
An Improved Training Algorithm for the Linear
Ranking Support Vector Machine

Antti Airola, Tapio Pahikkala, and Tapio Salakoski

University of Turku and Turku Centre for Computer Science (TUCS)
Joukahaisenkatu 3-5 B, Turku, Finland

{antti.airola,tapio.pahikkala,tapio.salakoski}@utu.fi

Abstract. We introduce an O(ms+m log(m)) time complexity method
for training the linear ranking support vector machine, where m is the
number of training examples, and s the average number of non-zero fea-
tures per example. The method generalizes the fastest previously known
approach, which achieves the same efficiency only in restricted special
cases. The excellent scalability of the proposed method is demonstrated
experimentally.

Keywords: binary search tree, cutting plane optimization, learning to
rank, support vector machine

1 Introduction

The ranking support vector machine (RankSVM) [7, 8], is one of the most succes-
ful methods for learning to rank. The method is based on regularized risk min-
imization with a pairwise loss function, that provides a convex approximation
of the number of pairwise mis-orderings in the ranking produced by the learned
model. Related learning algorithms based on the pairwise criterion include meth-
ods such as RankBoost [5], and RankRLS [11], among others. RankSVM has
been shown to achieve excellent performance on ranking tasks such as document
ranking in web search [8, 3]. However, the scalability of the method leaves room
for improvement. In this work we assume the so-called scoring setting, where
each data instance is associated with a utility score reflecting its goodness with
respect to the ranking criterion.

Previously, [9] has shown that linear RankSVM can be trained using cutting
plane optimization very efficiently, when the number of distinct utility scores
allowed is restricted. The introduced method has O(ms+m log(m)+rm) training
complexity, where m is the number of training examples, s the average number
of non-zero features per example, and r the number of distinct utility scores in
the training set. A similar approach having same training complexity was also
introduced by [3]. If r is assumed to be a small constant, the existing methods
are computationally efficient. However, in the general case where unrestricted
scores are allowed, if most of the training examples have different scores r ≈ m
leading to O(ms+m2) complexity. This worst scale quadratic scaling limits the
applicability of RankSVM in large scale learning.

2 Antti Airola, Tapio Pahikkala, and Tapio Salakoski

In this work we generalize the work of [9] and present a training algorithm
which has O(ms + m log(m)) complexity even in the most general case, where
arbitrary real-valued utility scores are allowed. The method is based on using
binary search trees [2, 4] for speeding up the evaluations needed in the opti-
mization process. Our experiments show the excellent scalability of the method
in practice, allowing orders of magnitude faster training times than the fastest
previously known methods in case of unrestricted utility scores. Due to space
constraints more detailed description of the method and related proofs are left
to an upcoming journal extension of the work [1].

2 Learning Setting

Let D be a probability distribution over a sample space Z = Rn×R. An example
z = (x, y) ∈ Z is a pair consisting of an n-dimensional column vector of real-
valued features, and an associated real-valued utility score. Let the sequence
Z = ((x1, y1), . . . , (xm, ym)) ∈ Zm drawn according to D be a training set of m
training examples. X ∈ Rn×m denotes the n × m data matrix whose columns
contain the feature representations of the training examples, and y ∈ Rm is a
column vector containing the utility scores in the training set.

Our task is to learn from the training data a ranking function f : Rn → R. In
the linear case such a function can be represented as f(x) = wTx, where w ∈ Rn
is a vector of parameters. Where the ranking task differs in the scoring setting
from that of simple regression is that the actual values taken by the ranking
function are typically not of interest. Rather, what is of interest is how well the
ordering acquired by sorting a set of new examples according to their predicted
scores matches the true underlying ranking. This is a reasonable criterion for
example in the web search engines and recommender systems, where the task
is to choose a suitable order in which to present web pages or products to the
end user. A popular way to model this criterion is by considering the pairwise
preferences induced by a ranking (see e.g. [6]). We say that an example zi is
preferred over example zj , if yi > yj . In this case one would require from the
ranking function that f(xi) > f(xj). The performance of a ranking function can
be measured by the pairwise ranking error defined as

1

N

∑
yi<yj

H(f(xi)− f(xj)) , (1)

where H is the Heaviside step function defined as

H(a) =

1, if a > 0
1/2, if a = 0
0, if a < 0

,

and N is the number of pairs for which yi < yj . The equation (1) counts the
number of swapped pairs between the true ranking and the one produced by f .

An Improved Training Algorithm for the Linear RankSVM 3

In some learning to rank settings instead of having a total order over all exam-
ples, the sample space is divided into disjoint subsets, and pairwise preferences
are induced only from pairwise comparisons between the scores of examples in
the same subset. An example of an application settings where this approach is
commonly adopted is document retrieval, where data consists of query-document
pairs, and the scores represent the utility of the document with respect to the
associated user query [8]. Preferences are induced only between query-document
pairs from the same query, never between examples from different queries. In
such settings we can calculate (1) separately for each subset, and take the aver-
age value as the final error.

Minimizing (1) directly is computationally intractable, successful approaches
to learning to rank according to the pairwise criterion typically minimize convex
relaxations instead. The relaxation considered in this work is the pairwise hinge
loss, which together with a quadratic regularizer forms the objective function of
RankSVM.

3 Algorithm Description

The RankSVM optimization problem can be formulated as the unconstrained
regularized risk minimization problem

arg min
w∈Rn

1

N

∑
yi<yj

max(0, 1 + wTxi −wTxj) + λ‖w‖2, (2)

where w is the vector of parameters to be learned, N is the number of pairs
for which yi < yj holds true, and λ ∈ R+ is a parameter. The first term is the
empirical risk measuring how well w fits the training data, and the second term
is the quadratic regularizer measuring the complexity of the hypotheses.

[9] proposed minimizing the RankSVM risk using cutting plane optimization.
A more general treatment of this optimization approach, together with improved
convergence analysis can be found in [12], where the method is known as the
bundle method for regularized risk minimization. The cutting plane method
needs O(1

λε) iterations to converge to ε-accurate solution for convex nonsmooth
loss functions, independent of the training set size [12]. By ε-accurate we mean
that the difference between the regularized risk for the found solution, and for
the optimal solution is smaller than a user defined parameter ε.

Due to space constraints detailed description of the cutting plane method
is not possible here, but the central insight necessary for implementing fast
training algorithms is as follows. On each iteration, given the current solution,
the cutting plane method needs the value of the empirical risk, as well as that of
its subgradient. For large dataset sizes it is these computations that dominate
the runtime, since none of the other computations needed in the optimization
are dependent on the sample size or dimensionality. To develop fast training
methods a necessary and sufficient condition is to have an efficient algorithm for
computing the risk, and its subgradient.

4 Antti Airola, Tapio Pahikkala, and Tapio Salakoski

At first glance, it would appear that computing the empirical risk requires
O(m2) comparisons between the training examples. However, as noted by [9, 13],
we can rewrite the empirical risk as

1

N

∑
yi<yj

max(0, 1 + wTxi −wTxj) =
1

N

m∑
i=1

(ci − di)wTxi + ci (3)

where ci is the frequency how many times yi < yj and wTxi > wTxj−1, and di
is the frequency how many times yi > yj and wTxi < wTxj + 1. A subgradient
with respect to w can be calculated as

1

N

m∑
i=1

(ci − di)xi . (4)

Inner product evaluations, scalar-vector multiplications and vector summations
are needed to compute (3) and (4). These take each O(s) time.

Assuming that we know the values of ci, and di for all 1 ≤ i ≤ m, both the
empirical risk and the subgradient require O(ms) time.

[9] proposes an algorithm for computing these frequencies, and subsequently
the loss and the subgradient. However, the work assumes that the range of
possible utility score values is restricted to r different values, with r assumed
to be a small constant. The method has the computational complexity O(ms+
m log(m) + rm). If the number of allowed scores is not restricted, at worst case
r = m and the method has O(ms+m2) complexity, meaning quadratic behavior
in m. In this work we present a more general algorithm, for which the time
complexity of evaluating the loss and the subgradient is O(ms+m log(m)) also
in the most general case, where arbitrary real valued utility scores are allowed.

To formulate the algorithm we need for bookkeeping purposes a data struc-
ture which stores floating point numbers as elements. What is required is that if
h is the current number of stored elements, it supports the following operations
in O(log(h)) time: insertion of a new element, and query to find out the number
of values in the data structure with a larger/smaller value than the given query
value. Finally, the data structure must allow the storage of duplicate values.

For logarithmic time insertion and computation of the desired order statistics,
a suitable choice is a self-balancing search tree. Our implementation is based on
the order statistics tree [4], which is a red-black tree [2] modified so that each
node stores the size of the subtree, whose root node it is. Further, we modify
the basic data structure to allow the insertion of several duplicate values to the
same node. The self-balancing property is crucial, as it guarantees logarithmic
worst case performance.

Algorithm 1 illustrates the O(ms+m log(m)) time calculation for calculating
the loss and the subgradient. First, the algorithm calculates the predicted scores
for the training examples using the current model w. Next, an index list π is
created, where the indices of the training examples are ordered in an increasing
order, according to the magnitudes of their predicted scores. Then, the algorithm
calculates the frequencies needed in evaluating (3) and (4). In lines 7 − 12 we

An Improved Training Algorithm for the Linear RankSVM 5

Algorithm 1: Subgradient and loss computation
Input: X, y, w, N
Output: a, loss
p← XTw;1
c← m length column vector of zeros;2
d← m length column vector of zeros;3
π ← training set indices, sorted in ascending order according to p;4
s← new empty search tree;5
j ← 1;6
foreach i ∈ {1 . . .m} do7

k ← π[i];8
while (j ≤ m) and (p[k]− p[π[j]] > −1) do9

s.insert(y[π[j]]);10
j ← j + 1;11

c[k]←s.count larger(y[k]);12

s← new empty search tree;13
j ← m;14
foreach i ∈ {m. . . 1} do15

k ← π[i];16
while (j ≥ 1) and (p[k]− p[π[j]] < 1) do17

s.insert(y[π[j]]);18
j ← j − 1;19

d[k]←s.count smaller(y[k]);20

loss← 1
N (pT(c− d) + 1Tc);21

a← 1
NX(c− d);22

go through the examples in ascending order, as defined by the predicted scores.
When considering a new example xi, the examples are scanned further, in lines
9−11, to ensure that the true utility scores of such examples, for which, wTxi >
wTxj−1 holds true, are stored in the search tree. After this is ensured, the value
of ci is simply the number of scores in the search tree, for which yi < yj holds.
In lines 15 − 20 we go through the examples in a reversed direction, and the
values of di are calculated in an analogous manner. Once these values have been
calculated, the loss and the subgradient can be evaluated as in (3) and (4). These
operations are performed on lines 21 and 22 as vector-vector and matrix-vector
operations, 1 represents a column vector of ones.

The computational complexity of the operation XTw needed to calculate
the predicted scores is O(ms). The cost of sorting the index list π according to
these scores is O(m log(m)). The O(log(m)) time insertions on lines 10 and 18,
as well as the O(log(m)) time queries on lines 12 and 20 are each called exactly
m times, leading to O(m log(m)) cost.

The vector operations needed in calculating the loss have O(m) complexity,
and the matrix-vector multiplication necessary for computing the subgradient
has O(ms) complexity. Thus, the complexity of calculating the loss and the
subgradient is O(ms + m log(m)). The exact value of N can be computed in
O(m log(m)) by sorting the true utility scores of the training examples.

As discussed previously, in some ranking settings we do not have a global
ranking over all examples. Instead, the training data may be divided into sepa-
rate subsets, over each of which a ranking is defined. Let the training data set be
divided into R subsets, each consisting on average of m

R examples. Then we can

6 Antti Airola, Tapio Pahikkala, and Tapio Salakoski

103 104 105

Training set size

10-2

10-1

100

101

102

103

104

CP
U

tim
e

TreeRSVM
PairRSVM

103 104 105

Training set size

100

101

102

103

104

105

106

CP
U

tim
e

TreeRSVM
PairRSVM
SVMrank

PRSVM

103 104 105

Training set size

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

ra
nk

in
g

er
ro

r

TreeRSVM
SVMrank

PRSVM

Fig. 1. Average iteration cost (left), runtimes (middle), test error plots (right).

calculate the loss and the subgradient as the average over the losses and sub-
gradients for each subset. The computational complexity becomes O(R ∗ (mR s+
m
R log(mR)) = O(ms+m log(mR)).

4 Computational Experiments

In the computational experiments we compare the scalability of the proposed
O(ms + m log(m)) time training algorithm to the fastest previously known ap-
proach. In addition, we compare our implementation to the existing publicly
available RankSVM solvers. The considered data set contains a global ranking,
and the utility scores are real valued. This means that r ≈ m, and the number
of pairwise preferences in the training sets grows quadratically with m.

We implement the proposed method, denoted as TreeRSVM, as well as a
baseline method PairRSVM, which iterates over all pairs to compute the loss
and the subgradient. The methods are implemented mostly in Python using the
NumPy, SciPy and CVXOPT libraries, the most computationally demanding
parts of the subgradient and loss computations are for both methods imple-
mented in C language due to efficiency reasons.

In addition, we compare our method to the fastest publicly available previous
implementations of RankSVM. The SVMrank software is a C-language imple-
mentation of the method described in [9]. In theory SVMrank and PairRSVM
implement the same method, though the use of different quadratic optimizers,
and the inclusion of certain additional heuristics within SVMrank, mean that
there may be some differences in their behavior. PRSVM implements in MAT-
LAB a truncated Newton optimization based method for training RankSVM [3].
PRSVM optimizes a slightly different objective function than the other imple-
mentations, since it minimizes a squared version of the pairwise hinge loss.

TreeRSVM has O(ms+m log(m)) training time complexity, whereas all the
other methods have O(ms+m2) training time complexity. Therefore, TreeRSVM

An Improved Training Algorithm for the Linear RankSVM 7

should on large datasets scale substantially better than the other implementa-
tions. Further, all the methods other than PRSVM have O(ms) memory com-
plexity due to cost of storing the data matrix. PRSVM has O(ms+m2) memory
complexity, since it also forms a sparse data matrix that contains two entries per
each pairwise preference in the training set. [3] also describe an improved ver-
sion of PRSVM that has similar scalability as SVMrank, but there is no publicly
available implementation of this method.

The experiments are run on a desktop computer with 2.4 GHz Intel Core 2
Duo E6600 processor, 8 GB of main memory, and 64-bit Ubuntu Linux 10.10
operating system. For TreeRSVM, PairRSVM and SVMrank we use the termi-
nation criterion ε < 0.001, which is the default setting of SVMrank. For PRSVM
we use the termination criterion Newton decrement < 10−6, as according to [3]
this is roughly equivalent to the termination criterion we use for the other meth-
ods. SVMrank and PRSVM use a regularization parameter C that is multiplied
to the empirical risk term rather than λ, and do not normalize the empirical
risk by the number of pairwise preferences N . Therefore, we use the conversion
C = 1

λN , when setting the parameters.

We run scalability experiments on a data set constructed from the Reuters
RCV1 collection [10], which consists of approximately 800000 documents. Here,
we use a high dimensional feature representation, with each example having ap-
proximately 50000 tf-idf values as features. The data set is sparse, meaning that
most features are zero-valued. The utility scores are generated as follows. First,
we remove one target example randomly from the data set. Next, we compute
the dot products between each example and the target example, and use these
as utility scores. In effect, the aim is now to learn to rank documents accord-
ing to how similar they are to the target document. Similarly to the scalability
experiments in [3], we compute the running times using a fixed value for the
regularization parameter, and a sequence of exponentially growing training set
sizes. The presented results are for λ = 10−5, and the training set sizes are from
the range [1000, 2000, . . . 512000].

In Figure 1 are the experimental results. First, we plot the average time
needed for subgradient computation by the TreeRSVM and the PairRSVM. It
can be seen that the results are consistent with the computational complex-
ity analysis, the proposed method scales much better than the one based on
iterating over the pairs of training examples in subgradient and loss evalua-
tions. Second, we compare the scalability of the different RankSVM implemen-
tations. As expected, TreeRank achieves orders of magnitude faster training
times than the other alternatives. PRSVM could not be trained beyond 8000 ex-
amples due to large memory consumption. With 512000 training examples train-
ing SVMrank took 83 hours, and training PairRSVM took 122 hours, whereas
training TreeRSVM took only 18 minutes in the same setting. Finally, we plot
the pairwise ranking errors, as measured on an independent test set of 20000
examples. PairRSVM is left out of the comparison, since it always reaches ex-
actly the same solution as TreeRSVM. The results show that TreeRSVM and

8 Antti Airola, Tapio Pahikkala, and Tapio Salakoski

SVMrank have similar performance as expected, as does PRSVM which opti-
mizes a squared version of the pairwise hinge loss.

5 Conclusion

In this work we have introduced an improved training algorithm for the linear
RankSVM, allowing efficient training also in case of unrestricted utility scores.
The experiments demonstrate orders of magnitude improvements in training
time on large enough data sets.

Acknowledgment This work has been supported by the Academy of Finland.

References

1. Airola, A., Pahikkala, T., Salakoski, T.: Training linear ranking SVMs in linearith-
mic time using red-black trees. Pattern Recognition Letters (2011), In Press

2. Bayer, R.: Symmetric binary B-trees: Data structure and maintenance algorithms.
Acta Informatica 1, 290–306 (1972)

3. Chapelle, O., Keerthi, S.S.: Efficient algorithms for ranking with SVMs. Informa-
tion Retrieval 13, 201–215 (2010)

4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press (2001)

5. Freund, Y., Iyer, R., Schapire, R.E., Singer, Y.: An efficient boosting algorithm for
combining preferences. Journal of Machine Learning Research 4, 933–969 (2003)

6. Fürnkranz, J., Hüllermeier, E.: Preference learning. Künstliche Intelligenz 19(1),
60–61 (2005)

7. Herbrich, R., Graepel, T., Obermayer, K.: Support vector learning for ordinal
regression. In: 9th International Conference on Articial Neural Networks. pp. 97–
102. Institute of Electrical Engineers (1999)

8. Joachims, T.: Optimizing search engines using clickthrough data. In: Hand, D.,
Keim, D., Ng, R. (eds.) 8th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. pp. 133–142. ACM Press (2002)

9. Joachims, T.: Training linear SVMs in linear time. In: Eliassi-Rad, T., Ungar, L.,
Craven, M., Gunopulos, D. (eds.) 12th ACM SIGKDD conference on Knowledge
discovery and data mining. pp. 217–226. ACM Press (2006)

10. Lewis, D.D., Yang, Y., Rose, T.G., Li, F.: RCV1: A new benchmark collection
for text categorization research. Journal of Machine Learning Research 5, 361–397
(2004)

11. Pahikkala, T., Tsivtsivadze, E., Airola, A., Boberg, J., Järvinen, J.: An efficient
algorithm for learning to rank from preference graphs. Machine Learning 75(1),
129–165 (2009)

12. Smola, A.J., Vishwanathan, S.V.N., Le, Q.: Bundle methods for machine learning.
In: McCallum, A. (ed.) Advances in Neural Information Processing Systems 20.
MIT Press (2007)

13. Teo, C.H., Vishwanathan, S.V., Smola, A., Le, Q.V.: Bundle methods for regular-
ized risk minimization. Journal of Machine Learning Research 11, 311–365 (2010)

