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Summary. We present in this paper a novel molecular model for the gene regula-
tory network responsible for the eukaryotic heat shock response. Our model includes
the temperature-induced protein misfolding, the chaperone activity of the heat shock
proteins and the backregulation of their gene transcription. We then build a math-
ematical model for it, based on ordinary differential equations. Finally, we discuss
the parameter fit and the implications of the sensitivity analysis for our model.
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1 Introduction

One of the most impressive algorithmic-like bioprocesses in living cells, cru-
cial for the very survival of cells is the heat shock response: the reaction of
the cell to elevated temperatures. One of the effects of raised temperature in
the environment is that proteins get misfolded, with a rate that is exponen-
tially dependent on the temperature. As an effect of their hydrophobic core
being exposed, misfolded proteins tend to form bigger and bigger aggregates,
with disastrous consequences for the cell, see [1]. To survive, the cell needs
to increase quickly the level of chaperons (proteins that are assisting in the
folding or refolding of other proteins). Once the heat shock is removed, the
cell eventually re-establishes the original level of chaperons, see [10, 18, 22].

The heat shock response has been subject of intense research in the last few
years, for at least three reasons. First, it is a well-conserved mechanism across
all eukaryotes, while bacteria exhibit only a slightly different response, see [5,
12, 23]. As such, it is a good candidate for studying the engineering principle of
gene regulatory networks, see [4, 5, 12, 25]. Second, it is a tempting mechanism



2 I.Petre et al

to model mathematically, since it involves only very few reactants, at least
in a simplified presentation, see [18, 19, 22]. Third, the heat shock proteins
(the main chaperons involved in the eukaryotic heat shock response) play
a central role in a large number of regulatory and of inflammatory processes,
as well as in signaling, see [9, 20]. Moreover, they contribute to the resilience
of cancer cells, which makes them attractive as targets for cancer treatment,
see [3, 15, 16, 27].

We focus in this paper on a new molecular model for the heat shock re-
sponse, proposed in [19]. We consider here a slight extension of the model in
[19] where, among others, the chaperons are also subject to misfolding. After
introducing the molecular model in Section 2, we build a mathematical model
in Section 3, including the fitting of the model with respect to experimental
data. We discuss in Section 4 the results of the sensitivity analysis of the
model, including its biological implications.

2 A new molecular model for the eukaryotic heat shock

response

The heat shock proteins (hsp) play the key role in the heat shock response.
They act as chaperons, helping misfolded proteins (mfp) to refold. The re-
sponse is controlled in our model through the regulation of the transactiva-
tion of the hsp-encoding genes. The transcription of the gene is promoted by
some proteins called heat shock factors (hsf) that trimerize and then bind
to a specific DNA sequence called heat shock element (hse), upstream of the
hsp-encoding gene. Once the hsf trimer is bound to the heat shock element,
the gene is transactivated and the synthesis of hsp is thus switched on (for the
sake of simplicity, the role of RNA is ignored in our model). Once the level
of hsp is high enough, the cell has an ingenious mechanism to switch off the
hsp synthesis. For this, hsp bind to free hsf, as well as break the hsf trimers
(including those bound to hse, promoting the gene activation), thus effectively
halting the hsp synthesis.

Under elevated temperatures, some of the proteins (prot) in the cell get
misfolded. The heat shock response is then quickly switched on simply because
the heat shock proteins become more and more active in the refolding process,
thus leaving the heat shock factors free and able to promote the synthesis of
more heat shock proteins. Note that several types of heat shock proteins exist
in an eukaryotic cell. We treat them all uniformly in our model, with hsp70
as common denominator. The same comment applies also to the heat shock
factors.

Our molecular model for the eukaryotic heat shock response consists of
the following molecular reactions:

1. 2 hsf ⇆ hsf2
2. hsf + hsf2 ⇆ hsf3
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3. hsf3 + hse ⇆ hsf3: hse

4. hsf3: hse → hsf3: hse +mhsp

5. hsp+ hsf ⇆ hsp: hsf

6. hsp+ hsf2 → hsp: hsf + hsf

7. hsp+ hsf3 → hsp: hsf +2 hsf

8. hsp+ hsf3: hse → hsp: hsf +2 hsf + hse

9. hsp → ∅
10. prot → mfp

11. hsp+mfp ⇆ hsp:mfp

12. hsp:mfp → hsp + prot

13. hsf → mhsf

14. hsp → mhsp

15. hsp+mhsf ⇆ hsp:mhsf

16. hsp:mhsf → hsp+ hsf

17. hsp+mhsp ⇆ hsp:mhsp

18. hsp:mhsp → 2 hsp

It is important to note that the main addition we consider here with re-
spect to the model in [19] is to include the misfolding of hsp and hsf. This
is, in principle, no minor extension since in the current model the repairing
mechanism is subject to failure, but it is capable to fix itself.

Several criteria were followed when introducing this molecular model:

(i) as few reactions and reactants as possible;
(ii) include the temperature-induced protein misfolding;
(iii) include hsf in all its three forms: monomers, dimers, and trimers;
(iv) include the hsp-backregulation of the transactivation of the hsp-encoding

gene;
(v) include the chaperon activity of hsp;
(vi) include only well-documented, textbook-like reactions and reactants.

For the sake of keeping the model as simple as possible, we are ignoring
a number of details. E.g., note that there is no notion of locality in our model:
we make no distinction between the place where gene transcription takes place
(inside nucleus) and the place where protein synthesis takes place (outside
nucleus). Note also that protein synthesis and gene transcription are greatly
simplified in reaction 4: we only indicate that once the gene is transactivated,
protein synthesis is also switched on. On the other hand, reaction 4 is faithful
to the biological reality, see [1] in indicating that newly synthesized proteins
often need chaperons to form their native fold.

As far as protein degradation is concerned, we only consider it in the model
for hsp. If we considered it also for hsf and prot, then we should also consider
the compensating mechanism of protein synthesis, including its control. For
the sake of simplicity and also based on experimental evidence that the total
amount of hsf and of prot is somewhat constant, we ignore the details of
synthesis and degradation for hsf and prot.
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3 The mathematical model

We build in this section a mathematical model associated to the molecular
model 1–18. Our mathematical model is in terms of coupled ordinary differ-
ential equations and its formulation is based on the principle of mass-action.

3.1 The principle of mass-action

The mass-action law is widely used in formulating mathematical models in
physics, chemistry, and engineering. Introduced in [6, 7], it can be briefly
summarized as follows: the rate of each reaction is proportional to the con-
centration of reactants. In turn, the rate of each reaction gives the rate of
consuming the reactants and the rate of producing the products. E.g., for a
reaction

R1 : A + B → C,

the rate according to the principle of mass action is f1(t) = kA(t)B(t), where
k ≥ 0 is a constant and A(t), B(t) are functions of time giving the level of
the reactants A and B, respectively. Consequently, the rate of consuming A
and B, and the rate of producing C is expressed by the following differential
equations:

dA

dt
=

dB

dt
= −k A(t)B(t),

dC

dt
= k A(t)B(t).

For a reversible reaction
R2 : A + B ⇆ C,

the rate is f2(t) = k1 A(t)B(t) − k2 C(t), for some constants k1, k2 ≥ 0. The
differential equations are written in a similar way:

dA

dt
=

dB

dt
= −f2(t),

dC

dt
= f2(t). (*)

For a set of coupled reactions, the differential equations capture the combined
rate of consuming and producing each reactant as an effect of all reactions
taking place simultaneously. E.g., for reactions

R3 : A + B ⇆ C, R4 : B + C ⇆ A, R5 : A + C ⇆ B,

the associated system of differential equations is

dA/dt = −f3(t) + f4(t) − f5(t),

dB/dt = −f3(t) − f4(t) + f5(t),

dC/dt = f3(t) − f4(t) − f5(t),

where fi(t) is the rate of reaction Ri, for all 3 ≤ i ≤ 5, formulated according
to the principle of mass action.
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We recall that for a system of differential equations

dX1

dt
= f1(X1, . . . ,Xn),

. . .
dXn

dt
= fn(X1, . . . ,Xn),

we say that (x1, x2, . . . , xn) is a steady states (also called equilibrium points)
if it is a solution of the algebraic system of equations fi(X1, . . . ,Xn) = 0, for
all 1 ≤ i ≤ n, see [24, 28]. Steady states are particularly interesting because
they characterize situations where although reactions may have non-zero rates,
their combined effect is zero. In other words, the concentration of all reactants
and of all products are constant.

We refer to [11, 17, 29] for more details on the principle of mass action
and its formulation based on ordinary differential equations.

3.2 Our mathematical model

Let R+ be the set of all positive real numbers and R
n
+ the set of all n-tuples of

positive real numbers, for n ≥ 2. We denote each reactant and bond between
them in the molecular model 1–18 according to the convention in Table 1. We
also denote by κ ∈ R

17
+ the vector with all reaction rate constants as its com-

ponents, see Table 2: κ = (k+
1 , k−

1 , k+
2 , k−

2 , k+
3 , k−

3 , k4, k
+
5 , k−

5 , k6, k7, k8, k9, k
+
11,

k−

11, k12, k
+
13, k

−

13, k14, k
+
15, k

−

15, k16).

Table 1. The list of variables in the mathematical model, their initial values, and
their values in one of the steady states of the system, for T = 42. Note that the
initial values give one of the steady states of the system for T = 37.

Metabolite Variable Initial value A steady state (T=42)

hsf X1 0.669 0.669
hsf2 X2 8.73 · 10−4 8.73 · 10−4

hsf3 X3 1.23 · 10−4 1.23 · 10−4

hsf3: hse X4 2.956 2.956
mhsf X5 3.01 · 10−6 2.69 · 10−5

hse X6 29.733 29.733
hsp X7 766.875 766.875
mhsp X8 3.45 · 10−3 4.35 · 10−2

hsp: hsf X9 1403.13 1403.13
hsp:mhsf X10 4.17 · 10−7 3.72 · 10−6

hsp:mhsp X11 4.78 · 10−4 6.03 · 10−3

hsp:mfp X12 71.647 640.471
prot X13 1.14 · 108 1.14 · 108

mfp X14 517.352 4624.72
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Table 2. The numerical values for the fitted model.

Kinetic constant Reaction Numerical value

k
+

1 (1), forward 3.49091
k
−

1 (1), backward 0.189539
k

+

2 (2), forward 1.06518
k
−

2 (2), backward 1 · 10−9

k
+

3 (3), forward 0.169044
k
−

3 (3), backward 1.21209 · 10−6

k4 (4) 0.00830045
k

+

5 (5), forward 9.73665
k
−

5 (5), backward 3.56223
k6 (6) 2.33366
k7 (7) 4.30924 · 10−5

k8 (8) 2.72689 · 10−7

k9 (9) 3.2 · 10−5

k
+

11 (11), forward 0.00331898
k
−

11 (11), backward 4.43952
k12 (12) 13.9392
k

+

13 (15), forward 0.00331898
k
−

13 (15), backward 4.43952
k14 (16) 13.9392
k

+

15 (17), forward 0.00331898
k
−

15 (17), backward 4.43952
k16 (18) 13.9392

The mass action-based formulation of the associated mathematical model
in terms of differential equations is straightforward, leading to the following
system of equations:

dX1/dt = f1(X1,X2, . . . ,X14, κ) (1)

dX2/dt = f2(X1,X2, . . . ,X14, κ) (2)

dX3/dt = f3(X1,X2, . . . ,X14, κ) (3)

dX4/dt = f4(X1,X2, . . . ,X14, κ) (4)

dX5/dt = f5(X1,X2, . . . ,X14, κ) (5)

dX6/dt = f6(X1,X2, . . . ,X14, κ) (6)

dX7/dt = f7(X1,X2, . . . ,X14, κ) (7)

dX8/dt = f8(X1,X2, . . . ,X14, κ) (8)

dX9/dt = f9(X1,X2, . . . ,X14, κ) (9)

dX10/dt = f10(X1,X2, . . . ,X14, κ) (10)

dX11/dt = f11(X1,X2, . . . ,X14, κ) (11)

dX12/dt = f12(X1,X2, . . . ,X14, κ) (12)
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dX13/dt = f13(X1,X2, . . . ,X14, κ) (13)

dX14/dt = f14(X1,X2, . . . ,X14, κ) (14)

where

f1 = −k+
2 X1 X2 + k−

2 X3 − k+
5 X1 X7 + k−

5 X9 + 2 k8 X4 X7 + k6 X2 X7

−ϕ(T )X1 + k14 X10 + 2 k7 X3 X7 − 2 k+
1 X2

1 + 2 k−

1 X2

f2 = −k+
2 X1 X2 + k+

2 X3 − k6 X2 X7 + k+
1 X2

1 − k−

1 X2

f3 = −k+
3 X3 X6 + k+

2 X1 X2 − k−

2 X3 + k−

3 X4 − k7 X3 X7

f4 = k+
3 X3 X6 − k−

3 X4 − k8 X4 X7

f5 = ϕ(T )X1 − k+
13 X5 X7 + k−

13 X10

f6 = −k+
3 X3 X6 + k−

3 X4 + k8 X4 X7

f7 = −k+
5 X1 X7 + k−

5 X9 − k+
11 X7 X14 + k−

11 X12 − k8 X4 X7 − k6 X2 X7

−k+
13 X5 X7 + (k−

13 + k14)X10 − (ϕ(T ) + k9)X7 − k+
15 X7 X8

−k7 X3 X7 + (k−

15 + 2 k16)X11 + k12 X12

f8 = k4 X4 + ϕ(T )X7 − k+
15 X7 X8 + k−

15 X11

f9 = k+
5 X1 X7 − k−

5 X9 + k8 X4 X7 + k6 X2 X7 + k7 X3 X7

f10 = k+
13 X5 X7 − (k−

13 + k14)X10

f11 = k+
15 X7 X8 − (k−

15 + k16)X11

f12 = k+
11 X7 X14 − (k−

11 + k12)X12

f13 = k12 X12 − ϕ(T )X13

f14 = −k+
11 X7 X14 + k−

11 X12 + ϕ(T )X13

The rate of protein misfolding ϕ(T ) with respect to temperature T has
been investigated experimentally in [13, 14], and a mathematical expression
for it has been proposed in [18]. We have adapted the formula in [18] to obtain
the following misfolding rate per second:

ϕ(T ) = (1 −
0.4

eT−37
) · 0.8401033733 · 10−6 · 1.4T−37 s−1,

where T is the temperature of the environment in Celsius degrees, with the
formula being valid for 37 ≤ T ≤ 45.

The following result gives three mass-conservation relations for our model.

Theorem 1. There exists K1, K2, K3 ≥ 0 such that:

(i) X1(t) + 2X2(t) + 3X3(t) + 3X4(t) + X5(t) + X9(t) = K1,
(ii) X4(t) + X6(t) = K2,
(iii) X13(t) + X14(t) + X12(t) = K3,

for all t ≥ 0.
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Proof. We only prove here part (ii), as the others may be proved analogously.
For this, note that from equations (4) and (6), it follows that

d(X4 + X6)

dt
= (f4 + f6)(X1, . . . ,X14, κ, t) = 0,

i.e., (X4 + X6)(t) is a constant function.

The steady states of the model (1)-(14) satisfy the following algebraic
relations, where xi is the numerical value of Xi in the steady state, for all
1 ≤ i ≤ 14.

0 = −k+
2 x1 x2 + k−

2 x3 − k+
5 x1 x7 + k−

5 x9 + 2 k8 x4 x7 + k6 x2 x7

−ϕ(T )x1 + k14 x10 + 2 k7 x3 x7 − 2 k+
1 x2

1 + 2 k−

1 x2 (15)

0 = −k+
2 x1 x2 + k+

2 x3 − k6 x2 x7 + k+
1 x2

1 − k−

1 x2 (16)

0 = −k+
3 x3 x6 + k+

2 x1 x2 − k−

2 x3 + k−

3 x4 − k7 x3 x7 (17)

0 = k+
3 x3 x6 − k−

3 x4 − k8 x4 x7 (18)

0 = ϕ(T )x1 − k+
13 x5 x7 + k−

13 x10 (19)

0 = −k+
3 x3 x6 + k−

3 x4 + k8 x4 x7 (20)

0 = −k+
5 x1 x7 + k−

5 x9 − k+
11 x7 x14 + k−

11 x12 − k8 x4 x7 − k6 x2 x7

−k+
13 x5 x7 + (k−

13 + k14)x10 − (ϕ(T ) + k9)x7 − k+
15 x7 x8 − k7 x3 x7

+(k−

15 + 2 k16)x11 + k12 x12 (21)

0 = k4 x4 + ϕ(T )x7 − k+
15 x7 x8 + k−

15 x11 (22)

0 = k+
5 x1 x7 − k−

5 x9 + k8 x4 x7 + k6 x2 x7 + k7 x3 x7 (23)

0 = k+
13 x5 x7 − (k−

13 + k14)x10 (24)

0 = k+
15 x7 x8 − (k−

15 + k16)x11 (25)

0 = k+
11 x7 x14 − (k−

11 + k12)x12 (26)

0 = k12 x12 − ϕ(T )x13 (27)

0 = −k+
11 x7 x14 + k−

11 x12 + ϕ(T )x13 (28)

It follows from Theorem 1 that only eleven of the relations above are inde-
pendent. E.g., relations (15)-(17), (19), (21)-(27) are independent. The system
consisting of the corresponding differential equations is called the reduced sys-
tem of (1)-(14).

3.3 Fitting the model to experimental data

The experimental data available for the parameter fit is from [10] and reflects
the level of DNA binding, i.e., variable X4 in our model, for various time
points up to 4 hours, with continuous heat shock at 42 ◦C. Additionally, we
require that the initial value of the variables of the model is a steady state
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for temperature set to 37 ◦C. This is a natural condition since the model is
supposed to reflect the reaction to temperatures raised above 37 ◦C.

Mathematically, the problem we need to solve is one of global optimiza-
tion, as formulated below. For each 17-tuple κ of positive numerical values
for all kinetic constants, and for each 14-tuple α of positive initial values for
all variables in the model, the function X4(t) is uniquely defined for a fixed
temperature T. We denote the value of this function at time point τ , with pa-
rameters κ and α by xT

4 (κ, α, τ). Note that this property holds for all the other
variables in the model and it is valid in general for any mathematical model
based on ordinary differential equations (one calls such models deterministic).
We denote the set of experimental data in [10] by

En = {(ti, ri) | ti, ri > 0, 1 ≤ i ≤ N},

where N ≥ 1 is the number of observations, ti is the time point of each
observation and ri is the value of the reading.

With this setup, we can now formulate our optimization problem as fol-
lows: find κ ∈ R

17
+ and α ∈ R

14
+ such that:

(i) f(κ, α) = 1
N

∑N
i=1(x

42
4 (κ, α, ti) − ri)

2 is minimal and
(ii) α is a steady state of the model for T = 37 and parameter values given

by κ.

The function f(κ, α) is a cost function (in this case least mean squares),
indicating numerically how the function xT

4 (κ, α, t), t ≥ 0, compares with the
experimental data.

Note that in our optimization problem, not all 31 variables (the compo-
nents of κ and α) are independent. On one hand, we have the three algebraic
relations given by Theorem 1. On the other hand, we have eleven more inde-
pendent algebraic relations given by the steady state equations (15)-(17), (19),
(21)-(27). Consequently, we have 17 independent variables in our optimization
problem.

Given the high degree of the system (1)-(14), finding the analytical form of
the minimum points of f(κ, α) is very challenging. This is a typical problem
when the system of equations is non-linear. Adding to the difficulty of the
problem is the fact that the eleven independent steady state equations cannot
be solved analytically, given their high overall degree.

Since an analytical solution to the model fitting problem is often in-
tractable, the practical approach to such problems is to give a numerical
simulation of a solution. Several methods exist for this, see [2, 21]. The trade-
off with all these methods is that typically they offer an estimate of a local
optimum, with no guarantee of it being a global optimum.

Obtaining a numerical estimation of a local optimum for (i) is not difficult.
However, such a solution may not satisfy (ii). To solve this problem, for a given
local optimum (κ0, α0) ∈ R

17
+ × R

14
+ one may numerically estimate a steady

state α1 ∈ R
14
+ for T = 37. Then the pair (κ0, α1) satisfies (ii). Unfortunately,

(κ0, α1) may not be close to a local optimum of the cost function in (i).
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Another approach is to replace the algebraic relations implicitly given
by (ii) with an optimization problem similar to that in (i). Formally, we replace
all algebraic relations Ri = 0, 1 ≤ i ≤ 11, given by (ii) with the condition
that

g(κ, α) =
1

M

M
∑

j=1

R2
i (κ, α, δj)

is minimal, where 0 < δ1 < · · · < δM are some arbitrary (but fixed) time
points. Our problem thus becomes one of optimization with cost function
(f, g), with respect to the order relation (a, b) ≤ (c, d) if and only if a ≤ c
and b ≤ d. The numerical values in Table 2 give one solution to this problem
obtained based on Copasi [8]. The plot in Figure 1 shows the time evolution of
function X4(t) up to t = 4 hours, with the experimental data of [10] indicated
with crosses.

Fig. 1. The continuous line shows a numerical estimation of function X4(t), standing
for DNA binding, for the initial data in Table 1 and the parameter values in Table 2.
With crossed points we indicated the experimental data of [10].

The solution in Table 2 has been compared with a number of other avail-
able experimental data (such as behavior at 41 ◦C and at 43 ◦C), as well as
against qualitative, non-numerical data. The results were satisfactory and bet-
ter than those of previous models reported in the literature, such as [18, 22].
For details on the model validation analysis we refer to [19].



A new mathematical model for the heat shock response 11

Note that the steady state of the system of differential equations (1)-
(14), for the initial values in Table 1 and the parameter values in Table 2
is asymptotically stable. To prove it, it is enough to consider its associated
Jacobian:

J(t) =











∂f1/∂X1 ∂f1/∂X2 . . . ∂f1/∂X14

∂f2/∂X1 ∂f2/∂X2 . . . ∂f2/∂X14

...
...

...
∂f14/∂X1 ∂f14/∂X2 . . . ∂f14/∂X14











As it is well-known, see [28, 24], a steady state is asymptotically stable if
and only if all eigenvalues of the Jacobian at the steady state have negative
real parts. A numerical estimation done with Copasi [8] shows that the steady
state for T = 42, see Table 1, is indeed asymptotically stable.

4 Sensitivity analysis

Sensitivity analysis is a method to estimate the changes brought into the
system through small changes in the parameters of the model. In this way one
may estimate both the robustness of the model against small changes in the
model, as well as identify possibilities for bringing a certain desired changed
in the system. E.g., one question that is often asked of a biochemical model
is what changes should be done to the model so that the new steady state
satisfies certain properties. In our case we are interested in changing some of
the parameters of the model so that the level of mfp in the new steady state
of the system is smaller than in the standard model, thus presumably making
it easier for the cell to cope with the heat shock. We also analyze a scenario
in which we are interested in increasing the level of mfp in the new steady
state, thus increasing the chances of the cell not being able to cope with the
heat shock. Such a scenario is especially meaningful in relation with cancer
cells that exhibit the properties of an excited cell, with increased levels of hsp,
see [3, 15, 16, 27]. In this section we follow in part a presentation of sensitivity
analysis due to [26].

We consider the partial derivatives of the solution of the system with
respect to the parameters of the system. These are called first-order local con-
centration sensitivity coefficients. Second- or higher-order sensitivity analysis
considering the simultaneous change of two or more parameters is also pos-
sible. If we denote X(t, κ) = (X1(t, κ),X2(t, κ), . . . ,X14(t, κ)) the solution of
the system (1)-(14) with respect to the parameter vector κ, then the con-
centration sensitivity coefficients are the time functions ∂Xi/∂κj(t), for all
1 ≤ i ≤ 14, 1 ≤ j ≤ 17. Differentiating the system (1)-(14) with respect to κj

yields the following set of sensitivity equations:

d

dt

∂X

κj

= J(t)
∂X

∂κj

+
∂f(t)

∂κj

, for all 1 ≤ j ≤ 17, (29)
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where ∂X/∂κj = (∂X1/∂κj , . . . , ∂X14/∂κj) is the component-wise vector of
partial derivatives, f = (f1, . . . , f14) is the model function in (1)-(14), and
J(t) is the corresponding Jacobian. The initial condition for the system (29)
is that ∂X/∂κj(0) = 0, for all 1 ≤ j ≤ 17.

The solution of the system (29) can be numerically integrated, thus ob-
taining a numerical approximation of the time evolution of the sensitivity
coefficients. Very often however, the focus is on sensitivity analysis around
steady states. If the considered steady state is asymptotically stable, then one
may consider the limit limt→∞(∂X/∂κj)(t), called stationary sensitivity co-
efficients. They reflect the dependency of the steady state on the parameters
of the model. Mathematically, they are given by a set of algebraic equations
obtained from (29) by setting d/dt(∂X/κj) = 0. We then obtain the following
algebraic equations:

(

∂X
∂κj

)

= −J−1Fj , for all 1 ≤ j ≤ 17, (30)

where J is the value of the Jacobian at the steady state and Fj is the j-th
column of the matrix F = (∂fr/∂κs)r,s computed at the steady state.

When used for comparing the relative effect of a parameter change in two
or more variables, the sensitivity coefficients must have the same physical
dimension or be dimensionless, see [26]. Most often, one simply considers
the matrix S′ of (dimensionless) normalized (also called scaled) sensitivity
coefficients:

S′

ij =
κj

Xi(t, κ)
·
∂Xi(t, κ)

∂κj

=
∂lnXi(t, κ)

∂lnκj

Numerical estimations of the normalized sensitivity coefficients for a steady
state may be obtained, e.g. with Copasi. For X14 (standing for the level of
mfp in the model), the most significant (with the largest module) sensitivity
coefficients are the following:

◦ ∂ln(X14)/∂ln(T ) = 14.24, ◦ ∂ln(X14)/∂ln(k6) = 0.16,
◦ ∂ln(X14)/∂ln(k+

1 ) = −0.16, ◦ ∂ln(X14)/∂ln(k9) = 0.15,
◦ ∂ln(X14)/∂ln(k+

2 ) = −0.16, ◦ ∂ln(X14)/∂ln(k+
11) = −0.99,

◦ ∂ln(X14)/∂ln(k+
5 ) = 0.49, ◦ ∂ln(X14)/∂ln(k−

11) = 0.24,
◦ ∂ln(X14)/∂ln(k−

5 ) = −0.49, ◦ ∂ln(X14)/∂ln(k12) = −0.24.

These coefficients being most significant is consistent with the biological
intuition that the level of mfp in the model is most dependant on the temper-
ature (parameter T ), on the rate of mfp being sequestered by hsp (parameters
k+
11 and k−

11) and the rate of protein refolding (parameter k12). However, the
sensitivity coefficients also reveal less intuitive, but significant dependencies
such as the one on the reaction rate of hsf being sequestered by hsp (param-
eters k+

5 and k−

5 ), on the rate of dissipation of hsf dimers (parameter k6), or
on the rate of dimer- and trimer-formation (parameters k+

1 and k+
2 ).

Note that the sensitivity coefficients reflect the changes in the steady state
for small changes in the parameter. E.g., increasing the temperature from
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42 with 0.1% yields an increase in the level of mfp with 1.43%, roughly as
predicted by ∂ln(X14)/∂ln(T ) = 14.24. An increase of the temperature from
42 with 10% yields however an increase in the level of mfp of 311.93%.

A similar sensitivity analysis may also be performed with respect to the
initial conditions, see [26]. If we denote by X(0) = X(0, κ), the initial values
of the vector X, for parameters κ, then the initial concentration sensitivity
coefficients are obtained by differentiating system (1)-(14) with respect to
X(0):

d

dt

∂X

∂X(0)
= J(t)

∂X

∂X(0)
(t), (31)

with the initial condition that ∂X/∂X(0)(0) is the identity matrix. It follows
then that the initial concentration sensitivity matrix is given by the following
matrix exponential:

∂X

∂X(0)
(t) = eJ(t) =

∞
∑

k=0

J(t)k

k!
.

Similarly as for the parameter-based sensitivity coefficients, it is often
useful to consider the normalized, dimensionless coefficients

∂Xi

∂X(0)
j

(t) ·
X(0)

j(t)

Xi(t)
=

∂ln(Xi)

∂ ln(X(0)
j)

.

A numerical estimation of the initial concentration sensitivity coefficient
of mfp around the steady state given in Table 2 for T = 42, shows that all

are negligible except for the following two coefficients: ∂ln(X14)/∂ln(X
(0)
9 ) =

−0.497748 and ∂ln(X14)/∂ln(X
(0)
13 ) = 0.99. While the biological significance

of the dependency of mfp on the initial level of prot is obvious, its dependency
on the initial level of hsp: hsf is perhaps not. Moreover, it turns out that several
other variables have a significant dependency on the initial level of hsp: hsf:

◦ ∂ln(X1)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X6)/∂ln(X9(0)) = −0.04,
◦ ∂ln(X2)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X7)/∂ln(X9(0)) = 0.49,
◦ ∂ln(X3)/∂ln(X9(0)) = 1.04, ◦ ∂ln(X9)/∂ln(X9(0)) = 0.99,
◦ ∂ln(X4)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X14)/∂ln(X9(0)) = −0.49,
◦ ∂ln(X10)/∂ln(X9(0)) = 0.49, ◦ ∂ln(X11)/∂ln(X9(0)) = 0.49,

E.g., increasing X
(0)
9 by 1% increases the steady state values of X7 by

0.49% and decreases the level of X14 by 0.49%. Increasing X
(0)
9 by 10% in-

creases the steady state values of X7 by 4.85% and decreases the level of X14

by 4.63%.
The biological interpretation of this significant dependency of the model

on the initial level of hsp: hsf is based on two arguments. On one hand, the
most significant part (about two thirds) of the initial available molecules of
hsp in our model are present in bonds with hsf. On the other hand, the vast
majority of hsf molecules are initially bound to hsp. Thus, changes in the
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initial level of hsp: hsf have an immediate influence on the two main drivers
of the heat shock response: hsp and hsf. Interestingly, the dependency of the
model on the initial levels of either hsp or hsf is negligible.
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