S

Ontology Driven Smart Space Application
Development

M. Mohsin Saleemi, Natalia Diaz Rodriguez, Espen Suenson,
Johan Lilius and Ivan Porres

Department of Information Technologies, Turku Centre for Computer Science
(TUCS), Abo Akademi University, Turku, Finland; e-mail: johan.lilius @abo.fi

Abstract

This chapter presents an approach to create an abstraction layer and appropri-
ate tools for rapid application development for Smart Spaces. The proposed
framework is described together with the overall process for application
development. An approach of how to integrate OWL-S grounding into the
agents is described for allowing service discovery and composition. We also
show results of a case study implementation to illustrate the functionality of
the proposed framework. This case study shows that interoperability can be
realized by agents that describe information about themselves using some
common ontology.

Keywords: smart space, ontology, interoperability, application development,
OWL-S.

5.1 Introduction

While the Semantic Web envisions more well-structured data enabling new
possibilities for the Internet, the semantic concept is also being adopted into
other areas. One of these areas is the Smart Space, which, although very sim-
ilar, comes with a different set of restrictions, challenges and possibilities.

S.F. Pileggi and C. Fernandez-Llatas (Eds.), Semantic Interoperability: Issues,
Solutions, and Challenges, 101-125.
(© 2012 River Publishers. All rights reserved.

102 Ontology Driven Smart Space Application Development

The reason is that Smart Spaces heavily depend on heterogeneous devices,
systems and services and need to be made seamlessly interoperable to be used
effectively in a device, vendor and domain independent manner. The diversity
of devices and standards raises the problem of enabling interoperability of
different services within different devices.

A Smart Space is an abstraction of space that encapsulates both the in-
formation in a physical space as well as the access to this information, such
that it allows devices to join and leave the space. In this way, a Smart Space
becomes a dynamic environment whose identity changes over time when the
set of entities interact with it to share information between them. Moreover,
as Smart Spaces provide information about a physical environment which
is shared with inherently dynamic applications, ubiquitous ambient services
should adapt user preferences in each particular context. These ubiquitous
applications employ a range of different devices in addition to mobile phones
to provide a set of innovative services that are both social and personalized.
This requires more advanced methods for data handling and understating
and approaches for data exchange and communication across heterogeneous
sources. Furthermore, there are several other issues to be solved such as
interoperability issues, common application development platforms and the
development tools for rapid application development.

The main research problems we are dealing with are how to develop fast
and rapid applications for Smart Space using the traditional Object Oriented
(OO) programming approach and how to achieve interoperability in these
applications. The objective is to develop a generic and comprehensive inter-
operability solution that enables the devices and applications from different
domains to communicate with each other and construct a scalable smart
network of diverse devices.

In this chapter, we present our solutions for the given research prob-
lems. We proposed and developed user level tools, which make use of Web
Ontology Language (OWL). OWL not only allows structuring the Smart
Space content in terms of high-level programing language concept of classes
but also specifies relations between the classes and their properties. Hence,
entities interacting with Smart Space can consume and produce content
according to high level OWL ontology terms. As dealing with ontologies
could be very difficult for the programmers and end-users, we developed
a user-level tool that generates ontology API by mapping OWL ontology
concepts into Object Oriented programming language concepts. This enables
application developers to create innovative Smart Space applications using
traditional Object Oriented programming concepts without worrying about

5.2 Related Work 103

the complexity of OWL. Moreover, service discovery and composition under
“unchoreographed” conditions [8] can be tackled with existing semantic web
services and our proposed tools [21], which provide a solution to make easier
for the programmer the combination of services differently implemented.

This chapter is organized as follows. Section 5.2 gives an overview of the
related work on ontology based infrastructures. Section 5.3 gives an overview
of the Smart-M3 concept, a particular implementation of Smart Space. It also
describes the ontology point of view for this approach and describes the tools
developed for support of Knowledge Processors (KP) creation. Section 5.4
shows a case study using our framework to give proof of concepts. Section 5.5
gives a structured view of Smart Space and the interaction between KPs.
Section 5.6 describes a service ontology and its function. It also proposes an
OWL-S Python binding for service composition. Finally, Section 5.7 makes
some conclusions and depicts directions for future work.

5.2 Related Work

Context-aware computing research shows a large number of context-aware
systems and approaches for application development. Ontology context mod-
eling differentiates according to simplicity, flexibility, extensibility, generic-
ity and expressiveness [9]. Since 2004, many ontology-based systems have
been developed. CoBrA and SOCAM are some examples, which use their
own OWL-based approach for context processing while others like Con-
text Managing Toolkit describe context in RDF. CoBrA [11], as agent-based
infrastructure for context modeling, context reasoning and knowledge shar-
ing, provides techniques for the user’s privacy control, while Soupa and
CoBrA-Ont provide some of their ontologies. SOCAM [15] introduces an-
other architecture for building context-aware services focused on information
sensing and context providers using a central server. All these systems use
SQL to access the central database. In contrast, we propose RDF as a more
efficient way and to restrict the queries to a smaller set of statements.

In [20], operating system concepts include context-awareness. Quater-
nary predicates are used for information representation, in which the fourth
one is context-type. DAML + OIL is employed, as well as an MVC model.
These and other projects as [28] focus basically on creating ontologies for
context-representation. However, we intend to build a framework for creating
context-aware development of services or applications based on the semantic
architecture (which, in contrast, has a blackboard architecture).

104 Ontology Driven Smart Space Application Development

Context Toolkit [13] is another case that enables application development
through reusable components. However, its attribute-value tuples, not being
meaningful enough, make application programming restricted. Another ex-
ample is HIPPIE [18], which utilizes existing users’ information with an
awareness system to distribute context information to the users’ devices. For
compensating its lack of handling interaction, it was combined with NESSIE
[19] which added event based awareness but still lacked semantic information
description. When rules must be specified in the Smart Space in OWL, an
OWL-Script language [25], prototyped in our group, can be considered.

When it comes to deploying services, there are several alternatives. The
main ones consist of OWL-S and WSMO (Web Service Modeling Ontology).
The grounding in OWL-S provides the details of how to access the service
mapping from an abstract to a concrete specification of the service. WSMO
approaches for grounding use mapping to XML with SAWSDL (Semantic
Annotations for WSDL and XML Schema) while OWL-S utilizes WSDL
(and SWRL for rules) and possibly XLST transformations. However, both
groundings reduce in the end to the use of WSDL to where both OWL-S and
WSMO services must be mapped for a concrete specification [7].

There are different approaches and architectures that address the issue of
service composition. These approaches can be classified using several service
composition features such as automatic composition [17], semi-automated
composition [23], end-user interaction [24], service specification language
[14], etc. In [9], the authors give a comparison of different service composi-
tion approaches. A middleware solution for end-user application composition
is provided in [12]. Other approaches of flexible service composition in mo-
bile environments are described in [10] and [26]. While existing research
efforts deal with theses issues separately, there has been very limited work
in ubiquitous service compositions in smart environment. In [27], the authors
proposed a system consisting of a middleware and user-level tools that enable
the end-users to combine, configure and control the services using their smart
home devices.

Aiming at facilitating the creation of smart services we can observe that
diverse technology-specific frameworks exist, but none of them results in a
rapid and functional application programming tool. Comparing with previous
systems, we describe an approach that tackles the challenge of context-aware
ubiquitous computing using automated ontology code generation (Python and
C) giving complete control over ontologies. The communication with the
Smart Space is therefore encapsulated for the developer.

5.3 Smart-M3 Architecture 105

5.3 Smart-M3 Architecture

A concrete implementation of Smart Space is Nokia’s Smart-M3 [5], a Multi-
domain, Multi-device and Multi-vendor (M3) platform consisting of a space
based communication mechanism for independent agents which communi-
cate implicitly by inserting and querying information in the space. Smart-M3
is an open source, cross-domain architecture where the central repository
of information, Semantic Information Broker (SIB) is responsible for infor-
mation storage, sharing and management through the Smart Space Access
Protocol (SSAP). SSAP provides the KPs access to the Smart-M3 space
by means of the operations: Join/Leave the Smart-M3 space, Insert/Remove
information from the SIB, Update, Query and Subscribe to changes.

Entities called Knowledge Processors (KPs) implement functionality and
interact with the Smart Space by inserting/retrieving/querying common in-
formation. An application is constructed by aggregating normally several
KPs where each performs a single task and communication does not happen
device to device but through the Smart Space central repository (SIB). One
device can host any number of different KPs. The application is constructed
by the composition of several KPs where each KP performs a specific task.
The application design in this approach differs from the traditional single
device control-oriented application.

The information level interoperability provided by Smart-M3 allows ob-
jects and devices in the physical space to define a common information
representation model with Resource Description Framework (RDF). Infor-
mation in the SIB is stored as RDF graphs or Triples (Subject, Predicate,
Object).

The Smart-M3 space is composed of one or more SIBs but even if the
information may be distributed over several SIBs, the information result is
the union of information stored in all SIBs associated with that space. Since
SIBs are routable, devices see the same information and it does not matter to
which particular SIB in a M3 space a device is connected. Figure 5.1 shows
the Smart-M3 Architecture.

This chapter presents a framework for simplifying the development of
KPs agents. The Smart Space interface is abstracted by hiding the underlying
complexity involved in ontology-driven approaches. This is achieved through
a Python and C API generated from an OWL-DL ontology.

106 Ontology Driven Smart Space Application Development

Knowledge Processors (KP) [1..N]

Y A SSAP
SIB siB
[1..N] | Ontologies™®"
I &
Smart Space
a4 -Apps
-Services
Ontology based -Tasks
Information Exchange Devices [1..N]

Figure 5.1 Smart-M3 architecture.

5.3.1 Ontologies in Smart-M3

The information interoperability needed in Smart Spaces can be realized
by agents that describe their information using a common ontology. In the
last version of the Ontology Web Language, OWL 2, ontologies can also be
viewed as RDF graphs, i.e. the structural form is mapped to the RDF graph
form and vice versa [2].

OWL ontologies can define the context information representing data di-
rectly obtained from context providers plus inferred information from this
data using inference rules. Thus, we chose ontology based context modeling
for Smart Space for several reasons. Firstly, the platform Smart-M3 pro-
vides an interoperability architecture based on ontology models with support
for RDF graphs storage, code generation and ontology reasoning; secondly,
we chose ontology based context modeling for the fact that ontologies are
the most promising and expressive models satisfying information interoper-
ability requirements. Moreover, ontology based models provide flexibility,
extendibility and genericity, key factors in context-aware ubiquitous spaces
[9].

Since the main design goal for our research is the rapid and easy appli-
cation development for Smart Space environments, the dynamic nature of
OWL is something from which we can definitely benefit in the modeling.

5.4 Case Study 107

Ontologies enable the expression of information and relations in an applica-
tion. An ontology allows KPs to access and process the information related
to their functionality from the Smart-M3 space, consequently driving the KPs
through the space [22].

5.3.2 Tool Support for Knowledge Processors creation
Our approach consists of two development tools modules:

1. The first part is a Python code generator that creates a static API from an
OWL ontology [4] as illustrated in Figure 5.2. These mapping generate
native Python classes, methods and variable declarations which can then
be used by the application developer to access the data in the Smart-M3
space as structured and specified in the OWL ontology. The generator
loads an OWL ontology into a Java ontology model which provides
interfaces for accessing the RDF graph. A reasoner is connected to
the model to complete the inferred part of the ontology. The generator
then lists all named classes in the ontology and the handler creates a
counterpart OWL class in Python which is added to the code model.
The class handler will list all properties and call the ObjectProperty and
DatatypeProperty handlers which, in turn, translate every restriction that
the property may have, e.g. Cardinality and Range restrictions.

2. The second component is the middleware layer which abstracts the
communication with the Smart-M3 as illustrated in Figure 5.3. Its main
functionality is the handling of information in the central SIB with the
generated API. This consists of inserting, removing and updating RDF
Triples and committing changes to the Smart Space. It also provides
functionality for synchronous and asynchronous querying. Our approach
enables application developers to use the generated API to develop new
applications without worrying about the Smart-M3 interface as the gen-
erated API takes care of the connection to the Smart Space each time an
object is created. From the Smart-M3 point of view, the proposed frame-
work simplifies the development of KPs by making the Smart Space
interface more abstract and hiding the underlying complexity involved
in ontology-driven approaches [16].

108 Ontology Driven Smart Space Application Development

OWL Ontology Python/C
| RDF/XMLfile | /AM
' Generator
* OWL Model
 Construct handlerﬁCode model |
[Reasoner]

Figure 5.2 Framework overview.

'KP logic 7
Middleware
| Ontology API 1 |

omoogyapiz| __ _ SmartSpace

SSAP——>ISSAP

[Ontology API.n]

Figure 5.3 Runtime middleware for Smart-M3.

5.4 Case Study: From Ontology Editing with Protégé to an
Application Example in Home Automation

Our demonstration scenario [16] uses a home state switch, reflecting the
global state (i.e. “Home”, “Away” and “Vacation”), and a heating system.
Moreover, there are two additional parts for enabling interoperability: a
controller and a configuration tool. In addition to these interoperating com-
ponents, there is also a temperature display, and a temperature slider which
can be configured to correspond to or set the different temperatures available
from the heater appliance. The demonstration application consists of several
KPs representing the functionality of the devices and a user interface. All de-
vices at home connect to the SIB and insert information about themselves. A
conceptual model is shown in Figure 5.4. The demonstration implementation
contains a temperature service concept in addition to the house state concept
shown in Figure 5.4. The temperature data service is contained in the Heater,
Temperature Slider and the display. An example configuration is to set the
display to show the active temperature setting in the heater.

5.4 Case Study 109

Controller proprietary system D Air conditioner | Proprietary system A
Controller Controller
Fan Proprietary system B
Rules Devices
==== === HouseState Sensors Heater - Conuraloy
=== e A Fan
\\ \ " HouseState Sensors
House state switch
) Automation Ontology Fropﬁetaw e
Configuration Tool Rules | Devices Rir Sonditionan Controller
: Published features -
Proprietary system E Rules Heator# H Stat
User interface b — — / louseState
A \ / Switch e—""
Rules Device:
= == .
SiB

Figure 5.4 Case study overview showing an interoperability solution.

In this use-case we created an ontology containing rules for automation,
concepts for expressing the house state, and the temperature. These ontology
components and their attributes were edited with Protégé [6]. The Python
Code Generator was used to generate the agent ontology API with populated
instance properties.

The case study illustrates an application development approach for Smart-
M3 using our proposed framework. The KPs are developed from the gen-
erated ontology API and are able to communicate through the Smart-M3
space providing interoperability between different devices in the example
application.

All devices in the home connect to the SIB, through their respective SIB
interfaces, and insert information about themselves. This information consists
of a user friendly name, a list of services it provides and the data which
describes its state. No automatic configuration about how they interact exist
at this time. When the configuration tool is run, the user is presented with
devices registered in the SIB, and can then configure rules. Rules are inter-
preted by a controller KP. The controller subscribes to changes in the data
of the devices. In order to catch changes in state of the switch, the controller
listens to new instances of the Event class. This instance contains informa-
tion about what has occurred. When the controller receives a new instance of
an Event, it parses through the list of rules and if there is a matching rule,
it will execute the rule. In this simple implementation, a matching rule will
create a new instance of the class Invoke and adds properties to it according

110 Ontology Driven Smart Space Application Development

to the configured rules. The new Invoke instance is subscribed to by the KP
representing the service invoked, and can then be used to alter the internal
state accordingly.

All devices of interest connect to the SIB through their respective SIB
interfaces, insert information about themselves, the service they provide and
the data which describes its state. When the configuration tool is run, the user
is presented with devices registered in the SIB, and can then configure rules.
Rules are interpreted by a controller KP which subscribes to changes in the
data. In order to catch changes in the switch state, the controller listens to
new instances of the Event class.

The API generator and DIEM Mediator!' source code is available from
Smart-M3 at SourceForge [5]. The demonstration was tested with Python
2.6.x, PyQt v.4.5.4 for Python 2.6 and Nokia SIB revision 98.

The following agents in the building automation demonstration try to
connect to a Smart Space named ‘x’ on 127.0.0.1 at port 10010 by default:

Controller.py
ConfigurationTool.py
HomeStateSwitch.py
Heater.py
TemperatureSet.py
TemperatureDisplay.py

Running python SIB.py x starts a SIB running locally at port
10010 with the Smart Space name x. The simplest use-case to run is the
HomeStateSwitch and the Heater, with pre-configured addresses 17 and 7
respectively. These can be connected by the configuration tool using the
following commands:

Command] list

Command] connect

Source address: 17

Source feature: 0

Destination address: 7

Destination feature: O (State might have another number)
Rule name: TestRule

If commands are executed correctly the heater will output its changing state
following the home state switch. The KPs can be started in any order, but the

! A caching middleware for accessing the SIB

5.5 Structured View of Smart Space 111

configuration tool KP does not find any devices until they are started. The
suggested order is to run the controller and the configuration tool, and then
any of the service providing devices or KPs. Note that subscriptions to the
SIB result in a TCP timeout if no subscribed data is sent by the SIB within a
quite short period of time depending on network configuration. Python can-
not platform independently set TCP keep-alive messages and it is therefore
recommended to run the demo locally. There are some subscriptions which
are not required after running the configuration tool, thus the example might
work even after this timeout error.
More information about the development tool can be found in [16].

5.5 Structured View of Smart Space

In order to explain the structure of the Smart Space and the role of the KPs
ontologies we will consider a simple application for not missing our favorite
TV program. Let us suppose that the user’s favorite program is starting in few
minutes according to the user profile information or fan page in Facebook
and the TV guide available on the broadcaster’s web page. Then the GPS
in his mobile phone or his personal calendar could find out that he is not at
home and start the PVR (Personal Video Recorder) to record the program.
In order to address this kind of cross-domain scenario where technical and
conceptual problems arise, the concept of Smart Space appears to encapsulate
and abstract information from different services with the aim of allowing
heterogeneous service composition.

A PVR could be considered as a form of API with different functions.
One or several KPs can be perceived as a service, for example several KPs
handling calendar activities in an application could shape a calendar service.
Thus, each service acts as service provider exposing its functionality to other
KPs and services through the Smart Space. At the same time each service
acts as requester too.

In this way, we could have the PVR’s KP and the mobile phone’s KP
connected to the SIB. Figure 5.5 shows the registered devices’ KPs with their
information described in their respective ontologies.

Each of these subservices within a device inform their inputs and outputs
among other parameters in each of their profiles. In order to deploy the sce-
nario of recording the favorite program, the composition of required services
must be deployed in the SIB, which knows about the devices connected to the
Smart Space. Here we find the problem that the SIB offers a persistent data
repository but is a plain database giving just access to the data; no control

112 Ontology Driven Smart Space Application Development

Phone KP
-Subservices:

Consult Calendar
Status
Program Emision Smart Add/Update/Remove
Space Event to Calendar

PVR
-Subservices:

PVR Status

Incoming Call

Change Video Output

Radio Function
Language Settings

——
SIB Weather Function
Ontologies

Figure 5.5 KP’s services structure.

structure or computation is provided. However, if we add to the SIB a de-
scription of each subservice, all devices would be represented with a unique
standard allowing language and device independent service composition. For
this purpose we suggest service description with OWL-S [3] representation.
The reasons are that OWL-S enables declarative advertisement of service
properties and capabilities that can be used for automatic service discov-
ery and because it describes the services in terms of capabilities based on
OWL (also supported by Smart-M3). In addition to provide specification
of prerequisites of individual services, OWL-S language describes services
composition including data flow interactions [22].

By storing OWL-S instances (associated to each KP) in the SIB, the SIB
would gain processing control. In this case an OWL-S interpreter running
in parallel with the SIB would control the matching of compatible services
when requested. Consequently, the original Smart-M3 framework would be
enhanced.

5.6 Service Ontology Description 113

Service

pn:sem.r SUPPorts

presentedBy

describes describedBy

v
[ServiceProfile j [ServiceModel j [ServiceGrounding)

Figure 5.6 Main classes in OWL-S service ontology.

5.6 Service Ontology Description

The new generation of markup languages such as OWL was developed to
support the description of specific web sites and reasoning applications. The
idea behind them is to access web resources by content rather than just by
keywords. When we talk about services, we will refer to local or web ap-
plications that allow actions or changes to happen in a semantic environment
that enables users to locate, query, select, invoke, compose, reuse and monitor
web-based services automatically [3].

OWL-S (formerly DAML-S) is formally defined as an ontology of ser-
vices that allows users and software agents to interact. The OWL-S ontology
is structured in three parts (Figure 5.6):

e Service Profile for advertising and discovering services: “What the ser-
vice does”. Each instance of the class Service “presents” an instance of
the ServiceProfile class.

e Process Model for describing a service’s operation: “How the service
works”. The class ServiceModel captures the property which “describes”
a Service instance.

e Grounding for specifying how to interoperate with a service via mes-
sages: “How to access the service” [1]. The ServiceGrounding class
serves as a “support” property of a Service instance.

A service is described by at most one service model, and a grounding must
be associated with exactly one service. However, it can be useful for some
services to present multiple profiles and/or groundings. An OWL-S Profile
describes a service as a function of what organization provides the service,
what function the service computes, and what features specify characteristics
of the service. The Process Model specifies how to interact with the service.
Profile and Process Model hold two different representations of the same
service coinciding in input, output, precondition, and effects (IOPEs). The

114 Ontology Driven Smart Space Application Development

properties described link the Service Profile class with the Service class and
Process Model class. Parameters can conveniently be identified with vari-
ables in SWRL (Semantic Web Rule Language), the language for expressing
OWL Rules. Finally, the Grounding class specifies an unambiguous way of
exchanging I/O data: communication protocol, message formats and other
service-specific details. An important goal for Semantic Web markup lan-
guages, then, is to establish a framework within which these descriptions are
made and shared.

OWL-S supports two categories of services; one is afomic services where
a single web-accessible computer program, sensor, or device is invoked by a
request, performs its task and perhaps produces a response to the requester.
There is no ongoing interaction between the user and the service. In contrast,
complex or composite services are formed of multiple primitive services and
may require an extended interaction/ conversation between the requester and
the set of services to be utilized. This distinction suggests us to add to every
KP agent an OWL-S specific capability to make easier the interaction of
device applications with web services.

While Service Profile and Service Model are abstract representations, the
Service Grounding deals with the concrete level of specification. In order to
inputs and outputs of a process to be realized concretely as messages, Web
Services Description Language (WSDL) carries out the OWL-S grounding
mechanism with a consistent binding. In OWL-S a binding is an abstract ob-
ject with two properties: toParam (name of the parameter) and valueSpecifier
(value description). It results in an effort to provide a specification as concise
as possible in variety of situations. WSDL contains document and process in-
formation in XML format to bind to a concrete network protocol and message
format allowing the service developer to benefit from WSDL’s functionality
and similar languages (as SOAP, HTTP GET/POST, and MIME) for message
exchange. As the OWL-S concept of grounding is generally consistent with
WSDL’s concept of binding, WSDL is used as the ground of an OWL-S
atomic process. For OWL-S/WSDL grounding both languages are needed
and complementary. Both languages overlap in the area where WSDL’s ab-
stract types, which are used to characterize inputs and outputs of services
(specified in XML Schema) correspond to OWL-S’ DL-based abstract types
OWL classes. However, WSDL/XSD is unable to express the semantics of an
OWL class and OWL-S cannot express the binding information that WSDL
captures in messages [1]. Therefore, an OWL-S/WSDL grounding uses OWL
classes as abstract types of message parts declared in WSDL and then relies
on WSDL binding constructs to specify the formatting of the messages.

5.6 Service Ontology Description 115

Table 5.1 Basic elements to define a service.

Basic Elements to define a Service

OWL-S Element Definition

Type Data type definition to describe the exchanged
messages.

Message Abstract definition of the data being transmit-
ted.

PortType Set of abstract operations. Each operation
refers to an input message and output mes-
sages.

Binding Concrete protocol and data format specifica-
tions for the operations and messages defined
by a particular PortType.

Port Address for a binding defining a single com-
munication endpoint.

Service Used to aggregate a set of related ports.

Grounding OWL-S with WSDL and SOAP (assuming HTTP as transport
mechanism) involves the construction of a WSDL service description with
all the usual parts (types, message, operation, port type, binding, and service
constructs). The essence of an OWL-S/WSDL grounding can be summed
up by creating an instance of the OWL-S Grounding class which includes
all required information regarding relationships between relevant OWL-S
constructs and WSDL constructs [1].

The basic elements for defining a service are described in Table 5.1.

The most basic and concrete class in OWL-S, WisdIAtomicProcess-
Grounding establishes the grounding mechanism details within a WSDL
specification. In order to formalize the details of the grounding, Table 5.2
shows the main properties in the WsdlAtomicProcessGrounding class.

5.6.1 Proposed OWL-S Python binding

As OWL-S language is an ontology itself, in order to express preconditions
and effects is combined with SWRL (Semantic Web Rule Language), the
language for expressing OWL Rules based on OWL DL and Lite and RuleML
(Rule Markup Language). Inputs/Outputs are subclasses of SWRL variables.
Discovery and composition operate on description logic reasoning.

116 Ontology Driven Smart Space Application Development

Table 5.2 Properties representing the OWL-S grounding class WsdlAtomicProcessGrounding.

OWL-S Grounding Class
OWL-S Grounding Prop- | Definition

erty

wsdlVersion URI indicating WSDL version.

wsdlDocument URI of WSDL document of the refer-
ring grounding.

wsdlOperation URI of WSDL operation correspond-

ing to the atomic process.

wsdlService and wsdlPort | URI of WSDL service (or port) that
(optional) offers the given operation.
wsdlInputMessage Object containing URI of the WSDL
message definition carrying inputs of
the given atomic process.

wsdllnput Object containing a list of mapping
pairs, (instance of WsdllnputMes-
sageMap) with wsdlMessagePart
property-URI of input object
(owlsParameter) or xsltTransformation
property (string or URI) which
generates the message part from an
instance of the atomic process.
wsdlOutputMessage Analogue to wsdlInputMessage.
wsdlOutput Analogue to wsdlInputs.

Below we show a simple Python example to describe a situation in which
the user is watching TV and his PVR (Personal Video Recorder) is On. In
order not to miss part of the program and to be able to speak without noise,
we would like the PVR to pause automatically when the user receives a phone
call. This application could be modeled as Listing 5.1 shows.

1 if phone.isRinging(user.getPhoneNo)) & PVR.isOn():
> PVR.setPause ()

Listing 5.1 Python Rule Example

A rule expressed in an OO language for modeling a KP behavior can
involve different services among its components. We could consider each call
to a Python function as a different atomic service which, combined, form a
composite service. Once a rule is created or developed, as we have done in

5.6 Service Ontology Description 117

Python, it needs to go through different phases in its execution cycle for it to
be completely deployed. The phases start with the installation of the rule in
the Smart Space until its uninstalation or removal. Next the rule sequential
phases are enumerated:

e Rule INSTALLED: All instances of the different KPs involved in the
rule must be known and available in the SIB, in other words, a rule is
installed when its involved KPs are connected to the Smart Space and
registered in the SIB.

e Rule RESOLVED: A rule is resolved when for each call to a Python
function there exists a specified and available service grounding. Then
the rule can be considered as registered in the Smart Space. Access
control to the KP services is also checked and is here where OWL-
S acts as intermediate specification. Without service formalization and
grounding in OWL-S the binding of the rule realization would be-
come language dependent. Consequently, OWL-S helps achieving multi
device interoperability.

e Rule STARTED or SUBSCRIBED: When the rule’s corresponding ser-
vices have requirements or conditions constraining its triggering, the
rule will not become active until they are satisfied. The rule is installed
and resolved but is blocked. This means that an asynchronous subscrip-
tion to the SIB is done in order to get a notification callback when the
constraints are met. When that occurs, the rule is released and becomes
active or published.

e Rule ACTIVE or PUBLISHED: A rule is active or published when the
service has been started, triggered and the execution grounding has been
realized. The corresponding effects or updates are published in response
to subscriptions.

e Rule UNINSTALLED: The rule is removed from the SIB in the Smart
Space for it to no longer take effect.

In order to generalize the service binding to Python we have to be con-
scious that not only atomic and composite services exist. In applications
including simple Python rules as the previous conditional construct (List-
ing 5.1) we can find active and passive services. Pasive services translate to
queries checking availability in the SIB and subscriptions. Active services
can, however, translate Python calls into different effects, either actions or
changes in the Smart Space or simple data updates. For this reason we have
had to specify formally the different phases which the rule passes through
during its binding. Here appears also our motivation for extending the existing

118 Ontology Driven Smart Space Application Development

KPs interaction in the rule cycle deployment

=
=
el

Phone KP

Figure 5.7 Sequence diagram representing the KP’s interaction in the rule cycle deployment.

OWL information in the SIB with an OWL-S specification which allows the
developer to classify the different types of services and act consequently. For
a rule structure to execute in Python, it must be invoked. However, if we
structure the OO structures to be represented in form of OWL-S services
and introduce them into the SIB, the rules will be always running in the

PVR.registeredinSIB{)?

Ontology not

h-D Ontalogy not registered

FPhone.registeredinSIB()?

e

existsGrounding(isOn{))?

~

registered

provided

Mo Grounding
provided

—

—-.___’
P:D Mo Grounding provided
bz udrang C::H— existaGrounding{isRinging()!?

Yes: Rule INSTALLED

existsGrounding(setPause())?

+

PYRLIsON()?

»_ D No:Subrule SUBSCRIBED

Yes: Subrule FQESDL\-'E_Di

Ma: Subrule Fhone.isRinging()?
SUBSCRIBE

Yes: Rule PUBLISHED

—

»

Phone.setPausel)

background until their removal is desired.

The Python example in Listing 5.1 could be modeled as the KPs

interaction shown in Figure 5.7 representing the rule cycle.

5.6 Service Ontology Description 119

<process:AtomicProcess rdf:ID="PVR-AutoPausing">

<process:hasinput rdfiresource="#PVR"/>
Inputs / <process:hasinput rdf:resource="#Phone"/>
Outputs <process:hasOutput rdf:resource="#ConfirmationPVRPaused"/>
Precondition <process:hasPrecondition RegisteredInSIB(PVR, Phone) & ExistsGrounding(isOn, isRinging,

setPause)/>
<process:hasResult>
<process:Result>
<process:inCondition>
<expr:SWRL-Condition>
Condition PVR.isOn() & Phone.isRinging()
<expr:SWRL-Condition>
</process:inCondition>
<process:withOutput rdf:resource="#ConfirmationPVRPaused “>
Output _ E <valueType rdf:iresource="8xsd;#string”>
Constraints </process:withOutput>
<process:hasEffect>
<expr:SWRL-Condition>
Effect PVR.setPause()
<expr:SWRL-Condition>
</process:hasEffect>
</process:Result>
</process:hasResult>
</process:AtomicProcess>

Figure 5.8 Atomic process example.

The previous example showed how one can develop a rule and how can
one deploy it in a semantic environment. In order to realize the concrete
binding of the service into Python, the OWL-S grounding is needed. We could
then model a process as presented and structured in Figure 5.8 and concretize
it with an OWL-S grounding as Listing 5.2 specifies.

<!-- The PVR Auto Pausing atomic process -->

<process:AtomicProcess rdf:ID="PVR-AutoPausing">
<process:hasInput >
<process:Input ref:ID="PhoneNumber">
<process:parameterType rdf:about="&xsd;#string"
>
</process:Input>
</process:hasInput>
<process:hasInput>
<process:Input ref:ID="isPhoneRinging">
<process:parameterType rdf:resource="#Phone/
isRinging">
</process:Input>
</process:hasInput>

35

36
37
38
39

40
41
42

43
44
45
46
47

48

120 Ontology Driven Smart Space Application Development

<process:hasInput>
<process:Input ref:ID="isPVROn">
<process:parameterType rdf:resource="#PVR/isOn"
>
</process:Input>
</process:hasInput>
<process:hasOutput >
<process:0utput ref:ID="ConfirmationPVRPaused">
<process:parameterType rdf:resource="&xsd;#
string">
</process:0Output>
</process:hasOutput >

</process:AtomicProcess>

<!-- 0OWL-S Grounding -->

<grounding:WsdlGrounding rdf:ID="SmartPVR">

<grounding:hasAtomicProcessGrounding rdf:resource="
#PVR-AutoPausing"/>

</grounding:WsdlGrounding >
<grounding:WsdlAtomicProcessGrounding rdf:ID="PVR-

AutoPausing">
<grounding:owlsProcess rdf:resource="#PVR-
AutoPausing">
<grounding:wsdlOperation>
<grounding:WsdlOperationRef >
<grounding:portType>
<xsd:uriReference rdf:value="http://SmartPVR.
com/PVR-AutoPausing.wsdl#PhonePortType"/>
</grounding:portType >
<grounding:operation>
<xsd:uriReference rdf:value="http://SmartPVR.
com/PVR-AutoPausing.wsdl#SmartAutoPausing"
/>
</grounding:operation>
</grounding:WsdlOperationRef >
</grounding:wsdlOperation>

<grounding:wsdlInputMessage rdf:resource="http://
SmartPVR.com/PVR-AutoPausing.wsdl#
PausingPVRInput"/>

<grounding:wsdlInput>

49
50

51
52

53
54
55
56
57
s8

59
60

61
62
63
64
65
66

67
68

69
70
71
72
73

74
75
76

717
78

79
80

5.6 Service Ontology Description 121

<grounding:wsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="#isPVROn
">
<grounding:wsdlMessagePart >
<xsd:uriReference rdf:value="http://SmartPVR.
com/PVR-AutoPausing.wsdl#pvr.isOn">
</grounding:wsdlMessagePart>
</grounding:wsdlInputMessageMap >
</grounding:wsdlInput>
<grounding:wsdlInput>
<grounding:wsdlInputMessageMap>
<grounding:owlsParameter rdf:resource="#PhonelNr
">
<grounding:wsdlMessagePart>
<xsd:uriReference rdf:value="http://SmartPVR.
com/PVR-AutoPausing.wsdl#PhoneNr">
</grounding:wsdlMessagePart >
</grounding:wsdlInputMessageMap >
</grounding:wsdlInput>
<grounding:wsdlInput>
<grounding:wsdlInputMessageMap >
<grounding:owlsParameter rdf:resource="#
isPhoneRinging">
<grounding:wsdlMessagePart>
<xsd:uriReference rdf:value="http://SmartPVR.
com/PVR-AutoPausing.wsdl#phone.isRinging">
</grounding:wsdlMessagePart >
</grounding:wsdlInputMessageMap >
</grounding:wsdlInput >

<grounding:wsdlOutputMessage rdf:resource="http://
SmartPVR.com/PVR-AutoPausing.wsdl#PVROutput"/>
<grounding:wsdlOutput >
<grounding:wsdlOutputMessageMap >
<grounding:owlsParameter rdf:resource="#
ConfirmationPVRPaused">
<grounding:wsdlMessagePart >
<xsd:uriReference rdf:value="http://SmartPVR.
com/PVR-AutoPausing.wsdl#pvr.SetPause () ">
</grounding:wsdlMessagePart >
</grounding:wsdlOutputMessageMap>

81

122 Ontology Driven Smart Space Application Development

</grounding:wsdlOutput >
Listing 5.2 OWL-S Atomic Process and Grounding Example

5.7 Conclusions and Future Work

A solution for application development was presented in this chapter in-
tegrating ontologies and the Smart-M3 platform. First, developing a tool
for mapping OWL to OO languages (available in Python and C) providing
complete control over ontologies was described. Second, a middleware was
constructed encapsulating the communication with the Smart Space. This
module allows Python to write applications by using the generated Ontologies
APIs. Later a case study implicitly showed the communication among agents
through Smart-M3 Space achieving device interoperability.

For these ontologies to allow composition of services, we finally proposed
a deployment through a fixed grounding in the SIB by using an OWL-S de-
scription of each subservice. Thus, by extending the previous framework with
OWL-S information making it available in the SIB we add support for service
interaction and composition.

We conclude by showing the suitability of Smart Space for ubiquitous ap-
plications where physical environments adapt to the user and the surrounding
information is reusable and dynamic. With the integration of these different
components with Smart-M3, rapid development of context-aware applica-
tions for Smart Space is made available so that agents can share information
independently of which device they are embedded in.

In the future, we aim at creating a context processing library with a
Python module for embedding rules expressions [21]. Other challenges to
be tackled are e.g. SIB consistency related issues or efficient subscriptions
implementation. Then, use cases for other environments can be applied.

Acknowledgment

The presented work was funded through the ICT-SHOCK DIEM project by
TEKES (Finnish Funding Agency for Technology and Innovation).

List of Abbreviations

e Smart-M3: Multi-domain, Multi-device and Multi-vendor (M3) Smart
Space platform.

References 123

e SIB: Semantic Information Broker.

e KP: Knowledge Processor.

e SSAP: Smart Space Access Protocol.

e OWL: Ontology Web Language.

e OWL-S: Ontology Web Language Services.

e OWL-DL: Ontology Web Language - Description Logic.
e OO Programming: Object Oriented Programming.
e WSDL: Web Service Definition Language.

e WSMO: Web Service Modeling Ontology.

e UPnP: Universal Plug and Play.

e RDF: Resource Description Language.

e SOAP: Simple Object Access Protocol.

e HTTP: Hypertext Transfer Protocol.

e DAML: DARPA Agent Markup Language.

e DARPA: Defense Advanced Research Projects Agency.
e XML.: Extensible Markup Language.

e API: Application Programming Interface.

e MIME: Multipurpose Internet Mail Extensions.

e SWRL: Semantic Web Rule Language.

e RuleML: Rule Markup Language.

e WQL: Wilbur Query Language

References

[1] Describing Web Services using OWL-S and WSDL.: http://www.daml.org/services/owl-
s/1.1/owl-s-wsdl.html.

[2] OWL 2. [online]:http://www.w3.org/tr/owl2-overview/.

[3] OWL-S. [online]:http://www.w3.org/submission/owl-s/.

[4] Smart-M3 Ontology to Python API Generator: http://sourceforge.net/projects/smart-
m3/files/smart-m3-ontology _to_python-api_generator_v0.9.1beta.tar.gz/.

[5] Smart-M3 software at sourceforge.net, release 0.9.4beta, May 2010. [Online]. Available:
http://sourceforge.net/projects/smart-m3/.

[6] The Protege Ontology editor and knowledge acquisition system:
http://protege.stanford.edu/.

[71 WSMO Grounding: http://wsmo.org/tr/d24/d24.2/v0.1/.

[8] Grigoris Antoniou and Frank van Harmelen. A semantic web primer. International
Journal of Ad Hoc and Ubiquitous Computing, 2:212-223, 2008.

[9] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. A survey on context-aware
systems. International Journal of Ad Hoc and Ubiquitous Computing, 2, 2007.

[10] Dipanjan Chakraborty, Anupam Joshi, Tim Finin, and Yelena Yesha. Service composi-

tion for mobile environments. Mob. Netw. Appl., 10:435-451, August 2005.

124 Ontology Driven Smart Space Application Development

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

[24]

[25]

Harry Chen, Tim Finin, and Anupam Joshi. An ontology for context-aware perva-
sive computing environments. In Proceedings of the Workshop on Ontologies in Agent
Systems, 2003.

Oleg Davidyuk, Nikolaos Georgantas, Valérie Issarny, and Jukka Riekki. MEDUSA:
Middleware for End-User Composition of Ubiquitous Applications. In Handbook of
Research on Ambient Intelligence and Smart Environments: Trends and Perspectives.
IGI Global, 2010.

Anind K. Dey and Gregory D. Abowd. The Context Toolkit: Aiding the development
of context-aware applications. In Workshop on Software Engineering for Wearable and
Pervasive Computing, 2000.

Jing Dong, Yongtao Sun, Sheng Yang, and Kang Zhang. Dynamic web service compo-
sition based on OWL-S. Science in China Series F: Information Sciences, 49:843-863,
2006.

Tao Gu, Hung Keng Pung, and Da Qing Zhang. A middleware for building context-aware
mobile services. In Proceedings of IEEE Vehicular Technology Conference (VTC), 2004.
Andre Kaustell, M. Mohsin Saleemi, Thomas Rosqvist, Juuso Jokiniemi, Johan Lilius,
and Ivan Porres. Framework for Smart Space Application Development. In Proceedings
of the International Workshop on Semantic Interoperability (IWSI 2011), 2011.

Shalil Majithia, David W.Walker, and W.A.Gray. Automated web service composition
using semantic web technologies. In Proceedings of the International Conference on
Autonomic Computing (ICAC04), 2004.

R. Oppermann and M. Specht. A context-sensitive nomadic exhibition guide. In Proceed-
ings of Second Symposium on Handheld and Ubiquitous Computing, pages 127-142,
Springer, 2000.

W. Prinz. NESSIE: An awareness environment for cooperative settings. In Proceedings
of the Sixth European Conference on Computer-Supported Cooperative Work, pages
391-410, 1999.

M. Roman, C. Hess, R. Cerqueira, and A. Ranganathan. A middleware infrastructure for
active spaces. In IEEE Pervasive Computing, 2002.

M. Mohsin Saleemi, Natalia Diaz, Johan Lilius, and Ivan Porres. A framework for
context-aware applications for smart spaces. In Proceedings of ruSMART 2011: The 4th
Conference on Smart Spaces, 2011.

M. Mohsin Saleemi and Johan Lilius. End-user’s service composition in ubiquitous com-
puting using Smartspace approach. In Proceedings of The Sixth International Conference
on Internet and Web Applications and Services (ICIW 2011), 2011.

Evren Sirin, James Hendler, and Bijan Parsia. Semi-automatic composition of web
services using semantic descriptions. In Proceedings of workshop on Web Services:
Modeling, Architecture and Infrastructure (ICEIS2003), pages 17-24, 2002.

Z. Song, Y. Labrou, and R. Masuoka. Dynamic service discovery and management in
task computing. In Proceedings of Mobile and Ubiquitous Systems: Networking and
Services (Mobiquitous2004), 2004.

Espen Suenson, Johan Lilius, and Ivan Porres. OWL web ontology language as a
scripting language for Smart Space applications. In Proceedings of the International
Symposium on Rules, RuleML, 2011.

References 125

[26] Mathieu Vallee, Fano Ramparany, and Laurent Vercouter. Flexible composition of smart
device services. In Proceedings of the 2005 International Conference on Pervasive
Systems and Computing (PSC-05), Las Vegas, pages 27-30, 2005.

[27] Paul Wisner and Dimitris N. Kalofons. A framework for end-user programming of smart
homes using mobile devices. In Proceedings of the Consumer Communications and
Networking Conference, CCNC, 2007.

[28] X.H. Wang, D.Q. Zhang, T. Gu, and H.K. Pung. Ontology based context modeling
and reasoning using OWL. In Workshop Proceedings of the 2nd IEEE Conference on
Pervasive Computing and Communications, 2004.

