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Abstract–Video transcoding refers to the process of converting a digital
video from one compressed format to another. It is a compute-intensive
operation. Therefore, transcoding of a large number of simultaneous video
streams requires a large-scale distributed system. Moreover, to handle di↵er-
ent load conditions in a cost-e�cient manner, the distributed system should
be dynamically scalable. Infrastructure as a Service (IaaS) clouds currently
o↵er computing resources, such as Virtual Machines (VMs), under the pay-
per-use business model, which can be used to create a dynamically scalable
cluster of video transcoding servers. Determining the number of VMs to
provision for a dynamic cluster is still an open problem. In this chapter, we
present a proactive VM allocation approach to scale video transcoding service
on a given IaaS cloud. For better resource utilization, quality of service, and
cost-e�ciency, we use video segmentation at the Group of Pictures (GOP)
level. The proposed approach is demonstrated in discrete-event simulations
and an experimental evaluation involving di↵erent load patterns. We also
present a prototype implementation of a distributed video transcoder based
on the message passing programming model and a dynamic load balancing
approach.

Keywords-Cloud computing, resource allocation, video transcoding.
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4.1 Introduction

The use of multimedia content is common in our life. It may consist of digital
images, videos, voice, or animation. The use of video is no longer limited to
TV-channels or cinema theaters. There are several user-friendly and inex-
pensive devices available such as cell phones, digital cameras, which can be
used to capture, manipulate and store digital videos. Electronics devices such
as digital computers are used to process video data very e�ciently. Video
production is common nowadays and a large number of digital videos are
uploaded on YouTube1 and other video hosting sites. To store and transmit
a digital video in a cost-e�cient manner, video compression is used. Video
compression is a mature field and several video coding standards are avail-
able such as MPEG-4 [36] and H.264 [37]. However, end-user devices do
not support all video compression formats. Therefore, an unsupported video
format needs to be converted into another format, which is supported by
the target device. Converting a compressed video into another compressed
video is known as video transcoding [35]. There are di↵erent types of video
transcoding, such as bit-rate reduction in order to meet network bandwidth
availability, resolution reduction for display size adoption, temporal transcod-
ing for frame rate reduction, and error resilience transcoding for insuring high
Quality of Service (QoS) [13], [39].

Video transcoding involves decoding and encoding processes. It is a
compute-intensive process, usually performed at the server-side. It may
be done in real-time or in batch processing. However, for an on-demand
video streaming service, if the required video is not available in the desired
format, the transcoding needs to be done on-the-fly in real-time. One of
the main challenges of a real-time video transcoding operation is that it
must avoid over and underflow of the output video bu↵er, which temporarily
stores the transcoded videos at the server-side. The overflow occurs if the
video transcoding rate exceeds the video play rate and the capacity of the
bu↵er. Likewise, the bu↵er underflow may occur when the play rate exceeds
the transcoding rate, while the bu↵er does not contain enough frames either,
to avoid the underflow situation.

Video transcoding of a large number of video streams requires a large-
scale cluster-based distributed system. Moreover, to handle varying amounts
of load in a cost-e�cient manner, the cluster should be dynamically scal-
able. Cloud computing provides theoretically infinite computing resources,
which can be provisioned in an on-demand fashion under the pay-per-use
business model [5]. Infrastructure as a Service (IaaS) clouds currently o↵er

1http://www.youtube.com/
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computing resources, such as Virtual Machines (VMs), storage, and network
bandwidth [32], which can be used to create a dynamically scalable cluster
of video transcoding servers.

In a cloud environment, a video transcoding operation can be performed
in several di↵erent ways. For example, it is possible to map an entire video
stream on a dedicated VM. However, it requires a large number of VMs to
transcode several simultaneous streams. Moreover, transcoding of High Def-
inition (HD) video streams can take more time, which may violate the client-
side QoS requirements of desired play rate [10]. Another approach is to split
the video streams into smaller segments and then transcode them indepen-
dently of one another [21]. In this approach, one VM can be used to transcode
a large number of video segments belonging to di↵erent video streams. More-
over, video segments of one particular stream can be transcoded on multiple
VMs.

In this chapter, we present prediction-based dynamic resource allocation
and deallocation algorithms to scale video transcoding service on a given
IaaS cloud in a horizontal fashion. The proposed algorithms allocate and
deallocate VMs to a dynamically scalable cluster of video transcoding servers.
We use a two-step load prediction method [2], which predicts a few steps
ahead in the future to allow proactive resource allocation. For cost-e�ciency,
we share VM resources among multiple video streams. The sharing of the
VM resources is based on the video segmentation, which splits the streams
into smaller segments that can be transcoded independently of one another.
The proposed approach is evaluated in two simulation-based experiments
involving two di↵erent load patterns. The results show that it provides cost-
e�cient resource allocation for a large number of simultaneous streams while
avoiding over and underflow of the output video bu↵er.

We also present the implementation of a distributed transcoder based
on the message passing programming model on top of an Amazon Elastic
Compute Cloud (EC2)2 cluster. Among di↵erent methods of distributed
computing we have chosen to use Message Passing Interface (MPI)3 because
of its maturity, support, open source nature, scalability, and ease of use.
MPI is a message passing interface for Multiple Instruction Multiple Data
(MIMD)4 distributed memory concurrent computers and workstations [27].
In this programming model, a set of tasks that use their own local memory
during computation can be performed on the same physical machine as well
as across an arbitrary number of machines. Tasks exchange data through

2http://aws.amazon.com/ec2/
3http://www.mcs.anl.gov/research/projects/mpi/
4http://www.springerreference.com/docs/html/chapterdbid/311449.html
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communication channels by sending and receiving messages. This means
that data transfer usually requires cooperative operations to be performed
by each process. MPI provides a library consisting of a set of basic functions
that can be used to write parallel and distributed programs. The program-
mer is thus responsible and free to express all parallelism involved [16], [27].
To deploy the distributed video transcoding framework in a cloud, we se-
lected StarCluster5, which is used for cluster management. It is an open
source cluster computing tool-kit for Amazon EC2. The main purpose of
StarCluster is to automate overall process of building a cluster of VMs in
Amazon EC2, which can be used for parallel and distributed computing.

We proceed as follows. In Section 4.2, we describe video bit stream struc-
ture. Section 4.3 presents the system architecture of the proposed VM allo-
cation approach. Video segmentation is described in Section 4.4. Section 4.5
presents the proposed proactive VM allocation algorithms. Our load predic-
tion approach is detailed in Section 4.6. In Section 4.7, we introduce our
prototype implementation of MPI-based distributed video transcoder and
present our dynamic load balancing algorithm for video transcoding in cloud
computing. Section 4.8 presents simulation results of the proposed VM al-
location approach, while Section 4.9 presents results of the prototype imple-
mentation of our MPI-based distributed video transcoder and our dynamic
load balancing algorithm. Section 4.10 discusses important related works
and Section 4.11 presents conclusion.

4.2 Video Bit Stream Structure

A Video stream is made up of di↵erent types of compressed frames. The
video frames are organized into logical groups known as Group of Picturess
(GOPs) and sequences. As shown in Figure 4.1, a video sequence comprises
a sequence header and one or more GOPs. A GOP consists of di↵erent types
of frames such as I (intra), P (predicted), and B (bi-directional predicted)
containing all necessary information required to decode them.

Both I and P frames can be used as reference frames. However, an I
frame is an independent reference frame that does not require any other
reference frame in the decoding process. I -Frames have the highest quality,
but have the largest size. A GOP starts with an I frame, which is followed by
a number of P and B frames. Both P and B frames always require reference
frames in the decoding process [36]. The P -frames use information from
the previous I -Frames or P -frames to compress the frame. The B -frames

5http://star.mit.edu/cluster/
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Figure 4.1: Structure of a video down to block level [36]

use information from both the previous and next I -Frame or P -Frames. B -
Frames are the smallest in size, but have the least quality.

Frame prediction is used to reduce the size of frames by taking into ac-
count the previous and future frames to further improve the e�ciency of
compressed frames. Furthermore, a frame itself may be divided into smaller
blocks or slices with each slice being able to use frame prediction indepen-
dently of other slices.

A GOP in MPEG-4 can have from 0 to 3 B frames between successive
P frames. Usually, it is 2. The distance between successive I frames is N,
which includes both P and B frames. In many cases, the value of N is 12,
but it can be any value between 1 and a few hundreds.

Di↵erent kinds of frames also require a di↵erent amount of memory. Typ-
ically, I frames require the largest number of bytes to represent images, for
example 300 Kilobytes (KB). The P frames require less memory, for example
160 KB. The B frames require even less, for example 40 KB. The resolution
of a video stream is measured in pixels and is usually written as horizon-
tal x vertical, such as (1280 x 720). The frame-rate of a video is the number
of frames displayed in a second, usually 24 to 30 frames per seconds (fps).

Video coding standards use a YCbCr color space [12] with three di↵erent
components called luma (Y) and chroma (Cb, Cr). The luma component rep-
resents brightness while chroma components represents the color information.
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Figure 4.2: System architecture of the proactive VM allocation approach

A picture is usually divided into smaller parts termed as macroblocks or cod-
ing units. The macroblocks or coding units are the basic building blocks
of video standards and the decoding of frames is performed at this level.
To compress a frame, di↵erent techniques are used at macroblock or coding
unit level such as, frame prediction in either spatial or temporal direction.
The smaller partitions of the macroblocks are termed as blocks or transform
units. The transform coding is performed at block level in various video
coding standards.

4.3 System Architecture

The system architecture of the distributed video transcoding in cloud com-
puting environment is shown in Figure 4.2. It consists of a streaming server,
a video splitter, a video merger, a video repository, a dynamically scalable
cluster of transcoding servers, a load balancer, a master controller, a load
predictor, and a cloud provisioner.

In our system, the end-users or clients may send requests for videos. These
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requests arrive at the streaming server. The streaming server provides the
video streaming service. Streaming is a general term which means that the
data being transfered from one location to another can be used immediately.
In case of video streaming, a video is decoded and played as soon as enough
data has been transferred6.

To transfer multimedia contents (video and audio) over the Internet by
using streaming services such as Video Desk7, media streaming technology
is used, which can deliver the media contents in real-time. At the user end,
parts of a video are downloaded, decoded, and played. The video playing and
downloading happen at the same time. A bu↵er is used to place additional
video contents from the streaming server. The overall process is invisible
to the viewer. The streaming server works as a media servers which sends
streamed video to users connected through di↵erent networks. Since the
main focus of this research work is on video transcoding, we assume that the
streaming server is not a bottleneck.

The video streams in certain compressed formats are stored in the video
repository. The compressed videos can be either source videos or transcoded
videos. The source videos are the original videos and transcoded videos are
obtained from source videos after transcoding. The transcoded videos are
stored as long as it is cost-e�cient to store them. The streaming server ac-
cepts video requests from users and checks if the required video is available in
the video repository. If it finds the video in the desired format and resolution,
it starts streaming the video. However, if it finds that the requested video
is stored only in another format or resolution than the one desired by the
user, it sends the video for segmentation and subsequent transcoding. Then,
as soon as it receives the transcoded video from the video merger, it starts
streaming the video.

The video splitter splits the video streams into smaller segments called
jobs, which are placed into the job queue. Due to inter-dependency among
di↵erent types of frames, video segmentation (splitting) can be performed at
certain points only. When splitting the video, the main issue is to perform
the segmentation of source video so that parts of video can be distributed
among transcoding servers. Section 4.4 discusses video segmentation in more
detail.

The load balancer employs a task assignment policy, which distributes
load on the transcoding servers. In other words, it decides when and to
which transcoding server a transcoding job should be routed. It maintains
a configuration file, which contains information about transcoding servers

6http://www.wimpyplayer.com/docs/faqs/docs/general streaming definition.html
7http://www.videodesk.net/
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that perform the transcoding operations. As a result of dynamic resource
allocation and deallocation operations, the configuration file is often updated
with new information. The load balancer serves the jobs in First In, First Out
(FIFO) order and has only one input queue. The load balancer implements
the shortest queue waiting time policy, which selects a transcoding server with
the shortest queue waiting time. Our dynamic load balancing algorithm is
presented in Section 4.7.

The actual transcoding is performed by the transcoding servers. They
get compressed video segments, perform the required transcoding operations,
and return the transcoded video segments for merging. A transcoding server
runs on a dynamically provisioned VM. Each transcoding server processes one
or more simultaneous jobs. When a transcoding job arrives at a transcoding
server, it is placed into the server’s queue from where it is subsequently
processed.

The master controller implements prediction-based dynamic resource al-
location and deallocation algorithms, as described in section 4.5. For load
prediction, the master controller uses load predictor, which is elaborated in
section 4.6. The cloud provisioner refers to the cloud provisioner in an IaaS
cloud, such as the provisioner in Amazon EC2. It performs the actual lower
level tasks of starting and terminating VMs. The video merger merges the
transcoded jobs into video streams, which form video responses.

The system architecture is similar to our previous work on prediction-
based dynamic resource allocation for video transcoding in cloud comput-
ing [22]. However, in [22] the load balancer implements the shortest queue
length policy, while in this chapter it implements the shortest queue wait-
ing time policy, which provides improved performance. The shortest queue
length policy is based on the queue size alone. Therefore, it does not account
for the execution time of individual jobs in the queue. Whereas, the shortest
queue waiting time policy uses estimated execution time of individual jobs
in the queue to calculate the waiting time of new arriving jobs at the server
queue. In addition to the shortest queue waiting time policy, we introduce
some important enhancements to our VM allocation algorithms.

4.4 Video Segmentation

Distributed computing allows to speedup the transcoding process while main-
taining the same quality of video. Due to inter-dependency among di↵erent
types of frames, video segmentation can be performed at certain points only.
The main problem is to perform the segmentation of source video in such a
way that parts of the video can be distributed among transcoding servers.
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Figure 4.3: Video segmentation

Compressed video files contain di↵erent types of frames (I, P, B) which have
di↵erent compression rates and inter-dependencies among them. Therefore,
one can not split a given video at any particular frame or point. Among the
frame types, an I -frame is an independent frame that can be decoded with-
out any other reference frame. It is also used as a reference frame for other
frames. In a given video, a sequence of frames that constitute an I -frame
and a number of other B and P frames is called a GOP. GOPs are atomic
units that can be transcoded independently of one another. Therefore, for
e�cient use of computing resources, we use video segmentation at the GOP
level.

Video segmentation of four video streams is shown in Figure 4.3. The
output of the video splitter consists of a number of jobs, where each job has
at least one GOP. The video splitter tries to manage segmentation in such
a way that each user gets a smooth video stream from the streaming server.
It takes into account the transcoding time and the play time of the video
segment. Once a video segment is sent for transcoding, the next segment of
the same stream is sent after some delay.

The delay between two jobs during segmentation is based on the play
time of a video segment and the number of transcoded video frames of the
stream in the output bu↵er. If the transcoded frames are below certain
predefined lower threshhold, the stream segmentation is performed with zero
delay. However, if the transcoded frames are above the threshold, the delay
for next video segment is set equal to the play time of previous job.

4.5 Proactive VM Allocation Algorithms

Under-utilization of computing servers in cloud computing is a common prob-
lem. Due to change in the load patterns at di↵erent times, there might be
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some over-provisioning of servers, which increases the overall cost [6], [31].
In addition, the over-utilization of resources is also not desirable due to high
response times. Therefore, automatic VM allocation is essential for cost and
performance e�ciency [40]. In this section, the dynamic VM allocation and
deallocation algorithms for video transcoding in the cloud are presented. For
the sake of clarity, the concepts used in the algorithms and their notation
are summarized in Table 4.1.

The algorithms implement proactive control, which uses a two-step pre-
diction in which the load pattern of the system is tracked and then future
load pattern is predicted. The transcoding servers are added and removed
based on the predicted load and current throughput. Moreover, due to the
VM provisioning delay, a fixed minimum number of transcoding servers is
always maintained to provide an e↵ective service. This is termed as the base
capacity N

B

.
On discrete-time intervals, the master controller obtains the play rate of

all video streams, and sums up the play rates of streams, to get the total
target play rate PR(t

i

). It then obtains the video transcoding rate from
each transcoding server and calculates the total transcoding rate TR(t

i

).
Moreover, for proactive VM allocation, it uses load predictor to predict the
total transcoding rate of all transcoding servers T̂R(t

i

) a few steps ahead in
the future.

The algorithms are designed to be cost-e�cient while minimizing poten-
tial oscillations in the number of VMs [38]. This is desirable because, in
practice, provisioning of a VM takes a few minutes [8]. Therefore, oscilla-
tions in the number of VMs may lead to deteriorated performance. More-
over, since some contemporary IaaS providers, such as Amazon EC2, charge
on hourly basis, oscillations will result in a higher provisioning cost. There-
fore, the algorithms counteract oscillations by delaying new VM allocation
operations until previous VM allocation operations have been realized [20].
Furthermore, for cost-e�ciency, the deallocation algorithm terminates only
those VMs whose renting period approaches its completion.

4.5.1 VM Allocation Algorithm

The VM allocation algorithm is given as Algorithm 4.1. The first two steps
deal with the calculation of the target play rate PR(t

i

) of all streams and the
total transcoding rate TR(t

i

) of all transcoding servers. The algorithm then
obtains the predicted total transcoding rate T̂R(t

i

) from the load predictor.
Moreover, to avoid underflow of the output video bu↵er that temporarily
stores transcoded jobs at the server-side, it considers the size of the output
video bu↵er B

S

(t
i

). If the target play rate exceeds the predicted transcoding
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Table 4.1: Summary of concepts and their notation

count

over

(t
i

) over allocation count at discrete-time t

i

S(t
i

) set of transcoding servers at t
i

S

p

(t
i

) set of newly provisioned servers at t
i

S

c

(t
i

) servers close to completion of renting period at t
i

S

t

(t
i

) servers selected for termination at t
i

PR(t
i

) sum of target play rates of all streams at time t

i

TR(t
i

) total transcoding rate of all servers at time t

i

T̂R(t
i

) predicted total transcoding rate at time t

i

RT (s, t
i

) remaining time of server s at t
i

V (t
i

) set of video streams at t
i

N

P

(t
i

) number of servers to provision at t
i

N

PQ(ti) number of servers to provision at t
i

based on queue length
N

T

(t
i

) number of servers to terminate at t
i

getPR() get PR(t
i

) from video merger
getTR(s) get transcoding rate of server s
getT̂R() get T̂R(t

i

) from load predictor
calN

P

() calculate the value of N
P

(t
i

)
calQN

P

() calculate the value of N
PQ(ti) based on queue length

calN

T

() calculate the value of N
T

(t
i

)
calRT (s, t

i

) calculate the value of RT (s, t
i

)
delay() delay function
provision(n) provision n servers
select(n) select n servers for termination
sort(S) sort servers S on remaining time
terminate(S) terminate servers S
C

T

over allocation count threshold
RT

U

remaining time upper threshold
RT

L

remaining time lower threshold
MAXQL

UT

Maximum Queue length upper threshold
B

L

bu↵er size lower threshold in megabytes
B

S

(t
i

) size of the output video bu↵er in megabytes
B

U

bu↵er size upper threshold in megabytes
N

B

number of servers to use as base capacity
startUp server startup delay
avgQJobs average number of jobs in a server Queue
jobCompletion job completion delay

rate while the bu↵er size B
S

(t
i

) falls below its lower threshold B
L

, the algo-
rithm chooses to allocate resources by provisioning one or more VMs. The
number of VMs to provision N

P

(t
i

) is calculated as follows

N
P

(t
i

) =

&
PR(t

i

)� T̂R(t
i

)
TR(t

i

)
|S(t

i

)|

'
(4.1)
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The algorithm then provisionsN
P

(t
i

) VMs, which are added to the cluster
of transcoding servers. To minimize potential oscillations due to unnecessary
VM allocations, the algorithm adds a delay for the VM startup time. Fur-
thermore, it ensures that the total number of VMs |S(t

i

)| does not exceed the
total number of video streams |V (t

i

)|. The algorithm adjusts the number of
VMs to provision N

P

(t
i

) if |S(t
i

)|+N
P

(t
i

) exceeds |V (t
i

)|. This is desirable
because the transcoding rate of a video on a single VM is usually higher than
the required play rate.

The VM allocation algorithm also takes into account the current load on
servers. It checks the queue lengths of servers and if the average number
of jobs in the queues is above a predefined maximum upper threshold, it
provisions one or more servers. The number of VMs to provision N

P

Q

(t
i

) is
calculated as follows

N
P

Q

(t
i

) =

⇠
avgQJobs

MAXQL
UT

⇡
(4.2)

4.5.2 VM Deallocation Algorithm

The VM deallocation algorithm is presented in Algorithm 4.2. The main ob-
jective of the algorithm is to minimize the VM provisioning cost, which is a
function of the number of VMs and time. Thus, it terminates any redundant
VMs as soon as possible. Moreover, to avoid overflow of the output video
bu↵er, it considers the size of the output video bu↵er B

S

(t
i

). After obtaining
the target play rate PR(t

i

) and the predicted total transcoding rate T̂R(t
i

),
the algorithm makes a comparison. If T̂R(t

i

) exceeds PR(t
i

) while the bu↵er
size B

S

(t
i

) exceeds its upper threshold B
U

, it may choose to deallocate re-
sources by terminating one or more VMs. However, to minimize unnecessary
oscillations, it deallocates resources only when the bu↵er overflow situation
persists for a predetermined minimum amount of time.

In the next step, the algorithm calculates the remaining time of each
transcoding server RT (s, t

i

) with respect to the completion of the renting
period. It then checks if there are any transcoding servers whose remaining
time is less than the predetermined upper threshold of remaining time RT

U

and more than the lower threshold of remaining time RT
L

. The objective is
to terminate only those servers whose renting period is close to completion,
while excluding any servers that are extremely close to the completion of
their renting period and therefore it is not cost-e�cient to terminate them
before the start of the next renting period. If the algorithm finds at least one
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Algorithm 4.1. VM allocation algorithm

1: while true do
2: N

P

(t
i

) := 0, N
P

Q

(t
i

) := 0
3: PR(t

i

) := getPR()
4: TR(t

i

) := 0
5: for s✏S(t

i

) do
6: TR(t

i

) := TR(t
i

) + getTR(s)
7: end for
8: T̂R(t

i

) := getT̂R(TR(t
i

))
9: if T̂R(t

i

) < PR(t
i

) ^ B
S

(t
i

) < B
L

then
10: N

P

(t
i

) := calN
P

()
11: end if
12: if avgQJobs > MAXQL

UT

then
13: N

P

Q

(t
i

) := calQN
P

()
14: end if
15: N

P

(t
i

) := N
P

(t
i

) +N
P

Q

(t
i

)
16: if |S(t

i

)|+N
P

(t
i

) > |V (t
i

)| then
17: N

P

(t
i

) := |V (t
i

)|� |S(t
i

)|
18: end if
19: if N

P

(t
i

) � 1 then
20: S

p

(t
i

) := provision(N
P

(t
i

))
21: S(t

i

) := S(t
i

) [ S
p

(t
i

)
22: delay(startUp)
23: end if
24: end while

such server S
c

(t
i

), it calculates the number of servers to terminate N
T

(t
i

) as

N
T

(t
i

) =

&
T̂R(t

i

)� PR(t
i

)
TR(t

i

)
|S(t

i

)|

'
�N

B

(4.3)

Then, it sorts the transcoding servers in S
c

(t
i

) on the basis of their remaining
time, and selects the servers with the lowest remaining time for termination.
The rationale of sorting of servers is to ensure cost-e�ciency by selecting the
servers closer to completion of their renting period. A VM that has been
selected for termination might have some pending jobs in its queue. There-
fore, it is necessary to ensure that the termination of a VM does not abandon
any jobs in its queue. One way to do this is to migrate all pending jobs to
other VMs and then terminate the VM [8]. However, since transcoding of
video segments takes relatively less time to complete, it is more reasonable
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Algorithm 4.2. VM deallocation algorithm

1: while true do
2: PR(t

i

) := getPR()
3: TR(t

i

) := 0
4: for s✏S(t

i

) do
5: TR(t

i

) := TR(t
i

) + getTR(s)
6: end for
7: T̂R(t

i

) := getT̂R(TR(t
i

))
8: if T̂R(t

i

) > PR(t
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) ^ B
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) > B
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^ count
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) > C
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then
9: for s✏S(t

i

) do
10: RT (s, t

i

) := calRT (s, t
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)
11: end for
12: S
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(t
i

) := {8s✏S(t
i

)|RT (s, t
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) < RT
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^RT (s, t
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) > RT
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}
13: if |S
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)| � 1 then
14: N
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(t
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) := calN
T

()
15: N

T

(t
i

) := min(N
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(t
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), |S
c

(t
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)|)
16: if N

T

(t
i

) � 1 then
17: sort(S

c

(t
i

))
18: S

t

(t
i

) := select(N
T

(t
i

))
19: S(t

i

) := S(t
i

) \ S
t

(t
i

)
20: delay(jobCompletion)
21: terminate(S

t

(t
i

))
22: end if
23: end if
24: end if
25: end while

to let the jobs complete their execution without requiring them to migrate
and then terminate a VM when there are no more running and pending jobs
on it. Therefore, the deallocation algorithm terminates a VM only when
the VM renting period approaches its completion and all jobs on the server
complete their execution. Finally, the selected servers are terminated and
removed from the cluster.

4.6 Load Prediction

The existing load prediction models for web-based systems, such
as [2], [3], [34], can be adapted to predict transcoding rate of the transcoding
servers a few steps ahead in the future. Andreolini and Casolari [2] proposed
a two-step approach to predict future load behavior under real-time con-
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straints. The approach involves load trackers that provide a representative
view of the load behavior to the load predictors, thus achieving two steps.

A load tracker (LT) filters out noise in the raw data to yield a more reg-

ular view of the load behavior [2]. It is a function LT (
�!
S
n

(t
i

)) : Rn ! R,
which inputs a measure s

i

monitored at time t
i

, and a set of previously
collected n measures, that is

�!
S
n

(t
i

) = (s
i�n

, ..., s
i

), and provides a repre-
sentation of the load behavior l

i

at time t
i

[2]. A sequence of LT values
yields a regular view of the load behavior. There are di↵erent classes of LTs,
such as simple moving average (SMA), exponential moving average (EMA),
and cubic spline (CS) [3]. More sophisticated (time-series) models often re-
quire training periods to compute the parameters and/or o↵-line analyses [2].
Likewise, the linear (auto) regressive models, such as ARMA and ARIMA,
may require frequent updates to their parameters [2], [34]. Therefore, in our
approach [7], [22], the load predictor implements an LT based on the EMA
model, which limits the computation delay without incurring oscillations and
computes an LT value for each measure with high prediction accuracy.

The load predictor (LP) is a function LP
h

(
�!
L
q

(t
i

)) : Rq ! R, which inputs

a sequence of LT values
�!
L
q

(t
i

) = l
i�q

, ..., l
i

and outputs a predicted future
value at time t

i+h

, where h > 0 [2]. The LP is characterized by the prediction
window h and the past time window q. Andreolini and Casolari [2] and
Saripalli et al. [34] used linear regression of only two LT values, which are
the first l

i�q

and the last l
i

values in the past time window. Ashraf et al. [7]
and Jokhio et al. [22] used simple linear regression model [28], which takes

into account all LT values
�!
L
q

(t
i

) in the past time window. The LP of the LT
in this approach is based on a straight line defined as

l = �0 + �1t (4.4)

where �0 and �1 are called regression coe�cients, which can be estimated at
runtime based on the LT values [7], [28].

4.7 MPI-Based Distributed Video Transcoder

Our distributed video transcoder is based on the open source FFMPEG8

library. We have modified the original transcoder to execute on multiple
machines. The extension is based on MPI, where a set of processes each
running a single transcoder, are made to collaborate and transcode a set of
streams more e�ciently. The MPI programming model allows programmers
to explicitly specify the parallel processing in a given system. Unlike other

8http://www.↵mpeg.org/
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frameworks like Hadoop, which is designed for a specific set of problems(i.e.
batch processing), MPI provides programmers with flexibility in expense of
some programming overhead.

Figure 4.4 shows the architecture of the MPI-based video transcoder for
multiple streams. Each active incoming stream is segmented continuously
and stored in a job queue of one of the transcoding servers. Load balancing
is performed dynamically depending on an estimated queue waiting time of
a segment on each transcoding server. The estimated waiting time of a new
segment on a given transcoding server is calculated by dividing the number
of frames that are currently in its queue with the average transcoding rate
of the server (see Algorithm 4.3). The manager sends the next segment
to a transcoding server with the smallest estimated queue waiting time. A
header containing the stream ID, segment ID, a transcoding parameter, and
number of frames in the segment is attached to each segment. This header
is used to identify each segment in the system and make load balancing
decisions. The total number of transcoding servers is decided by themanager.
In our distributed transcoder, every server has its own ID and the work is
routed according to these IDs. In Figure 4.4, the ID of the manager is 0.
It implements the proposed dynamic load balancing algorithm. Moreover,
it contains the video splitter and the video merger. The manager invokes
video splitter before sending transcoding jobs to the transcoding servers.
Each transcoding server takes a segment from its queue, parses the segment
header to get the transcoding parameters, transcodes the segment, and sends
back the transcoded segment to the manager. The manager then invokes the
video merger to merge the transcoded segments into output streams. The
impact of the dynamic load balancing algorithm is compared with a static
round-robin approach in Section 4.9.

4.8 Simulation Results of VM Allocation

Software simulations are often used to test and evaluate new algorithms in-
volving complex environments [11]. We have developed a discrete-event sim-
ulation for the proposed VM allocation approach. The simulation is written
in the Python programming language and is based on the SimPy simulation
framework [26].

4.8.1 Experimental Design and Setup

We considered two di↵erent synthetic load patterns in two separate exper-
iments. Load pattern 1 in experiment 1 consists of two load peaks, while
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Figure 4.4: MPI-based distributed video transcoder

Algorithm 4.3. Dynamic load balancing

1: while true do
2: selected server = transcoding servers.get(0)
3: smallest queue time = TIME MAX
4: for transcoding server in transcoding servers do

5: queue time =
transcoding server� > frames

transcoding server� > fps
6: if queue time < smallest queue time then
7: smallest queue time = queue time
8: selected server = transcoding server
9: end if
10: end for
11: segment = queue� > take()
12: send(segment, selected server)
13: end while

load pattern 2 in experiment 2 has six load peaks. For simplicity, the renting
period was assumed to be 600 seconds. The remaining time upper threshold
RT

U

was 60 seconds, while the remaining time lower threshold RT
L

was 12
seconds. The Load Tracker (LT) and lp parameters were as follows: n = 15,
q = 30, and h = 120.

The experiments used both Standard Definition (SD) and HD video
streams. At the time of writing this book chapter, 10% of YouTube’s videos
are available in HD, while YouTube has more HD content than any other
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video hosting site [1]. However, the ratio of HD versus SD is expected to
increase in the near future. Therefore, the load generation assumed 70% SD
and 30% HD video streams. The video segmentation was performed at the
GOP level. The segmentation produced video segments, which were sent to
the transcoding servers for execution. For HD videos, the average size of a
video segment was 75 frames with a standard deviation of 7 frames. Likewise,
for SD videos, the average size of a segment was 250 frames with a standard
deviation of 20 frames. The total number of frames in a video stream was in
the range of 15000 to 18000.

The desired play rate for a video stream is often fixed: 30 fps for SD
videos and 24 fps for HD videos. Whereas, the transcoding rate depends
on the video contents, such as, frame resolution, type of video format, type
of frames, and contents of blocks. Di↵erent transcoding mechanisms also
require di↵erent times.

In our experiments, the maximum transcoding rate for SD videos was
assumed to be four times of its play rate. We further assumed that the
transcoding rate is always higher than the play rate of all video streams.
Similarly, the minimum transcoding rate for SD videos was assumed to be
double of its play rate. Since HD videos require more computation, the
maximum transcoding rate for an HD video was assumed to be double of the
play rate, with the minimum transcoding rate at 1.5 times the play rate.

The objective of experiment 1 was to simulate a relatively normal load. It
was designed to generate a load representing a maximum of 200 simultaneous
video streams in two di↵erent load peaks. In the first peak, the streams were
ramped-up from 0 to 200, while adding a new stream every 20 seconds.
After the ramp-up phase, the number of streams was maintained constant
for 1 hour and then ramped-down to 100 streams.

The second peak ramped-up from 100 streams to 200 streams, while
adding a new stream every 30 seconds. The ramp-up phase was followed
by a similar constant phase as in the first peak. Then, the ramp-down phase
removed all streams from the system.

Experiment 2 was designed to simulate the load pattern of a highly vari-
able video demand. It generated a load representing a maximum of 280
simultaneous video streams consisting of six di↵erent load peaks. In the first
peak, the streams were ramped-up from 0 to 170, while adding a new stream
every 30 seconds. Then, in the second peak from 110 to 250, while adding
a new stream every 20 seconds. Likewise, 210 to 280, 215 to 250, 120 to
200, and 100 to 170, respectively, in the third, fourth, fifth, and sixth peak.
The stream ramp-up rate was 1 new stream per 30 seconds. Each ramp-
up phase was followed by a ramp-down phase. Finally, the last ramp-down
phase removed all streams from the system.
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Figure 4.5: Experiment 1 results: relatively normal load

4.8.2 Results and Analysis

In both Figures 4.5 and 4.6, the number of servers plot shows dynamic VM
allocation for the cluster of transcoding servers. The transcoding jobs plot
represents the total number of jobs in the system at a particular time in-
stance. It includes the jobs in execution at the transcoding servers and the
jobs that were waiting in the queues. The target play rate plot shows the
sum of target play rates of all video streams in the system. Likewise, the ac-
tual transcoding rate plot represents the total transcoding rate of all servers,
while the predicted transcoding rate plot shows results of the load prediction.
As described in Section 4.5, the VM allocation decisions were mainly based
on the target play rate, the predicted transcoding rate, and the queue length
of servers.

Figure 4.5 presents results from experiment 1. The results are also sum-
marized in Table 4.2. Experiment 1 used a maximum of 93 transcoding
servers for a maximum of 200 simultaneous streams. Moreover, a total of
4596 streams consisting of approximately 5⇥105 transcoding operations and
7 ⇥ 107 video frames were completed in 4 hours and 38 minutes. The re-
sults indicate that the resource allocation algorithms with the sharing of the
VM resources among multiple video streams resulted in a reduced number
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Table 4.2: Results from proactive VM allocation experiments. Experiment
1 uses relatively normal load, while experiment 2 uses highly variable load.
The results include maximum number of servers used, maximum and average
number of transcoding jobs or segments, maximum and average play rate
(PR), and maximum and average transcoding rate (TR).

experiment servers jobs
avg.

jobs
max

PR
avg.

PR
max

TR
avg.

TR
max

1 109 44.84 95 3597.42 fps 5670 fps 3496.48 fps 7683.34 fps
2 150 40.74 122 3273.61 fps 7818 fps 3446.19 fps 9234.23 fps

of servers as compared with the number of video streams which reduces VM
provisioning cost. The resource de-allocation algorithm takes into account
the servers remaing renting time. A server is terminated only when it is near
its completion of renting period, which avoids unnecessary oscillations in the
number of VMs.

The results show that the actual transcoding rate was always close to
the target play rate. This was desirable to avoid over and underflow of the
output video bu↵er in the system, as discussed in Section 4.5. Although the
actual transcoding rate was sometimes slightly above or below the target play
rate, the proactive resource allocation helped to ensure that the cumulative
number of transcoded frames was always greater than the cumulative number
of played frames.

Figure 4.6 presents results from experiment 2. Table 4.2 also contains a
summary of the results. It used a maximum of 120 transcoding servers for
a maximum of 290 simultaneous streams. Moreover, a total of 7241 streams
consisting of approximately 8⇥105 transcoding operations and 1⇥108 video
frames were completed in 6 hours and 54 minutes. Although the number of
streams was fluctuating rapidly, the algorithms provided a sustainable service
with fewer VMs, while minimizing oscillations in the number of servers and
avoiding the over and underflow of the output video bu↵er.

4.9 Evaluation of MPI-Based Distributed Video
Transcoder

In this section, we describe the experimental setup, the results obtained,
and their analysis from our prototype implementation of the MPI-based dis-
tributed video transcoder. The results are focused on the e↵ect of load bal-
ancing algorithms on the utilization of transcoding servers. Therefore, provi-
sioning of the transcoding servers is done statically before each experiment.
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Figure 4.6: Experiment 2 results: highly variable load

4.9.1 Experimental Design and Setup

Our main task was to investigate performance in terms of total processing
time of distributed video transcoding in cloud computing with dynamic load
balancing. We setup a homogeneous and a heterogeneous test environment
in the cloud using StarCluster. The StarCluster is an open source cluster
computing tool-kit for Amazon EC2. It has been designed to automate and
simplify the process of building, configuring, and managing clusters of VMs
suited for distributed and parallel computing applications and systems on
Amazon EC2.

The homogeneous test cluster consist of a stream manager and a maxi-
mum of 14 transcoding servers. The stream manager is assigned the task of
splitting, merging, and scheduling of video segments. All the nodes in this
cluster are m1.small instances from Amazon EC2. The m1.small instance
is a VM with 1.7 GB memory and one virtual core running 32 bit Ubuntu
11.10 on AMD 2218HE. The m1.small instance is the default instance in the
Amazon EC2 and is not optimized for anything in particular. Furthermore,
the instances are selected from the same availability zone (i.e eu-west-1a).
Running virtual cloud instances from the same availability zone ensures a
more homogeneous network connection in the cluster.
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The Heterogeneous test cluster consists of a maximum of 14 transcoding
servers and a stream manager. Half nodes in the cluster are m1.small in-
stances from Amazon EC2 cloud. The other half instances in the cluster are
c1.medium instances. The c1.medium is a VM with 1.7GB memory and two
virtual core running 32 bit Ubuntu 11.10 on Intel E5�2650 at 2 GHz. In con-
trast to the basic m1.small instance, the c1.medium instance has two cores
and is optimized for speed. Furthermore, the instances are selected from two
di↵erent availability zones (i.e eu-west-1a and eu-west-1c), which are located
apart form each other. Running virtual cloud instances from di↵erent avail-
ability zone might lead to a more heterogeneous network connection in the
cluster.

The aim of of doing the experiment on a heterogeneous clusters is mo-
tivated by the concept of job a�nity [24], which states that some jobs may
run significantly faster on nodes of a particular instance than others. Hence,
it is important to know the job/instance type relationship and and design
the load balancing algorithm accordingly.

To perform transcoding in the distributed environment, we have modi-
fied an existing open source transcoder FFMPEG with Message Passing Pro-
gramming Model [27]. The first process with rank 0 is assigned the task of
splitting, scheduling, and merging input video streams. The other processes
with rank 1 to 14 are assigned the task of transcoding. The manager first
splits incoming video streams at GOP level and uses the static or dynamic
load balancing methods explained in Section 4.7. Depending on the sched-
uler decision, the manager sends video segments to a selected transcoding
server’s queue. The task of each transcoding server is to pick a task from
their queue and perform the transcoding job till a termination signal is sent
from the stream manager.

To perform di↵erent experiments in a cluster-based environment, we se-
lected various video sequences having di↵erent number of frames. Character-
istics of those video sequences such as length, size, total number of frames,
and resolution are given in Table 4.3. All video sequences have a frame rate
of 24 fps.

In this experiment we have restricted ourselves to using few streams as the
focus is to only understand and compare the the e↵ect of job load balancing
approaches on the throughput of a distributed transcoding system.

4.9.2 Results and Analysis

We used both SD and HD video sequences in our experiments. Table 4.3
shows characteristics of video sequences, such as, size of video sequence in
Mega Bytes, number of frames, and resolution. The total transcoding time
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Table 4.3: Characteristics of video sequences

Video Size Frames Resolution
Sintel HD 251 MB 21312 1280x720
Elephants Dream HD 162 MB 15690 1280x720
Big Buck Bunny HD 115 MB 14315 1280x720
Sintel SD 48 MB 21312 854x480
Elephants Dream SD 34 MB 15690 854x480
Big Buck Bunny SD 30 MB 14315 854x480

with di↵erent number of transcoding servers in a heterogeneous cloud cluster
for Sintel HD, Elephants Dream HD, Big Buck Bunny HD, and for multiple
streams with two HD and two SD simultaneous streams is shown in Fig-
ures 4.7a-d. Likewise, transcoding time with di↵erent number of servers in a
homogeneous Cloud cluster for Sintel HD, Elephants Dreams HD, Big Buck
Bunny HD, and for multiple streams with two HD and two SD simultaneous
streams is shown in Figures 4.7e-h.

Figure 4.7a-d shows the total transcoding time for static round-robin
and our proposed dynamic load balancing over a varying number of servers.
In all cases, the performance gain accounts to about 45% except the case
where there is only one transcoding node and the scheduling overhead matters
significantly.

Figure 4.7e-h shows the result of applying the static and dynamic schedul-
ing algorithms specified in Section 4.7 on a cluster of homogeneous transcod-
ing servers. In this case, the performance gain from using the proposed
dynamic load balancing algorithm only accounts to about 10� 12%, except
the cases when there is only one or two transcoding nodes resulting in a
significant scheduling overhead. This result is also expected due to the fact
that the experiment is done in a homogeneous platform and the performance
gain is only due to the fact that video streams have di↵erent computational
loads on di↵erent segments.

Figure 4.7d and Figure 4.7h show the results for the performance of the
proposed dynamic scheduling algorithm against the static one when there
are four simultaneous streams in the system. We selected the first two HD
and two SD videos from Table 4.3 to test the multiple streams setup. As
can be noticed from these figures, the gap between the performance of the
dynamic and static schedulers slightly increased due to the non-homogeneity
introduced by the Central Processing Unit (CPU) demand di↵erence among
HD and SD video streams.



136 F. Jokhio et al.

Figure 4.7: MPI-based distributed video transcoder results. Figures a-d show
the total transcoding time with di↵erent number of transcoding servers in a
heterogeneous cloud cluster for Sintel HD , Elephants Dream HD, Big Buck
Bunny HD, and for multiple streams. Similarly, Figures e-h show the results
in a homogeneous cloud cluster for Sintel HD, Elephants Dream HD, Big
Buck Bunny HD, and for multiple streams.

4.10 Related Work

Distributed video transcoding with video segmentation was proposed in [21]
and [23]. In these works, video segmentation was performed at the GOPs
level. Jokhio et al. [21] presented bit rate reduction video transcoding using
multiple processing units. The paper discussed computation, parallelization,
and data distribution among computing units. In [23], di↵erent video seg-
mentation methods were analyzed to perform spatial resolution reduction
video transcoding. The paper compared three possible methods of video seg-
mentation. In both papers, video transcoding was not performed in the cloud
and the VM allocation problem was not addressed. In contrast, the main fo-
cus of this work is on VM allocation and deallocation algorithms. Huang et
al. [19] presented a cloud-based video proxy to deliver transcoded videos for
streaming. The main contribution of their work is a multilevel transcoding
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parallelization framework. They used Hallsh-based and Lateness-first map-
ping to optimize transcoding speed and to reduce transcoding jitters. The
performance evaluation was done on a campus cloud testbed and the commu-
nication latency between cloud and video proxy was neglected. Li et al. [25]
proposed cloud transcoder, which uses a compute cloud as an intermediate
platform to provide transcoding service. Both papers do not discuss the VM
allocation problem for video transcoding in cloud computing.

The existing works on dynamic VM allocation can be classified into two
main categories: Plan-based approaches and control theoretic approaches.
Plan-based approaches can be further classified into workload prediction ap-
proaches and performance dynamics model approaches. One example of the
workload prediction approaches is Ardagna et al. [4], while TwoSpot [38],
Hu et al. [18], Chieu et al. [14], Iqbal et al. [20] and Han et al. [17] use a
performance dynamics model. Similarly, Dutreilh et al. [15], Pan et al. [29],
Patikirikorala et al. [30], and Roy et al. [33] are control theoretic approaches.
One common di↵erence between all of these works and our proposed app-
roach is that they are not designed specifically for video transcoding in cloud
computing. In contrast, our proposed approach is based on the important
VM allocation metrics for video transcoding service. Moreover, the proposed
approach is cost-e�cient as it uses fewer VMs for a large number of video
streams and it counteracts possible oscillations in the number of VMs that
may result in higher provisioning costs.

Ardagna et al. [4] proposed a distributed algorithm for managing Soft-
ware as a Service (SaaS) cloud systems that addresses capacity allocation
for multiple heterogeneous applications. The resource allocation algorithm
takes into consideration a predicted future load for each application class
and a predicted future performance of each VM, while determining possible
Service-Level Agreement (SLA) violations for each application type. The
main challenge in the prediction-based approaches is in making good pre-
diction models that should provide high prediction accuracy under real-time
constraints. For this, we use a two-step prediction approach, which limits
the computation delay without incurring oscillations, while providing high
prediction accuracy.

TwoSpot [38] aims to combine existing open source technologies to sup-
port web applications written in di↵erent programming languages. It sup-
ports hosting of multiple web applications, which are automatically scaled
up and down in a horizontal fashion. However, the scaling down is decentral-
ized, which may lead to severe random drops in performance. For example,
when all controllers independently choose to scale down at the same time.
Hu et al. [18] proposed a heuristic algorithm that determines the server allo-
cation strategy and job scheduling discipline which results in the minimum
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number of servers. They also presented an algorithm for determining the
minimum number of required servers, based on the expected arrival rate,
service rate, and SLA. Chieu et al. [14] presented an approach that scales
servers for a particular web application based on the number of active user
sessions. The main problem with this approach is in determining suitable
threshold values on the number of user sessions. Iqbal et al. [20] proposed
an approach for adaptive resource provisioning for read intensive multi-tier
web applications. Based on response time and CPU utilization metrics, the
approach determines the bottleneck tier and then scales it up by provisioning
a new VM. Scaling down is supported by checking for any over-provisioned
resources from time to time. Han et al. [17] proposed a reactive resource
allocation approach to integrate VM-level scaling with a more fine-grained
resource-level scaling. In contrast, the proposed approach provides proactive
VM allocation, where the VM allocation decisions are based on the impor-
tant video transcoding metrics, such as video play rate and server transcoding
rate.

Dutreilh et al. [15] and Pan et al. [29] used control theoretic models for
designing resource allocation solutions for cloud computing. Dutreilh et al.
presented a comparison of static threshold-based and reinforcement learning
techniques. Pan et al. used Proportional-Integral (PI) controllers to provide
QoS guarantees. Patikirikorala et al. [30] proposed a multi-model framework
for implementing self-managing control systems for QoS management. Roy
et al. [33] presented a look-ahead resource allocation algorithm based on the
model predictive control. A common characteristic of the control theretic
approaches is that they depend upon performance and dynamics of the un-
derlying system. In contrast, the proposed approach does not require any
knowledge about the performance and dynamics of the transcoding servers.

4.11 Conclusion

In this chapter, we presented proactive VM allocation algorithms to scale
video transcoding service in a cloud environment. The proposed algorithms
provide a mechanism for creating a dynamically scalable cluster of video
transcoding servers by provisioning VMs from an IaaS cloud. The prediction
of the future user load is based on a two-step load prediction method, which
allows proactive VM allocation with high prediction accuracy under real-time
constraints. For cost-e�ciency, we used segmentation of video streams, which
splits a stream into smaller segments that can be transcoded independently of
one another. This helped us to perform video transcoding of multiple streams
on a single server. The proposed VM allocation approach is demonstrated
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in a discrete-event simulation. The evaluation and analysis considered two
di↵erent synthetic load patterns in two separate experiments. Experiment
1 used a relatively normal load, while experiment 2 used a highly variable
load. The results show that the proposed approach provides cost-e�cient VM
allocation for transcoding a large number of video streams, while minimizing
oscillations in the number of servers and avoiding over and underflow of the
output video bu↵er.

We also presented a prototype implementation of a MPI-based distributed
video transcoder and a dynamic load balancing algorithm for video transcod-
ing in cloud computing. Experimental results from the MPI implementation
show that the distributed transcoding approach along with the dynamic load
balancing scheme decreases the total transcoding time up to 45% for a het-
erogeneous set of servers and up to 12% for homogeneous environments.

Future work includes implementing an admission controller to prevent
transcoding servers from becoming overloaded. We have been currently work-
ing on a stream-based admission control approach for video transcoding in
cloud computing [9]. Furthermore, a computation and storage trade-o↵ strat-
egy for video transcoding in cloud computing and using realistic load patterns
for experimental evaluation are also part of our ongoing work.
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