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Abstract. In real-life machine learning applications, there are often costs associ-
ated with the features needed in prediction. This is the casefor example when de-
ploying learned models in mass produced products, where themanufacturing costs
or space limitations may restrict the number of feature extracting sensors that can
be included in each device. In such situations, the trainingprocess involves a spar-
sity budget restricting the number of features the learned predictor can use. In this
paper, we consider the problem of learning multi-label predictors under a sparsity
budget. For this purpose, we consider three different wrapper-based greedy forward
selection approaches for constructing sparse multi-labellearning models. In our ex-
periments, we show that the method selecting a common set of features shared by
multiple tasks by greedily maximizing the prediction performance averaged over
all the tasks provides a better prediction performance thanthe approaches selecting
the features separately for each task.

Keywords. Feature subset selection, multi-label learning, budgetedlearning,
regularized least-squares

1. Introduction

Given a set of training examples with associated labels, a machine learning algorithm
builds a mathematical model that predicts the label(s) for anew unseen example. Exam-
ples are high-dimensional data inputs that are often considered to be acquired with no
costs. However, in real-life, there are always costs associated with producing or measur-
ing high-dimensional data. Many such different cost scenarios have been studied in the
machine learning literature (see [1] for overview). For example in active feature acqui-
sition [2] or budgeted learning [4], the learning algorithmis assumed to operate during
training on a limited budget, and must pay for the acquisition of the features of the train-
ing examples. In this study we assume that we have an unlimited budget during train-
ing, but that there is a cost associated with each chosen feature when the learned models
are deployed. For example, in industrial machine learning applications, the costs might
be due to the manufacturing costs of physical sensors which are used to measure the
feature values of new examples. Alternatively, in medical decision making the features
might correspond to the outcomes of medical tests, and coststo the monetary price of
administering the tests.



As a motivating example, let us consider a smart handheld device which is able to
solve several tasks simultaneously, based on data obtainedfrom an array of sensors in-
tegrated to the device. For example, the purpose of the device could be to predict a pre-
defined set of health related properties of the user, such as current stress level, calorie
consumption, whether the user is fit to drive etc. There are several candidate data suppli-
ers such as sensors (accelerometer, barometer, GPS, temperature sensor, heart rate sensor
etc.) or questionnaire data (sex, age, weight, etc.) embedded into the prototype devices,
which are used to collect the training data. The tasks are similar in nature, suggesting
that some of the sensors could be used in solving several of the tasks. All of the possible
software and hardware components come at a cost, which mightbe money or space in a
circuit board, and we have restricted budget available. Howshould the data suppliers be
selected for the final devices to allow constructing a predictor with acceptable level of
accuracy for all the tasks, given a restricted budget?

In this paper, we consider approaches that combine the ideasof multi-label learning
and wrapper-based feature subset selection to solve multiple learning tasks with a limited
budget. In multi-label learning [5], each data instance contains a feature representation
and multiple labels, that describe the properties we wish tolearn to predict from the
features. For example, in text classification the features can encode word frequencies, and
the labels different topics that a document can have. Multi-label learning is an instance
of the more general setting of multi-task learning [6]. Feature subset selection [7] is a
standard approach to reduce the dimensionality of the feature space and to achieve a
useful set of features. This can allow reduced costs in deploying the learned models, and
may in some cases also lead to improved accuracy for the model.

Feature selection for multi-label classification has been previously addressed, for
example, with filter methods (see e.g. [8,9]). In the filter approach, the selection is done
as a pre-processing step before learning, by computing univariate statistics such as in-
formation gain, mutual information orχ2 on feature-by-feature basis. The main advan-
tages of the approach are efficiency and ease of implementation and the main disad-
vantages the inability to take account of the dependencies between the features, or the
properties of the learning algorithm which is subsequentlytrained on the features. The
problem of multi-label feature selection has also been addressed through Bayesian [10,?]
or regularization-based [11] learning algorithms that encourage sparsity in the learned
solutions.

Wrapper methods [12] have been proposed as a way to overcome the limitations of
the filter approach. In the wrapper model, features are selected through interaction with
a learner training method. Here, the power set of features issearched over. A new pre-
dictor is trained during each search step using the corresponding feature subset and an
estimate of its predictive performance is used to measure the quality of the subset. The
number of possible feature sets grows exponentially with the number of available fea-
tures. Therefore, the wrapper type of feature selection methods require a search heuris-
tic when traversing through the power set. The most commonlyused search heuristic
is greedy forward selection that adds one feature at a time tothe set of selected fea-
tures, but never removes any features from the set. In addition to the search strategy,
the wrapper methods require a method for assessing how good the feature subsets under
consideration are. Measuring the prediction performance on the training set is known
to be unreliable. Therefore, [13] proposed to measure the goodness with leave-one-out
(LOO) cross-validation. In LOO, each example in turn is leftout of the training set and



used for testing. The wrapper approach has been empiricallyshown to outperform filter
based selection (see e.g. [14]), but in straightforward implementations this improvement
comes with a considerable computational cost, especially when used with LOO selection
criterion.

In [15], we proposed greedy RLS, a wrapper-based feature selection method for reg-
ularized least-squares, which employs a greedy search heuristic and a LOO selection cri-
terion. The computational complexity of greedy RLS was shown to beO(kmn), where
m is the number of data points in the training set,n is the overall number of features
among which the selection is made, andk is the number of features selected by greedy
RLS. That is, the training time is linear with respect tok, m, andn, despite the fact that
the learned predictors and selected features are exactly equivalent with those that would
be obtained if RLS would be used as a black-box method, aroundwhich the incremental
feature selection and LOO criterion are wrapped.

This paper is organized as follows. In Section 2 we briefly review formally the
standard framework for regularized least-squares for single-label learning, and present a
high level description of the greedy RLS feature selection method. Then, we extend this
method to multi-label learning, where multiple tasks are learned simultaneously. Next, in
Section 3, we present experiments on three real-world data sets, comparing our proposed
multi-label method to a baseline method where tasks are learned in isolation. Finally, in
Section 4, we summarize our findings, and suggest future research possibilities.

2. Methods

Let X ∈ R
m×n be a matrix containing the feature representation of the examples in

the training set, wheren is the number of features andm is the number of training
examples. Thei, jth entry ofX contains the value of thejth feature in theith training
example. Moreover, letyj ∈ R

m for j = 1, . . . , t be vectors consisting of the labels of
the training examples fort tasks. In multi-class or multi-label classification, the labels
can be restricted to be either−1 or 1 depending whether the data points belong to the
class, while they can be any real numbers in multi-label regression tasks.

For each of thet tasks, we construct a linear prediction function. The function for
thejth task can be expressed as

f j(x) = (xSj )Twj ,

wherewj ∈ R
|Sj | is a vector representation of the learned predictor for thejth task,x

is a data point for which the prediction of thejth label is to be made, andxSj a vector
representation ofx that only contains the features indexed by the setSj .

We assume that the setsSj contain feature indices selected by a training algorithm
that performs feature selection while constructing the predictors. Moreover, we assume
that the number of features we can extract from a data point atprediction time is con-
strained by a a given sparsity budget, that is, we have
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for somek ∈ N. Note that since the sparsity budget constraint is given forthe number
of features, it is assumed that all features have an equal extraction cost at the prediction
time. This can be easily generalized to a setting in which each feature would have a
different extraction cost. However, this is not consideredfurther in this paper, because of
limited space and the lack of available data for practical experiments.

The most straightforward approach for constructing the predictors under a common
budget constraint is to simply train them separately and ensure that each predictor uses
only k/t features. For doing this, we can use numerous off-the-shelffeature selection
methods available for single-task learning. It may of course happen that the size of the
union feature set in (1) is strictly smaller thank, if the same features are selected for
several tasks. In such cases the selection process can be continued until the sparsity
budget is completely fulfilled. An alternative approach is to select the features jointly for
all tasks, favoring such features that increase the performance averaged over all tasks.

Before considering the actual training algorithms, we present some of the building
blocks. As a base learner, we use regularized least-squares(RLS) [16], also known as
the least-squares support vector machine [17] and ridge regression [18], which is a state-
of-the art machine learning method suitable for several types of machine learning tasks.
RLS can be expressed for a single task with training dataX ∈ R

m×n,y ∈ R
m as the

following problem:

A(X,y) = argmin
w∈Rn

{

(Xw − y)T(Xw − y) + λwTw
}

, (2)

whereλ > 0 is a regularization parameter. The first term in (2), called the empirical
risk, measures how well the prediction function fits to the training data. The second term
is called the regularizer and it controls the tradeoff between the empirical error on the
training set and the complexity of the prediction function.

As a selection criterion, we use the mean squared error obtained via leave-one-out
(LOO) cross-validation. Given a training dataX ∈ R

m×n,y ∈ R
m, this can be ex-

pressed as follows:

L(X,y) =

m
∑

h=1

(fh(Xh)− yh)
2, (3)

wherefh is a predictor which is trained using the whole training set except thehth
training example, andXh andyh contain, respectively, the features and the label of the
hth example.

As a training algorithm for learning predictors with a restricted sparsity budget,
we present a greedy forward feature selection method for RLSwith LOO criterion. By
greedy, we indicate that the algorithm starts from an empty set of features and adds one
feature at a time to the set but never removes any features from the set. A high level
pseudo code of the algorithm for a single task is given in Algorithm 1. In the pseudo
code, the function callL(XS∪{i},y) returns a real value, which is equivalent to the
LOO performance of a RLS predictor trained with a feature setS ∪ {i}. The feature
added in each iteration of the outer loop is the one providingmaximal decrease of LOO
classification error. To select the features separately forall of thet tasks with a common
sparsity budgetk, we simply call Algorithm 1 with a constraintk/t consecutively for
each task.



Algorithm 1 Pseudo code for selectingk features for a single task.
1: S ← ∅ ⊲ The current set of selected features.
2: while |S| < k do ⊲ Selectk features.
3: e←∞
4: b← 0
5: for i ∈ {1, . . . , n} \ S do ⊲ Test all features before selecting.
6: ei ← L(X

S∪{i},y) ⊲ Compute LOO performance.
7: if ei < e then
8: e← ei
9: b← i

10: S ← S ∪ {b} ⊲ Select the feature that increases the performance the most.

11: w ← A(XS ,y)
12: return w, S

Algorithm 2 Pseudo code for selectingk features common for all tasks.
1: S ← ∅ ⊲ The current set of selected features common for all tasks.
2: while |S| < k do ⊲ Selectk common features.
3: e←∞
4: b← 0
5: for i ∈ {1, . . . , n} \ S do ⊲ Test all features before selecting.
6: eavg ← 0
7: for j ∈ {1, . . . , t} do
8: ei,j ← L(XS∪{i},yj) ⊲ Compute LOO performance for taskj.
9: eavg ← eavg + ei,j/t

10: if eavg < e then
11: e← eavg
12: b← i
13: S ← S ∪ {b} ⊲ Select the feature that increases the average performance the most.

14: for j ∈ {1, . . . , t} do
15: wj ← A(XS ,yj)

16: return w1, . . . ,wt, S

Next, we consider an algorithm that selects a common set of features for the tasks
using the performance averaged over all tasks as a selectioncriterion. A high level pseudo
code of this algorithm is presented in Algorithm 2. The outermost loop adds one feature
at a time into the set of selected featuresS until the size of the set has reached the
sparsity budgetk. The middle loop goes through every feature that has not yet been
added into the set of selected features. For theith feature available for addition, the inner
loop computes the average LOO performance over thet tasks for RLS predictors trained
using the featuresS ∪{i}. After going through all feature candidates, the algorithmthen
adds the feature with the best average LOO performance into the set of selected features.

In [15], we proposed an implementation of Algorithm 1, whichwe named greedy
RLS, whose computational complexity isO(kmn), wherem is the number of data points
in the training set,n is the overall number of features among which the selection is made,
andk is the number of features selected by greedy RLS. The modification of greedy
RLS for multiple labels per data point is quite straightforward, since only the selection
criterion has to be modified. The technical description of the modified algorithm is left
out from this paper due to the limited space. By extending thecomputational complexity
analysis presented in [15], it can be shown that the time complexity of the multi-task
greedy RLS isO(kmnt).



Table 1. Datasets.

Data sets features labels train test

scene 294 6 1211 1196

yeast 103 14 1500 917

siam 30438 22 21519 7077

3. Experiments

3.1. Datasets and setup

In the experiments we compare three methods for budgeted multi-label learning. We
assume that all the features have equal cost and we are given abudget constraintk on the
number of features, and the number of labels ist. Method1 learns thet tasks separately,
using Algorithm 1, so that the individual training processes do not share any knowledge
between each other. The budget is divided evenly between thetasks, meaning that each
individual predictor usesk/t features. Method1 can be considered wasteful in the sense
that none of the tasks benefit from the features selected for the other tasks. Method2
aims to fix this problem as follows. All the features are againselected as in Method1,
but after the selection is finished, the predictors for each task are re-trained using the
union of all the selected feature sets. Finally, Method3 (Algorithm 2) aims to improve
on Method2 by performing the selection process itself jointly over allthe tasks, in each
step selecting such features that give the best average performance over all the tasks. The
methods are compared over a varying range of budgets. In the comparisons, the budget
size is always computed as the size of the final set of selectedfeatures. Thus, if some of
the features selected by Method1 are shared by multiple tasks, each such feature incurs
only unit cost in the budget. This means that the comparison between the three methods
are always made so that they all use exactly the same number offeatures.

We perform our experiments on three publicly available multi-label data sets1. The
data sets are selected in order to cover different application domains, in our case image,
biology and text. The first data set,scene(see [19]), is a scene classification problem
where images are categorized into semantic classes such as beaches, sunsets or moun-
tains. The second data set,yeast(see [20]), is a biological data set about gene function
classification. Finally, we have one large text classification data set,siam(see [21]). We
use the standard training/test splits provided on the web page. The characteristics of the
data sets are summarized in Table 1.

All the test runs are carried out using the greedy RLS implementation in RLScore2, a
publicly available open source machine learning library developed by some of the present
authors. The software is implemented using the Python programming language, and the
NumPy and SciPy libraries. The regularization parameterλ is set to 1 in this study. In
preliminary experiments we also tested a large range of other values, the observed trends
were similar as those presented in the paper. We use all the available tasks with scene
data and yeast data, but only the first 9 out of the 22 possible tasks on siam data, because
of large processing time.

To evaluate the overall behavior of both of the algorithms, we calculate the average
AUC (the area under the ROC curve) [22,23] over all the tasks.The AUC is a popular

1available athttp://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
2available athttp://www.tucs.fi/RLScore



ranking based performance measure for binary classification. It is invariant to relative
class distributions and class specific error costs, allowing us to assign equal importance
to each label regardless of how commonly they appear in the data.

3.2. Results

On the left sides of the Figures 1, 2 and 3, are the performancecurves for scene data,
yeast data and siam data, respectively. In each figure we plotthe performance curves for
the three considered methods. The average AUC is plotted as afunction of the available
budget. Method1 shows on all of the data sets much worse performance than either
Method2 or 3. Thus, in our experiments sharing features between the tasks proves to be
always beneficial. For the scene (Figure 1), and for the yeast(Figure 2) data, Method3
outperforms Method2. Somewhat surprisingly, on the SIAM data (see Figure 3), Method
2 outperforms Method3. Further examination of this issue revealed that on siam data
Method2 had higher AUC than Method3 even on the training set. This suggests that
the mean-squared error based selection criterion (equation (3)) used in the experiments
fails to choose the best features in terms of AUC for Algorithm 2. Earlier results in the
literature (see e.g. [24]), have shown that for imbalanced data sets optimizing mean-
squared error can yield sub-optimal performance in terms ofAUC. The AUC measure
is slower to compute than the mean-squared error (O(m log(m)) instead ofO(m)), and
hence we used the latter as a selection criterion in order to scale the methods to the large
data set sizes considered in the experiments.

On the right sides of the Figures 1, 2 and 3, we plot the cost curves measuring the
overlap between the feature sets selected for each task by Method1. Realized costrepre-
sents the size of the union of feature sets (see Eq. (1)) over all of the tasks as a function of
the given budget constraint.Max costrepresents the upper bound on the realized cost for
a given budget constraint. This situation occurs, if the feature sets selected for all of the
tasks are mutually exclusive.Min costrepresents the lower bound on the realized cost.
This situation occurs, if the feature sets selected for all of the tasks are exactly the same.
The realized cost determines the size of the budget in the comparisons. For example,
with a budget constraint 84 on the scene data, the Method1 selected 74 distinct features
(see Figure 1), and hence it is compared to the other methods under budget 74.

Table 2 shows the classification performance (AUC) for Methods 1, 2 and 3, for each
of the tasks on scene data over some of the selected budgets. The numbers in brackets
for Method 1 results (top), indicate the size of the feature sets per each task on selected
budgets (note that the sum of the sizes of the feature sets over all tasks on budgets 53 and
74 for the other methods are 54 and 84 due to the redundant features). Among some tasks,
such as 3, 4 and 5 for Method 3 (bottom), the performance does not improve after a small
number of selected features (53 out of 294). This may indicate that some of the common
selected features are not representative for those tasks. One might think that enforcing
a common feature subset might be harmful for some specific task due to irrelevant or
redundant features, but this is not observed to occur in our test runs. Methods 2 and 3
give as good as or better prediction performances than to Method 1 for all of the tasks,
under all given budgets. On smallest budget sizes Method3 outperforms Method2 on all
of the tasks, for the largest budgets the differences disappear.



Table 2. Performance for tasks on scene data with Method 1 (top), Method 2 (middle), and Method 3 (bottom).

Budget avg task 1 task 2 task 3 task 4 task 5 task 6

6 (1) 0.796 0.789 0.898 0.820 0.880 0.662 0.725

18 (3) 0.859 0.862 0.939 0.865 0.937 0.740 0.810

53 (9) 0.896 0.908 0.962 0.902 0.950 0.794 0.858

74 (14) 0.899 0.918 0.973 0.920 0.952 0.799 0.831

Budget avg task 1 task 2 task 3 task 4 task 5 task 6

6 0.834 0.854 0.914 0.827 0.904 0.715 0.790

18 0.878 0.903 0.954 0.870 0.951 0.756 0.833

53 0.906 0.921 0.977 0.922 0.953 0.800 0.861

74 0.905 0.923 0.978 0.927 0.954 0.803 0.846

Budget avg task 1 task 2 task 3 task 4 task 5 task 6

6 0.852 0.880 0.942 0.835 0.935 0.744 0.779

18 0.890 0.906 0.968 0.898 0.958 0.777 0.832

53 0.906 0.915 0.974 0.922 0.957 0.804 0.862

74 0.907 0.922 0.977 0.920 0.954 0.803 0.868
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Figure 1. Performance and cost curves on SCENE data.

4. Conclusions and Future Work

In this paper, we propose a method that combines the ideas of multi-label learning and
feature subset selection under a sparsity budget by selecting a minimal set of common
features simultaneously for several tasks. The goal of the method is to achieve the best
possible predictive performance for multiple tasks under arestricted budget where the
cost is associated with high-dimensional data. The method itself can be integrated into
any supervised learning algorithm, but we select RLS because of its efficiency in perfor-
mance due to mathematical short-cuts used in matrix calculations. We tested the method
using real data sets from three different domains. The experimental results show that the
proposed multi-label method leads to improved prediction performance under a given
budget. One can see the benefits of our method from two different perspective. Given
equal budgets for our method and the baseline method, the proposed approach provides
better performance than the baseline (quality perspective). Given equal performance re-
quirements, the proposed method has smaller costs than the baseline (cost perspective).
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Figure 2. Performance and cost curves on YEAST data.
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Figure 3. Performance and cost curves on SIAM data.

In our future work we plan to extend the introduced approach to more general set-
tings where for example the features may be associated with variable costs. Other search
strategies than the greedy forward selection might also be worth while to study. For ex-
ample, genetic algorithms [25] have been shown to be effective in multi-criteria opti-
mization problems.
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