Learning Multi-Label Predictors under
Sparsity Budget

Pekka NAULA®, Tapio PAHIKKALA ab Antti AIROLA &b
and Tapio SALAKOSKP-P

aDepartment of Information Technology, University of Tyrkinland
b Turku Centre for Computer Science (TUCS), Finland

Abstract. In real-life machine learning applications, there areroftests associ-

ated with the features needed in prediction. This is the frasexample when de-

ploying learned models in mass produced products, whemaémeifacturing costs

or space limitations may restrict the number of featureaetitng sensors that can
be included in each device. In such situations, the traipigess involves a spar-
sity budget restricting the number of features the learmrediptor can use. In this

paper, we consider the problem of learning multi-label {meds under a sparsity

budget. For this purpose, we consider three different weeppsed greedy forward
selection approaches for constructing sparse multi-lelbehing models. In our ex-

periments, we show that the method selecting a common settfres shared by
multiple tasks by greedily maximizing the prediction penfiance averaged over
all the tasks provides a better prediction performance the@approaches selecting
the features separately for each task.

Keywords. Feature subset selection, multi-label learning, budgéézaning,
regularized least-squares

1. Introduction

Given a set of training examples with associated labels, ehima learning algorithm
builds a mathematical model that predicts the label(s) foeva unseen example. Exam-
ples are high-dimensional data inputs that are often censitito be acquired with no
costs. However, in real-life, there are always costs aasetiwith producing or measur-
ing high-dimensional data. Many such different cost sdesdrave been studied in the
machine learning literature (see [1] for overview). Forragde in active feature acqui-
sition [2] or budgeted learning [4], the learning algoritisrassumed to operate during
training on a limited budget, and must pay for the acquisitibthe features of the train-
ing examples. In this study we assume that we have an untirbitelget during train-
ing, but that there is a cost associated with each chosamréahen the learned models
are deployed. For example, in industrial machine learnpygieations, the costs might
be due to the manufacturing costs of physical sensors whighuged to measure the
feature values of new examples. Alternatively, in mediaadision making the features
might correspond to the outcomes of medical tests, and tmske monetary price of
administering the tests.

As a motivating example, let us consider a smart handhelateevhich is able to
solve several tasks simultaneously, based on data obtamracan array of sensors in-
tegrated to the device. For example, the purpose of the éleaiald be to predict a pre-
defined set of health related properties of the user, suchiraent stress level, calorie
consumption, whether the user is fit to drive etc. There areraécandidate data suppli-
ers such as sensors (accelerometer, barometer, GPS, &dumpaensor, heart rate sensor
etc.) or questionnaire data (sex, age, weight, etc.) endzkihdo the prototype devices,
which are used to collect the training data. The tasks ardasiin nature, suggesting
that some of the sensors could be used in solving severataétiks. All of the possible
software and hardware components come at a cost, which tmégimtoney or space in a
circuit board, and we have restricted budget available. Hloauld the data suppliers be
selected for the final devices to allow constructing a ptediwith acceptable level of
accuracy for all the tasks, given a restricted budget?

In this paper, we consider approaches that combine the afeaslti-label learning
and wrapper-based feature subset selection to solve teu#grning tasks with a limited
budget. In multi-label learning [5], each data instancetaims a feature representation
and multiple labels, that describe the properties we wisleaon to predict from the
features. For example, in text classification the featumesencode word frequencies, and
the labels different topics that a document can have. Maitte! learning is an instance
of the more general setting of multi-task learning [6]. leeatsubset selection [7] is a
standard approach to reduce the dimensionality of the feapace and to achieve a
useful set of features. This can allow reduced costs in gépidhe learned models, and
may in some cases also lead to improved accuracy for the model

Feature selection for multi-label classification has bemvipusly addressed, for
example, with filter methods (see e.g. [8,9]). In the filtepayach, the selection is done
as a pre-processing step before learning, by computingriate statistics such as in-
formation gain, mutual information oy? on feature-by-feature basis. The main advan-
tages of the approach are efficiency and ease of implementatid the main disad-
vantages the inability to take account of the dependenabsden the features, or the
properties of the learning algorithm which is subsequeindined on the features. The
problem of multi-label feature selection has also beenes$drd through Bayesian [2],
or regularization-based [11] learning algorithms thatemage sparsity in the learned
solutions.

Wrapper methods [12] have been proposed as a way to overtentienitations of
the filter approach. In the wrapper model, features are teelébrough interaction with
a learner training method. Here, the power set of featuresasched over. A new pre-
dictor is trained during each search step using the correipg feature subset and an
estimate of its predictive performance is used to measwretiality of the subset. The
number of possible feature sets grows exponentially wighrthmber of available fea-
tures. Therefore, the wrapper type of feature selectiomatks require a search heuris-
tic when traversing through the power set. The most commuoséd search heuristic
is greedy forward selection that adds one feature at a tintheset of selected fea-
tures, but never removes any features from the set. In additi the search strategy,
the wrapper methods require a method for assessing how pedddture subsets under
consideration are. Measuring the prediction performancéhe training set is known
to be unreliable. Therefore, [13] proposed to measure tleigess with leave-one-out
(LOO) cross-validation. In LOO, each example in turn is taft of the training set and

used for testing. The wrapper approach has been empiriladiyyn to outperform filter
based selection (see e.g. [14]), but in straightforwardémgntations this improvement
comes with a considerable computational cost, especidlgnused with LOO selection
criterion.

In [15], we proposed greedy RLS, a wrapper-based featueetsah method for reg-
ularized least-squares, which employs a greedy searcistieand a LOO selection cri-
terion. The computational complexity of greedy RLS was shéwbeO(kmn), where
m is the number of data points in the training setis the overall number of features
among which the selection is made, dnis the number of features selected by greedy
RLS. That is, the training time is linear with respectton, andn, despite the fact that
the learned predictors and selected features are exactiyadent with those that would
be obtained if RLS would be used as a black-box method, araich the incremental
feature selection and LOO criterion are wrapped.

This paper is organized as follows. In Section 2 we brieflyie@vformally the
standard framework for regularized least-squares foleiladpel learning, and present a
high level description of the greedy RLS feature selecti@thod. Then, we extend this
method to multi-label learning, where multiple tasks aegted simultaneously. Next, in
Section 3, we present experiments on three real-world @ééacomparing our proposed
multi-label method to a baseline method where tasks aradedn isolation. Finally, in
Section 4, we summarize our findings, and suggest futurares@ossibilities.

2. Methods

Let X € R™*™ be a matrix containing the feature representation of thengles in
the training set, where is the number of features and is the number of training
examples. The, jth entry of X contains the value of thgh feature in theth training
example. Moreover, leg7 € R™ for j = 1,...,t be vectors consisting of the labels of
the training examples fartasks. In multi-class or multi-label classification, thbdés
can be restricted to be eitherl or 1 depending whether the data points belong to the
class, while they can be any real numbers in multi-labelaggjon tasks.

For each of the tasks, we construct a linear prediction function. The fiorcfor
the jth task can be expressed as

F(x) = (xsi)"W,

wherew’ € RISl is a vector representation of the learned predictor forjthdask,x
is a data point for which the prediction of thith label is to be made, ands; a vector
representation ot that only contains the features indexed by theSet

We assume that the sefé contain feature indices selected by a training algorithm
that performs feature selection while constructing theljgters. Moreover, we assume
that the number of features we can extract from a data poipitegtiction time is con-
strained by a a given sparsity budget, that is, we have

Us| <k (1)
j=1

for somek € N. Note that since the sparsity budget constraint is givertifiemumber
of features, it is assumed that all features have an equalatixin cost at the prediction
time. This can be easily generalized to a setting in whichhdaature would have a
different extraction cost. However, this is not considdtether in this paper, because of
limited space and the lack of available data for practicakeinents.

The most straightforward approach for constructing theligters under a common
budget constraint is to simply train them separately andrenthat each predictor uses
only k/t features. For doing this, we can use numerous off-the-$batfire selection
methods available for single-task learning. It may of ceurappen that the size of the
union feature set in (1) is strictly smaller th&nif the same features are selected for
several tasks. In such cases the selection process can tieueghuntil the sparsity
budget is completely fulfilled. An alternative approactoiselect the features jointly for
all tasks, favoring such features that increase the pegoomaveraged over all tasks.

Before considering the actual training algorithms, we enésome of the building
blocks. As a base learner, we use regularized least-sq(Rt&) [16], also known as
the least-squares support vector machine [17] and ridgessipn [18], which is a state-
of-the art machine learning method suitable for severasygf machine learning tasks.
RLS can be expressed for a single task with training &ata R™*" y € R™ as the
following problem:

A(X,y) = argmin {Xw—y) (Xw—y) + Aw'w},)
weR™

where)\ > 0 is a regularization parameter. The first term in (2), callegl ¢émpirical
risk, measures how well the prediction function fits to ttaérning data. The second term
is called the regularizer and it controls the tradeoff bemvehe empirical error on the
training set and the complexity of the prediction function.

As a selection criterion, we use the mean squared errorredtaiia leave-one-out
(LOO) cross-validation. Given a training da¥a € R™*",y € R™, this can be ex-
pressed as follows:

LX,y) =Y (£ (Xn) = yn)?, (3)
h=1

where f;- is a predictor which is trained using the whole training satept thehth
training example, an&X; andy; contain, respectively, the features and the label of the
hth example.

As a training algorithm for learning predictors with a résed sparsity budget,
we present a greedy forward feature selection method for RitfSLOO criterion. By
greedy, we indicate that the algorithm starts from an emgty&features and adds one
feature at a time to the set but never removes any featurestfie set. A high level
pseudo code of the algorithm for a single task is given in At 1. In the pseudo
code, the function call(XS“{% y) returns a real value, which is equivalent to the
LOO performance of a RLS predictor trained with a featureset {:}. The feature
added in each iteration of the outer loop is the one providiagimal decrease of LOO
classification error. To select the features separatelgifaf thet tasks with a common
sparsity budgek, we simply call Algorithm 1 with a constrairit/t consecutively for
each task.

Algorithm 1 Pseudo code for selectirkgfeatures for a single task.

1. S+0 > The current set of selected features.
2: while |S| < k do > Selectk features.

3 e < 0o

4: b0

5: fori e {1,...,n}\ Sdo > Test all features before selecting.

6: e; — L(XSYTT y) > Compute LOO performance.

7 if e; < ethen

8: e < e;

9: b1
10: S+ SuU{b} > Select the feature that increases the performance the most.

11: w <+ A(XS,y)
12: returnw, S

Algorithm 2 Pseudo code for selectirkgfeatures common for all tasks.

1. 5«0 > The current set of selected features common for all tasks.
2: while |S| < k do > Selectk common features.
3 e < 0o
4: b+ 0
5: fori e {1,...,n}\ Sdo > Test all features before selecting.
6: eqvg < 0
7 for j € {1,...,t} do
8: eij + L(XSVL yd) > Compute LOO performance for tagk
9: €avg < €avg + €45/t
10: if eavg < ethen
11: € < €equg
12: b1
13: S+ SuU{b} > Select the feature that increases the average performagmcedst.

14: for j € {1,...,t} do
15: wl + A(XS,yY)
16: return wl, ..., wt, S

Next, we consider an algorithm that selects a common setatdiffes for the tasks
using the performance averaged over all tasks as a selecitierion. A high level pseudo
code of this algorithm is presented in Algorithm 2. The ontest loop adds one feature
at a time into the set of selected featutgsntil the size of the set has reached the
sparsity budgek. The middle loop goes through every feature that has not gehb
added into the set of selected features. Foitinéeature available for addition, the inner
loop computes the average LOO performance ovet thsks for RLS predictors trained
using the featureS U {i}. After going through all feature candidates, the algorithen
adds the feature with the best average LOO performancdiatedt of selected features.

In [15], we proposed an implementation of Algorithm 1, whigk named greedy
RLS, whose computational complexityGg kmn), wherem is the number of data points
in the training setp is the overall number of features among which the selectiomdde,
andk is the number of features selected by greedy RLS. The moaiilificaf greedy
RLS for multiple labels per data point is quite straightfard, since only the selection
criterion has to be modified. The technical description efttodified algorithm is left
out from this paper due to the limited space. By extendingtimputational complexity
analysis presented in [15], it can be shown that the time dexitp of the multi-task
greedy RLS i) (kmnt).

Tablel. Datasets.

Data sets| features| labels | train test
scene 294 6 1211 1196
yeast 103 14 1500 917
siam 30438 22 21519 | 7077

3. Experiments
3.1. Datasets and setup

In the experiments we compare three methods for budgeteti-latogl learning. We
assume that all the features have equal cost and we are dgbugtgat constraint on the
number of features, and the number of labels iethod1 learns the tasks separately,
using Algorithm 1, so that the individual training processe not share any knowledge
between each other. The budget is divided evenly betweetashs, meaning that each
individual predictor uses/t features. Method can be considered wasteful in the sense
that none of the tasks benefit from the features selectechéoother tasks. Metho?l
aims to fix this problem as follows. All the features are agagtected as in Methot],

but after the selection is finished, the predictors for eadk @are re-trained using the
union of all the selected feature sets. Finally, MetBo@\lgorithm 2) aims to improve
on Method2 by performing the selection process itself jointly overth# tasks, in each
step selecting such features that give the best averagemerfce over all the tasks. The
methods are compared over a varying range of budgets. Irothearisons, the budget
size is always computed as the size of the final set of seléestdres. Thus, if some of
the features selected by Methbare shared by multiple tasks, each such feature incurs
only unit cost in the budget. This means that the comparigtwéen the three methods
are always made so that they all use exactly the same numfestafes.

We perform our experiments on three publicly available iHatiel data set$. The
data sets are selected in order to cover different apphicatomains, in our case image,
biology and text. The first data sefgene(see [19]), is a scene classification problem
where images are categorized into semantic classes sudaealsds, sunsets or moun-
tains. The second data sgeast(see [20]), is a biological data set about gene function
classification. Finally, we have one large text classifaratiata setsiam(see [21]). We
use the standard training/test splits provided on the wele pehe characteristics of the
data sets are summarized in Table 1.

All the test runs are carried out using the greedy RLS impheateon in RLScoré a
publicly available open source machine learning libranyadi@ped by some of the present
authors. The software is implemented using the Python progring language, and the
NumPy and SciPy libraries. The regularization paramgter set to 1 in this study. In
preliminary experiments we also tested a large range of otliges, the observed trends
were similar as those presented in the paper. We use all Hilalale tasks with scene
data and yeast data, but only the first 9 out of the 22 possibleston siam data, because
of large processing time.

To evaluate the overall behavior of both of the algorithmes,calculate the average
AUC (the area under the ROC curve) [22,23] over all the taske. AUC is a popular

lavailable aht t p: / / ww. csi e. nt u. edu. tw/ ~cj | i n/|i bsvnt ool s/ dat aset s/
2available aht t p: / / www. t ucs. fi/ RLScore

ranking based performance measure for binary classifitaltias invariant to relative
class distributions and class specific error costs, allgwmto assign equal importance
to each label regardless of how commonly they appear in ttee da

3.2. Results

On the left sides of the Figures 1, 2 and 3, are the performemoes for scene data,
yeast data and siam data, respectively. In each figure wéh@gerformance curves for
the three considered methods. The average AUC is plotteduaction of the available
budget. Methodl shows on all of the data sets much worse performance thaereith
Method2 or 3. Thus, in our experiments sharing features between the faskes to be
always beneficial. For the scene (Figure 1), and for the y&agtire 2) data, Method
outperforms Method. Somewhat surprisingly, on the SIAM data (see Figure 3) Hdet

2 outperforms Method. Further examination of this issue revealed that on siara dat
Method2 had higher AUC than Metho8 even on the training set. This suggests that
the mean-squared error based selection criterion (equéB)y used in the experiments
fails to choose the best features in terms of AUC for Algarith. Earlier results in the
literature (see e.g. [24]), have shown that for imbalancaid dets optimizing mean-
squared error can yield sub-optimal performance in term&WE. The AUC measure

is slower to compute than the mean-squared e®dr(log(m)) instead ofO(m)), and
hence we used the latter as a selection criterion in orderaie she methods to the large
data set sizes considered in the experiments.

On the right sides of the Figures 1, 2 and 3, we plot the costesumeasuring the
overlap between the feature sets selected for each task thobllle Realized costepre-
sents the size of the union of feature sets (see Eq. (1)) dwdithe tasks as a function of
the given budget constrairitlax costrepresents the upper bound on the realized cost for
a given budget constraint. This situation occurs, if theuiesasets selected for all of the
tasks are mutually exclusiv#lin costrepresents the lower bound on the realized cost.
This situation occurs, if the feature sets selected forfahe tasks are exactly the same.
The realized cost determines the size of the budget in thepadsons. For example,
with a budget constraint 84 on the scene data, the Mettsmlected 74 distinct features
(see Figure 1), and hence it is compared to the other methwtés budget 74.

Table 2 shows the classification performance (AUC) for Mdthb, 2 and 3, for each
of the tasks on scene data over some of the selected budgetsiimbers in brackets
for Method 1 results (top), indicate the size of the featts per each task on selected
budgets (note that the sum of the sizes of the feature setalbt@sks on budgets 53 and
74 for the other methods are 54 and 84 due to the redundantésatAmong some tasks,
such as 3, 4 and 5 for Method 3 (bottom), the performance datémprove after a small
number of selected features (53 out of 294). This may inditat some of the common
selected features are not representative for those taskesnm@yht think that enforcing
a common feature subset might be harmful for some specificdas to irrelevant or
redundant features, but this is not observed to occur inesirrins. Methods 2 and 3
give as good as or better prediction performances than thddet for all of the tasks,
under all given budgets. On smallest budget sizes Methmdperforms Method on all
of the tasks, for the largest budgets the differences desapp

Table2. Performance for tasks on scene data with Method 1 (top), dde?(middle), and Method 3 (bottom).

Budget | avg task 1| task 2 | task 3 | task 4 | task 5| task 6
6 (1) 0.796 | 0.789 | 0.898 | 0.820 | 0.880 | 0.662 | 0.725
18(3) | 0.859 | 0.862 | 0.939 | 0.865 | 0.937 | 0.740 | 0.810
53(9) | 0.896 | 0.908 | 0.962 | 0.902 | 0.950 | 0.794 | 0.858
74(14) | 0.899 | 0.918 | 0.973 | 0.920 | 0.952 | 0.799 | 0.831

Budget | avg task 1 | task 2 | task 3 | task 4 | task5 | task 6

6 0.834 | 0.854 | 0.914 | 0.827 | 0.904 | 0.715 | 0.790
18 0.878 | 0.903 | 0.954 | 0.870 | 0.951 | 0.756 | 0.833
53 0.906 | 0.921 | 0.977 | 0.922 | 0.953 | 0.800 | 0.861
74 0.905 | 0.923 | 0.978 | 0.927 | 0.954 | 0.803 | 0.846
Budget | avg task1 | task2 | task 3 | task4 | task5 | task 6
6 0.852 | 0.880 | 0.942 | 0.835 | 0.935 | 0.744 | 0.779
18 0.890 | 0.906 | 0.968 | 0.898 | 0.958 | 0.777 | 0.832
53 0.906 | 0.915 | 0.974 | 0.922 | 0.957 | 0.804 | 0.862
74 0.907 | 0.922 | 0.977 | 0.920 | 0.954 | 0.803 | 0.868

Cost curves for tasks
e—e Min cost

L| ** Max cost { f P
~ -« Realized cost -

601 * o

Cost

" 401

Performance curves for tasks e ’
»-* Method 1 20 W

B0 :] & -2 Method 2 el
e—e Method 3 «’
078 H H H o H H H H

; ;
(] 10 20 30 40 50 60 70 80 90 (] 20 20 60 80 100
Budget Budget

Figurel. Performance and cost curves on SCENE data.
4. Conclusions and Future Work

In this paper, we propose a method that combines the ideasiltflabel learning and
feature subset selection under a sparsity budget by seeagtminimal set of common
features simultaneously for several tasks. The goal of te#naod is to achieve the best
possible predictive performance for multiple tasks undegsdricted budget where the
cost is associated with high-dimensional data. The mettsedf can be integrated into
any supervised learning algorithm, but we select RLS bexatis efficiency in perfor-
mance due to mathematical short-cuts used in matrix calont We tested the method
using real data sets from three different domains. The éxjeeital results show that the
proposed multi-label method leads to improved predictierfggmance under a given
budget. One can see the benefits of our method from two diffgrerspective. Given
equal budgets for our method and the baseline method, tip®ged approach provides
better performance than the baseline (quality perspgctigen equal performance re-
quirements, the proposed method has smaller costs thamasledre (cost perspective).

Cost curves for tasks
e—e Min cost
- Max cost

« -+ Realized cost

Cost
v

40} ; pes

*
0.62 : Performance curves for tasks -
' +-+ Method 1 20 SRt
0.6 & -2 Method 2 e
o—e Method 3 e e e e

0.6 H H H H h T n T ; " H H i H H

% 15 20 25 30 35 40 45 50 9% 20 30 40 50 60 70 80 90 100

Budget Budget

Figure 2. Performance and cost curves on YEAST data.

Cost curves for tasks -
e—e Min cost : : aiad
=% Max cost w7
~ -+ Realized cost : : :

0.80

9 25 e
2 & P
< S o
o 20 g
© oY

0.75F ¥

15 S
Performance curves for tasks 10 L g
0.70f AR *-* Method 1 *
Method 2 5
: e— Method 3 //
0.65. * i i i 0 i i i i i i i
5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Budget Budget

Figure 3. Performance and cost curves on SIAM data.

In our future work we plan to extend the introduced approacmoére general set-
tings where for example the features may be associated aithble costs. Other search
strategies than the greedy forward selection might alsodréwwhile to study. For ex-
ample, genetic algorithms [25] have been shown to be effedti multi-criteria opti-
mization problems.

Acknowledgements

This work has been supported by the Academy of Finland (dra#®20).

References

[1] P.D. Turney. Types of cost in inductive concept learnifigT. Dietterich, D. Margineantu, F. Provost,
and P. D. Turney, editor&roceedings of the ICML 2000 Workshop on Cost-Sensitivenireg 2000.

[2] P. Melville, M. Saar-Tsechansky, F. Provost, and R. M®onrActive feature-value acquisition for clas-
sifier induction. In R. Rastogi, K. Morik, M. Bramer, and X. \Weditors,Proceedings of the 4th IEEE
International Conference on Data Miningos Alamitos, CA, USA, 2004. IEEE Computer Society.

[3] D.J.Lizotte, O. Madani, and R. Greiner. Budgeted leagrf naive-Bayes classifiers. Rroceedings
of the 19th Conference on Uncertainty in Artificial Intetlitce (UAI'03) pages 378-385, 2003.

(4]

(5]

(6]
[7]

[9]

(10]
(11]
(12]

(13]

(14]

[19]

[16]
(17]
(18]
(19]

[20]

(21]
(22]
(23]

(24]

(25]

A. Kapoor and R. Greiner. Learning and classifying unbard budgets. In J. Gama, R. Camacho,
P. Brazdil, A. Jorge, and L. Torgo, editof®roceedings of the 16th European Conference on Machine
Learning (ECML’'05) volume 3720 of_ecture Notes in Computer Scien&pringer, 2005.

G. Tsoumakas, |. Katakis, and I. Vlahavas. Mining midtiel data. In O. Maimon and L. Rokach,
editors,Data Mining and Knowledge Discovery Handbogplages 667—-685. Springer US, 2010.

R. Caruana. Multitask learnindlachine Learning28:41-75, 1997.

A. L. Blum and P. Langley. Selection of relevant featusesl examples in machine learningttificial
Intelligence 97:245-271, 1997.

Y. Yang and J. O. Pedersen. A comparative study on feaelection in text categorization. In D. H.
Fisher, editor,Proceedings of the Fourteenth International ConferenceMachine Learning (ICML
1997) pages 412-420. Morgan Kaufmann, 1997.

W. Chen, J. Yan, B. Zhang, Z. Chen, and Q. Yang. Documenmtsformation for multi-label feature
selection in text categorization. In N. Ramakrishnan, @&ane, Y. Shi, C.W. Clifton, and X. Wu,
editors, Proceedings of the 7th IEEE International Conference onaDéining, pages 451-456, Los
Alamitos, CA, USA, 2007. IEEE Computer Society.

P. J. Brown, M. Vannucci, and T. Fearn. Multivariate Baian variable selection and predictidournal

of the Royal Statistical Society: Series B (Statisticallidblogy) 60:627-641, 1998.

G. Obozinski, B. Taskar, and M. I. Jordan. Joint covarigelection and joint subspace selection for
multiple classification problemstatistics and Computin@0:231-252, 2010.

R. Kohavi and G. H. John. Wrappers for feature subsetcsieh. Artificial Intelligence 97:273-324,
1997.

G. H. John, R. Kohavi, and K. Pfleger. Irrelevant feasuend the subset selection problem. In
William W. Cohen and Haym Hirsch, editorBroceedings of the 11th International Conference on
Machine Learningpages 121-129, San Fransisco, CA, 1994. Morgan KaufmallisPers.

I. Inza, P. Larrafiaga, R. Blanco, and A. J. CerrolazielRversus wrapper gene selection approaches in
DNA microarray domainsArtificial Intelligence in Medicing31(2):91-103, 2004.

T. Pahikkala, A. Airola, and T. Salakoski. Speeding upegly forward selection for regularized least-
squares. In Sorin Draghici, Taghi M. Khoshgoftaar, VasiédaRe, Witold Pedrycz, M. Arif Wani, and
Xingquan Zhu, editorsProceedings of The Ninth International Conference on Maehiearning and
Applications (ICMLA'10) pages 325-330. IEEE, 2010.

R. Rifkin. Everything Old Is New Again: A Fresh Look at Historical Apathes in Machine Learning
PhD thesis, Massachusetts Institute of Technology, CalgériMassachusetts, USA, 2002.

J. Suykens, T. Van Gestel, J. De Brabanter, B. De Moad, Arivandewalle. Least Squares Support
Vector MachinesWorld Scientific Pub. Co., Singapore, 2002.

A. E. Hoerl and R. W. Kennard. Ridge regression: Biasstimation for nonorthogonal problems.
Technometrics12:55-67, 1970.

M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learningiltitlabel scene classificationPattern
Recognition 37(9):1757-1771, 2004.

A. Elisseeff and J. Weston. A kernel method for multidtled classification. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editofglvances in neural information processing systemsM&
Press, Cambridge, MA, 2002.

A. Srivastava and B. Zane-Ulman. Discovering recigr@amomalies in text reports regarding complex
space systems. 005 IEEE Aerospace conferengages 3853—-3862. IEEE, 2005.

J. A. Hanley and B. J. McNeil. The meaning and use of tlea ainder a receiver operating characteristic
(ROC) curve.Radiology 143(1):29-36, 1982.

J. Huang and C. X. Ling. Using AUC and accuracy in evahgatearning algorithmslEEE Transactions
on Knowledge and Data Engineeringj7(3):299-310, 2005.

T. Pahikkala, A. Airola, H. Suominen, J. Boberg, and @lgkoski. Efficient AUC maximization with
regularized least-squares. In A. Holst, P. Kreuger, andifkFeditors Proceedings of the 10th Scandi-
navian Conference on Atrtificial Intelligence (SCAI 2008)lume 173 ofFrontiers in Artificial Intelli-
gence and Applicationpages 12-19. 10S Press, Amsterdam, Netherlands, 2008.

J. Yang and V. Honavar. Feature subset selection usg®natic algorithm.IEEE Intelligent Systems
and their Applications13(2):44-49, 1998.

