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Abstract—The emergence of asynchronous techniques for
building interactive web applications has led to the develop-
ment of Rich Internet Applications (RIAs). RIAs offer greatly
enhanced usability and the ability to deliver rich dynamic
content. However, due to the widespread use of RIAs, there is
a need to develop and test highly scalable RIAs. Furthermore,
cloud computing introduces new opportunities for ensuring
and extending performance and scalability of RIAs. This
has necessitated the need to devise effective ways for doing
automatic performance and scalability testing of RIAs. In
this paper, we describe different problems and challenges in
automatic performance and scalability testing of RIAs. We
then propose the ASTORIA framework as a novel solution
to the identified problems and challenges. The effectiveness
of our proposed approach is demonstrated by building a
working prototype for ASTORIA and by using it for conducting
experiments.

Keywords-Performance testing; scalability testing; rich inter-
net applications; cloud computing

I. INTRODUCTION

Rich Internet Applications (RIAs) [1] are web applica-
tions that provide a desktop-like application user experience
by using asynchronous techniques for communication and
dynamic content rendering such as Ajax (Asynchronous
JavaScript and XML) or other advanced web technolo-
gies such as Adobe Flash and Microsoft Silverlight. The
widespread use of RIAs has resulted in higher expecta-
tion levels concerning web application usability and per-
formance. However, the technologies used in RIAs have
also brought new challenges to performance and scalability
testing of web applications.

Liu [2] defines performance as a measure of how fast an
application can perform certain tasks, whereas scalability
measures performance trends over a period of time with
increasing amounts of load. If an application has good
performance at a nominal load, but fails to maintain its
performance before reaching its intended maximum load
level, then the application is not considered scalable. Good
performance at nominal load does not guarantee application
scalability. On the other hand, an application that can not
perform well at nominal load, also lacks scalability. An

application should ideally maintain a flat performance curve
until it reaches its intended maximum load level.

Cloud computing introduces new opportunities and di-
mensions for ensuring and extending the performance and
scalability of RIAs. In a compute cloud, a RIA is hosted
on one or more application server instances that run in-
side dynamically provisioned Virtual Machines (VMs). The
growing size and complexity of RIAs and of the underlying
infrastructure used for hosting these applications has neces-
sitated the need to devise effective ways for doing automatic
performance and scalability testing.

Conventional functional and non-functional testing of web
applications generally involve generating synthetic HTTP
traffic to the application under test. A commonly used
approach [3]–[5] is to capture HTTP requests and then
replay them with the help of automated testing tools. Fig. 1
presents an abstract view of how this works. However due
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Figure 1. Record and playback HTTP requests

to the complexity introduced by asynchronous technologies
used for building RIAs, conventional load generation meth-
ods do not work. Instead we need to consider capturing
and replaying of user actions on a higher level, that is
user interactions with a web browser, as shown in Fig. 2.
Subsequently, we are forced to generate load by automating
ordinary web browsers. While web browser automation in
itself is not particularly difficult, the task of automating large
numbers of web browsers simultaneously in an effective
manner is a non-trivial task.

Cloud computing provides theoretically unlimited com-
puting resources which we can use for generating test load
and for simulating large quantities of web application users.
However, we still need to use the cloud resources efficiently
in order to minimize the costs of performing a test.
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Figure 2. Record and playback user actions

In this paper, we describe different problems and chal-
lenges in cost-effective automatic performance and scal-
ability testing of RIAs. We then propose the ASTORIA
framework as a solution to the identified problems and
challenges. One of the distinguishing characteristics of our
proposed approach is that it does not require server-side
monitoring of performance metrics or modification of any
server configurations. The effectiveness of our proposed ap-
proach is demonstrated by building a working prototype for
ASTORIA and then by using it for conducting experiments
involving performance and scalability testing of RIAs.

The rest of the paper is organized as follows. Section II
describes more precisely the problem that we try to tackle
while Section III discusses the main challenges in automatic
performance and scalability testing of RIAs. Section IV
discusses load generation methods for RIAs while Section V
presents the ASTORIA framework. Section VI describes
data aggregation in the ASTORIA framework. An early ver-
sion of our working prototype for the ASTORIA framework,
along with an experiment and its results, is presented in
Section VII. In Section VIII, we discuss related work and
Section IX presents our conclusions.

II. PROBLEM STATEMENT

The most commonly used metrics for measuring per-
formance and scalability of RIAs are response time and
throughput. Response times measures the time required to
complete one single action while throughput measures how
many user actions are completed over a unit of time. By
measuring and recording response time and throughput, we
can answer following questions concerning performance and
scalability of RIAs:

• What is the average response time R at a certain load
L (number of simultaneous users)?

• What is the average throughput T (actions per second)
at a certain load L?

The objective of this paper is to discuss how we can
answer these questions empirically by carrying out a per-
formance test using cloud computing resources. The two
main concerns of our approach are how to automate and
simplify from a developer’s point of view the performance
test process and how to reduce the costs of a performance
test.

In order to automate and simplify the performance test
we propose a testing approach that does not require the
installation of any additional software in the application

server(s). We also require that the provisioning of the testing
hardware is handled automatically. Furthermore, we propose
a method for automatically deciding when a performance
test can be concluded. What this means in practice is that
no user interaction is required after a test has been started.

Cloud providers usually have usage-based charging
schemes, with different tariffs for different services. Except
for the most obvious fee, i.e. VM provisioning fees, it is
not uncommon for providers to charge for storage services
(not VM local storage), bandwidth usage, load balancing
services, etc. For cloud based load generation, the most im-
portant costs to consider are VM provisioning fees. Slightly
simplified, the total cost for conducting a performance test
using load generated in the cloud can be calculated using
the formula:

cost = max(1, d n

nvm
e) · cvm · dte, (1)

where n is the desired number of simulated users and nvm

is the number of users that can be simulated on each VM.
The test time is t and cvm denotes the cost for renting on
VM per time unit.

In order to minimize the cost, we should clearly try to
minimize the cost per VM cvm and the length of the test t
and maximize the number of simulated users per VM nvm.
Minimizing the cost per VM can be achieved by selecting the
cheaper cloud provider for the required level of service. This
task is out of the scope of the article. In order to minimize
the length of the test, we discuss in Section V-A2 how to stop
the test once the test results are statistically significant. In
order to maximize the number of simulated users per VM we
use various techniques such as using headless browsers and
introducing a resource control loop in each VM as described
in Section V-C. Finally, in order to reduce bandwidth costs,
we aggregate the test results in the load generation servers
as described in Section VI.

III. CHALLENGES

We now describe some specific problems and challenges
in performance and scalability testing of RIAs.

A. What do we measure?

Response times can be measured at different levels as
shown in Fig. 3. Server side monitoring methods which only
record the time taken to process requests in the server are
shown as level 3. Traditional non-functional testing methods
usually record response time as the time it takes for the
system under test to respond to the HTTP requests that are
sent by the testing tool. This is shown as level 2 in Fig. 3.
When testing RIAs, however, response time measures how
fast actions are executed by the RIA in the web browser
(level 1). Thus, response time includes the time it takes for
the client to execute any JavaScript that is triggered by the
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Figure 3. Different levels for measuring response time

action and the time it takes for the server to respond to any
HTTP requests sent by the JavaScript.

Ideally we would like to exclude the time that is spent in
the network as well as JavaScript execution time and any
overhead generated by the web browser, since that would
give us the most precise results. To properly exclude network
time, we would have to employ server-side monitoring of
requests. This approach would require a certain amount of
tampering with the servers, which is something we would
like to avoid altogether. The network overhead can, however,
probably be ignored if the tests are performed in the same
cloud as the RIA servers. Eliminating the overhead generated
by the browser might be achieved by adding a proxy that
forwards requests from the browser to the server and records
the time for each request. Such methods are, however,
outside the scope of this paper.

B. Uniqueness of HTTP Requests

Conventional methods for generating load on a web site
involve sending large number of beforehand captured HTTP
requests to a web site and measuring the response times. This
is possible since simple web sites often do not keep track
of user sessions. This is not the case for RIAs. For RIAs to
work properly, the server has to keep track of the state of
every individual user’s session. This can be accomplished
by, for instance, storing a token which identifies the session
on the server and in a cookie on the client’s computer.
Thus, by passing the session token as a parameter with
each request, a client can identify itself. A consequence
of this is a security issue commonly known as Cross-Site
Request Forgery (CSRF), which is a type of exploit where
an unauthorized user of a web application identifies itself by
using the session token of a user that the web application
trusts. A simple capture-replay approach will therefore not
work, since the recorded requests contain the token of the
session that was active at the time when the requests were
recorded.

C. Load Characterization

Since user actions are more complex than individual
HTTP requests, we need to consider that they have different
classes. The performance requirements for a user action
to request information about a product may be different
from the performance requirements of a user action that
actually buys the product and processes the payment. Thus,
each class of user actions can have a different average

response time and then the values of response times would
be distributed around its average. For example, if the action
class A has an average response time of 0.3 seconds and
the rest of the response times are distributed around 0.3
seconds, action class B might have an average response time
of 1 second and initialization actions may have an average
response time of 5 seconds. Thus, all classes of user actions
should be identified and defined beforehand and the data
aggregation and calculations need to be done separately for
each action class.

Response time is a random variable and there need to be
as many random variables as action classes. The samples of
each action class should be distributed closely around the
average response time in that class. If the action classes are
poorly defined, however, the samples will be more dispersed.
Thus, there need to be as many random variables as action
classes. Throughput should also be considered in a similar
manner. For each action class, there need to be a random
variable for throughput. Thus, there should be twice as many
random variables as classes of user actions.

D. How Many VMs and How Many Virtual Users on Each
VM?

When utilizing VMs in a compute cloud for the purpose
of generating load we need to know how many VMs we need
to rent. Determining the number of required VMs is entirely
dependent on the amount of load that we want to generate
and how much load each VM is capable of generating. If
we know that each VM is capable of simulating k virtual
users and we need to simulate a total of N virtual users,
then we simply divide N by k and get the required number
of VMs. However, this is difficult to predict. Therefore, we
need to have a control loop which has a goal to create N
virtual users. Furthermore, the control loop should create
VMs in such a way that the target number of virtual users
can be reached as fast as possible. Then for each VM, the
number of simultaneous virtual users to run needs to be
decided. While doing this, we need to consider the resource
constraints of the VMs, such as CPU capacity and network
bandwidth. Hence, we need to have two control loops in
total; one for deciding how many VMs are needed to reach
a target of N users and a second loop for deciding how
many maximum simultaneous virtual users can be run on
each VM. The challenge is not only to do it, but to do it as
automatic and as efficiently as possible.

E. When to Stop Testing?

In order to achieve automatic testing of RIAs, there need
to be an automatic way of deciding when the results are
good enough to stop the test. Additionally, we also need
to evaluate when it is most appropriate to stop testing. For
example, in the Amazon Elastic Compute Cloud (EC2) [6],
the renting interval is one hour. If the testing results indicate
that we can stop testing, then we need to decide if it is better



to stop right now and get the results early or keep on running
the tests until we reach to the end of the renting hour. When
stopping near the end of the renting hour, we also need to
consider the VM stopping time. VMs normally need a couple
of minutes to shut down and therefore, to avoid paying for
the next renting hour, they must be stopped a couple of
minutes before the end of the renting hour.

The approach we suggest for deciding when a perfor-
mance test has run for a sufficiently long time interval is
to monitor the standard deviation of the response times.
We calculate the standard deviation from the response times
for each specific action or action class. Subsequently, we
abort the test once the standard deviations reach a certain
predetermined lower limit. For a scalable RIA, low standard
deviations indicate that the load balancer has been able to
successfully scale the server(s) to a level where the load can
be handled comfortably and the test can be stopped.

IV. LOAD GENERATION

A. Conventional load generation methods

Conventional methods [3]–[5] for generating traffic for
non-functional testing of web sites generally involve cap-
turing and replaying HTTP requests. Requests are usually
recorded while a typical usage scenario is conducted in a
web browser. Sufficient load can consequently be generated
by replaying the recorded requests many times simultane-
ously, thus simulating many concurrent users. Using this
approach, it is possible to generate traffic equal to that of
hundreds of users from each machine that is reserved for
testing. In order to enable simulation of a more diversified
user pool, it is sometimes possible to modify some requests
(or parts of requests) to simulate varying usage scenarios.

The conventional load generation methods usually log
various parameters describing the servers response to each
request. Typical metrics are for example server response
time, throughput, and latency. Such metrics can later be used
to evaluate the system under test. Depending on the type of
test, the data produced in the load generation machines may
be sufficient, thus eliminating the need for server side data
aggregation.

B. Load generation for RIAs

Unfortunately, the simple capture-replay approach is not
applicable to RIAs due to different reasons. For instance,
generating load representing realistic user traffic for web
applications that relies on Ajax for providing an interactive
UI will be challenging due to the randomness of the re-
quests sent by Ajax. Another obstacle is due to the various
methods that have been developed for preventing CSRF
attacks. Recorded requests containing identification tokens
from earlier sessions will inevitably be blocked. Thus, in
order to use conventional methods for generating traffic for
RIAs we would be required to disable CSRF prevention

methods on the server. Ideally we would like to avoid having
to do any modifications to the system under test.

A solution to these problems would be to rely on ordinary
web browsers for load generation. In order to do so it is
necessary to, instead of recording low level HTTP requests,
record high level user interactions with the web browser.
Such recordings (test scripts) can later be used to automate
the behavior of the web browser in order to simulate a real
user. However, using regular web browsers for generating
traffic introduces several technical challenges for the test
automation and orchestration.

While web browser automation in itself is not a major
problem (there are, in fact, many different tools for automat-
ing various web browsers already in existence [7] [8] [9]),
using ordinary web browsers for generating traffic is not
an ideal option. Due to their heavy resource dependencies,
regular web browsers are not suitable for effective load
generation. For example, running one instance of Mozilla
Firefox may consume up to (and possibly even more)
a hundred megabytes of memory. This leaves us with a
comparatively low number of web browser instances that
we are able to run simultaneously per machine. Furthermore,
we are limited to simulating only one user per web browser
instance. Consequently, generating traffic with web browsers
becomes a costly affair when the number of machines
needed to generate a sufficient load increases.

C. Headless browser

Another approach is to use a headless web browser, which
is a web browser without a graphical user interface (GUI).
The lack of a GUI in a headless web browser enables
web browsing with a smaller memory footprint. This would
enable us to simulate a higher number of users per machine,
thus reducing costs.

Headless web browsers are usually controlled program-
matically by using an application programming interface
(API) provided by the developers [10] [11]. Consequently,
for us to be able to automate a headless web browser, we
are forced to develop a custom driver application. While
this may be more complicated than automating an ordinary
web browser using tools already available, it offers us a
wider range of options. Output data, for instance, can be
customized to suit the needs of the types of tests we are
conducting.

We also need to be able to control the headless web
browsers in such a way as to simulate typical user behaviour.
One approach for this is to make it take some form of
test scripts describing usage scenarios as input. Ideally, the
driver would also allow variables in the scripts, which would
enable us to easily generate traffic with the characteristics
of a diverse user pool. This would mitigate the need for
creating multiple test scripts in order to simulate varying
user scenarios.



D. Headless X Window System

A similar approach may be accomplished by exploiting
the possibility of running the X Window System for Linux
in a headless fashion [12]. This would allow us to use
ordinary web browsers without being forced to use a GUI.
The apparent advantages of this approach are ease of au-
tomation and the reliability and robustness of standard web
browsers. There are, however, disadvantages. Those include,
for example, the overhead that is generated by the X Window
System, in spite of the lack of a GUI, and more difficult
setup of VMs for testing.

V. ASTORIA FRAMEWORK

ASTORIA (Automatic Scalability Testing of RIAs) is a
framework for automatic performance and scalability testing
of RIAs. It consists of the following main components:
ASTORIA Master, ASTORIA Load Generator (ALG), AS-
TORIA Local Controller (ALC), and Virtual User Simulator
(VUS). ASTORIA Master launches, manages and terminates
VMs in a compute cloud, each acting as an ALG. In each
ALG, there is an ALC that controls a number of VUSs. An
overview of the ASTORIA framework is shown in Fig. 4.

Figure 4. ASTORIA framework

A. ASTORIA Master

ASTORIA Master controls n VMs in an Infrastructure as
a Service (IaaS) cloud such as Amazon EC2. There are two
main challenges for ASTORIA Master:

• How to automatically decide an optimal number of
ALGs based on the required number of virtual users
to simulate?

• How to automatically decide when to stop testing?
1) Deciding the Optimal Number of ALGs: Unfortu-

nately, we do not know beforehand how many users we
will be able to simulate per VM. The reason for this is the
greatly varying system resource requirements of the VUS.
This is analogous to the varying system resource utilization
required by ordinary web browsers when using different web
applications. Depending on which IaaS we decide to use,
there may also be different types of VMs available with
different amounts of memory and CPU cores, which will
have a significant influence on the number of virtual users
per VM.

In order to deal with the first challenge, ASTORIA Master
runs a control loop. The loop starts by instantiating a default
number of ALGs and then it keeps on iterating until the

target number of users N is reached. In each iteration,
ASTORIA Master decides how many more ALGs need to
be instantiated in proportion to the existing and required
number of virtual users. Thus the ASTORIA Master acts as
a proportional controller [13] that tries to reach the target
number of virtual users as fast as possible. It uses the
following formula for calculating the proportional number
of ALGs:

NALG =


N −

n∑
i=1

ei

n∑
i=1

ei

n


, (2)

where NALG is the optimal proportional number of ALGs
to instantiate in an iteration, N is the target number of
virtual users, n is number of existing ALGs, and ei denotes
the number of existing virtual users on the i-th ALG. For
example, if N is 1000, and after instantiating two ALGs in
the first iteration of the control loop, e1 is 101 and e2 is 99,
then in the second iteration, ASTORIA Master launches 8
ALGs in order to reach the target load as fast as possible.
For simplicity, measurement delay and ALG instantiation
time are not considered.

2) When to Stop Testing?: ASTORIA Master uses an
approach called sequential sampling [14] to tackle the sec-
ond challenge. The idea of sequential sampling is to keep
on taking samples until a desired condition is met. For
performance and scalability testing, the desired condition
is specified in terms of performance (response time and
throughput) requirements for an action class and the intended
load level. For example, if for a certain action class, the
intended load level is 1000 virtual users with an average
response time of 500 milliseconds and an average throughput
of 2000 requests per second, then this can be specified as the
desired condition for sequential sampling. ASTORIA Master
collects samples of performance data from all ALGs and
keeps on aggregating it in order to calculate the average and
standard deviation response time and throughput and as soon
as the desired condition is met, the results are considered to
be good enough to stop the test and the VMs are terminated.

B. ASTORIA Load Generator (ALG)

Each VM acts as an ALG, whose purpose is to generate
load on the RIA under test. This is done by starting an ALC
on the ALG which in turn controls a number of VUSs.

C. ASTORIA Local Controller (ALC)

On each ALG, an ALC controls mi VUSs. The main
responsibility of ALC is to determine mi and then to ensure
that each VUS creates as much load as possible, but without
breaking the performance constraints of the VM. Similarly to
ASTORIA Master, ALC works as a proportional controller
that, in each iteration, calculates how many virtual users



should be created or removed in proportion to the current and
intended level of CPU and network bandwidth consumption.
For this, ALC has two regulators; one for CPU consumption
and one for network bandwidth. The proportional number
of virtual users Nuser in each iteration depends on these
regulators, which use the following formulas:

NC =


C −

n∑
i=1

ci

n∑
i=1

ci

n


and (3)

NB =


B −

n∑
i=1

bi

n∑
i=1

bi

n


, (4)

where NC is the optimal proportional number of users
to instantiate in the next iteration based on the CPU con-
sumption. C is the intended CPU consumption, n is the
number of existing users and ci denotes CPU consumption
of the i-th user. Similarly, NB is the optimal proportional
number of users to instantiate in a next iteration based
on the bandwidth consumption, B is the intended network
bandwidth consumption, and bi denotes network bandwidth
consumption of the i-th user. Nuser is then simply the
minimum of NC and NB .

For example, if n is 2, C is 90%, c1 is 6%, and c2 is
4%, then the CPU consumption error is 80% and thus NC

is 16. Similarly, if B is 80%, b1 is 5%, and b2 is 5%, then
the network bandwidth consumption error is 70% and thus
NB is 14. In this case, Nuser would therefore be 14.

D. Virtual User Simulator (VUS)

Virtual users are simulated by the VUSs. The exact
number of virtual users to simulate is controlled by the
ALC.

VI. DATA AGGREGATION

Due to bandwidth limitations and the cost of bandwidth
usage, performance data (response time and throughput) for
each action class is compiled into a smaller set of data
locally on each ALG before being sent to the ASTORIA
Master. While this may not be necessary for smaller tests,
it may be neccessary for tests with a high number of
simulated users in order to keep ASTORIA Master from
being overloaded.

A. Throughput and Response Time Aggregation

Each instance of VUS logs the response time of each
performed action locally on the ALG it is running on. At
certain time intervals, each ALC aggregates the response
time data from all VUSs on its ALG and calculates the
average and standard deviation for the response times sep-
arately for each action class. Additionally, throughput is
calculated separately for each action class. Thus, three values
are associated with each action class: average response time,
response time standard deviation and throughput. A list
containing one set of these values for each action class
is then sent to the ASTORIA Master. Once a list from
each ALG has been received, ASTORIA Master calculates
overall average and standard deviation for response times
and throughput for each action class. This final set of data
can then be used to determine the overall performance and
scalability of the RIA under test.

B. Aggregating Averages and Standard Deviations

The following statistical formulas are used for combining
the averages and standard deviations of several groups of
samples (response times):

• For aggregating averages, we simply calculate the
weighted average of averages.

• For aggregating standard deviations, we calculate com-
bined standard deviation by using the method described
by Langley in [15]. It uses the following formula:

S =

√
B − A2

N

N − 1
. (5)

In (5), N is the size of combined samples from all groups,
that is N = n1 + n2 + n3, etc. A represents the total sum
of observed measurements, that is, A = A1 +A2 +A3, etc.,
where Ai is calculated as mi · ni, where mi is the average
of the samples in the i-th class and ni is the sample size. B
denotes the sum of B1, B2, B3, etc., where Bi is calculated
as:

Bi = s2i · (ni − 1) +
A2

i

ni
, (6)

where si is the standard deviation of the ith class.

VII. PERFORMANCE TESTING WITH THE ASTORIA
PROTOTYPE

In this section, we describe a prototype implementation
of the ASTORIA framework. Additionally, the results of a
test that was carried out using the implementation is shown.

A. Prototype

Our prototype consists of the main components described
in Section V. ASTORIA Master instantiates, manages and
terminates ALGs. ALGs are in practice VMs in the Amazon
EC2 cloud. ASTORIA Master runs on a local machine or
on a VM in the cloud.



ASTORIA Master takes test scripts as input along with a
few parameters describing the test; such as number of users
to simulate, ramp up time and sleep time between actions.
When starting a test, ASTORIA Master launches the default
number of ALGs. When the ALGs have been launched, the
ALC on each ALG creates a number of VUS instances.

Each instance of VUS simulates a number of users
by running multiple instances of a headless web browser
simultaneously in parallel threads. The headless web browser
used in our prototype is HTMLUnit [10]. HTMLUnit sim-
ulates user interactions by loading a web application and
performing actions specified in a test script.

Test scripts are produced by Selenium IDE [7]. Selenium
IDE is an extension for Mozilla Firefox which enables the
recording of high level user interactions with the browser.
Test scripts produced by Selenium IDE are stored as text
formatted in HTML containing the actions performed and
some additional information about the test. Actions are
described using three variables; action type, target and
value. Action type and target are self-explanatory. The value
variable is needed for actions that require extra information.
For instance, the coordinates of the mouse pointer when a
click-action was performed or the string that was typed in a
text insertion action.

Each VUS logs the response time of each performed
action in a local file. At certain intervals, ASTORIA Master
executes a script in the ALGs that aggregates the log files
created by the instances of VUS that are running on the
ALG. The script compiles the log files into a smaller set of
data using the methods described in Section VI. This new set
of data is saved in the form of a JavaScript Object Notation
(JSON) formatted text file on the ALG. This file, which we
call a report, is subsequently fetched by ASTORIA Master.
After a report from every ALG has been collected, the
reports are aggregated into one combined set of data using
the same method that was used to aggregate the data locally
in the ALGs.

Action classes are defined by specifying regular expres-
sions that separate the actions based on their action type
and/or their target. Before compiling the log files on the
individual ALGs, the actions are sorted into action classes
based on the regular expressions. Subsequently, the data in
each action class is aggregated separately before being sent
to the ASTORIA Master.

B. Experiment

The application under test in our experiment is an ex-
perimental RIA developed by Vaadin Ltd. The RIA is a
mock-up of an on-line vendor for movie theater tickets
called QuickTickets, implemented using the Vaadin web
development framework [16]. QuickTickets was set-up by
the Vaadin staff on two VMs of unknown size in the Amazon
EC2 cloud. No CSRF prevention methods were disabled
before conducting the tests.

One usage scenario was used to generate load. The test
script describing the scenario was recorded when a user
used QuickTickets to search for tickets, select tickets, and
make an order. This resulted in a test script with more than
100 actions. A feature that allowed us to insert random
integer variables in the script at runtime was implemented.
This allowed us to use the same test script for simulating
users buying tickets for different movie theaters and different
shows.

The test was carried out with an early version of our
prototype implementation in which the number of ALGs
and the number of users that were simulated per ALG were
static. The RIA was tested with 1000 concurrent users.
In order to keep the number of VUS low on each ALG,
we decided to utilize the maximum number of VMs that
were available with a basic Amazon AWS account, which
is twenty (20). A ramp-up time was used in order to slowly
introduce the RIA to the generated load. The reason for
keeping the number of VUS low was previously experienced
memory leaks in HTMLUnit, which we feared could impede
the VUS abilities to properly simulate users.

The testing was performed during the course of a few
hours and reports were fetched from the ALGs with an
interval of five (5) minutes. Throughput was not used as a
metric for this test and therefore no such data was collected.

C. Results

The prototype showed promising results for the adequacy
of the ASTORIA framework for generating load for non-
functional testing. ALGs were launched and controlled by
ASTORIA Master automatically without any user interaction
after the test was started. The output data from the VUSs
were properly aggregated first separately on the each ALG
and then collectively on ASTORIA Master. Results from the
test can be seen in Fig. 5. Since the system under test was
able to comfortably handle the load generated by the ALGs,
the graph only shows the first few steps. No surprises were
found in the later stages of the test.

D. Interpretation and analysis

Generally, the response times in the performed test were
slightly higher than expected. Also, some extremely high
samples could be seen. We suspected that these were a result
of multiple instances of HTMLUnit running simultaneously
on the same VM. This was later confirmed when we com-
pared the average response time for an action performed by
an increasing number of concurrent HTMLUnit instances. A
graph showing the results of this test can be seen in Fig. 6.
There is a clear increase in response time when multiple
instances of HTMLUnit are running at the same time. This
motivates further research on VUS implementation.
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Figure 5. Box plot showing response times for time steps 1-5 with outliers
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VIII. RELATED WORK

Non-functional testing of web applications is a vastly
explored area. Some of the earlier script-based approaches,
such as [3], used a load generator with active monitoring of
performance metrics. Some commercial load testing tools,
such as HP LoadRunner [17], also use a script-based ap-
proach. Saddik [18] proposed a method for performance
and scalability testing of web applications which are based
on web services. Gao et al. [19] proposed a reactivity-
based framework for automated performance testing of web

applications. In addition to script-based approaches, some
other approaches, such as [20], used stochastic form-oriented
analysis models for simulating realistic user behavior.

There are also a number of open-source tools, such as
Apache JMeter [21], WebLoad [22], and PushToTest [23].
Furthermore, there is a tremendously growing interest in
exploiting cloud resources for doing performance testing
of RIAs. Load testing services such as Load Storm [24],
Load Impact [25], SOASTA [26], and BrowserMob [27] use
VMs (from a compute cloud) for generating load on the
application under test. However, most of the existing works
and tools are applicable only for load testing. There have
been relatively few works on other types of performance
testing and on automatic scalability testing of RIAs.

When comparing to existing approaches, the ASTORIA
framework is able to offer relatively cheap performance and
scalability testing of RIAs by effectively automating head-
less web browsers in the cloud. By calculating an optimal
proportional number of VMs required to create an intended
number of virtual users for generating load on the RIA under
test, a minimal number of VMs are used. The framework
also supports automatic stopping of tests, which further helps
in controlling the total cost of test execution. In contrast to
server-side monitoring approaches that require modifications
in the application server, the ASTORIA framework does
not require server-side monitoring of performance metrics.
Additionally, by using headless web browsers for generating
load, no modifications of the system under test are required.

IX. CONCLUSIONS

In this paper, we described different problems and chal-
lenges that are associated with generating load for cost-
effective performance and scalability testing of RIAs. We
then presented the ASTORIA framework as a novel solution
for overcoming these challenges and problems. The effec-
tiveness of our framework was demonstrated by presenting
experimental results of an early prototype implementation.
As of March 2011, performance and scalability testing with
ASTORIA prototype implementation costs e 2 per hour per
1000 virtual users in Amazon EC2. This shows the cost-
effectiveness of our approach.

We showed that headless web browsers can be automated
across several VMs in a compute cloud in order to simulate
users, thus to generate load. The use of headless web
browsers allowed us to conduct a test without disabling
any CSRF prevention methods in the application servers.
Additionally, we were able to log response times in the head-
less web browsers, thus eliminating the need for server side
monitoring. By using test scripts recorded with Selenium
IDE, we were able to generate load with the characteristics
of real user traffic. A diversified user pool was simulated
by introducing random variables into the recorded usage
scenarios.



The paper demonstrated how ASTORIA framework is
used for load testing of RIAs. In addition to load testing,
the framework can also be used to perform other types
of performance and scalability testing of RIAs, such as
endurance testing, stress testing, and spike testing [28].
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