
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

A PID-Controlled Power Manager for Energy Efficient Web Clusters

Simon Holmbacka, Sébastien Lafond, Johan Lilius
Department of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5 FIN-20520 Turku
Email: firstname.lastname@abo.fi

Abstract—Large data centers using high-end processors
operating continuously around the clock are major energy
consumers. Long periods of idling due to low workload will
cause a waste in energy because the processors are active but
not doing any useful work.

A cluster of low-end embedded processors could continu-
ously match its computational capacity with the workload at
a much finer granularity than a server-grade processor by
changing the power states of the CPUs. This paper introduces
a framework simulating a system level power manager for
many-core clusters targeting server cards used in warehouse-
sized data centers. The power management system uses sleep
states to switch on or off processing elements in a cluster of
low power boards to match the capacity of the whole system
with the workload, and thus save energy. A PID-controller is
implemented in the system; a component already well known
with established methods in the industrial control domain.
We intend to use this component to effectively determine the
number of active processing elements in the used many-core
cluster.

The proposed power manager can save up to 62 percent in
energy compared to a system which only uses dynamic voltage
and frequency scaling as power management.

Keywords-Power Management; Web Clusters; PID-
controller; Low Power Processors;

I. INTRODUCTION

Energy efficiency and physical size have become key
issues for server cards used in warehouse-sized data centers.
These factors do not only affect the operational costs and
ecological footprint, but also have an impact on the possibil-
ities to construct or expand data centers. With an average of
10 to 50 percent CPU utilization for servers [1] and the large
load fluctuation found in typical web services [2], the use
of slower but more energy-efficient cores could match the
workload more efficiently with a much finer granularity and
higher power proportionality [3] than server-grade cores.

A cluster of mobile processors can provide the same
computational power as server-grade processors, but with
a lower total energy consumption. Such a cluster can reduce
the energy consumption efficiently by switching off elements
according to the current need of service. For this purpose
the cluster needs a power management on system level i.e.
a component controlling the whole cluster as one entity.

This paper proposes a system level power manager for a
cluster consisting of low-power nodes. The power manager
uses sleep states to dynamically adjust the system capacity

according to the workload. The monitored workload is
matched so that minimal performance penalty and maximum
reduction in energy consumption is obtained.

The PID-controller used in the industrial domain contains
well established methods for obtaining stability and equilib-
rium in a dynamic system. We intend to exploit the theory of
the PID-controller, and implement it into our power manager
for matching the capacity of the system to the incoming
workload.

Simulation parameters and workload data have been ob-
tained by conducting experiments on real hardware, and by
collecting statistics from a web space provider. The eval-
uated cluster is constructed of BeagleBoards [4] equipped
with the ARM Cortex-A8 CPU. The chosen platform was
selected based on its low price, energy efficiency and per-
formance. By running several simulations on data samples
containing 30 minutes of web statistics, we obtained a
potential energy reduction of up to 62 percent compared
to a similar system that only uses DVFS.

II. RELATED WORK

The authors of [5] suggests a computational environment
consisting of high-end Xeon servers combined with low-end
mobile processors in order to achieve a fine granularity of
system capacity in relation to the workload. All processing
elements in the system uses sleep states to match the system
capacity with the workload and thus reduce the energy
consumption. Once the system recognizes an increase in
workload, the system activates the processing elements in
accordance with their different capacities and wake-up times.
Four different control algorithms for adapting the capacity
to the workload were presented and evaluated in the paper.

The authors in [6] also uses per-core sleep states to
reduce the energy consumption in high-end server CPUs.
The control algorithm used a simple high/low watermark on
each CPU to decide which CPU core should be active. The
obtained energy reduction for the system was claimed to be
40 % higher than a system with only DVFS available.

We intend to create fast, scalable and efficient capacity
controller with control theoretic methods as basis. We argue
that the use of the PID-controller could create a near optimal
adaption of system capacity to the workload.

To determine the needed capacity of the system Bertini
et. al [7] used tardiness for setting the needed performance

by altering the CPU frequencies in a multi-tier cluster.
Furthermore, the work in [8] presents an energy manager
for server clusters based on a power model combined with a
closed-loop controller to control the performance with sleep
states and DVFS. In this work high-end CPUs were used
evaluated with different energy policies and wake-up times
were not considered.

Our sleep state-based system in contrast operates with
a granularity of seconds and the wake-up time of cores
highly influences the system. Our manager and architecture
consist only of low-end embedded processors to give a
distributed view of the system, and to adapt the manager
to future many-core architectures. A combination of using
sleep states to reduce energy consumption, the theory of
the PID-controller to drive the capacity and the distributed
architecture could decrease energy consumption without a
substantial performance penalty.

III. SIMULATION FRAMEWORK

A. Overview

The dominant consumer of energy on the aforementioned
board is the CPU core [9], which our research focuses
on. A simulation framework was created in Simulink to
simulate and calculate the total energy reduction of the
boards induced by using the power manager. The framework
minimizes the total energy consumption by deactivating
cores while maintaining the required QoS (Section III-B).

The basic structure of the framework is illustrated in
Figure 1. The structure consists of a closed-loop system with
an input, a PID-controller that controls the system capacity,
and an output. The basic processing element in this paper is
referred to as a core, since embedded systems with multi-
core configurations have recently been available. The output
of the system is used to determine the amount of cores
needed to serve all requests.

Since a sleeping node will not be able to act as the power
manager, all state changes will be based on decisions from
a monitor node in the cluster i.e. the system level power
manager. By running the manager on system level, decisions
for power management will benefit the whole cluster instead
of only a local node and thus reach closer to a global energy
optimum.

Figure 1. Basic structure of the power management system

B. Performance and quality

The simulation framework compares system capacity, i.e.
how many requests the system can handle in a certain time,
and the current workload. This comparison is taking place in
the Compare block (Figure 1), which calculates difference
between these two values. Incoming request are being spread
out and processed in the web cluster in certain time frames.
The granularity of the framework is therefore the length of
one time frame.

QoS is a metric that is fully implementation dependent.
The term describes how well an application is performing
compared to its specification. QoS is usually used in soft
real-time systems, in which the deadlines are set based on the
human usability (or other subjective matters) of the system.
Our system uses QoS to give a notion of latency of the
request sent to the web service. A QoS drop occurs when
a request in a certain time frame is not handled before the
end of the time frame. This/these requests are then added to
the next time frame and the QoS drops with a certain factor.
Our definition of QoS states that as the workload exceeds
the system capacity in a time frame, the QoS will drop. Eq.
1 shows the relation between QoS, capacity and workload.

QoS =
(
1− W − C

W

)
· 100 (1)

where W is the current workload and C is system capacity.
The magnitude of the QoS drop is simply based on how
many of the incoming requests were not handled in one time
frame. The QoS is shown as a percentage. The maximum
QoS value of 100 % means that the system provides the
capacity to handle the whole workload in the measured time
frame.

C. Switching delay

Our power manager works within the granularity of
seconds. Since switching on cores is not instantaneous, the
simulation must contain a delay for changing the CPU
states. The algorithms in the PID-controller as well as
measurements of the output signal also adds to the overhead
of adapting the system capacity to the incoming workload.
This overhead is represented in the simulation by inserting a
delay block after the output of the PID-controller as shown
in Figure 1. The delay can be adjusted in the simulation
framework to represent different system configurations.

D. PID-controller

The PID-controller (Figure 1) is a common module in
many control systems. It controls an output signal y de-
pending on the input signal r and the controller settings.
The difference between r and y is called the error value e,
and is measured by using a feedback loop. The goal of the
PID-controller is to minimize the error value and achieve
equilibrium in the system.

The behavior of the PID-controller is determined by
setting P , I and D values in the controller. These values

Figure 2. Workload sample from [10] 1. November 2010

choose how the output signal should react to changes in the
input signal. The proportional part of the controller is set by
the P parameter, which determines how fast or aggressive
the controller reacts to changes in the input signal. I is
the integral part of the controller. The main function of the
integral value is to ensure that the process output agrees with
the set point value in steady state. The derivative value D
determines how the system reacts to changes in the reference
value. By using a derivative term, the future of the reference
curve is predicted based on previous values. The derivative
term also enhances stability in the system [11].

The PID-controller is used in our power manager to
select the amount of active CPU cores needed to process all
requests in a time frame – this means that the PID-controller
strives to activate only the minimum amount of cores and
therefore minimize the energy consumption.

E. System capacity

The output of the system shown in Figure 1 is the current
number of active CPU cores per time frame, which is
determined as the output from the PID-controller.

Furthermore, the simulation framework supports the usage
of statically active cores. These cores will be active and run
on highest frequency completely independent of the control
system. A high number of statically active cores allows the
system to instantaneously being able to process the work
between workload peaks. Workload peaks will decrease the
QoS because of the delay the power management system
introduces before it accommodates to the work peak. A high
number of static cores will therefore slow down the QoS
decrease during such a period, but will increase the average
power dissipation of the cluster.

F. Final energy consumption

The simulation framework calculates the energy consump-
tion for each time frame. The energy consumption is derived
from the amount of active cores multiplied by the power
dissipation of a core. We make the assumption that each core
has two different states: running or sleeping. Since the board
itself (with the CPU excluded) dissipates a small amount of
energy, the power dissipation of the whole board is included
in the output of one core for simplicity. The obtained power
dissipation values were measured on the BeagleBoard with
the DSP and the display subsystems disabled.

IV. SIMULATION DATA

In order to simulate a realistic situation we conducted
experiments to determine the parameters and settings for
the simulation framework.

A. Web server requests

The web server requests used in the simulations were
derived from [10] which is a Finnish web space provider.
These http requests were addressed to over 750 websites
and 510 domain names. By using data from an existing
web space provider, we created a realistic situation for
simulation. The workload curve pictured in Figure 2, relates
to the number of http requests in a daytime sample from
1. November 2010. The curve shows, on average, a low
workload with high peaks concentrated into certain time
intervals. 30 minute samples were collected on the same
date from the aforementioned server, and used as workload
in the simulations. The data is freely available from [12].

B. PID parameters

As mentioned, the PID parameters determine how the
controller reacts to changes in the input signal. This means
that finding the appropriate parameters for the PID-controller
is essential for having good regulation.

Several control methods for tuning PID parameters exist,
and we will here focus on two common methods based on
the frequency response of the closed loop system. Frequency
response-based methods define the PID-parameters by de-
termining the critical gain kc in the closed-loop system.
kc is determined by increasing the controller gain until
the output is on the border to instability, after which the
period of the output signal tc can be estimated. When these
two parameters are determined, design recommendations are
used to calculate the PID-parameters.

C. Ziegler-Nichols’ frequency response-based recommenda-
tion

Ziegler-Nichols methods [11] were designed to give a
good output response to load disturbances. This design
recommendation is considered to give an aggressive con-
troller with the risk of heavy overshoots, which means
that our power manager will strive to quickly adjust the
output resulting in fast reaction time and high overall QoS.
Overshoots are a result of the control signal reaching over
the desired set value to a certain amount before the controller

stabilizes to the set value. This effect can cause slight energy
waste because of unnecessary resource allocation.

Values for the PID-parameters, based on kc and tc can be
obtain from Equation 2.

P = 0.6 · kc

I =
1

0.5 · tc
(2)

D = 0.12 · tc

D. Åström-Hägglund’s frequency response-based recom-
mendation

The Åström-Hägglund method [13] also uses the param-
eters kc and tc obtained from the critical gain experiments
to define the controller parameters. Furthermore, a constant
κ has been defined through experiments and optimizations
and is considered to give the system more robustness. κ is
defined as :

κ =
1

Kp · kc
(3)

where Kp is the process gain and kc is the critical gain. This
design suggests PID-parameters defined as:

P = (0.3− 0.1 · κ4) · kc

I = (
0.6

1 + 2 · κ
)−1 · tc (4)

D =

(
0.15(1− κ)

1− 0.95 · κ

)
· tc

The integral part in a PID-controller can cause problems
when the input signal has great disturbances as the case
shows in Figure 2. Integral windup is a phenomenon where
the integral term accumulates a significant error during an
overshoot. We have chosen to neglect the I-term completely
to solve this problem. The nature of the power manager
makes it possible to ignore the static control error that would
otherwise have been eliminated with the I-term. This is
due to the fact that the web cluster uses a discrete amount
of cores and is not disturbed by a steady state value that
is slightly off the set value. The implementation of the
controller without an I-term will also be simpler with less
calculation overhead. The result is actually a controller of
PD-type, which is equal to a PID-controller with the I-term
set to zero.

E. Static cores

The simulations were run with different configurations of
static cores in order to measure the impact on the result.
We used one to four static cores in different simulations.
All four combinations were also simulated together with the
different PID tuning methods to give a result on the energy
and QoS relation between methods and static cores.

F. BeagleBoard power dissipation

To obtain values for the simulation framework and be able
to run a proof-of-concept simulation, the power dissipation
of one BeagleBoard revision C3 low-power platform was
measured. The BeagleBoard is equipped with one ARM
Cortex-A8 processor-based TI-OMAP3530 chip [4]. The
system ran Ångström Linux kernel version 2.6.32 and was
controlled through a remote serial console. The operating
performance points (OPPs) of the TI-OMAP3530 chip were
used to dynamically scale the clock frequency and voltage
of the ARM subsystem. The values from this experiment
will be used to simulate the energy reduction using DVFS
as power manager compared to the proposed PID-controlled
power manager and a system without power management.
The OPPs were accessed through the Linux ACPI. To avoid
unwanted energy consumption, the display and DSP subsys-
tems of the TI-OMAP3530 were disabled. The BeagleBoard
includes a resistor, which provides a way to measure the
current consumption used by the board. The voltage drop
across the resistor was measured for each OPP and the
corresponding power was calculated. The obtained power
values of the system running at respective voltage and clock
frequency are displayed in Table I. To ensure that the load
would remain constant during the measurements, the proces-
sor was stressed to 100 % utilization using a simple program
that recursively counts Fibonacci numbers. Furthermore, the
power dissipation of a board with a sleeping core was

Figure 3. Non-linear power scaling by using DVFS

Figure 4. Capacity test for the BeagleBoard using Autobench

Table I
POWER DISSIPATION OF THE BEAGLEBOARD

Freq. [MHz] 720 600 550 500 250 125
Voltage [V] 1.35 1.35 1.27 1.20 1.06 0.985
Power fully [W] 1.40 1.15 1.05 1.00 0.65 0.55
loaded

measured to dissipate 0.2 W. Detailed information of this
experiment can be found in [14].

The Table I and Figure 3 clearly show that the power
dissipation does not drop linearly according to the clock
frequency. Therefore, we intend to explore the possibility of
using sleep states instead of DVFS as power management.

G. BeagleBoard wake-up time

To measure the wake-up latency we configured the system
as illustrated in Figure 5. The expansion pin 23 of the
BeagleBoard was set to alternate between logic ’1’ and
logic ’0’. To initiate the wake up the system, the voltage on
expansion pin 8 was set high. This will cause an interrupt
that wakes up the system. The oscilloscope was connected
to expansion pins 23 and 8. A transition from ’0’ to ’1’,
i.e. the wake-up signal, on pin 8 was set to trigger the
oscilloscope. The wake-up time for the BeagleBoard was on

Figure 5. Schematic of wake-up tests

average measured to be 650 ms – with a standard deviation
of 50 ms. Based on this measured wake-up time we set the
transition delay in the simulation framework to 1000 ms to
accommodate for overhead related to other eventual factors.

H. BeagleBoard load capacity

The system capacity is dependent on both the number of
CPU cores in use and their capacity. We needed to determine
the capacity of a BeagleBoard in order to run a realistic
simulation.

Experiments were conducted on a BeagleBoard to give the
number of requests per second a BeagleBoard could handle.
The test tool in use was Autobench [15] which generates
requests to an Apache server running on the BeagleBoard.
The number of requests per second generated by Autobench
started from a selected number and increased by specified
increments. When the number of requests per second start to
exceed the capacity of the host, deadline errors will start to
occur as the selected deadlines for the requests are not met.
The selected deadline in our experiments was one second,
in order to match the time frame of the workload described
in section III. Moreover a range of files each request needed
to process was chosen and shown in Table II. The table also
shows at what point deadline errors start to occur for the
different file sizes. The file sizes were selected based on
typical file sizes used in a web server.

The result of the experiment showed a certain error rate
produced when the requests were not processed within the
given time interval of one second.

Table II shows that a BeagleBoard in general can handle
between 75 and 2 requests per second without errors, when
using file sizes between 4 KB and 852 KB. A large file size
such as 2.4 MB will produce large errors already after one
request per second; this implies that experiments with larger
file sizes are not needed. Figure 4 illustrates how the errors
increase according to the increasing request rate. The curves
represent the outcome of different file sizes.

Table II
MEASURED CAPACITY OF THE BEAGLEBOARD

File size [KB] 4 12 30 56 116 248 852 2400

Max [req/s] 75 50 35 20 10 5 2 0

Figure 6. Results from simulation with Åström-Hägglund recommendations and 1 static core. A: Incoming requests, B: QoS value, C: Number of cores
in use, D: Energy consumption

Related experiments in [5] result in a capacity of 5
requests per second for the BeagleBoard, which in our test
setup would compare to a file size of 248 KB. The selected
file size for our simulations was therefore chosen to be 248
KB. The file size is constant for each simulation with a
maximum amount of 10 cores available.

Altering file sizes is a typical real-world scenario for web
servers – this case is a general load balancing problem [16]
and it has not been focused on in our simulations. Future
research is needed to determine the impact of altering file
sizes on the system.

V. SIMULATION RESULTS

A. Comparisons

In order to draw a conclusion about the efficiency of our
power management, our simulations should be compared to
other power management systems.

Since existing systems implement power management
such as DVFS, we also need to compare the final results
with a 10 core system which is able to dynamically scale
down its voltage and frequency. We created a framework
for this purpose. Our simulations used the OPPs and the
corresponding power dissipations presented in Table I. The
simulation results show a typical 45 % energy reduction
with DVFS enabled, compared to a system without power
management. During a 30 minute run using a 10-core cluster,
a system without power management would consume:

Efull = 10 · 1.4W · 30 · 60s = 25200J (5)

When enabling DVFS the energy consumption was reduced
to 13558J .

B. Our simulations
Given the values from the measurements we set-up the

simulation framework as a 10-core system. The simulations
were run for both tuning methods: Ziegler-Nichols and
Åström-Hägglund – using the file size of 248 KB. This
simulation was run four times, to use all combinations of
static cores (1,2,3 and 4). The average QoS and total energy
consumption was calculated and stored for all combinations
of settings.

Figure 6 shows results from a simulation, which used the
Åström-Hägglund method and one static core. The graphs in
the figure are only showing the time interval [1200 1600]s
for illustrative reasons. The graph in Figure 6(A), shows the
incoming requests to the service. The corresponding QoS
is presented as percentage in Figure 6(B), the number of
currently active cores is shown in Figure 6(C) and the final
power dissipation in Figure 6(D).

Table III shows the result for all simulations. The result
consists of two important values: QoS and energy con-
sumption. The values change depending on the used tuning
method and amount of static cores. As seen in the table, both
the QoS and energy consumption will steadily rise when
switching on more static cores or using the more aggressive
Ziegler-Nichol method.

Table IV compares the energy reduction between Ziegler-
Nichols’ and Åström-Hägglund’s frequency response rec-

Figure 7. Energy graph comparing A: DVFS and B: sleep states

Table III
RESULTS FROM SIMULATIONS USING ZIEGLER-NICHOLS’ AND

ÅSTRÖM-HÄGGLUND’S FREQUENCY RESPONSE RECOMMENDATIONS.
QOS [%] / ENERGY [J]

Static cores Z-N Å-H
1 96.8 / 6304 96.3 / 5190
2 98.1 / 7508 97.8 / 6746
3 98.9 / 9075 98.8 / 8612
4 99.2 / 11105 99.2 / 10787

ommendations for PID tuning. As expected, the more ag-
gressive tuning method will result in less energy reduction,
but as was seen in Table III the QoS was overall higher.
By comparing the results with the reference value 13558J
(obtained by only using DVFS), one can clearly state that a
power management system that uses sleep state could reduce
the energy consumption significantly compared to a system
without a power management or to a system using DVFS as
power management.

Table IV
TOTAL ENERGY REDUCTION FOR DIFFERENT CONTROL METHODS
COMPARED TO A SYSTEM USING DVFS. THE TABLE SHOWS THE

ENERGY SAVINGS IN %

Static cores Z-N Å-H
1 53.5% 61.7%
2 44.6% 50.2%
3 33.1% 36.5%
4 18.1% 20.4%

Figure 7 displays clearly the reason why sleep states will
reduce the energy consumption more than DVFS. Part (A)
in figure 7 shows the power dissipation for system in time
range [1200 1600]s using DVFS as power management.
In comparison, part (B) shows how sleep state-base power
management allows the system to drop the power dissipation
much more than DVFS, and therefore resulting in lower
energy consumption.

Figure 8 shows a chart comparing the tuning methods to
DVFS in terms of energy consumption and QoS. Naturally

Figure 8. Energy chart comparing DVFS and sleep states

the sleep state-based power manager behaves more like
DVFS when adding more static cores since more cores will
then be constantly active. The most energy is saved when
using the Åström-Hägglund method with one static core.

The lowest QoS will arise using a more conservative
tuning method such as Åström-Hägglund and few static
cores. Despite these constraints the simulations show that the
QoS will only drop by approximately 4 % as seen in Table
III. We assumed here that DVFS has 0 % drop in QoS.
The table also shows that switching to a more aggressive
tuning method (such as Ziegler-Nichols) and increasing the
number of static cores will increase the QoS to over 99 %
if requested.

VI. CONCLUSIONS

We have presented a power management system for many-
core clusters. The power manager uses sleep states to match
the capacity of the system with the workload to minimize the
energy consumption while keeping the system performance
on an acceptable level.

We have developed a simulation framework to evaluate the
efficiency of the power management system. The framework
reads a workload as input and shows, for each time frame,
the results namely: number of cores in use, the QoS, and the

energy consumption. Finally the framework shows the total
energy consumption and the average QoS over the whole
simulation.

The amount of active cores in the cluster is determined by
a PID-controller that based on the well defined recommenda-
tions from Ziegler-Nichols and Åström-Hägglund methods
drives the capacity of the system to just the necessary
minimum.

Our simulation framework is based on parameters from
the BeagleBoard equipped with an ARM Cortex-A8 proces-
sor. The capacity, power dissipation and wake-up time of
the BeagleBoard was measured by experiments – this gives
a realistic simulation and comparison of efficiency.

The results of our simulations show that our power man-
agement has the potential to reduce the energy consumption
by 18 to 62 percent depending on the desired QoS, compared
to a system that uses DVFS as power management. The
reduction in energy arises from the fact that typical web
servers have long idle times during which the full capacity
of the system is not needed. Energy consumption can be
reduced by replacing high-end server CPUs with clusters of
low-end boards. The achieved granularity of low-end boards
gives arise to extensive power management on system level
which scales in a large data center.

VII. FUTURE WORK

The power manager is currently being implemented on
real hardware that uses the aforementioned CPU configu-
ration. The real implementation will show the relation in
energy consumption and an exact value of the introduced
overhead of communication, algorithms etc.

We intend to further improve the power management for
more intelligent control. Our simulations presented in [3]
shows that static PID parameters is not sufficient to control
all environments. Self-tuning regulators is described in [17]
and could provide the necessary properties to adapt the PID-
controller to heavily changing workload patterns.

Currently the framework does not support any tools to
ensure a maximum latency for a request. By ensuring the
maximum latency, a user can be guaranteed to receive a reply
from the server in a certain time interval. PID-parameters can
be influenced of this additional requirement and eventually
self-tune to provide sufficient CPU power.

The file sizes used in the simulations have so far been
constant. To compare the simulation to a further realistic
case, the file sizes should change dynamically during the
simulation according to an appropriate distribution function.
The simulation framework can also be extended to explore
situations of stochastic file sizes.

REFERENCES

[1] L. Barroso and U. Holzle, “The case for energy-proportional
computing,” Computer, vol. 40, no. 12, pp. 33 –37, dec 2007.

[2] G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia work-
load analysis,” Vrije Universiteit, Amsterdam, The Nether-
lands, Tech. Rep. IR-CS-041, Sepember 2007 (revised: June
2008).

[3] S. Holmbacka, S. Lafond, and J. Lilius, “Power proportional
characteristics of an energy manager for web clusters,” in Pro-
ceedings of the 11th International Conference on Embedded
Computer Systems: Architectures Modeling and Simulation.
IEEE Press, July 2011.

[4] OMAP35x Technical Reference Manual, Texas Instruments
Incorporated, July 2010.

[5] A. Krioukov and P. Mohan, “Napsac: Design and implemen-
tation of a power-proportional web cluster,” in Proceedings
of the first ACM SIGCOMM workshop on Green networking,
ser. Green Networking ’10. New York, NY, USA: ACM,
2010, pp. 15–22.

[6] J. Leverich and M. Monchiero, “Power management of
datacenter workloads using per-core power gating,” IEEE
Computer Architecture Letters, vol. 8, pp. 48–51, 2009.

[7] L. Bertini, J. Leite, and D. Mosse, “Siso pidf controller
in an energy-efficient multi-tier web server cluster for e-
commerce,” in Second IEEE International Workshop on
Feedback Control Implementation and Design in Computing
Systems and Networks, Munich, Germany, June 2007.

[8] T. Horvath and K. Skadron, “Multi-mode energy management
for multi-tier server clusters,” in Proceedings of the 17th inter-
national conference on Parallel architectures and compilation
techniques. New York, NY, USA: ACM, 2008, pp. 270–279.

[9] S. Madhavapeddy and B. Carlson, OMAP 3 Architecture from
Texas Instruments Opens new Horizons for Mobile Internet
Devices, Texas Instruments Incorporated, 2008.

[10] “Kulturhuset,” http://kulturhuset.fi/start/, January 2011, [On-
line; accessed 31-May-2011].

[11] K. J. Åström and T. Hägglund, Automatic tuning of PID
controllers. Instrument Society of America, 1988.

[12] Kulturhuset.fi, “Request log november 2010 kulturhuset,”
https://research.it.abo.fi/projects/cloud/data/Request log
kulturhuset nov2010.zip.

[13] K. J. Åström and T. Hägglund, Advanced PID control. Re-
search Triangle Park, 2006.

[14] J. Smeds, “Evaluating power management capabilities of
low-power cloud platforms,” Master’s thesis, Åbo Akademi
University, Finland, 2010.

[15] J. Midgley, “Autobench,” Xenoclast, May 2004. [Online].
Available: http://www.xenoclast.org/autobench/

[16] E. Musoll, “Hardware-based load balancing for massive
multicore architectures implementing power gating,” Trans.
Comp.-Aided Des. Integ. Cir. Sys., vol. 29, pp. 493–497,
March 2010.

[17] J. Hellerstein, Y. Diao, S. Parekh, and D. Tilbury, Feedback
Control of Computing Systems. IEEE Press, 2004.

