
Copyright Notice

The document is provided by the contributing author(s) as a means to ensure timely
dissemination of scholarly and technical work on a non-commercial basis. This is the author’s
version of the work. The final version can be found on the publisher's webpage.

This document is made available only for personal use and must abide to copyrights of the
publisher. Permission to make digital or hard copies of part or all of these works for personal or
classroom use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage. This works may not be reposted without the explicit permission of the
copyright holder.

Permission to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the corresponding
copyright holders. It is understood that all persons copying this information will adhere to the
terms and constraints invoked by each copyright holder.

IEEE papers: © IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works. The final publication is available at http://ieeexplore.ieee.org

ACM papers: © ACM. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The
final publication is available at http://dl.acm.org/

Springer papers: © Springer. Pre-prints are provided only for personal use. The final publication is available at link.springer.com

http://ieeexplore.ieee.org/
http://dl.acm.org/
http://link.springer.com/

Bit Rate Reduction Video Transcoding with Distributed Computing

Fareed Jokhio, Tewodros Deneke, Sébastien Lafond, Johan Lilius
Åbo Akademi University

Department of Information Technologies
Joukahainengatan 3-5, 20520 Turku, Finland

Email: {fjokhio, tdeneke, slafond, jolilius}@abo.fi

Abstract—This paper presents an approach to perform bit
rate reduction transcoding by video segmentation. The paper
shows how a high performance distributed video transcoder
can be built using multiple processing units and a Message
Passing Interface based parallel programming model. The
computation parallelization and data distribution among com-
puting units is discussed. For data distribution coarse grain
approach is used in which significant gain in terms of execution
speedup is obtained. The segmentation of video stream with
(1) equal size having unequal number of intra frames and
(2) unequal size having equal number of intra frames is
performed to achieve high performance. The results show that
the proposed distributed video transcoder provides very short
startup times.

Keywords-video Transcoding, Message Passing
Interface(MPI), Distributed computing

I. INTRODUCTION

Currently there is a diversity of multimedia applications
and there are several video formats available with different
characteristics. Users want to play a video in various formats
and on different devices. Some users demand for high defi-
nition video while others demand for low resolution video.
With the passage of time the number of video compression
standards is growing therefore it is not practically possible
to store a video in all possible formats to fulfill the end user
requirements. Also the channels through which a video is
distributed to the end user can have different capacities. The
compressed video stream needs to be re-encoded to meet the
bit rate of the communication channel. Video transcoding is
a popular technique to solve these issues [1], [2].

A video transcoder takes a compressed video signal as
input and produces another compressed video signal as out-
put. The output video can have different bit rates, different
frame rate, different frame size, any combination of these or
even an entirely different compression standard.

To get better quality video, the video transcoder should
decode the encoded video stream and then re-encode it
with new characteristics. Both video decoding and encoding
require a number of highly computational tasks hence this
seems a time consuming process and waste of computational
power. Other smart video transcoding techniques already
exist which transcode the video in desired format by just
partially decoding and reusing the motion vectors informa-
tion [3]. Even with existing fast transcoding techniques, the

process of transcoding still needs lot of computational power
while dealing with high resolution videos such as 4CIF,
16CIF, HD 1080, etc. In order to get better performance,
distributed video transcoding can be used to distribute the
computational burden among processing units [4].

The main contributions of the paper are:
• the analysis of video segmentation for transcoding in a

distributed environment
• the evaluation of the video startup time in such envi-

ronment
This work also puts special attention towards scalability of
the transcoder implementation. This means that we must be
able to run the same transcoder in a distributed environment
with any number of processing units.

In the next section, we briefly describe the background
and related work. Section III gives an overview of the
encoding, decoding and introduces the bit rate reduction
transcoding. The method for achieving the bit rate reduction
and motion vectors refinement is also discussed in this
section. In section IV video stream structure is described
briefly and then three different ways of video segmentation
are discussed. Section V presents the system overview
and describes the tasks performed by master and worker
machines. In section VI experimental setup is discussed and
results are provided in section VII. Finally conclusion and
future work is given in section VIII.

II. BACKGROUND AND RELATED WORK

Video transcoding has been studied and improved in the
past two decades. The quality of the transcoded video and
the speed of the transcoding process are main issues in video
transcoding. Distributed computing is a solution to get more
speedup in the transcoding process and keep the same quality
of video. However, how to optimally handle multiple video
streams, their startup times and how to scale the transcoding
architecture is still open research problem.

Jiani Guo [5] proposes a cluster based multimedia web
server. The work was related to dynamic generation of video
according to the requirements of bandwidth and bit rate for
many clients. The partitioning of jobs is done by a media
server and the computation is done on several nodes. The
proposed system was designed for seven nodes. Sambe [4]
worked on distributed transcoding of MPEG-2 to produce

output video with different bit rates. His work was concerned
to produce multiple formats and rates and he integrated
multiple processors to fully decode and re-encode incoming
video. He paid more attention on segment handling while
Jiani Guo paid more attention on load balancing of multiple
video streams. Neither author considered video startup time.

Among different methods of distributed computing we
have chosen to use MPI (message passing interface) because
of its maturity, support, open source nature, scalability and
ease of use. MPI is a message passing interface for MIMD
(multiple instructions multiple data) distributed memory
concurrent computers and workstations [6]. In this program-
ming model a set of tasks that use their own local memory
during computation can be performed on the same physical
machine and /or across an arbitrary number of machines.
Tasks exchange data through communication channels by
sending and receiving messages (i.e. message passing.).
This means that data transfer usually requires cooperative
operations to be performed by each process. That is for
example, a send operation must have a matching receive
operation. From programming perspective, message passing
implementations commonly comprise a library of subrou-
tines that are embedded in source code. The programmer is
thus responsible and free to express all parallelism involved
[6], [7].

III. BIT RATE REDUCTION VIDEO TRANSCODING

The main goal of bit rate reduction transcoding is to
reduce the bit rate while maintaining low complexity and
achieving the best quality possible. The bit rate reduction
video transcoding has wide range of applications such as
television broadcast and streaming of video over the internet.
In bit rate reduction video transcoding the compressed video
is decoded and then re-encoded with new bit rates.

Figure 1. Video decoder

The block diagram of a video decoder is shown in figure
Figure 1. Video decoding is a complex operation and it
consists of several other operations such as variable length
decoding, inverse quantization, inverse discrete cosine trans-
formation, motion compensation. The computation required
in decoding operation for low resolution video frames is
less as compared with the high resolution video frames.
The video decoder has a compressed bit stream as input
and produces an uncompressed video as output.

Figure 2 shows the block diagram of a video encoder.
As shown in the figure, the video encoding has even more
complex operations than video decoding. A video encoder
consists of a number of other operations such as discrete
cosine transform, quantization, variable length coding, and
motion compensation. A video encoder also performs the
decoding operation after the quantization operation and then
computes the difference between the original video frame
and the decoded frame after compression. This difference is
termed as a residual frame and is also sent with the com-
pressed bit stream. The information entropy for a residual
frame is usually less due to similarities in the nearby video
frames, and it requires fewer bits.

Figure 2. Video encoder

The different operations such as variable length encoding,
variable length decoding, quantization, inverse quantization,
discrete cosine transform, inverse discrete cosine transform,
motion estimation and motion compensation are performed
on the block level in a frame. Figure 3 shows the structure of
a video frame. The number of blocks in a frame depends on
its resolution. If the frame has high resolution, the number
of blocks will also be high and more computation will be
required during encoding and decoding process.

Figure 3. Video frame

In a bit rate reduction transcoder the video resolution
and the frames rate are unchanged. The bit rate reduction
is possible by compromising on the video quality [8], [9],
[10]. It is possible to reduce the bit rate by applying the

inverse quantization and then again applying the quantization
with increased quantization step at the encoder side in the
transcoder [11], [12], [13]. This operation will increase
the zero quantized coefficients and hence fewer bits will
be required to encode the data. In order to reduce the
complexity in bit rate reduction transcoding the motion
vectors computed at the original bit rate are reused in the
reduced rate bit stream. Using the same motion vectors will
lead to degraded video quality due to the mismatch between
prediction and residual components [3]. To overcome this
loss of quality motion vector refinement is needed. Video
frames contain objects and background. Successive video
frames may have similar objects and and these objects can
be displaced at another location. Motion estimation is used
to examine the movement of objects. In block based motion
estimation, the similar blocks are searched in the reference
frame. The estimated motion of a block is represented by a
motion vector. The motion estimation is performed within a
fixed search window and it may have size such as [-2, +2],
[-16, +16] or any other suitable size. In order to keep the
low complexity, motion vector refinement is performed with
small search window[1]. The size of the search window is
kept very small to reduce the computational load. Increase in
the search window size will give slightly better quality but
it will have more computational load. The [-2, +2] search
window achieves the majority of gain due to the fact that
the majority of macro blocks will have a best match within
this range.

IV. VIDEO STREAM STRUCTURE

A video stream consists of several independent units
called as video sequences where every sequence has its own
headers. The video sequence consists of several group of
pictures (GOP). The group of pictures consists of frames.
There are different types of frames; I (intra) frame, P
(Predictive) frame and B (bidirectional) frame. The frame is
further divided in slices, each slice consists of macro blocks
and every macro block consists of blocks. Figure 4 shows
the video stream structure down to the frame level.

Figure 4. Video stream structure

A. Segmentation of video sequence at Group of Picture
The first issue with distributed transcoding approach is

how to perform the segmentation of the source video so that
parts of video can be distributed among worker machines
to perform the transcoding operations. Compressed video
files contain different types of frames (I, P, B) which have
different compression rates and inter-dependencies among
them. Therefore one cannot split a given video at any
particular frame. Among the frame types a frame of type
I (intra) is independent and can be decoded without any
other reference frame. In a given video sequence a group of
frames containing one I frame followed by a number of other
B and P frames is called a group of pictures (GOP). Our
video sequence partitioning algorithm utilizes this concept
to divide a video file in to smaller parts. The master machine
divides the incoming video file into parts which contain a
number of GOPs and sends these parts to worker machines.

In any video sequence there are two kinds of group of
pictures, either the entire video sequence will consist of
open-GOP or it will consist of closed-GOP. In the case
of closed-GOP it is possible to decode the entire GOP
independently. In the case of open-GOP, the last I or P
frames of the previous GOP is needed as a reference frame
to decode the first B type frame. Segmentation of open-
GOP is further discussed in [4]. In the case of open-GOP
in every segment there will be one extra I or P frame from
the other GOP. This extra frame will be discarded by the
master machine while performing the merging. However
it will require some extra computation in the transcoding
process. In our experiments we used closed-GOPs in the
source video.

We segmented the video in three difference ways:
• each segment has equal number of intra frames but the

size of segment may be different due to the different
sizes of GOPs.

• each segment has equal size but the number of intra
frames may be different.

• each segment has unequal size and unequal number of
intra frames.

Most video sequences have different number of frames in
each GOP. The size of the source video sequence segments
for first two cases is shown in table I. The source video used
is big buck bunny, further details about the source video are
provided in the experimental setup.

The third method of video segmentation is used to get the
minimum video startup time. The video startup time is the
time at which the end user will be able to view the video.

The MPI based transcoder implementation can handle the
transcoding if the number of segments is more than the
number of workers.

B. Video segmentation with unequal load
Figure 5 shows the video segmentation of source video

with unequal load.

paritions equal size partitions Unequal size in Mega Bytes
2 39.95MB each 28, 51
3 26.63MB each 19, 21, 39
4 19.97MB each 14, 15, 19, 33
5 15.98MB each 11, 12, 13, 16, 29
6 13.32MB each 8.6, 9.0, 11, 12, 12, 27
7 11.41MB each 7.5, 7.8, 8.7, 8.8, 8.9, 11, 26

Table I
SIZE OF SEGMENTS FOR TRANSCODING

Figure 5. Video segmentation with unequal load

The MPI based transcoder with unequal size partitions is
designed in such a way that the master will produce a very
small size segment and will send it to the first worker. By
keeping the small size of first video segment, it will require
very less processing power for transcoding and hence the
video start up time will be very less.

The second segment will have slightly more number of
I frames and will be bigger in size than the first segment.
While producing the second segment the master machine
will already have the information about the first segment
size and type of frames inside it. The master will make
sure that the transcoding time of the second partition is less
than the play time of first segment. In the same way it will
keep record of the play time of the first n-1 segments while
making the nth segment. Since the transcoding operation
is performed in parallel the master machine will have a
choice to make bigger segments after sending some parts of
source video to workers. More care is required when sending
segments to the first few workers.

After sending small size segments to few workers, the
master will send bigger size segments to other workers. If the
segments size will be bigger, there will be better efficiency
in overall transcoding and there will be less traffic on the
network due to fewer messages between master and workers.

V. SYSTEM OVERVIEW

We selected the ffmpeg open source video transcoder
which is designed to work on a single machine as the basis
for our experiments. Further details about this transcoder can
be found in [14]. We modified this transcoder to execute on

multiple processing units in a distributed environment using
the MPI. In MPI based implementation we create multiple
processes of the transcoder and each process transcode its
own part of video stream.

We have two different scenarios for our transcoding sys-
tem. In the first case each worker will get only one segment
to perform the transcoding for one video sequence. Hence
we cannot have more partitions than number of available
workers. This scenario is used for the first two possible
ways of video segmentation i.e. equal size segmentation with
unequal number of intra frames and equal number of intra
frames with unequal segment size. The one to one mapping
of video segments to worker machines is helpful in getting
the overall high performance in transcoding.

The second scenario is used to get the shortest possible
startup time. In this case the number of video segments
is higher than the number of available workers. The video
segments are sent to workers in round robin fashion.

Figure 6. Distributed Video Transcoder with Message Passing Interface

Figure 6 shows the architecture of the distributed video
transcoder for a single video sequence. The source video
sequence header is attached to every GOP to make it a video
sequence so that the transcoder can transcode it according
to given parameter values.

In the MPI based implementation the number of total
worker machines for transcoding a given video stream is de-
cided by the master; video segmentation and load balancing
are performed according to the number of worker machines.

In MPI based systems every machine has its own ID
and the work is assigned according to their IDs. The
master machine will have ID zero and it will perform the
video sequence segmentation task first and then will send
the data to worker machines to perform the transcoding
operation. The master machine will wait until it gets back
the transcoded results from all workers. After receiving the
transcoded results it will perform the merging task. It is

also possible to make any other machine as a master with
ID other than zero. If the number of video streams to be
transcoded is high then multiple masters can also be created.

All worker machines perform the same kind of transcod-
ing operation. The instructions for transcoding the video
sequence are the same for all worker machines but they all
get different parts of the video stream. The worker machines
have to receive the part of video stream from the master
machine then perform transcoding operation and send back
the results to master machine.

VI. EXPERIMENTAL SETUP

The experimental system consists of AMD Opteron(tm)
Processor workstation and the configuration of the system
is shown in table II. Each core of the Dual-Core processor
is used as a processing element and takes part in the
transcoding operation. The same implementation of the MPI
based video transcoder can be mapped on a multi-core
system.

model name Dual-Core AMD Opteron(tm) Processor 2214 HE
cpu MHz 2194.498
cache size 1024 KB

address sizes 40 bits physical, 48 bits virtual

Table II
CONFIGURATION OF THE MACHINES IN CLUSTER

The big buck bunny video sequence [15] was used as
source video to perform transcoding operations. The source
video has H263 4CIF (704x576) format with 24 fps and
1125 kbps. The size of the source video is 79.9 MB and its
play time is 09 minutes and 56 seconds. The total number
of frames in this video sequence is 14314.

VII. RESULTS

To test our approach we transcode the video down to
lower bit rates. The original size of the video sequence was
79.9 Mega Bytes. We started transcoding video sequence at
982kbps and went down to 349kbps. With lower bit rates
the quality of video was degraded. Table III shows the file
size after transcoding with different bit rates.

Bit rate File size Bit rate File size
982 kbps 70Mb 518 kbps 44Mb
883 kbps 63Mb 428 kbps 38Mb
789 kbps 57Mb 359 kbps 31Mb
699 kbps 50Mb 349 kbps 25Mb
608 kbps 44Mb

Table III
FILE SIZE AFTER TRANSCODING FOR DIFFERENT BIT RATES

A. Transcoding time

The bit rate reduction transcoding requires the same
number of operations for transcoding the video sequence at
different bit rates hence the transcoding time is the same for
different bit rates. Figure 7 shows the transcoding time for
both equal size partitions having unequal number of intra(I)
frames and unequal size partitions having equal number of
intra (I) frames. The graph shows that there is gain in terms
of speed up when using more workers. With equal number
of intra (I) frame partitions the overall transcoding time is
less and the performance is better for a single video stream.

The quantization process requires more computation in bit
rate reduction transcoding; this process is performed only on
intra macro blocks. The intra frames have only intra macro
blocks and require more computational power as compared
with P and B frames having inter macro blocks. The P and
B frames may also have intra macroblocks but the number
of those intra macro blocks is very less as compared to the
macro blocks of intra frames.

The equal size segmentation with unequal number of intra
frames partitioning also provides speed up as the number
of workers is increased but is less efficient than the equal
number of intra frames and unequal size segmentation.

Figure 7. Bit rate reduction Transcoding Time

B. Startup time

The figure 8 shows the start up time for different sizes
of video segments. With unequal size segmentation having
small number of Intra frames, the startup time can be very
less. The results show that for 2 megabytes video segment
the transcoding time is less than 2 seconds. The number
of frames in 2 mega bytes video is more than 360. With
24 frames per second the play time for this video segment
will be 15 seconds. Hence the second worker will be able
to transcode a bigger size video segment and it has to send
back the transcoded result before the 15 seconds deadline so

that the user may able to see uninterrupted video. The third
worker will be able to transcode on even bigger size video
segment. The video segmentation time is small as compared
with transcoding time. It takes less than 1 second to perform
the video segmentation operation and send segments to
workers for transcoding.

Figure 8. Start up time for different sizes of video segements

C. Analysis

The Peak Signal to Noise Ratio (PSNR) is used to
measure the quality of compressed images. The Average
Peak Signal to Noise Ratio is used to measure the quality of
video. Here PSNR is calculated for all frames of video and
then finally Average of PSNR is calculated to get APSNR.

PSNR = 10× log10(
MaxErr2 ×W ×H∑W,H

i=1,j=1(xij − yij)2
)

The xij and yij shows the pixel values of source image
and compressed image. The W and H indicate the width and
height of the image.

We performed the transcoding operation for different bit
rates. The Peak Signal to Noise Ratio at 349kbps is shown
in figure 9.

Figure 9. Peak Signal to Noise Ratio at 349kbps

Figure 10 shows the APSNR for different bit rates starting
from 349kbps to 982kbps. If the value of APSNR is above
30 it means the video quality is acceptable and if the value

of PSNR is higher it means the quality of the compressed
image is better. Maximum value of PSNR can be 100 and
in that case two images will be exactly identical.

Figure 10. Average PSNR for various bit rates

The transcoding experiment was performed several num-
ber of times starting with one master and one worker to one
master and seven workers. The output video quality was the
same with different number of workers hence the MPI based
transcoder did not degraded the video quality.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a scalable distributed MPI
based transcoder implementation. In this implementation a
master node (workstation) partitions a given input video file
into a number of parts and distributes among worker nodes.
The actual transcoding is performed by worker machines in
parallel to get more speedup of overall transcoding process.
The worker machines send back the transcoded video to
master for merging. We were able to see a considerable
performance gain with MPI based transcoder as number
of worker machines increases. It was observed that the
segmentation with equal number of intra frames is more
efficient than equal size segmentation. The unequal size
segmentation is better for having short startup time. The
video start up time can be as low as 2 seconds and then
uninterrupted service is possible for the end user. In addition
the MPI based transcoder needs no change in its design as
the number of processing units grows up. The MPI based
transcoder can handle any other type of video format but the
headers information needs to be handled while performing
segmentation. The MPI based transcoder can also be used
for other types of transcoding just like spatial and temporal
transcoding and further experiments can be performed on
both these types of transcoding.

The MapReduce can also be used to perform video
transcoding in a cloud computing environment. In future we

intend to perform distributed transcoding using the cloud
computing with both MPI and MapReduce and then see
which one of them provides better results.

REFERENCES

[1] A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding
architectures and techniques: an overview,” Signal Processing
Magazine, IEEE, vol. 20, no. 2, pp. 18 – 29, mar 2003.

[2] S. F. Chang and A. Vetro, “Video adaptation: Concepts,
technologies, and open issues,” Proceedings of IEEE,
vol. 93, no. 1, pp. 148–158, Jan. 2005. [Online]. Available:
http://dx.doi.org/10.1109/JPROC.2004.839600

[3] N. Bjork and C. Christopoulos, “Transcoder architectures for
video coding,” Consumer Electronics, IEEE Transactions on,
vol. 44, no. 1, pp. 88 –98, feb 1998.

[4] Y. Sambe, S. Watanabe, D. Yu, T. Nakamura, and
N. Wakamiya, “High-speed distributed video transcoding
for multiple rates and formats,” IEICE Transactions, vol.
88-D, no. 8, pp. 1923–1931, 2005. [Online]. Available:
http://dx.doi.org/10.1093/ietisy/e88-d.8.1923

[5] J. Guo, F. Chen, L. Bhuyan, and R. Kumar, “A cluster-
based active router architecture supporting video/audio stream
transcoding service,” in Parallel and Distributed Processing
Symposium, 2003. Proceedings. International, april 2003, p.
8 pp.

[6] Message Passing Interface Forum, MPI: A Message-Passing
Interface Standard. Knoxville, TN: University of Tennessee,
Jun. 1995.

[7] Gropp, W., Lusk, E., and Skjellum, A., Using MPI, Portable
Parallel Programming with the Message Passing Interface.
MIT Press.

[8] P. Assuncao and M. Ghanbari, “Transcoding of single-layer
mpeg video into lower rates,” Vision, Image and Signal
Processing, IEE Proceedings -, vol. 144, no. 6, pp. 377 –
383, dec 1997.

[9] T. Shanableh and M. Ghanbari, “Heterogeneous video
transcoding to lower spatio-temporal resolutions and different
encoding formats,” Multimedia, IEEE Transactions on, vol. 2,
no. 2, pp. 101 –110, jun 2000.

[10] H. Sun, W. Kwok, and J. Zdepski, “Architectures for mpeg
compressed bitstream scaling,” Circuits and Systems for Video
Technology, IEEE Transactions on, vol. 6, no. 2, pp. 191 –
199, apr 1996.

[11] Y. Nakajima, H. Hori, and T. Kanoh, “Rate conversion
of mpeg coded video by re-quantization process,”
in Proceedings of the 1995 International Conference
on Image Processing (Vol. 3)-Volume 3 - Volume
3, ser. ICIP ’95. Washington, DC, USA: IEEE
Computer Society, 1995, pp. 3408–. [Online]. Available:
http://portal.acm.org/citation.cfm?id=839284.841401

[12] M.-T. Sun, T.-D. Wu, and J.-N. Hwang, “Dynamic bit alloca-
tion in video combining for multipoint conferencing,” Circuits
and Systems II: Analog and Digital Signal Processing, IEEE
Transactions on, vol. 45, no. 5, pp. 644 –648, may 1998.

[13] O. Werner, “Requantization for transcoding of mpeg-2 in-
traframes,” Image Processing, IEEE Transactions on, vol. 8,
no. 2, pp. 179 –191, feb 1999.

[14] “Ffmpeg project.” [Online]. Available:
http://www.ffmpeg.org/

[15] “Big buck bunny video sequence.” [Online]. Available:
http://www.bigbuckbunny.org/index.php/download/

