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Abstract. We consider in this paper the modeling of biological systems
with guarded command models. We focus on the model re�nement prob-
lem: to systematically add details to the variables of a model and thus,
to dynamically specify a model at di�erent levels of detail. We introduce
a notion of re�nement for guarded command models and prove that it is
a natural extension of the model re�nement concept for reaction-based
models. We demonstrate these concepts with a a running example on the
heat shock response.

1 Introduction

Advancement of technology and the abundance of experimental data together
with the growing need to have a deeper understanding of the functions of a cell,
have led to an increase in the size of bio-inspired models in the past years. That
is why simulating and analysing large-scale models have become an interesting
research topic, e.g. building a whole-cell [13] or organ model [2, 21]. Due to the
computational complexity of such models the analysis often involves studying
the sub-models of a larger model with di�erent level of resolutions. This line
of research opens the door to dealing with model re�nement. Model re�nement
focuses on the step-wise construction of models, from small abstract models to
large, detailed ones. This approach ensures model �t preservation at every step
of the development, for more information see [8].

Various methods have been proposed to facilitate model re�nement in dif-
ferent frameworks, e.g., ODE-based models [11], rule-based models [18], Petri
nets [22], biochemical reaction networks [12], π-calculus [20]. The full structural
re�nement of a reaction-based model has been proposed in [11] and [8] introduced
a su�cient condition for �t preserving of the model.

In [12] the authors implemented the de�nitions of [11] to build the re�ned
model of the eukaryotic heat shock response mechanism in four di�erent frame-
works, i.e. ODE-based models, Petri net models, rule-based models and guarded
command models. In this paper we focus on the guarded command models and
speci�cally we provide the mathematical background to prove that the de�ni-
tion of re�nement in the reaction-based framework can be extended to the one
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of guarded command models. The concept of guarded command models was de-
veloped based on guarded command languages �rst introduced in [6]. Guarded
command models are suitable for modelling dynamic systems with alternative
and repetitive constructs which allow for a non-deterministic component in which
the enabled activity is not utterly dependent on the initial input [6].

This paper is structured as follows, in Section 2 we provide the basic de�-
nitions and results related to the quantitative model re�nement. In Section 3,
we present the formal de�nitions related to guarded command models and in
Section 4 we introduce the concept of re�ning a guarded command model and
prove a theorem to show the compatibility of this new de�nition with the def-
inition of re�nement in the reaction-based formalism. We �nally conclude with
some discussions in Section 5.

2 Quantitative model re�nement

Quantitative model re�nement is an approach which focuses on preserving the
quantitative behaviour of the models under study while introducing di�erent
level of details into the model.

Quantitative model re�nement was introduced for rule-based models in [18, 5]
and for reaction-based models in [17, 11]. In this section we present a quantitative
re�nement approach for reaction-based models �rst introduced by [8]. A reaction-
based model M comprises species Σ = {A1, . . .,Am} and reactions R = {r1, . . . ,
rn}, where reaction rj ∈ R are of the form:

rj : s1,jA1 + . . .+ sm,jAm
krj−−→ s′1,jA1 + . . .+ s′m,jAm, (1)

where s1,j , . . . , sm,j , s
′
1,j , . . . , s

′
m,j ∈ N are the stoichiometric coe�cients of rj

and krj ≥ 0 is the kinetic rate constant of reaction rj . We denote by r
(1)
j =

[s1,j , . . . , sm,j ] the vector of stoichiometric coe�cients on the left hand side of

reaction rj and by r
(2)
j = [s′1,j , . . . , s

′
m,j ] the vector of stoichiometric coe�cients

on its right hand side. We also denote reaction rj as r
(1)
j

krj−−→ r
(2)
j .

In this approach all species are re�ned simultaneously. It means that every
species in the initial model M is substituted by a non-empty set of species in its
re�ned model MR, based on a species re�nement relation ρ.

De�nition 1 ([8]). Given two sets of species Σ and Σ′, and a relation ρ ⊆
Σ×Σ′, we say that ρ is a species re�nement relation i� it satis�es the following
conditions:

1. for each A ∈ Σ there exists A′ ∈ Σ′ such that (A,A′) ∈ ρ;
2. for each A′ ∈ Σ′ there exists exactly one A ∈ Σ such that (A,A′) ∈ ρ;
3. Σ′ =

⋃
A∈Σ

ρ(A).

We denote ρ(A) = {A′ ∈ Σ′ | (A,A′) ∈ ρ}. We say that all species A′ ∈ ρ(A)
are siblings.
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We next de�ne the re�nement of a vector (of stoichiometric coe�cients), of
a reaction, and of a reaction-based model.

De�nition 2 ([8]). Let Σ = {A1, . . . , Am} and Σ′ = {A′1, . . . , A′p} be two sets
of species, and ρ ⊆ Σ ×Σ′ a species re�nement relation.

1. Let α = (α1, . . . , αm) ∈ NΣ and α′ = (α′1, . . . , α
′
p) ∈ NΣ′

. We say that α′ is
a ρ-re�nement of α, denoted α′ ∈ ρ(α), if∑

1≤j≤p
A′
j∈ρ(Ai)

α′j = αi, for all 1 ≤ i ≤ m.

2. Let r and r′ be two reactions over Σ and Σ′, resp.:

r : s1A1 + . . .+ smAm
kr−→ s′1A1 + . . .+ s′mAm;

r′ : t1A
′
1 + t2A

′
2 + . . .+ tpA

′
p

k′r−→ t′1A
′
1 + t′2A

′
2 + . . .+ t′pA

′
p.

We say that r′ is a ρ-re�nement of r, denoted r′ ∈ ρ(r), if

r′
(1) ∈ ρ(r(1)) and r′(2) ∈ ρ(r(2)).

3. Let M = (Σ,R) and M ′ = (Σ′, R′) be two reaction-based models, and
ρ ⊆ Σ ×Σ′ a species re�nement relation. We say that M ′ is a ρ-structural
re�nement of M , denoted M ′ ∈ ρ(M), if

R′ ⊆
⋃
r∈R

ρ(r) and ρ(r) ∩R′ 6= ∅ ∀r ∈ R.

In case R′ =
⋃
r∈R ρ(r), we say M

′ is the full structural ρ-re�nement of M .

In the following example we provide a re�nement of the heat shock response.
The heat shock response is a highly conserved defence mechanism within a cell.
Here we use the heat shock response model proposed in [19].

Example 1. The reactions provided in Table 1 describe the heat shock response
process within a cell. When the cell is exposed to the stress the proteins start to
misfold (reaction (10) in Table 1) which can eventually cause the cell death. To
counter the misfolding of proteins the expression of heat shock proteins (hsp's),
increases. Consequently hsp's bind to misfolded proteins and help assist them
in their correct refolding (reactions (11),(12) in Table 1) thus preventing multi-
protein aggregation and cell death. The trimers formed by hsf (reactions (1)
and (2)) regulate the transcription of hsp-encoding genes and the subsequent
synthesis of hsp (reactions (3) and (4)). The hsp's downregulate their expression
levels by binding to hsf3: hse's, hsf3's, hsf2's and hsf's (reactions (5)-(8)) and
breaking down the complexes, thus stopping the expression activity.

In this example we consider the re�nement of hsf molecules as described
in [11] which focuses on the acetylation status (ON/OFF) of hsf proteins. Protein
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acetylation is to substitute a hydrogen atom by an acetyl group in a chemical
compound and it is highly relevant to the heat shock response regulation [24].

We re�ne hsf to include two subtypes: rhsf(1) where the K80 residue is acetylated
and rhsf where it is not acetylated. To re�ne the other complexes including hsf,
i.e. hsf2, hsf3 and hsf3: hse, we count the number of hsf of the complex that have
the K80 residue acetylated. The re�nement is as follows:

� hsf is re�ned to {rhsf, rhsf(1)},
� a dimer molecule hsf2 is re�ned to {rhsf2, rhsf2(1), rhsf2(2)},
� and a trimer molecule hsf3 is re�ned to {rhsf3, rhsf3(1), rhsf3(2), rhsf3(3)},

where the superscript denotes the number of acetylated sites. This leads to an
expansion of the model from 10 species and 17 irreversible reactions to 20 species
and 55 irreversible reactions.

Table 1: The molecular model of the eukaryotic heat shock response
proposed in [19].

No. Reaction No. Reaction
(1) 2 hsf � hsf2 (7) hsp+ hsf3 → hsp: hsf +2 hsf
(2) hsf + hsf2 � hsf3 (8) hsp+ hsf3: hse→ hsp: hsf +2 hsf + hse
(3) hsf3 + hse � hsf3: hse (9) hsp→ ∅
(4) hsf3: hse→ hsf3: hse+ hsp (10) prot→ mfp
(5) hsp+ hsf � hsp: hsf (11) hsp+mfp � hsp:mfp
(6) hsp+ hsf2 → hsp: hsf + hsf (12) hsp:mfp→ hsp+ prot

Table 2: The list of reactions for the re�ned heat shock response
model. For an irreversible reaction ki denotes its kinetic rate con-
stant. For a reversible reaction k+i and k−i denote the kinetic rate
constants of its `left-to-right' and `right-to-left' directions, resp.

Reaction Kinetic rate constants

2 rhsf � rhsf2 k+1 , k
−
1

rhsf + rhsf(1) ↔ rhsf2
(1) k+2 , k

−
2

2rhsf(1) � rhsf2
(2) k+3 , k

−
3

rhsf + rhsf2 � rhsf3 k+4 , k
−
4

rhsf(1) + rhsf2 � rhsf3
(1) k+5 , k

−
5

rhsf +rhsf2
(1) � rhsf3

(1) k+6 , k
−
6

rhsf(1) + rhsf2
(1) � rhsf3

(2) k+7 , k
−
7

rhsf +rhsf2
(2) � rhsf3

(2) k+8 , k
−
8

rhsf(1) + rhsf2
(2) � rhsf3

(3) k+9 , k
−
9

rhsf3 + rhse � rhsf3: rhse k+10, k
−
10

Continued on next page
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Table 2 � Continued from previous page

Reaction Kinetic rate constants

rhsf3
(1) + rhse � rhsf3

(1): rhse k+11, k
−
11

rhsf3
(2) + rhse � rhsf3

(2): rhse k+12, k
−
12

rhsf3
(3) + rhse � rhsf3

(3): rhse k+13, k
−
13

rhsf3: rhse→ rhsf3: rhse+ rhsp k14
rhsf3

(1): rhse→ rhsf3
(1): rhse+ rhsp k15

rhsf3
(2): rhse→ rhsf3

(2): rhse+ rhsp k16
rhsf3

(3): rhse→ rhsf3
(3): rhse+ rhsp k17

rhsp+ rhsf � rhsp: rhsf k+18, k
−
18

rhsp+rhsf(1) � rhsp: rhsf(1) k+19, k
−
19

rhsp+ rhsf2 → rhsp: rhsf + rhsf k20
rhsp+rhsf2

(1) → rhsp: rhsf +rhsf(1) k21
rhsp+rhsf2

(1) → rhsp: rhsf(1) + rhsf k22
rhsp+rhsf2

(2) → rhsp: rhsf(1) +rhsf(1) k23
rhsp+ rhsf3 → rhsp: rhsf +2 ∗ rhsf k24
rhsp+rhsf3

(1) → rhsp: rhsf +rhsf(1) + rhsf k25
rhsp+rhsf3

(1) → rhsp: rhsf(1) +2 ∗ rhsf k26
rhsp+rhsf3

(2) → rhsp: rhsf +2rhsf(1) k27
rhsp+rhsf3

(2) → rhsp: rhsf(1) +rhsf(1) + rhsf k28
rhsp+rhsf3

(3) → rhsp: rhsf(1) +2rhsf(1) k29
rhsp+ rhsf3: rhse→ rhsp: rhsf +2 rhsf + rhse k30
rhsp+ rhsf3

(1): rhse→ rhsp: rhsf(1) +2 rhsf + rhse k31
rhsp+ rhsf3

(1): rhse→ rhsp: rhsf +rhsf(1) + rhsf + rhse k32
rhsp+ rhsf3

(2): rhse→ rhsp: rhsf(1) +rhsf(1) + rhsf + rhse k33
rhsp+ rhsf3

(2): rhse→ rhsp: rhsf +2rhsf(1) + rhse k34
rhsp+ rhsf3

(3): rhse→ rhsp: rhsf(1) +2rhsf(1) + rhse k35
rhsp→ ∅ k36
rprot→ rmfp k37
rhsp+ rmfp � rhsp: rmfp k+38, k

−
38

rhsp: rmfp→ rhsp+ rprot k39
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This re�nement can be described via the following species re�nement relation:

ρ ={(hse, rhse), (hsp, rhsp), (prot, rprot), (mfp, rmfp), (hsp:mfp, rhsp: rmfp),

(hsf, rhsf), (hsf, rhsf(1)),

(hsf2, rhsf2), (hsf2, rhsf2
(1)), (hsf2, rhsf2

(2)),

(hsf3, rhsf3), (hsf3, rhsf3
(1)), (hsf3, rhsf3

(2)), (hsf3, rhsf3
(3)),

(hsp: hsf, hsp: rhsf), (hsp: hsf, rhsp: rhsf(1)),

(hsf3: hse, rhsf3: rhse), (hsf3: hse, rhsf3
(1): rhse), (hsf3: hse, rhsf3

(2): rhse),

(hsf3: hse, rhsf3
(3): rhse)}.

The full set of the re�ned reactions is given in Table 2.

3 Guarded command models

The notion of Guarded command language (GCL) was �rst introduced in [6]
to capture the dynamics of alternative and repetitive constructs with a non-
deterministic component in which the enabled activity is not utterly dependent
on the initial input. Markov chains are excellent examples of such systems, for
example continuous time Markov chains (CTMC) are often used to describe the
population processes. In this case, the state of the system is a n-dimensional
vector where the entry on ith position of the vector determines the population
of type i of the model. Note that the changes of the population within a CTMC
system is not deterministic and distinct results can be obtained in di�erent runs
of the system. Various formalisms have been proposed to model the dynamics of
a Markovian model, e.g., stochastic Petri-nets [9], stochastic process algebra [3],
guarded command models [7], etc. In what follows we introduce guarded com-
mand formalism.

3.1 Guarded command formalism

In this section we present the formal de�nition of a guarded command model
(GCM) inspired by Dijkstra's GCL proposed in [6]. Guarded command mod-
els illustrate the dynamics of their underlying process by describing its state
transition classes, i.e. partitions of the set of all transitions. In what follows we
are presenting a description of such transitions which also have been adapted to
develop the PRISM language, see [15].

De�nition 3. LetM be a population model with n variables (species) s1, . . . , sn.
The corresponding state space of M is Zn>0 where Z is the set of integers. We
also denote the ith state of the system with si = (si1, . . . , s

i
n) where s

i
j stands for

the value of the jth variables in the ith state of the system.

In the following de�nition we introduce guarded commands which describe the
behaviour of the system, i.e. how the system transits from one state to the other
over time.
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De�nition 4. Let M be a population model and S its corresponding state space.
A guarded command over M is of form:

[label] guard : rate→ update,

where:

� label is the label of the command,
� guard is a Boolean predicate over variables that indicates which transition

is enabled in the current state, i.e. a command is enabled if the value of its
corresponding guard is true, it is not enabled otherwise,

� If G ⊆ S is the set of all states in which the guard is true, then update is a
function u : G→ S,

� If G ⊆ S is the set of all states in which the guard is true, then rate is a
function r : G→ R≥0, where R is the set of real numbers.

We call GM = (M,ΓM ) a guarded command model where ΓM is a set of
guards over M .

3.2 Guarded command implementation of a reaction-based model

In this section we propose the notion of the GCM corresponding to a reaction-
based model. The following de�nition is adapted from [4].

De�nition 5. Let M = (Σ,R) be a reaction-based model where Σ is the set
of species and R is the set of reactions. We de�ne the corresponding GCM,
GM = (σM , ΓM ), as follows:

� σM = {ai | Ai ∈ Σ} is the set of variables of GM ; we denote by Nai ∈ N the
upperbound for ai;

� for any reaction r ∈ R of the form:

r : s1A1 + . . .+ smAm
kr−→ s′1A1 + . . .+ s′mAm,

we write the corresponding guard, γr ∈ ΓM , as follows:

[γr]
m∧
i=1

(si ≤ ai ≤ Nai − s′i)→ kr
m∏
i=1

asii :
m∧
i=1

(a′i = ai + s′i − si).

We denote by ΓM the set of guards of GM .

Example 2. The guard corresponding to reaction (3) of Table 1 is expressed as
follows:

[γ3] hsf3 ≥ 1 ∧ hse ≥ 1 ∧ hsf3: hse ≤ N − 1→ hsf3 ∗ hse ∗k5 :
(hsf3

′ = hsf3−1) ∧ (hse′ = hse−1) ∧ (hsf3: hse
′ = hsf3: hse+1),

where N represents the upper bound for the level of hsf3: hse in the system. The
full GCM implementation of the heat shock response is presented in Table 3.
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Table 3: The list of reactions for the basic GCM corresponding to HSR.

Guards
[γ1] hsf ≥ 2 ∧ hsf2 ≤ Nhsf2 − 1→ hsf ∗ hsf ∗k1 : (hsf′ = hsf −2) ∧ (hsf2

′ = hsf2 +1)

[γ2] hsf2 ≥ 1 ∧ hsf ≤ Nhsf − 2→ hsf2 ∗k2 : (hsf′ = hsf +2) ∧ (hsf2
′ = hsf2−1)

[γ3] hsf ≥ 1 ∧ hsf2 ≥ 1 ∧ hsf3 ≤ Nhsf3 − 1→ hsf ∗ hsf2 ∗k3 :
(hsf′ = hsf −1) ∧ (hsf2

′ = hsf2−1) ∧ (hsf2
′ = hsf2 +1)

[γ4] ∧ hsf3 ≥ 1 ∧ hsf2 ≤ Nhsf2 − 1 ∧ hsf ≤ Nhsf − 1→ hsf3 ∗k4 :
(hsf′ = hsf +1) ∧ (hsf2

′ = hsf2 +1) ∧ (hsf2
′ = hsf2−1)

[γ5] hsf3 ≥ 1 ∧ hse ≥ 1 ∧ hsf3: hse ≤ Nhsf3:hse − 1→ hsf3 ∗ hse ∗k5 :
(hsf3

′ = hsf3−1) ∧ (hse′ = hse−1) ∧ (hsf3: hse
′ = hsf3: hse+1)

[γ6] hsf3: hse ≥ 1 ∧ hse ≤ Nhse − 1 ∧ hsf ≤ Nhsf − 1→ hsf3: hse ∗k6 :
(hsf3

′ = hsf3 +1) ∧ (hse′ = hse+1) ∧ (hsf3: hse
′ = hsf3: hse−1)

[γ7] hsf3: hse ≥ 1 ∧ hsp ≤ Nhsp − 1 ∧ hsf3: hse ≤ Nhsf3:hse − 1→ hsf3 ∗k7 :
(hsp′ = hsp−1)
[γ8] hsf ≥ 1 ∧ hsp ≥ 1 ∧ hsp: hsf ≤ Nhsf2 − 1→ hsf ∗ hsp ∗k8 :
(hsf′ = hsf −1) ∧ (hsp′ = hsp−1) ∧ (hsp: hsf′ = hsp: hsf +1)

[γ9] hsp: hsf ≥ 1 ∧ hsf ≤ Nhsf − 1 ∧ hsp ≤ Nhsp − 1→ hsf ∗ hsp ∗k9 :
(hsf′ = hsf −1) ∧ (hsp′ = hsp−1) ∧ (hsp: hsf′ = hsp: hsf +1)

[γ10] hsf2 ≥ 1 ∧ hsp ≥ 1 ∧ hsp: hsf ≤ Nhsf2 − 1 ∧ hsf ≤ Nhsf − 1→ hsf2 ∗ hsp ∗k10 :
(hsf2

′ = hsf2−1) ∧ (hsp′ = hsp−1) ∧ (hsp: hsf′ = hsp: hsf +1) ∧ (hsf′ = hsf +1)

[γ11] hsf3 ≥ 1 ∧ hsp ≥ 1 ∧ hsp: hsf ≤ Nhsf2 − 1 ∧ hsf ≤ Nhsf − 2→ hsf3 ∗ hsp ∗k11 :
(hsf3

′ = hsf3−1) ∧ (hsp′ = hsp−1) ∧ (hsp: hsf′ = hsp: hsf +1) ∧ (hsf′ = hsf +2)

[γ12] hsf3: hse ≥ 1 ∧ hsp ≥ 1 ∧ hsp: hsf ≤ Nhsf2 − 1 ∧ hsf ≤ Nhsf − 2∧
hse ≤ Nhse − 1→ hsf3 ∗ hsp ∗k12 : (hsf3: hse

′ = hsf3: hse−1) ∧ (hsp′ = hsp−1)
∧(hsp: hsf′ = hsp: hsf +1) ∧ (hsf′ = hsf +2) ∧ (hse′ = hse+2)

[γ13] hsp ≥ 1→ hsp ∗k13 : (hsp′ = hsp−1)
[γ14] prot ≥ 1 ∧mfp ≤ Nmfp − 1→ prot ∗k14 :
(prot′ = prot−1) ∧ (mfp′ = mfp+1)

[γ15] hsp ≥ 1 ∧mfp ≥ 1 ∧ hsp:mfp ≤ Nhsp:mfp − 1→ hsp ∗mfp ∗k15 :
(hsp′ = hsp−1) ∧ (mfp′ = mfp−1) ∧ (hsp:mfp′ = hsp:mfp+1)

[γ16] hsp:mfp ≥ 1 ∧ hsp ≤ Nhsp − 1 ∧mfp ≤ Nprot − 1→ hsp:mfp ∗k16 :
(hsp:mfp′ = hsp:mfp+1) ∧ (hsp′ = hsp+1) ∧ (mfp′ = mfp−1)
[γ17] hsp:mfp ≥ 1 ∧ hsp ≤ Nhsp − 1 ∧ prot ≤ Nprot − 1→ hsp:mfp ∗k17 :
(hsp:mfp′ = hsp:mfp+1) ∧ (hsp′ = hsp+1) ∧ (prot′ = prot−1)

4 Quantitative re�nement for GCM models

In this section we introduce the quantitative model re�nement for the guarded
command models and we further prove that the corresponding GCM of a re�ned
reaction-based model is equivalent to the GCM re�nement of the basic model.
In the next de�nition we propose an approach to re�ne a guard in a GCM. Our
strategy is similar to the one of the re�nement of reaction models. In this ap-
proach whenever there is a re�ned variable in a guard we replace that guard with
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a set of guards considering all possible re�nements whereas in the re�nement of
reaction networks we would replace each reaction involving any re�ned reactant
by the corresponding set of all possible re�ned reactions.

De�nition 6. Let γr be a guard in a GCM G = (σ, Γ ), of the form

[γr]
m∧
i=1

(si ≤ ai ≤ Nai − s′i)→ kr
m∏
i=1

asii :
m∧
i=1

(a′i = ai + s′i − si)

and ρ ⊆ σ × σ′ a re�nement relation. We say γ′r of the form

[γ′r]
p∧
i=1

(ti ≤ ai ≤ Nai − t′i)→ kr
p∏
i=1

atii :
p∧
i=1

(a′i = ai + t′i − ti)

is a ρ-re�nement of γr, denoted by γ′r ∈ ρ(γr), if γ
′
r
(1) ∈ ρ(γ

(1)
r ) and γ′r

(2) ∈
ρ(γ

(2)
r ), where:

γ
(1)
r = (s1, s2, . . . , sm), γ

(2)
r = (s′1, s

′
2, . . . , s

′
m) and

γ′r
(1)

= (t1, t2, . . . , tp), γ
′
r
(2)

= (t′1, t
′
2, . . . , t

′
p).

We denote Γ ′ = {γ′r | γr ∈ Γ}. We say that the GCM G′ = (σ′, Γ ′) is the full
structural ρ-re�nement of G.

Example 3. The re�ned heat shock response model is built based on the ap-
proach of De�nition 6 can be found in [1]. Due to lack of space we only include
here the guards corresponding to the guard of Example 2:

[γ19] rhsf3 ≥ 1 ∧ rhse ≥ 1 ∧ rhsf3: rhse ≤ N − 1→ rhsf3 ∗ rhse ∗k5 :
(rhsf3

′ = rhsf3−1) ∧ (rhse′ = rhse−1) ∧ (rhsf3: rhse
′ = rhsf3: rhse+1);

[γ20] rhsf3
(1) ≥ 1 ∧ rhse ≥ 1 ∧ rhsf3

(1): rhse ≤ N − 1→ rhsf3
(1) ∗ rhse ∗k5 :

(rhsf3
(1)′ = rhsf3

(1)−1)∧(rhse′ = rhse−1)∧(rhsf3(1): rhse
′
= rhsf3

(1): rhse+1);

[γ21] rhsf3
(2) ≥ 1 ∧ rhse ≥ 1 ∧ rhsf3(2): rhse ≤ N − 1→ rhsf3

(2): rhse ∗ rhse ∗k5 :

(rhsf3
(2)′ = rhsf3

(2)−1)∧(rhse′ = rhse−1)∧(rhsf3(2): rhse
′
= rhsf3

(2): rhse+1);

[γ22] rhsf3
(3) ≥ 1 ∧ rhse ≥ 1 ∧ rhsf3(3): rhse ≤ N − 1→ rhsf3

(3): rhse ∗ rhse ∗k5 :

(rhsf3
(3)′ = rhsf3

(3)−1)∧(rhse′ = rhse−1)∧(rhsf3(3): rhse
′
= rhsf3

(3): rhse+1).

De�nition 7. Let f : Σ → σ and g : Σ′ → σ′ be two bijections and ρ1 ⊆ Σ×Σ′,
ρ2 ⊆ σ × σ′ two re�nement relations. We say that ρ1 and ρ2 are equivalent if
and only if for any A ∈ Σ, A′ ∈ Σ′, (A,A′) ∈ ρ1 i� (f(A), g(A′)) ∈ ρ2.

Let M be a reaction-based model and GM its corresponding GCM, in the
following theorem we prove that the re�nement of GM as proposed in De�ni-
tion 6 is equivalent to the corresponding GCM of full structural re�ned model
of M . The result shows that by applying the re�nement of De�nition 6 we can
successfully extend the concept of re�nement from the reaction-based models to
the guarded command models.
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Theorem 1. Let M = (Σ,R) be a reaction-based model, ρ ⊆ Σ × Σ′ a re-
�nement relation, and Mρ = (Σ′, R′) the full structural ρ-re�nemenet of M . Let
GM = (σ, Γ ) be the GCM corresponding toM and GMρ

= (σρ, Γρ) the GCM cor-
responding to Mρ. Then there exists a re�nement relation ρ′ ⊆ σ×σ′ equivalent
to ρ such that GMρ is the ρ′-re�nement of GM .

Proof. Let Σ = {A1, . . . , Am} and Σ′ = {A′11, . . . , A′1k1 , . . . , A
′
m1, . . . , A

′
mkm
},

such that A′ij ∈ ρ(Ai) for any 1 ≤ i ≤ m and 1 ≤ j ≤ ki. By De�nition 5,
|Σ| = |σ| and |Σ′| = |σρ|. Without loss of generality we assume σ = {a1, . . . , am}
and σρ = {a′11, . . . , a′1k1 , . . . , a

′
m1, . . . , a

′
mkm
}. We de�ne bijections f : Σ → σ

and g : Σ′ → σρ such that f(Ai) = ai and g(A
′
ij) = a′ij for any 1 ≤ i ≤ m and

1 ≤ j ≤ ki. We de�ne the re�nement relation ρ′ ⊆ σ × σρ such that a′ij ∈ ρ′(ai)
for any 1 ≤ i ≤ m and 1 ≤ j ≤ ki. Hence by De�nition 7, ρ and ρ′ are equivalent
re�nement relations.

Let us denote the full structural ρ′- re�nement of GM by G′ = (σρ, Γ
′).

Let γr ∈ Γ be the guard corresponding to reaction r ∈ R. Since ρ and ρ′ are
equivalent re�nement relations, by De�nition 2 we can conclude that for any
r′ ∈ ρ(r), there is a γ′r ∈ ρ′(γr) and viceversa. This concludes the proof of the
theorem.

5 Discussion

In recent years various studies have been conducted spinning around guarded
command models and fuelled by the the development of PRISM (probabilis-
tic model checker) software [15], see for example [10, 14, 4, 16, 23]. This paper
provides a mathematical foundation for the practitioners who deal with the
bio-inspired phenomena modelled within the guarded command framework and
presents a di�erent angle of these topics from the lens of model re�nement which
in turn can give a more detailed perspective and a deeper understanding of the
topic under study.

This paper proposed a re�nement method for guarded command models cor-
responding to the full structural re�nement proposed in [11]. We proved that the
GCM obtained by our method is also an implementation of the re�ned model of
the basic GCM produced by the method of [11]. This gives an algorithm for re-
�ning guarded command models that preserves the re�nement of reaction-based
models.

We did not consider in this paper the numerical setup of guarded command
models and the problem of how to set the numerical setup of the re�ned model
in such a way that various properties between the starting and the re�ned model
(such as model �t) are preserved. We plan to return to this issue in a separate
study.
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