 App 2 App 3
! 1 }
Hadoop Hadoop Custom
scheduler scheduler scheduler

!

Nexus master

N

Nexux slave Nexus slave Nexus slave
Custom
Hadoop Custom Hadoop Executor
executor Executor executor

Figure 1.6: The Nexus system

the datastore. By doing so, all that is lost by powering down a server is
the contents of a cache, that can be repopulated, and the server load can
be redistributed among the remaining servers. Such a design also allows for
powering off servers at off-peak hours, allowing the minimization of overall
power usage of computing.

1.3.5 Latency and Clouds

On a much more philosophical level a key observation affecting the design
decisions of future looking scalable cloud computing technologies is that com-
puting capacity, memory capacity, storage capacity, and network bandwidth
all improve at a much higher rate than latency improves. This is because
ultimately latency is fixed by the speed of light, and especially when dealing
with cloud computing systems where different computers of the cloud can
be geographically very far from each other, latency certainly is an important
issue. This has been observed by David Patterson in [42]. Maybe of much
more practical interest are the three classical solutions to latency mentioned
in the paper [42]: Caching, Replication, and Prediction.

If we look at the three above mentioned techniques in the scalable cloud
computing technologies context, we observe all of the technologies are in use:

22 A. Ashraf et al.

e Caching — Caching is one of the key components to cloud scalability,
and is one of the reasons why cloud computing is heavily based on Web
technologies that are themselves engineered with efficient caching in
mind. In the cloud context especially memory based caches such as
memcached have been introduced as additional write-through caches to
lower back-end datastore read load.

e Replication — Replication is heavily used by all scalable cloud com-
puting infrastructures. Many of the storage systems such as Amazon
S3 and Google File System are using replication not only to provide
improved data durability across geographically redundant replication,
but also to improve the serving of “hot” files by replicating the highly
requested files on a much higher number of file server nodes than the in-
frequently requested “cold” files. One of the implications of potentially
very high replication ratios is that modifying data in-place becomes
very expensive as basically all the (geographically distant) replicas have
to be modified. The solution to this problem employed is to heavily
emphasize write-once-read-many storage patterns with quite big block
sizes in application design, see for example the Google BigTable de-
sign [13], as once written the files cannot be efficiently modified. Thus
BigTable has been designed from the ground up to be run on a repli-
cated file storage system to eliminate most of the random access write
traffic to the replicated filesystem.

e Prediction — Quite a common architectural style these days is the pre-
computation of potential application database queries asynchronously
beforehand and populating caches such as the main memory memcached
beforehand with contents that the application might require in the fu-
ture. This is once more done to hide latency from the user and to serve
the common case queries from cache instead of a datastore. To im-
plement this background processing one can employ asynchronous job
queueing systems such as Amazon Simple Queue Service and scalable
batch processing systems such as Hadoop to pre-populate the caches
in advance.

As a practical consideration, if one develops applications that need to scale to
large numbers of users on the cloud infrastructure, ACID datastore writes are
going to become more and more expensive compared to the datastore reads.
Thus applications need to be designed in a manner that tries to minimize the
number of datastore writes per time unit to ensure application scalability, or
to use a datastore that does not use ACID but BASE, and deal with the

Introduction to Cloud Computing Technologies 23

potentially significant application complexity increase that is needed to deal
with the inconsistent datastore.

1.4 Cloud from Application Programmer View

In terms of engineering, web application development is still in its infancy
for obvious reasons — as long as the primary purpose of web development was
the creation of web pages, there was no need to apply established software
engineering principles to web development. However, cloud computing forces
one to treat web development in the same fashion as software development in
general. These include aspects like reusability, interoperability, and security,
just to give some examples.

In the following, we will study different cloud computing approaches in
terms of the type of cloud service they offer. The viewpoint is that of a
programmer that might be interested in benefitting from the available cloud
platform, not that of a potential cloud service developer that might wish to
build a similar system.

1.4.1 Infrastructure as a Service

Infrastructure as a service (IaaS) is about providing a hosted computing
infrastructure. A typical way to implement such a system is platform virtu-
alization, where the user of the system can consider that the service corre-
sponds to a piece of hardware and associated system software. One common
approach seems to be that Linux type of a system is provided, where the
developers can deploy their own software stack.

Examples of TaaS type systems include the following:

e Amazon EC2 (http://aws.amazon.com/ec2/)
e Eucalyptus project [41] (http://open.eucalyptus.com/)

e Ubuntu Enterprise Cloud (http://www.ubuntu.com/cloud/)

Next, we address these systems in more detail.

Amazon Elastic Computer Cloud

Amazon, which is better known from its Internet bookstore, was one of the
first companies to enter into the cloud computing business. Amazon’s Elastic
Computer Cloud (Amazon EC2) was designed to make it easier for developers
to use web-scale computing power [3]. Amazon promises 99.95% availability

24 A. Ashraf et al.

for each EC2 region. Amazon EC2 offers a virtual computing environment
where developer can launch multiple instances with variety of operating sys-
tem or with custom application environment. Amazon offers a web service
interface to launch instances.

One of key advantages in Amazon EC2 is that it allows a freedom for de-
velopers to choose their tools as they want. Amazon offers Amazon Machine
Images (AMIs), which are preconfigured with several Linux distributions, Mi-
crosoft Windows Server, or OpenSolaris. Developers can customize AMI by
choosing Amazon provided software (e.g. Java Application server, Database
server). If offered operating systems or software do not meet developers’
needs, they are always free build their own custom AMI. Since each devel-
oper can have the root access and can manage network access permissions,
therefore the developer has total control over the software stack they use.

Amazon has three different kinds of pricing models: On Demand In-
stances, Reserved Instances, and Spot Instances. In On Demand Instances,
the user pays for the capacity which is actually used. This approach is good
when system needs to scale. In Reserved Instances, the user pays one time
fee for each instance user wants reserve. With Spot Instances, Amazon is
selling unused capacity of EC2. The price fluctuates based on supply and
demand.

Amazon Elastic Block Store (EBS) offers persistent storage for Amazon
EC2 instances [2]. EBS allows the user to create 1GB to 1TB volumes for use
of EC2 instances. Instances see volumes as raw unformatted block devices
and they can be used as any other block device (e.g. hard drive). EBS
volumes are automatically replicated to prevent dataloss and they can be
used as boot partitions.

Amazon divides locations into regions, e.g. US and Europe. These re-
gions are divided into smaller areas - Availability Zones. EC2 instances can
be placed into multiple locations in case of failure in an Availability Zone.
Availability Zone are designed to be insulated from other AZs and they have
inexpensive, low latency network connectivity to other Availability Zones in
the same region.

Amazon EC2 uses Elastic IPs, static IPs that has been design for dynamic
cloud computing. Elastic IP points to users account instead of EC2 instances.
User controls the IP until the user chooses to release it. Elastic IP allows
the user to remap IP to point instance, which the user has chosen. In case
of a failure in Availability Zone, user can start new instance from other
Availability Zone and keep running the service.

Amazon offers Virtual Private Cloud (VPC) technology for enterprises
to extend their existing infrastructure [21]. VPC works as a secure isolated
portion of the Amazon cloud. So far, Amazon VPC integrates EBS, EC2 and

Introduction to Cloud Computing Technologies 25

Cloud Watch and rest of the Amazon cloud features are under development.
Amazon provides enterprise a VPN connection and one cloud, where user
can define up to 20 subnets.

Cloud Watch is the Amazon’s cloud monitoring system. Cloud Watch
enables user to monitor EC2 instances and Elastic Load Balancing (ELB)
in real-time via Web Service interface. ELB distributes traffic automatically
across multiple Amazon EC2 instances. From Cloud Watch, user can also
enable Auto Scaling, which automatically scales capacity up or down depend-
ing upon the conditions that the user defines. This suits well in application
that has high variability in usage.

Eucalyptus

Eucalyptus is an open source software used to implement cloud computing on
compute clusters. Eucalyptus implements Infrastructure as a Service (IaaS)
while giving the user the ability to run and control virtual machine instances
deployed across a variety of physical resources [9]. Some aspects of underlying
protocol and interface design for Eucalyptus are similar to Amazon Web
Services (AWS). For example, the external interface to Eucalyptus is based
on the API provided by Amazon [41]. The system is relatively easy to set-up,
even on a local environment with limited resources. It is already a part of
the Ubuntu Enterprise Cloud (UEC) installation.

Figure 1.7 presents an overview of the Eucalyptus system that follows a
hierarchical design. The primary high-level components that comprise the
Eucalyptus architecture are as follows:

e Node Controller (NC): An NC makes queries to discover the node’s
physical resources - the number of cores, the size of memory, the avail-
able disk space as well as to learn about the state of VM instances on
the node (although an NC keeps track of the instances that it controls,
instances may be started and stopped through mechanisms beyond
NC'’s control) [41].

e Cluster Controller (CC): The CC schedules the distribution of virtual
machines to the NC and collects resource capacity information [9]. Each
CC may manage one or more NC(s). The Cluster Controller (CC)
generally executes on a cluster front-end machine, or any machine that
has network connectivity to both the nodes running NCs and to the
machine running the Cloud Controller (CLC) [41].

e Storage Controller (Walrus): To put it simply, Walrus is a put/get
storage service that implements Amazon’s S3 interface, providing a

26

A. Ashraf et al.

mechanism for storing and accessing virtual machine images and user
data [41]. Walrus implements the REST (via HTTP), sometimes
termed the “Query”interface, as well as the SOAP interfaces that are
compatible with S3. Walrus provides two types of functionality. Firstly,
users that have access to EUCALYPTUS can use Walrus to stream data
into/out of the cloud as well as from instances that they have started
on nodes. In addition, Walrus acts as a storage service for VM images.
Root filesystem as well as kernel and ramdisk images used to instantiate
VMs on nodes can be uploaded to Walrus and accessed from nodes [41].

Cloud Controller (CLC): It is the entry-point into the cloud for users
and administrators. It queries node managers for information about
resources, makes high level scheduling decisions, and implements them
by making requests to cluster controllers [41].

Client-side Interface

Client-side API
Translator
Cloud Controller Database Walrus (S3)

Cluster Contrpller ode Controller
Slofo S Sy
o|o|o OO O o|o| o
olo|o OO O o|lo| o

Figure 1.7: Overview of Eucalyptus

Each of these components runs as a web service on the respective ma-

chines; we have seen above that the machines distribution is separated for
CLC/Walrus, CC(s) and NC(s). However it is also possible to set-up a test
system with lesser resources. A minimal working “cloud” structure as men-
tioned in UEC set up guide is to have the CLC, Walrus and CC running on
one machine and an NC service running on another.

Several performance measurements with Eucalyptus compared to the

original AWS have been made. The result of these measurements is that a

Introduction to Cloud Computing Technologies 27

private cloud can provide almost the same functionality and possibly better
performance compared to the AWS. The performance can be easily improved
with storage area networks (SAN) for storing the data in the S3/EBS direc-
tories (e.g. image files) in a better performing environment. This approach
also helps a lot to reduce the time needed to start the virtual server instances.
On the other hand, AWS offers unlimited scalability and thus it would be
beneficial to combine both, private and public resources in a hybrid cloud [9].
Eucalyptus system has filled an important niche in the cloud-computing
design space by providing a system that is easy to deploy atop existing re-
sources, that lends itself to experimentation by being modular and open
source, and that provides powerful features out-of-the-box through an inter-
face compatible with Amazon EC2 [41]. Eucalyptus is an interesting product
to build private cloud infrastructures for R&D. The performance of such an
installation with commodity hardware is satisfying for most common scien-
tific applications. Already now a large number of open source tools exist for
cloud management. As also other cloud software providers start to imple-
ment Amazon AWS as a cloud computing interface AWS has the potential to
become a de facto standard for cloud computing infrastructure services [9].

Ubuntu Enterprise Cloud

Company Canonical claims that Ubuntu is only Linux distribution to posi-
tion itself as true Cloud OS. Ubuntu Enterprise Cloud(UEC) is one of the
three components in Canonical’s cloud strategy [56]. Other two components
are Ubuntu Server edition and UbuntuOne. UEC and Ubuntu Server are
aimed as TaaS and UbuntuOne is aimed as SaaS. Canonical’s cloud project
started with offering official AMI for Amazon EC2. Later, Canonical took
Ubuntu Server Edition and integrated enchanted version of KVM [34] based
Eucalyptus into the distribution. As a result Canonical got UEC — a user
deployable cloud, which matches the API that AWS provides.

The architecture of UEC closely follows the architecture of Eucalyp-
tus [41]. Tt has the same controllers (node controller, cluster controller and
cloud controller) as Eucalyptus. One difference is that UEC includes also
ESB Controller, which runs in the same machine as CC and is configured au-
tomatically when CC is installed. EBS Controller follows the same ideology
as Amazon ESB [2].

1.4.2 Platform as a Service

Platform as a Service (PaaS) is about providing a computing platform that
contains a complete solution stack, hosted as a service. Applications devel-

28 A. Ashraf et al.

oped on top of PaaS can commonly be run as a part of the service. The

biggest difference between PaaS and IaaS seems to be that PaaS usually as-

sumes a certain kind of application model, together with associated libraries

and system software, whereas in IaaS the developers have more freedom to

select the systems they want to use. PaaS usually offers additional features

such as load balancing, automatic provisioning and geographic replication.
Sample PaaS systems include the following:

e Google AppEngine (http://code.google.com/appengine/)
e Microsoft Azure (http://www.microsoft.com/windowsazure/)

e Heroku (http://heroku.com/)

Google AppEngine

Google App Engine is a service developed by Google to allow developers to
run web applications on Google’s infrastructure [27]. The reason for want-
ing to run web applications on Google’s infrastructure is the access to their
immense computing power and storage capabilities. The promise is that
developers can start out small and then scale when the need arises.

One of the key advantages with App Engine is that there are no servers
that need to be maintained by the developer, one can simply use part of the
infrastructure Google already has in place. The need to have your own servers
has traditionally been an issue for smaller projects, since they represent a
considerable investment in hardware. By using App Engine the developer
can simply use more processing power when the service usage grows.

App Engine allows developers to simply upload their code and have
it deployed automatically, ready to be used by consumers. App Engine
supports applications written in multiple languages. A Java runtime en-
vironment supports development with standard Java technologies, including
JVM, Java servlets, and the Java programming language. It also supports
any other language that uses a JVM-based interpreter or compiler such as
JavaScript or Ruby. Python is also supported and App Engine offers a dedi-
cated Python runtime environment, which includes a fast Python interpreter
and the Python standard library. Both the Java and Python runtime envi-
ronments are built to ensure that web applications run quickly, securely and
without any interference from other applications running on App Engine.

App Engine provides its own storage solution called Datastore which uti-
lizes BigTable as the method for storage. BigTable is not a relational and
SQL compatible database and requires a different approach for storing and

Introduction to Cloud Computing Technologies 29

retrieving data compared to a conventional SQL database. The advantages
of BigTable is that it is fast and can scale to large tables and loads.

Google Datastore authors describe it as being “a sparse, distributed multi-
dimensional sorted map”, sharing characteristics of both row-oriented and
column-oriented databases. It performs queries over data objects, known as
entities. An entity has one or more properties, named values of one of several
supported data types. A property can be a reference to another entity. The
datastore supports executing multiple operations in a single transaction, and
roll back the entire transaction if any of the operations fail. This type of
feature is especially useful for distributed web applications.

Google currently supplies two standard Java interfaces for interacting
with the Datastore, JDO (Java Data Objects), JPA (Java Persistence API),
a low-level API is also available to allow developers direct access and the pos-
sibility to develop new interfaces. These interfaces allow developers to man-
age relational data in applications and include mechanisms that are meant
to be used when trying to define classes for data objects and for performing
queries.

JDO uses annotations on Java classes (POJO’s) to describe how instances
of the class are stored in the Datastore as entities, and how entities are
recreated as instances when retrieved from the datastore. At the moment
Datastore supports the use of JPA version 1.0. JPA also requires the use
of annotations as in JDO but it also requires a persistence.xml file to be
added which indicates to App Engine how to use the Datastore with this
specific application. In order to make use of the App Engines persistence
capabilities all objects used must be serializable.

All these features make App Engine a very attractive solution for deploy-
ing web applications that can scale without manual provisioning of computing
resources.

Microsoft Azure

Azure is a Platform as a Service (PaaS) cloud offering from Microsoft [14].
It provides a platform for running mainly Windows applications and storing
data in the cloud. These applications could be existing Windows applica-
tions that have been modified to run on cloud, or brand new ones written
specifically for Microsoft Azure.

Developers can create applications for Microsoft Azure using familiar
tools such as Visual Studio 2010. Azure applications are usually written
using the .NET libraries, and are compiled to the Common Language Run-
time (CLR). However, there is also support for the Java, Ruby and PHP
languages.

30 A. Ashraf et al.

Developers get a choice of language, but cannot control the underlying
operating system or runtime. The platform provides a degree of automatic
network configuration failover and scalability, but requires the developer to
specify some application properties in order to do so.

The main components of the Windows Azure platform are:

e Windows Azure: Provides a Windows-based environment for running
applications and storing data on servers in Microsoft data centers.

e SQL Azure: Provides data services in the cloud based on SQL Server.

e Windows Azure platform AppFabric: Provides cloud services for con-
necting applications running in the cloud.

Microsoft Azure may be a good solution to deploy existing applications
for Windows and .NET platform. However, it raises the question on how
well applications that have not been designed for the cloud can be scaled in
the first place.

Heroku

Heroku [30] is a cloud application platform for the Ruby programming lan-
guage. It was founded in 2007 by Orion Henry, James Lindenbaum, and
Adam Wiggins. Heroku architecture consists of six components: HTTP
reverse proxy, HTTP cache, routing mesh, dyno grid, SQL database with
replication, and memory cache.

HTTP reverse proxy is the entry point for all requests coming into the
platform. These front-end servers are used to manage DNS, load balancing,
and fail-over. Heroku uses Nginx (http://wiki.nginx.org/Main) as its
proxy.

All requests go through a HTTP cache (Varnish) [55]. If the requested
content is available in the cache (a hit), the cache responds immediately and
the request never reaches the application servers.

The routing mesh is a distributed pool of dynamic HTTP routers that
balances requests across applications, dynos described below, tracks load,
and intelligently routs traffic to available resources. The mesh easily handles
frequent and instantaneous registration and de-registration of dynos. It is
implemented using Erlang.

Actual application logic runs inside a dyno process. The number of dynos
running for an application can be increased or decreased dynamically. Ac-
cording to the platform provider, it takes less than two seconds to start a

Introduction to Cloud Computing Technologies 31

dyno for most applications. The dyno grid is spread across a large pool of
server instances. The size of this pool varies with load.

Heroku provides a fully featured SQL database (PostgreSQL) for every
application and an in-memory cache (Memcached). A dyno is a single process
running Ruby code on a server in the dyno grid. In terms of computing power,
four dynos are equivalent to one CPU-core on other systems. Each dyno is
independent and includes the following layers:

e POSIX environment (Debian Linux).

e The Ruby VM, which then loads the application.
e The Thin application server.

e The Rack web server interface.

Rails web framework. It is also possible to use other Rack-compliant
frameworks.

We consider Heroku to be conceptually similar to the Google Application
Engine (GAE) from a technical point of view. However there are several
important differences worth mentioning:

e Heroku supports the Ruby programming language, while GAE supports
Python and JVM languages.

e Heroku applications can use a SQL database.

e Heroku allocation of application threads is performed manually by the
application provider. Thread allocation is automatic in GAE.

1.4.3 Software as a Service

Software as a Service (SaaS) can be considered as the most service oriented
way to use cloud. So far, SaaS has proven useful as a business model among
the cloud approaches. In SaaS, complete software systems that are ready-
to-use is hosted in the software providers’ servers and is offered to users to
use over internet. The end-user willing to use this system pays the software
provider a subscription fee for the service. This is completely different form
the traditional way of software distribution and use, in which end-users need
to purchase the license from the software provider and then install and run
the software directly form on-site servers. Thus, SaaS allows some serious
cost cutting for the companies (end-users) as they can avoid maintenance
costs, licensing costs and the costs of the hardware required to run servers
on-site.

32 A. Ashraf et al.

Examples of such systems include the following:
e Salesforce (http://salesforce.com)
e Facebook (http://www.facebook.com/)

e Zynga farmwille game (http://www.farmville.com/)

Salesforce

Salesforce.com offers Customer Relationship Management (CRM) applica-
tion services in the Software as a Service (SaaS) Industry [47, 57]. For end
users, it offers services (applications) to industries and businesses of all sizes
through online access, with minor implementation and no on-premise instal-
lation or maintenance of software or physical servers. These applications can
be used to systematically record, store business data and to optimize differ-
ent aspects of a company’s business including sales, marketing, partnerships,
and customer service. But due to the fact that CRM solutions should dif-
fer from one company to another, customization is obvious. That’s why the
cloud platform Force.com came into existence. Force.com [44] provides de-
velopers a platform to create data-oriented business applications which run
against the salesforce.com database. This platform uses its own programming
language called Apex. It has the following platforms [44]:

e Collaboration Platform: Chatter is a real time collaboration platform
that brings together people, data, and content in a secure, private,
trusted social framework. It facilitates creating customized profile
across multiple business applications; provide real-time monitoring of
business activities; secured content sharing; APIs to create new collab-
oration applications as add-ons; integration with other social networks
like facebook and twitter.

e Development Platform: Development platform provides following ser-
vices,

— Database customization: Users can create and customize database
relationships, formula fields, validation rules, reporting, tagging,
auditing, and searches using the Web-based environment or the
Eclipse-based IDE. It also generates user interface based on the
data model defined which can be edited with page layout editor.

— Programmable UI: User can build interfaces with customized be-
havior and look & feel. Force.com pages use a standard model-
view-controller (MVC) design, HTML, and web technologies such

Introduction to Cloud Computing Technologies 33

as CSS, AJAX, and Adobe Flash and Flex. It also has 60 pre-
defined components that can be assembled with minimal coding
in building-block fashion. Force.com also provides an IDE to im-
plement cloud-based RIAs which can be deployed through the
browser via the Adobe flash player, or directly to the desktop
using the Adobe AIR runtime. It runs seamlessly online or of-
fline while taking full advantage of the security, scalability, and
reliability of Force.com.

— Programmable Cloud logic: Force.com code has similar syntax to
Java and C+#. Its Eclipse-based IDE can be used to create, modify,
test and deploying applications.

— Visual process manager: Visual Process Manager, along with
workflow and approvals, enables users to rapidly design and run
any business process in the cloud without infrastructure, software,
or code.

— Mobile deployment: Users can create complex mobile applications
with point-and-click ease that work across BlackBerry, iPhone,
Windows Mobile, and others with offline mobile access to key

Salesforce CRM data.

e Cloud Infrastructure: Force.com is based on a multitenant architecture
that makes it secure, reliable, and elastic. It has ISO 27001 security cer-
tification and used by nearly 60,000 companies including Cisco, Japan
Post Network, and Symantec. It provides real time query optimization,
upgradation, and scalability.

Facebook

Facebook is a social networking website that provides following services as
SaaS to its users: Publisher (used to post information and messages which
appear on the user’s own Wall), Wall (space on each user’s profile page
that allows friends to see and post messages), Photo and video uploads,
Gifts (virtual gift shop), Marketplace (allows users to post free classified ads
in different catagories), Status updates, Events (to organize and notify the
community with new events), Networks, groups and like pages, Chat, Pokes
(to attract the attention of another user).

Facebook also provides platform that consists of a set of APIs and tools
for developing social networking applications [38]. It is possible to develop
Facebook applications using external server capacities from Cloud computing
service providers like Amazon or Joyent [38].

34

A. Ashraf et al.

In general, there are two types of applications on Facebook [22]:

e F'BML Canvas applications: This kind of applications are rendered by
Facebook using FBML (Facebook Markup Language). The application

is hosted by the developer on their own server.

e [Frame Canvas applications and websites using Facebook: This kind
of applications are usually rendered by the developer’s server with-
out using Facebook as an intermediary. IFrame Canvas applications
are architecturally very similar to websites which incorporate data and

widgets from Facebook.

Although the two types of applications do roughly the same things, they

differ in the way user data is retrieved from Facebook, display static content
and perform optimization.

The list of APT’s and SDK’s currently provided by facebook platform [22]

to develop applicaiton on Facebook are as follows:

e Core APIs:

— Graph API: The Graph API can be used to read and write ob-

jects and connections in the Facebook social graph. Objects can
be for example, album, photo, event, link, note, status message,
video and so on. Whereas connections can be friend relationships,
shared content, and photo tags. Every object in the social graph
has a unique id and the data associated with the object can be
fetched using that id.

Social plugins: Social plugins are the extensions of Facebook.
These plugins are designed for not to share personal data with
the sites on which they appear, but to show users with their ac-
tivities on the facebook. These social plugins can be added to a
site with a line of HTML code.

e Advanced APIs:

— Facebook Query Language (FQL): FQL provides a SQL-style in-

terface to query the data exposed by the Graph API. Batching
multiple queries into a single call is possible. Query response for-
mat can be specified as either XML or JSON with the format
query parameter.

Introduction to Cloud Computing Technologies 35

— Facebook Markup Language (FBML): FBML is used to build
Facebook applications that can be hooked into several Facebook
integration points, including the profile, profile actions, and can-
vas. FBML is HTML extension and is used in traditional FBML
Canvas applications, and is rendered by Facebook directly.

— XFBML is also a HTML extension provided by Facebook platform
that can be used to incorporate FBML into an HTML page on a
Facebook Connect (a set of API’s to provide trusted connection
between facebook and developer site) site or an iframe application.

e Facebook SDKs:

— Android SDK (unofficial).

— JavaScript SDK: JavaScript is used to access features of the Graph
API. Tt also provides client-side functionality for authentication
and sharing. Its recommended to load the SDK asynchronously
in the site for better efficiency.

— PHP SDK: It also supports access to Graph API.

— Python SDK: This client library is designed to support the Face-
book Graph API and the Facebook JavaScript SDK, which is the
canonical way to implement Facebook authentication.

— iPhone SDK: This mobile SDK is a Objective-C code that can
be used to connect users’ Facebook accounts with a mobile ap-
plication. User authorization is required to fetch user profile data
from the Graph API and to publish messages on user’s wall. Face-
book uses OAuth 2.0 protocol for authentication and authoriza-
tion. There are also releases for PHP and Python SDKs for the
Graph API to support mobile application development.

All the above Facebook SDKs are open source and are available on GitHub.

Zynga

Zynga is a social game developer, which develops games to play on social
networks such as Facebook and MySpace, on mobile devices like the iPhone,
on MSN games and my yahoo. Zynga makes some of the most popular
social networking games that run on Facebook which includes Mafia Wars,
Farmville, and Cafe World. The company’s games attract 235 million users a
month, which is more than half of Facebook’s worldwide total of 400 million
users [32].

36 A. Ashraf et al.

1.4.4 Discussion

Since Cloud Computing has become a buzzword only relatively recently, there
are no dominant technology designs yet that would be used predominantly.
However, there are certain emerging trends, especially when approaching the
development from programming perspective.

To begin with, although the paradigm shift from client-side programs to
running the majority of applications in the cloud per se does not prescribe
any new programming techniques, there have been some recent trends that
deserve attention. However, in practice the trend seems to be that developers
are increasingly using web technologies and scripting, as pointed out in [43].
In part, we believe that this is a consequence of the availability of increas-
ing computing resources, but also the fact that modifiability, extendability
and the access to ready-made web-enabled implementations simply are more
important than the development of the most optimized implementation.

Finally, we fundamentally believe that it still remains a challenge to com-
pose reliable software systems that are distributed and scalable in nature.
Consequently, there is a need for improved understanding and better tools
and methods for developing applications for any cloud programming plat-
form.

1.5 Conclusions

This chapter has looked at cloud computing from both the application devel-
opers perspective as well as from looking at the technologies employed inside
the cloud.

Virtualization is nowadays a mature technology that is heavily used both
in clouds and in datacenters to remove the dependency of a server from the
physical hardware it is running on, easing maintenance including hardware
replacement and fail-over.

On the application development side it can be seen that the Web appli-
cation development methodologies such as RESTful services and high level
programming frameworks similar to the Google App Engine and Ruby on
Rails are key building blocks for building Web applications hosted on the
cloud.

Cloud computing can be used as a direct drop-in replacement for tra-
ditional applications using technologies such as Amazon EC2 and Amazon
EBS. They basically provide virtual (Linux/Windows) machines and virtual
(NAS) storage with traditional database products used as data storages. If
the application does not have to scale to very large user numbers this is a
viable alternative. It basically just uses clouds as virtualized hardware to

REFERENCES 37

run traditional applications. If scalability to large user counts is needed, the
other approach is to use scalable datastores such as, for example, Google App
Engine Datastore, Cassandra, or Amazon SimpleDB to create scalable Web
applications. In this framework the value add is that the cloud computing
provider provides many of the pieces of the infrastructure to monitor and
scale the applications to very large numbers of users but this requires some
re-architecting the applications for scalability. The use of Web application
development frameworks is a good start as it uses a similar division of work
between the application itself and the datastore (database) used to store the
data for the application.

To make cloud application deployment and administration cost-effective
for large scale applications, scalable cloud based systems are generally archi-
tected in a shared-nothing architectural style where loosing any single server
due to hardware failures will not effect the behavior of the cloud applications,
as the cloud infrastructure will reconfigure the load of the failing server to
the remaining servers. The key techniques to achieve this is to have high
redundancy in the datastore system for fault tolerance, and to never store
any persistent data on the servers themselves: all data on the servers is just
cached or preprocessed contents of the real application data that is stored in
the datastore.

When selecting if and how to employ the cloud technologies one should
consider the scalability needs of the developed application as this gives
requirements on the employed development and datastore methodologies.
Many of the advanced cloud technologies are still in active development, and
clear suggestions on which technologies to employ for which applications are
not yet straightforward. Also the financial issues of cloud computing need
to be considered, as common cloud pricing structure (pay-as-you-go) is at its
best for handling computing loads that are bursty and hard to predict in ad-
vance and therefore carry investment risks in server and datacenter capacity
planning.

References

[1] 7th Symposium on Operating Systems Design and Implementation
(OSDI ’06), November 6-8, Seattle, WA, USA. USENIX Association,
2006.

[2] Amazon Elastic Block Store. http://aws.amazon.com/ebs/.
[3] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2/.

38

A. Ashraf et al.

AMD Virtualization (AMD-V™) Technology. http://sites.amd.
com/us/business/it-solutions/virtualization/Pages/amd-
V.aspx.

H. Amur et al. “Robust and Flexible Power-Proportional Storage”.
In: ACM Symposium on Cloud Computing (ACM SOCC). 2010.

M. Armbrust et al. “A view of cloud computing”. In: Commun. ACM
53.4 (2010), pp. 50-58.

M. Armbrust et al. Above the Clouds: A Berkeley View of Cloud Com-
puting. Technical Report UCB/EECS-2009-28. Available from: http:
/ /www . eecs . berkeley . edu/Pubs/TechRpts /2009 /EECS-2009 -
28 . pdf. University of California at Berkeley, Electrical Engineering
and Computer Sciences, 2009, p. 23.

L. A. Barroso and U. Hélzle. “The Case for Energy-Proportional Com-
puting”. In: IEFE Computer 40.12 (2007), pp. 33-37.

C. Baun and M. Kunze. “Building a private cloud with Eucalyptus”.
In: E-Science Workshops, 2009 5th IEEE International Conference
on. 2009, pp. 33 —=38. DOI: 10.1109/ESCIW.2009.5408006

M. Burrows. “The Chubby Lock Service for Loosely-Coupled Dis-
tributed Systems”. In: OSDI. USENIX Association, 2006, pp. 335
350.

T. D. Chandra, R. Griesemer, and J. Redstone. “Paxos made live: An
engineering perspective”. In: PODC. Ed. by 1. Gupta and R. Watten-
hofer. ACM, 2007, pp. 398-407. 1SBN: 978-1-59593-616-5.

F. Chang et al. “Bigtable: A Distributed Storage System for Struc-
tured Data”. In: OSDI. USENIX Association, 2006, pp. 205-218.

F. Chang et al. “Bigtable: A Distributed Storage System for Struc-
tured Data”. In: ACM Trans. Comput. Syst. 26.2 (2008).

D. Chappell. Introducing The Windows Azure Platform. Tech. rep.
Microsoft. Corporation, 2009.

Comparison of platform virtual machines. http://en.wikipedia.
org/wiki/Comparison_of_platform_virtual_machines.

B. F. Cooper et al. “PNUTS: Yahoo!’s hosted data serving platform”.
In: PVLDB 1.2 (2008), pp. 1277-1288.

J. Dean and S. Ghemawat. “MapReduce: Simplified Data Processing
on Large Clusters”. In: OSDI. 2004, pp. 137-150.

REFERENCES 39

[18]

[19]

[20]

J. Dean and S. Ghemawat. “MapReduce: Simplified data processing
on large clusters”. In: Commun. ACM 51.1 (2008), pp. 107-113.

G. DeCandia et al. “Dynamo: Amazon’s highly available key-value
store”. In: SOSP. Ed. by T. C. Bressoud and M. F. Kaashoek. ACM,
2007, pp. 205-220. 1SBN: 978-1-59593-591-5.

H. Douglas and C. Gehrmann. “Secure Virtualization and Multi-
core Platforms State-of-the-Art report”. In: SICS Technical Report
T2009:14A (2010), pp. 1-71. URL: http://soda.swedish-ict.se/
3800/.

Extend Your Virtual IT Infrastructure With Amazon Virtual Private
Cloud. Tech. rep. Amazon Web Services, 2010.

Facebook Developers. http : //developers . facebook . com/docs/.
2010.

R. T. Fielding and R. N. Taylor. “Principled design of the modern Web
architecture”. In: ACM Trans. Internet Techn. 2.2 (2002), pp. 115—
150.

A. Fox et al. “Cluster-Based Scalable Network Services”. In: SOSP.
1997, pp. 78-91.

S. Ghemawat, H. Gobioff, and S.-T. Leung. “The Google file system”.
In: SOSP. Ed. by M. L. Scott and L. L. Peterson. ACM, 2003, pp. 29—
43. 1SBN: 1-58113-757-5.

S. Gilbert and N. A. Lynch. “Brewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services”. In: SIGACT
News 33.2 (2002), pp. 51-59.

Google App Engine. http://code.google.com/appengine/.

N. Gude et al. “NOX: towards an operating system for networks”. In:
SIGCOMM Comput. Commun. Rev. 38.3 (2008), pp. 105-110. 1SSN:
0146-4833. DOI: http://doi.acm.org/10.1145/1384609.1384625.

T. Hérder and A. Reuter. “Principles of Transaction-Oriented
Database Recovery”. In: ACM Comput. Surv. 15.4 (1983), pp. 287—
317.

Heroku Homepage. http://heroku. com/.

B. Hindman et al. Nezus: A Common Substrate for Cluster Comput-
ing. Tech. rep. UCB/EECS-2009-158. EECS Department, University
of California, Berkeley, 2009. URL: http://www . eecs . berkeley .
edu/Pubs/TechRpts/2009/EECS-2009-158.html.

[40]

[41]

[42]

[43]

[44]

A. Ashraf et al.

Information Week. http://www.informationweek.com/. 2010.

Intel®) Virtualization Technology. http://www.intel.com/technol
ogy/virtualization/technology.htm?iid=tech_vt+tech.

KVM Homepage. http://www.linux-kvm.org/page/Main_Page.

J. Laine. Cloud Storage Systems in Telecom Services. Master’s The-
sis, Aalto University, School of Science and Technology, Degree Pro-
gramme in Computer Science and Engineering. 2010.

A. Lakshman and P. Malik. “Cassandra - A Decentralized Structured
Storage System”. In: LADIS 2009: The 3rd ACM SIGOPS Interna-
tional Workshop on Large Scale Distributed Systems and Middleware.
20009.

L. Lamport. “The Part-Time Parliament”. In: ACM Trans. Comput.
Syst. 16.2 (1998), pp. 133-169.

A. Lenk et al. “What’s Inside the Cloud? An Architectural Map of
the Cloud Landscape”. In: ICSE ’09: Proceedings of the Workshop
on Software Engineering Challenges in Cloud Computing. Available
from: http://www.icse-cloud09.org/cloud-dashboard. 2009.

N. McKeown et al. “OpenFlow: enabling innovation in campus net-
works”. In: SIGCOMM Comput. Commun. Rev. 38.2 (2008), pp. 69—
74. 13SN: 0146-4833. DOI: http://doi.acm.org/10.1145/1355734.
1355746.

P. Mell and T. Grance. The NIST Definition of Cloud Computing
v15. Version 15 available from: http://csrc.nist . gov/groups/
SNS/cloud-computing/cloud-def-v15.doc.

D. Nurmi et al. “The Eucalyptus Open-Source Cloud-Computing Sys-
tem”. In: CCGRID ’09: Proceedings of the 2009 9th IEEE/ACM Inter-
national Symposium on Cluster Computing and the Grid. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 124-131. 1SBN: 978-0-
7695-3622-4. DOI: http://dx.doi.org/10.1109/CCGRID.2009.93.

D. A. Patterson. “Latency lags bandwith”. In: Commun. ACM 47.10
(2004), pp. 71-75.

L. D. Paulson. “Developers Shift to Dynamic Programming Lan-
guages”. In: Computer 40.2 (2007), pp. 12-15. 1sSN: 0018-9162. poI:
http://dx.doi.org/10.1109/MC.2007.53.

force.com platform. In: http://www.salesforce.com/platform/
cloud-platform/, 2010.

D. Pritchett. “BASE: An ACID Alternative”. In: ACM Queue 6.3
(2008), pp. 48-55.

QEMU Open Source Processor Emulator. http://wiki.qemu.org/
Index.html.

“SalesForce products”. In: http://www.salesforce.com/crm/produ
cts.jsp, 2010.

I. Stoica et al. “Chord: A scalable peer-to-peer lookup protocol for
internet applications”. In: IEEE/ACM Trans. Netw. 11.1 (2003),
pp. 17-32.

I. Stoica et al. “Chord: A scalable peer-to-peer lookup service for
internet applications”. In: SIGCOMM. 2001, pp. 149-160.

M. Stonebraker. “SQL databases v. NoSQL databases”. In: Commun.
ACM 53.4 (2010), pp. 10-11.

M. Stonebraker et al. “MapReduce and parallel DBMSs: Friends or
foes?” In: Commun. ACM 53.1 (2010), pp. 64-71.

N. Tolia et al. “Delivering Energy Proportionality with Non Energy-
Proportional Systems - Optimizing the Ensemble”. In: HotPower. Ed.
by F. Zhao. USENIX Association, 2008.

TrustZone. http://www.arm. com/products/processors/technolo
gies/trustzone.php.

L. M. Vaquero et al. “A break in the clouds: towards a cloud defini-
tion”. In: SIGCOMM Comput. Commun. Rev. 39.1 (2009), pp. 50—
55. ISSN: 0146-4833. DOI: http://doi.acm.org/10.1145/1496091.
1496100.

Varnish Homepage. http://varnish-cache.org/.

S. Wardley, E. Goyer, and N. Barcet. Ubuntu Enterprise Cloud Ar-
chitecture. Tech. rep. Canonical, 2009.

“wikinvest”. In: http://www.wikinvest.com/wiki, 2010.

Wikipedia page for VMWare ESX. http://en . wikipedia. org/
wiki/VMware_ESX.

41

